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Characterizing the Join-Irreducible
Medvedev Degrees

Paul Shafer

Abstract We characterize the join-irreducible Medvedev degrees as the de-
grees of complements of Turing ideals, thereby solving a problem posed by
Sorbi. We use this characterization to prove that there are Medvedev degrees
above the second-least degree that do not bound any join-irreducible degrees
above this second-least degree. This solves a problem posed by Sorbi and
Terwijn. Finally, we prove that the filter generated by the degrees of closed sets
is not prime. This solves a problem posed by Bianchini and Sorbi.

1 Introduction

We present solutions to three problems concerning the Medvedev degrees. A mass
problem is a set A ⊆ ωω. For mass problems A and B, we say that A Medvedev re-
duces to B (A ≤M B) if there is a Turing functional8 such that8(B) ⊆ A. That is,
8( f ) ∈ A for all f ∈ B. We say that A and B are Medvedev equivalent (A ≡M B)
if A ≤M B and B ≤M A. The equivalence class [A] is called the Medvedev degree
of A, and the structure M = (2ω

ω
/≡M,≤M) is called the Medvedev degrees. See

Sorbi [15] for a good introduction to the theory of the Medvedev degrees.
For f, g ∈ ωω, let f ⊕g be the function ( f ⊕g)(2n) = f (n) and ( f ⊕g)(2n+1) =

g(n). For m ∈ ω and f ∈ ωω, let ma f be the function (ma f )(0) = m and
(ma f )(n + 1) = f (n). In general, ‘a’ denotes string concatenation. Func-
tions f ∈ ωω are interpreted as ω-length strings when appropriate. For a mass
problem A, let maA = {ma f | f ∈ A}. Given mass problems A and B,
let A + B = { f ⊕ g | f ∈ A ∧ g ∈ B} and let A × B = 0aA ∪ 1aB.
Then [A] +[B] = [A + B] is the join (i.e., ≤M-least upper bound) of [A] and
[B], while [A] ×[B] = [A × B] is the meet (i.e., ≤M-greatest lower bound) of
[A] and [B]. Hence M is a lattice. In fact, M is a distributive lattice, meaning
that join and meet distribute over each other: a +(b × c) = (a + b)×(a + c) and
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a ×(b + c) = (a × b)+(a × c). Notation for join and meet appears in the literature
variously as +, ×, as ∨, ∧, and confusingly as ∧, ∨. We choose the +, × notation
to avoid conflict with the logical notation and to match Sorbi and Terwijn [16].

M has a least element 0 = [ωω] (and any A containing a recursive function has
this degree), a second-least element 0′

= [{ f | f >T 0}], and a greatest element
1 = [∅]. (The Medvedev degree 0′ has little to do with 0′, the Turing jump of the 0
function. Here 0′ always refers to the second-least Medvedev degree.)

In any lattice, an element a is called join-reducible if there are x, y < a such that
a = x + y. Otherwise, a is called join-irreducible. Dually, a is called meet-reducible
if there are x, y > a such that a = x × y. Otherwise, a is called meet-irreducible.
Dyment [3] characterized the meet-reducible Medvedev degrees in the following
theorem. Its corollary helps identify meet-irreducible Medvedev degrees.

Theorem 1.1 ([3]) A Medvedev degree a is meet-reducible if and only if a = [A]

for a mass problem A for which there are r.e. sets V0, V1 ⊆ ω<ω such that
(i) (∀ f ∈ A)(∃σ ∈ V0 ∪ V1)(σ ⊂ f ),

(ii) the following mass problems are ≤M-incomparable:

{ f ∈ A | (∃σ ∈ V0)(σ ⊂ f )} and { f ∈ A | (∃σ ∈ V1)(σ ⊂ f )}.

Corollary 1.2 ([3]) If A is a mass problem such that σaA ⊆ A for all σ ∈ ω<ω,
then [A] is meet-irreducible.

In particular, 0′ is meet-irreducible because σa f >T 0 whenever σ ∈ ω<ω and
f >T 0.

The problem of characterizing the join-irreducible Medvedev degrees was posed
in [15]. In Section 2, we prove that a ∈ M is join-irreducible if and only if
a = [ωω − I] for some Turing ideal I.

We have seen that M is a distributive lattice with 0 and 1. In fact, M is a Brouwer
algebra. A Brouwer algebra is a distributive lattice with 0 and 1 such that for every
a and b there is a least c such that a + c ≥ b. This least c is denoted by a → b. For
mass problems A and B, define A → B = {eag | (∀ f ∈ A)(8e( f ⊕ g) ∈ B)}.
Then [A] →[B] = [A → B]. A Brouwer algebra is dual to a Heyting algebra, but
M is proved not to be a Heyting algebra in Sorbi [12].

Brouwer algebras give semantics for propositional logic. For any Brouwer al-
gebra B, a valuation is a function ν : propositional variables → B. A valuation ν
extends to all propositional formulas ϕ by defining

ν(ϕ ∧ψ) = ν(ϕ)+ ν(ψ),

ν(ϕ ∨ψ) = ν(ϕ)× ν(ψ),

ν(ϕ→ψ) = ν(ϕ)→ ν(ψ), and
ν(¬ϕ) = ν(ϕ)→ 1.

A propositional formula ϕ is called valid in B if ν(ϕ) = 0 for every valuation ν. Let
Th(B) denote the set of propositional formulas valid in B. The axioms of intuition-
istic logic are valid in every Brouwer algebra B, so IPC ⊆ Th(B) ⊆ CPC for every
Brouwer algebra B. Here IPC denotes intuitionistic logic and CPC denotes classical
logic. Logics L for which IPC ⊆ L ⊆ CPC are called intermediate logics.

Providing semantics for propositional logic was one of Medvedev’s main motiva-
tions behind introducing M, and he proved Th(M) = JAN in Medvedev [8]. JAN
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denotes the logic IPC +¬p ∨ ¬¬p named after Jankov who studied it in Jankov [5].
In any Brouwer algebra B, the quotient of B by the principal filter generated by
a ∈ B is denoted by B /a. The quotient B /a is isomorphic to the interval [0, a]

which is a Brouwer algebra under the operations inherited from B. Logics of the
form Th(M /a) have been studied in Skvortsova [10], Sorbi [14], and Sorbi and
Terwijn [16]. (Skvortsova and Dyment are the same person. Dyment married and
became Skvortsova.) The results in Section 3 and Section 4 are motivated by the
following question which remains open.

Question 1.3 ([16]) Is Th(M /a) ⊆ JAN for all a>M 0′?

Sorbi and Terwijn’s study of Question 1.3 in [16] lead them to ask whether every
degree >M 0′ bounds a join-irreducible degree >M 0′ because a “yes” answer to this
question implies a “yes” answer to Question 1.3. However, Sorbi and Terwijn con-
jectured that there is a degree >M 0′ that bounds no join-irreducible degree >M 0′,
and we prove that this is correct in Section 3. In Section 4 we provide slight exten-
sions to some of the results in [14], thereby widening the class of degrees a for which
Th(M /a) ⊆ JAN is known.

Lastly, in Section 5 we use techniques similar to those used to characterize the
join-irreducible degrees to prove that the filter generated by the degrees of mass prob-
lems closed in ωω is not prime. This problem was posed in Bianchini and Sorbi [2]
and in Sorbi [15].

2 Characterizing the Join-Irreducible Medvedev Degrees

A Turing ideal is a set I ⊆ ωω that is closed downward under ≤T (i.e., f ∈ I ∧ g
≤T f → g ∈ I) and closed under ⊕ (i.e., f, g ∈ I → f ⊕ g ∈ I). We prove that
a ∈ M is join-irreducible if and only if a = [ωω − I] for some Turing ideal I. We
frequently use the following well-known lemma without mention.

Lemma 2.1 (see [1] Section III.2) In a distributive lattice, a is join-irreducible if
and only if for all x and y, a ≤ x + y implies a ≤ x or a ≤ y. Dually, a is meet-
irreducible if and only if for all x and y, a ≥ x × y implies a ≥ x or a ≥ y.

Proof Suppose a is join-irreducible and a ≤ x + y. Then

a = a ×(x + y) = (a × x)+(a × y).

Thus a = a × x or a = a × y which means a ≤ x or a ≤ y. Conversely, if a is
join-reducible, then by definition there are x, y < a with a = x + y. The proof for
the meet-irreducible case is obtained by dualizing the proof for the join-irreducible
case. �

For a mass problem A, let C(A) denote the Turing upward-closure of A: C(A) =

{ f | (∃g ∈ A)( f ≥T g)}. A mass problem A is called Turing upward-closed if
A = C(A). The identity functional witnesses C(A)≤M A for any mass problem
A, and if A and B are mass problems such that A is Turing upward-closed, then
A ≤M B if and only if B ⊆ A. Our starting point is the following observation.

Lemma 2.2 ([15]) If A is a mass problem such that [A] is join-irreducible, then
ωω − C(A) is a Turing ideal.
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Proof We prove the contrapositive. If ωω − C(A) is not a Turing ideal, then
there are f, g /∈ C(A) with f ⊕ g ∈ C(A). This means that { f }, {g} �M A but
{ f } +{g} ≥M A. Thus [A] is join-reducible. �

The next lemma is the main step in our characterization.

Lemma 2.3 If A is a mass problem such that [A] is join-irreducible, then
A ≡M C(A)

Proof We prove the contrapositive. Suppose A 6≡M C(A). Then it must be
that A �M C(A). We find mass problems X and Y such that X,Y �M A but
X + Y ≥M A. Thus [A] is join-reducible.

To find X and Y, first find a sequence (hn | n ∈ ω) of functions and a sequence
(en | n ∈ ω) of indices such that

(i) 8en (hn) ∈ A for all n ∈ ω,
(ii) 8n(h2n) /∈ A and 8n(h2n+1) /∈ A for all n ∈ ω, and

(iii) hn(0) = 〈 n, e0, e1, . . . , en−1 〉 for all n ∈ ω.

We find the desired sequences by iterating the following claim.

Claim 2.4 If A �M C(A), then for every e,m ∈ ω there is an h ∈ C(A) such that
h(0) = m and 8e(h) /∈ A.

Proof of claim Suppose not. Then there are e,m ∈ ω such that h(0) = m implies
8e(h) ∈ A for all h ∈ C(A). Thus h 7→ 8e(mah) is a reduction witnessing
A ≤M C(A), a contradiction. �

Suppose we have hi and ei for all i < n. To find hn and en , let e = bn/2c and
let m = 〈 n, e0, e1, . . . , en−1 〉. By the claim, there is an hn ∈ C(A) such that
hn(0) = m and8e(hn) /∈ A. The fact that hn ∈ C(A)means that there is an en such
that 8en (hn) ∈ A.

Now set X = {h2n | n ∈ ω} and Y = {h2n+1 | n ∈ ω}. Then 8e(X) * A and
8e(Y) * A for each e by item (ii). Hence X,Y �M A. The following reduction
witnesses X + Y ≥M A.

Given h, decompose h as h = f ⊕ g and decode f (0) and g(0) as f (0) = 〈 2n,
x0, x1, . . . , x2n−1 〉 and g(0) = 〈 2m + 1, y0, y1, . . . , y2m 〉. If either f (0) or g(0)
is not of the required form, then output the 0 function (as such an h cannot be
in X + Y). Otherwise, output 8x2m+1(g) if 2n > 2m + 1 and output 8y2n ( f ) if
2m + 1 > 2n.

Suppose this reduction is applied to some h = h2n⊕h2m+1 ∈ X + Y. In this case,
f = h2n , g = h2m+1, and f (0) and g(0) are of the required form by item (iii). So
if 2n > 2m + 1 we output 8e2m+1(h2m+1) and if 2m + 1 > 2n we output 8e2n (h2n).
Both alternatives are in A by item (i). Thus X + Y ≥M A. �

Theorem 2.5 A Medvedev degree a is join-irreducible if and only if a = [ωω − I]

for some Turing ideal I.

Proof Suppose a is join-irreducible, and let A be a mass problem such that
a = [A]. Then I = ωω − C(A) is a Turing ideal by Lemma 2.2, A ≡M C(A) by
Lemma 2.3, and therefore A ≡M C(A) = ωω − I. Hence a = [ωω − I] for the
Turing ideal I.
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Conversely, suppose I is a Turing ideal and let X and Y be mass problems such
that X,Y �M ω

ω
−I. We show that X + Y �M ω

ω
−I. Observe X,Y * ωω−I for

otherwise the identity functional would witness X,Y ≥M ω
ω
−I. Let f ∈ X∩I and

let g ∈ Y∩I, thereby making f ⊕g ∈ (X + Y)∩I. The function f ⊕g is in X + Y,
but it does not compute any member ofωω−I. Therefore, X + Y �M ω

ω
−I. Hence,

[ωω − I] is join-irreducible. �

Theorem 2.5 is also valid for the Muchnik degrees Mw in place of M, a fact
first noticed by Terwijn [17]. Mw is defined just as M, but with Muchnik re-
ducibility (also called weak reducibility) ≤w in place of ≤M: A ≤w B if for every
f ∈ B there is a g ∈ A such that f ≥T g. Mw is a Brouwer algebra with +,
×, and → defined by [A]w +[B]w = [A + B]w, [A]w ×[B]w = [A × B]w, and
[A]w →[B]w = [{g | (∀ f ∈ A)(∃h ∈ B)(h ≤T f ⊕g)}]w. The proof of Lemma 2.2
also works for Mw, and it is easy to check that A ≡w C(A) for any mass problem A
(i.e., the Mw analogue of Lemma 2.3 is trivial). This gives the forward direction of
Theorem 2.5 for Mw. The proof of the reverse direction of Theorem 2.5 also works
for Mw.

3 Degrees That Bound No Join-Irreducible Degrees >M 0′

Recall that JAN is the intermediate logic IPC +¬p ∨ ¬¬p. The results of this sec-
tion and the next are motivated by Question 1.3: Is Th(M /a) ⊆ JAN for every
a>M 0′?

Th(M /0′) = CPC because M /0′ ∼= [0, 0′
] = {0, 0′

}. In fact, 0′ is the only degree
for which Th(M /0′) = CPC. This is because if a>M 0′, then 0′

→ a = a, hence
0′

×(0′
→ a) = 0′. Thus, let p = 0′ to see that the formula p ∨ ¬p is not valid in

Th(M /a).
Furthermore, if a>M 0′, then we cannot have Th(M /a) ) JAN. It is an easy

check that in any Brouwer algebra B with meet-irreducible 0 (such as the alge-
bras M /a), ¬p ∨ ¬¬p ∈ Th(B) if and only if 1 is join-irreducible. However,
if a>M 0′ is join-irreducible, then Th(M /a) = JAN [14]. Thus, if a>M 0′ and
Th(M /a) ⊇ JAN, then ¬p ∨ ¬¬p ∈ Th(M /a) which implies that a is join-
irreducible which implies that Th(M /a) = JAN. Thus a “no” answer to Question 1.3
must yield a degree a such that Th(M /a) * JAN and JAN * Th(M /a).

The following theorem shows that to give a “yes” answer to Question 1.3 it suf-
fices to show that every a>M 0′ bounds a finite meet of join-irreducible degrees
>M 0′.

Theorem 3.1 ([14]) If a is a degree such that a ≥M
∏n

i=0 di for join-irreducible
degrees di >M 0′, i ≤ n, then Th(M /a) ⊆ JAN.

(The above theorem is stated more generally in [14]. Each degree di for i ≤ n is
allowed to be either join-irreducible or De-irreducible. See the parenthetical dis-
cussion following Theorem 4.1 for the definition of De-irreducible and an explana-
tion of why we do not consider such degrees here. Theorem 4.1 is a restatement
of [14], Theorem 2.11, which is the main tool used to prove Theorem 3.1.)

The degrees of the mass problems B f = {g | g �T f } play an important role in
the study of Question 1.3. The following lemma from Sorbi [13] encapsulates the
properties of the [B f ]s that we need in this section and the next.
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Lemma 3.2 ([13])

(i) Every [B f ] is join-irreducible.

(ii) Every
∑n

i=1[B fi ] is meet-irreducible.

(iii) Let V and J be finite sets and let Uv and I j be finite sets for each v ∈ V and
j ∈ J . Let xvu and y j

i be degrees of the form [B f ] for every v ∈ V , u ∈ Uv ,
j ∈ J , and i ∈ I j . Let a =

∑
v∈V

∏
u∈Uv xvu and b =

∑
j∈J

∏
i∈I j

y j
i . Then

a ≤M b if and only if(
∀v ∈ V

)(
∃ j ∈ J

)(
∀i ∈ I j

)(
∃u ∈ Uv

)(
xvu ≤M y j

i
)
.

(iv) In the notation of item (iii),

a → b =

∑{∏
i∈I j

y j
i

∣∣∣ (
∀v ∈ V

)(∏
i∈I j

y j
i �M

∏
u∈Uv

xvu
)}

(where the empty join is 0).

Proof Item (i) is by Theorem 2.5 and item (ii) is by Corollary 1.2. Item (iv) is
proved in [13]. Item (iii) follows from item (iv) because a ≤M b if and only if
b → a = 0. �

In [16] it is asked if every degree a>M 0′ bounds a join-irreducible degree >M 0′,
and it is conjectured that this is not the case based on the evidence provided by the
following theorem.

Theorem 3.3 ([16]) There is a degree a>M 0′ such that a �M[B f ] for every
f >T 0.

Our characterization of the join-irreducible degrees implies that every join-irreducible
degree>M 0′ bounds some degree [B f ] with f >T 0. Thus the conjecture is correct.

Corollary 3.4 (to Theorem 2.5) If a>M 0′ is join-irreducible, then a ≥M[B f ] for
some f >T 0.

Proof If a is join-irreducible, then, by Theorem 2.5, a = [ωω − I] for some
Turing ideal I. If [ωω − I]>M 0′, then I contains some function f >T 0. Thus
ωω − I ⊆ B f . Hence a = [ωω − I] ≥M[B f ]. �

Theorem 3.5 There is a degree a>M 0′ such that every degree x with 0′<M x ≤M a
is join-reducible.

Proof By Theorem 3.3, let a>M 0′ be such that a �M[B f ] for every f >T 0. This
a is the desired degree because, by Corollary 3.4, if a ≥M x for some join-irreducible
x>M 0′, then a ≥M[B f ] for some f >T 0. �

The degree a satisfying Theorem 3.3 was constructed by diagonalization in [16].
We can give somewhat more concrete examples of degrees satisfying Theorem 3.3
and Theorem 3.5. Recall the following definitions. Functions f, g>T 0 are a Turing
minimal pair if, for all h, h ≤T f, g implies h ≤T 0. A function f has minimal Turing
degree if, for all h, h<T f implies h ≤T 0. Minimal pairs and minimal degrees exist.
In fact, there are continuum many distinct minimal Turing degrees. See Lerman [6],
Section II.4 and Section V.2.
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Theorem 3.6 If f and g are a minimal pair, then the degree a = [B f ] ×[Bg]

witnesses Theorem 3.5.

Proof Let f and g be a minimal pair. Then [B f ], [Bg]>M 0′ because f, g>T 0.
Thus [B f ] ×[Bg]>M 0′ because 0′ is meet-irreducible by Corollary 1.2. To show
that [B f ] ×[Bg] bounds no join-irreducible degree >M 0′, it suffices by Corol-
lary 3.4 to show that [B f ] ×[Bg] bounds no [Bh] for h>T 0. This is true because
f, g is a minimal pair, so for any h>T 0, either h �T f or h � g. Thus, either
h ∈ B f or h ∈ Bg , which means B f × Bg contains a function ≡T h. Bh contains
no function ≤T h; therefore, B f × Bg �M Bh . �

We can extend the idea behind Theorem 3.6 to find a degree a>M 0′ that does not
bound any finite meet of join-irreducible degrees >M 0′. Several of our examples in
this section and the next are of the form

[⋃
i∈ω iaDi

]
for mass problems Di , i ∈ ω.

Lemma 3.7 Let d =
[⋃

i∈ω iaDi
]

where [Di ]>M 0′ for each i ∈ ω. Then
d>M 0′.

Proof Suppose for a contradiction that 8 is a reduction witnessing d ≤M 0′ (i.e.,
8( f ) ∈

⋃
i∈ω iaDi for all f >T 0). Let σ ∈ ω<ω be such that 8(σ)(0)↓ and let

i = 8(σ)(0). Then f 7→ 8(σa f ) is a reduction witnessing 0′
≥M[Di ], contradict-

ing [Di ]>M 0′. �

Theorem 3.8 There is a degree a>M 0′ such that no degree x with 0′<M x ≤M a is
of the form

∏n
i=0 di for join-irreducible degrees di >M 0′, i ≤ n.

Proof By Corollary 3.4, it suffices to find a degree a>M 0′ which is not above any
degree of the form

∏n
i=0[B fi ] where fi >T 0 for each i ≤ n. Let {gi | i ∈ ω}

be a countable collection of functions all of distinct minimal Turing degree. Let
A =

⋃
i∈ω iaBgi and put a = [A]. Lemma 3.7 proves that a>M 0′.

Now consider any degree
∏n

i=0[B fi ], where fi >T 0 for each i ≤ n. There is a
j ∈ ω such that g j �T fi for each i ≤ n. Thus, for this j , [Bg j ] �M[B fi ] for each
i ≤ n. Therefore, [Bg j ] �M

∏n
i=0[B fi ] because [Bg j ] is meet-irreducible. Clearly,

[Bg j ] ≥M a, so a �M
∏n

i=0[B fi ] as well. �

For mass problems Ai , i ∈ ω, the Medvedev degree
[⋃

i∈ω iaAi
]

is not in general
the greatest lower bound of the degrees [Ai ], i ∈ ω. Such greatest lower bounds
need not even exist. For example, the degrees [Bgi ], i ∈ ω from Theorem 3.8 do not
have a greatest lower bound. This follows from results in Dyment [4] which studies
when countable collections of degrees have least upper bounds and greatest lower
bounds.

If a is a degree such that a �M d for all join-irreducible d>M 0′, then a → d = d
for all join-irreducible d>M 0′. The degree a constructed in Theorem 3.8 enjoys a
similar property.

Theorem 3.9 There is a degree a>M 0′ such that a →
∏n

i=0 di =
∏n

i=0 di when-
ever di >M 0′ and is join-irreducible for each i ≤ n.

Proof As in Theorem 3.8, let {gi | i ∈ ω} be a countable collection of functions
all of distinct minimal Turing degree, let A =

⋃
i∈ω iaBgi , and put a = [A].

Suppose di >M 0′ and is join-irreducible for each i ≤ n. By Theorem 2.5, for
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each i ≤ n, let Ii ⊆ ωω be a Turing ideal such that di = [ωω − Ii ]. Thus∏n
i=0 di =

[⋃n
i=0 ia(ωω − Ii )

]
and

a →

n∏
i=0

di =

[{
eag

∣∣∣ (
∀ f ∈ A

)(
8e( f ⊕ g) ∈

n⋃
i=0

ia(ωω − Ii )
)}]

.

We now describe a reduction witnessing a →
∏n

i=0 di ≥M
∏n

i=0 di .
Given eag, for each i ≤ n + 1 search for a string iaσi such that

8e((iaσi )⊕ g)(0)↓ .

If there is a k ≤ n such that

8e((iaσi )⊕ g)(0) = 8e(( jaσ j )⊕ g)(0) = k

for two distinct i, j ≤ n + 1, choose the least such k and output kag. Otherwise,
output 0.

Suppose we apply this reduction to eag ∈ A →
⋃n

i=0 ia(ωω − Ii ). 8e( f ⊕ g)
must be total for each f ∈ A, and for each i ∈ ω there is an f ∈ A with f (0) = i .
Thus for each i ≤ n +1 the search finds a string iaσi such that8e((iaσi )⊕ g)(0)↓.
Moreover, each iaσi can be extended to a function in A, so 8e((iaσi )⊕ g)(0) ≤ n
for each i ≤ n + 1. Therefore, there is a least k ≤ n for which there are dis-
tinct i, j ≤ n + 1 with 8e((iaσi ) ⊕ g)(0) = 8e(( jaσ j ) ⊕ g)(0) = k. The
reduction outputs kag, so we must show that kag ∈

⋃n
i=0 ia(ωω − Ii ) which

means we must show that g /∈ Ik . Suppose for a contradiction that g ∈ Ik .
The functions gi and g j have distinct minimal degree, so either g �T gi or g �T g j
(g>T 0 because a �M

∏n
i=0 di by Theorem 3.8). For the sake of argument, suppose

g �T gi . Then σi
ag �T gi as well, so σi

ag ∈ Bgi and iaσi
ag ∈ A. However,

8e((iaσi
ag) ⊕ g) ∈ ka(ωω − Ik) by the choice of iaσi . This cannot be because

(iaσi
ag)⊕ g ∈ Ik ; thus anything it computes is also in Ik . �

By Corollary 4.6 below, the degree a =
[⋃

i∈ω iaBgi

]
used to witness Theorem 3.8

and Theorem 3.9 satisfies Th(M /a) ⊆ JAN and so does any degree that bounds
it. There are, however, degrees >M 0′ that do not bound any degree of the form[⋃

i∈ω iaDi
]

where [Di ]>M 0′ and is join-irreducible for each i ∈ ω.

Theorem 3.10 There is a degree a>M 0′ such that a �M
[⋃

i∈ω iaDi
]

whenever
[Di ]>M 0′ and is join-irreducible for each i ∈ ω.

Proof Let Di be such that [Di ]>M 0′ and is join-irreducible for each i ∈ ω. By
Corollary 3.4, for every i ∈ ω, there is an fi >T 0 such that Di ≥M B fi . The mass
problem B fi is Turing upward-closed for each i ∈ ω, so Di ⊆ B fi for each i ∈ ω.
Thus

⋃
i∈ω iaDi ⊆

⋃
i∈ω iaB fi . Hence it suffices to find a degree a>M 0′ that

does not bound any degree of the form
[⋃

i∈ω iaB fi

]
, where fi >T 0 for each i ∈ ω.

We use the same construction used in [16] to prove Theorem 3.3. Build mass
problems As ⊆ {g | g>T 0} such that {g | g>T 0}−As is finite for each s ∈ ω. Set
A0 = {g | g>T 0}. At stage s + 1, choose hs >T 0 such that hs does not compute
any of the (finitely many) functions in {g | g>T 0} − As . If 8s(hs) is total and
>T 0, let gs = 8s(hs) and set As+1 = As − {gs}. Otherwise, set As+1 = As . Put
A =

⋂
s∈ω As and put a = [A].
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To see a>M 0′, observe that by construction 8s(hs) /∈ A for each s ∈ ω. Now
let fi >T 0 for each i ∈ ω. We need to show that 8e(A) *

⋃
i∈ω iaB fi for every

index e. To do this, we first show that the functions in {g | g>T 0}−A have distinct
Turing degree. Suppose that gi leaves A at stage i +1 and g j leaves A at stage j +1
for i+1 < j+1 (i.e., at stage i+1 we had8i (hi ) = gi >T 0, and at stage j+1 we had
8 j (h j ) = g j >T 0). Then gi �T g j because otherwise gi ≤T g j ≤T h j , contradicting
that h j was chosen �T gi at stage j + 1. Now suppose 8e(g) is total for all g ∈ A.
Fix any σ ∈ ω<ω such that 8e(σ )(0)↓, and let n be such that 8e(σ )(0) = n. A is
missing at most one function ≡T fn , so let g ∈ A be such that σ ⊂ g and g ≡T fn .
Then 8e(g)(0) = n, but 8e(g) /∈ naB fn . Hence 8e(A) *

⋃
i∈ω iaB fi . �

Question 3.11 Let a be the degree constructed in Theorem 3.10. Does

a →
[⋃

i∈ω iaDi
]

=
[⋃

i∈ω iaDi
]

whenever [Di ]>M 0′ and is join-irreducible for each i ∈ ω? Is Th(M /a) ⊆ JAN?

Finally, we note that the answer to Question 1.3 is “no” for Mw in place of M.
Let f >T 0 have minimal Turing degree, and let a = [B f ]w. Then, in Mw,
[0, a] = {0, 0′, a} and JAN ( Th(Mw /a) ( CPC.

4 New Degrees Whose Corresponding Logic Is Contained in JAN

We extend Theorem 3.1 by proving that Th(M /a) ⊆ JAN for degrees a such
that a ≥M

[⋃
i∈ω iaDi

]
for some collection of join-irreducible degrees [Di ]>M 0′,

i ∈ ω.
A propositional formula is called positive if the connective ‘¬’ does not appear in

it. For a logic L , let L+ denote the positive formulas in L , and for a Brouwer alge-
bra B, let Th+(B) denote the set of positive formulas valid in B. JAN is the maxi-
mum intermediate logic L for which L+

= IPC+ [5]. This means that L+
= IPC+

implies L ⊆ JAN for any intermediate logic L . Thus Th+(B) = IPC+ implies
Th(B) ⊆ JAN for any Brouwer algebra B.

Let B1 and B2 be Brouwer algebras. An injection f : B1 → B2 is called a B-
embedding if it preserves 0, 1, +, ×, and → (and therefore also ¬). An injection
f : B1 → B2 is called a B+-embedding if it preserves 0, +, ×, and → (but not
necessarily 1 or ¬). If B1 B-embeds into B2, then Th(B2) ⊆ Th(B1), and if B1 B+-
embeds into B2, then Th+(B2) ⊆ Th+(B1). Both of these facts are easily checked
in light of [9], Theorem VI.2.4. If a ≤ b are in a Brouwer algebra B, then B /a B+-
embeds into B /b by the identity. This implies that Th+(B /b) ⊆ Th+(B /a), and
it follows that the a for which Th(B /a) ⊆ JAN is upward-closed in any Brouwer
algebra B.

Our goal is to B+-embed a certain class of Brouwer algebras into M /a. For any
set X , let Fr(X) denote the free distributive lattice generated by X and let 0 ⊕ Fr(X)
denote Fr(X)with a new bottom element 0. The elements of Fr(X) are all of the form∑
v∈V

∏
u∈Uv xvu where V and the Uv are finite sets of indices and the xvu are all in X

(see, for example, Balbes and Dwinger [1], Section V.3). For such representations,∑
v∈V

∏
u∈Uv xvu ≤

∑
j∈J

∏
i∈I j

y j
i if and only if(

∀v ∈ V
)(

∃ j ∈ J
)(

∀i ∈ I j
)(

∃u ∈ Uv
)(

xvu ≤ y j
i
)
.
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If a,b ∈ Fr(X) are such that a � b, then a → b exists. To see this, let
a =

∑
v∈V

∏
u∈Uv xvu and b =

∑
j∈J

∏
i∈I j

y j
i be representations for a and b.

Then check

a → b =

∑{∏
i∈I j

y j
i

∣∣∣ (
∀v ∈ V

)(∏
i∈I j

y j
i �

∏
u∈Uv

xvu
)}
.

If a ≥ b are in Fr(X) for an infinite X , then a → b fails to exist because in this case
Fr(X) has no least element. We see then that a → b exists for every a,b ∈ 0⊕Fr(X).
If X is finite, then so are Fr(X) and 0 ⊕ Fr(X). Hence, both are Brouwer alge-
bras. Let Fr(n) denote the free distributive lattice with n generators. The logic
LM =

⋂
n∈ω Th(0 ⊕ Fr(n)) is called the Medvedev logic of finite problems. (LM is

usually defined in terms of Brouwer algebras isomorphic to the 0 ⊕ Fr(n). See [16]
for details.) We take advantage of the fact that LM+

= IPC+ [8].
If X is infinite, then 0 ⊕ Fr(X) fails to be a Brouwer algebra only because it lacks

a top element. Therefore, the notion of a B+-embedding makes sense when we allow
B1 or B2 to be 0 ⊕ Fr(X). If we let 0 ⊕ Fr(X)⊕ 1 denote Fr(X) with a new bottom
element 0 and a new top element 1, then 0 ⊕ Fr(X)⊕ 1 is always a Brouwer algebra.

For any partial order (P,≤P ), let Fr(P,≤P ) denote the free distributive lattice
generated by (P,≤P ). Fr(P,≤P ) is the quotient Fr(P)/≡ where, for

a =
∑
v∈V

∏
u∈Uv xvu and b =

∑
j∈J

∏
i∈I j

y j
i in Fr(P),

a ≡ b if and only if (a � b)∧(b � a) and a � b if and only if(
∀v ∈ V

)(
∃ j ∈ J

)(
∀i ∈ I j

)(
∃u ∈ Uv

)(
xvu ≤P y j

i
)
.

Fr(P,≤P ) is always a distributive lattice, and 0⊕Fr(P,≤P )⊕1 is always a Brouwer
algebra; also see [13].

The following lemmas facilitate our embeddings. Lemma 4.3 is a slight general-
ization of the claim in the proof of [13], Lemma 2.3 and of [10], Lemma 6. The em-
bedding is done in Theorem 4.4 which is nearly identical to [14], Theorem 2.11. Part
of the reason for reproducing the proof here is to (hopefully) correct the notational
inconsistencies in the proof in [14]. We restate [14], Theorem 2.11, for reference.

Theorem 4.1 ([14], Theorem 2.11) Let d =
∏n

i=0 di where di >M 0′ and di is join-
irreducible for each i ≤ n. Then 0 ⊕ Fr(P,≤P )⊕ 1 B-embeds into M /d for every
countable partial order (P,≤P ).

(The above theorem is stated more generally in [14]. Each degree di , for i ≤ n,
is allowed to be either join-irreducible or De-irreducible. A degree a is dense if
it is of the form [A] where A is dense in ωω, and a degree d is De-irreducible if
a → d = d for all dense degrees a. We do not consider De-irreducible degrees in
our version of [14], Theorem 2.11, which is Theorem 4.4 below, because in Theo-
rem 4.4 we require that the mass problems Di (which play the role of the degrees
di in [14], Theorem 2.11) are Turing upward-closed. Mass problems that are Turing
upward-closed are dense and hence their degrees are not De-irreducible.)

Lemma 4.2 ([3]) If X �M Y are mass problems, then there is a W ⊆ X with
|W | ≤ ω such that W �M Y.

Proof X �M Y means that there is no Turing functional 8 such that 8(X) ⊆ Y.
Thus, for each functional 8e, there must be some function fe ∈ X such that
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8e( fe) /∈ Y. Let W consist of a choice of one such fe ∈ X for each func-
tional 8e. �

Lemma 4.3 Let U, V, and Fi , for i ∈ ω, be mass problems such that
⋃

i∈ω iaFi

≤M U + V and σaU ⊆ U for all σ ∈ ω<ω. Then there are mass problems Vi , for
i ∈ ω, such that

⋃
i∈ω iaVi ≡M V and Fi ≤M U + Vi for each i ∈ ω.

Proof Let U, V, and Fi , for i ∈ ω, be as in the statement of the lemma. Let 8
be such that 8(U + V) ⊆

⋃
i∈ω iaFi . For each i ∈ ω, define Vi = {g ∈ V |

(∃σ ∈ ω<ω)(8(σ ⊕ g)(0) = i)}. V ≤M
⋃

i∈ω iaVi is clear.
⋃

i∈ω iaVi ≤M V by
the reduction which, given g, searches for a σ ∈ ω<ω such that 8(σ ⊕ g)(0)↓ and
outputs 8(σ ⊕ g)(0)ag. To see iaFi ≤M U + Vi , consider the reduction which,
given f ⊕ g, searches for a σ ∈ ω<ω such that 8(σ ⊕ g)(0) = i and outputs
8((σa f ) ⊕ g). If f ⊕ g ∈ U + Vi , then such a σ is found, σa f is in U, and
8((σa f )⊕ g) is in iaFi . �

Theorem 4.4 Let d =
[⋃

i∈ω iaDi
]

where [Di ]>M 0′, [Di ] is join-irreducible,
and Di is Turing upward-closed for each i ∈ ω. Then 0 ⊕ Fr(2ω) B+-embeds into
M /d.

Proof Let Di , for i ∈ ω, be as in the statement of the theorem, let D =
⋃

i∈ω iaDi ,
and let d = [D]. Lemma 3.7 proves that d>M 0′. By Lemma 4.2, let A ⊆ { f |

f >T 0} be a countable mass problem such that A �M D . Let { fx | x ∈ 2ω} be
a collection of functions such that fx |T fy for all x, y ∈ 2ω with x 6= y and that
f �T fx for all f ∈ A and x ∈ 2ω. Such a sequence can be constructed via standard
recursion-theoretic techniques: build a perfect tree whose paths are Turing incom-
parable and do not compute any functions in A. See, for example, [6], Section II.4.
Notice that B fx ≤M A (because A ⊆ B fx ) for each x ∈ 2ω.

Define G : 0 ⊕ Fr(2ω)→ M as follows. Let G(0) = 0 and let G(x) = [B fx ]

on the generators x ∈ 2ω of Fr(2ω). Then extend G to all of 0 ⊕ Fr(2ω) so that
G

(∑
v∈V

∏
u∈Uv xvu

)
=

∑
v∈V

∏
u∈Uv G

(
xvu

)
. G preserves 0, +, and × by def-

inition, and G is injective and preserves → by Lemma 3.2, items (iii) and (iv).
Hence G is a B+-embedding (this is essentially [13], Corollary 2.5). Now define
H : 0 ⊕ Fr(2ω)→ M /d by H(a) = G(a)× d for all a ∈ 0 ⊕ Fr(2ω). This H is the
desired B+-embedding. By definition, H preserves 0, +, and ×. We must show that
H is injective and that H preserves →.

Clearly, H(a) = 0 if and only if a = 0, so to show that H is injective
we let a,b ∈ Fr(2ω) be such that H(a)≤M H(b) and show that a ≤ b. Let
a =

∑
v∈V

∏
u∈Uv xvu be a representation for a and let b =

∑
j∈J

∏
i∈I j

y j
i be a

representation for b. H(a)≤M H(b) means that∑
v∈V

∏
u∈Uv

G
(
xvu

)
× d ≤M

∑
j∈J

∏
i∈I j

G
(
y j

i
)
× d.

Therefore,∑
v∈V

∏
u∈Uv

G
(
xvu

)
× d ≤M

∑
j∈J

∏
i∈I j

G
(
y j

i
)

=

∏{∑
j∈J

G
(
y j
α( j)

) ∣∣∣ α ∈

∏
j∈J

I j

}
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where the equality is by distributivity
( ∏

j∈J I j denotes the Cartesian product of the
I j s

)
. Hence, ∑

v∈V

∏
u∈Uv

G
(
xvu

)
× d ≤M

∑
j∈J

G
(
y j
α( j)

)
for each α ∈

∏
j∈J

I j .

Each
∑

j∈J G
(
y j
α( j)

)
is meet-irreducible by Lemma 3.2, item (ii). Also, d

�M
∑

j∈J G
(
y j
α( j)

)
for each α ∈

∏
j∈J I j because

∑
j∈J G

(
y j
α( j)

)
≤M[A] but

d �M[A]. Thus,∑
v∈V

∏
u∈Uv

G
(
xvu

)
≤M

∑
j∈J

G
(
y j
α( j)

)
for each α ∈

∏
j∈J

I j ,

and this implies that∑
v∈V

∏
u∈Uv

G
(
xvu

)
≤M

∏{∑
j∈J

G
(
y j
α( j)

) ∣∣∣ α ∈

∏
j∈J

I j

}
.

The left-hand side of the above inequality is G(a) and the right-hand side is G(b).
G is a B+-embedding, so we conclude a ≤ b.

If either of a,b ∈ 0⊕Fr(2ω) is 0, then clearly H(a → b) = H(a)→ H(b). So as
before, let a =

∑
v∈V

∏
u∈Uv xvu and let b =

∑
j∈J

∏
i∈I j

y j
i be in Fr(2ω). We see

H(a → b)≥M H(a)→ H(b) because

H(a → b)+ H(a) = H((a → b)+ a)≥M H(b).

To show that H(a → b)≤M H(a)→ H(b), we show that if z ∈ M is such that
H(b)≤M H(a)+ z, then H(a → b)≤M z. Suppose H(b)≤M H(a)+ z. That is,∑

j∈J

∏
i∈I j

G
(
y j

i
)
× d ≤M

(∑
v∈V

∏
u∈Uv

G
(
xvu

)
× d

)
+ z. (1)

Since a → b =
∑{∏

i∈I j
y j

i |
(
∀v ∈ V

)(∏
i∈I j

y j
i �

∏
u∈Uv xvu

)}
, we have

H(a → b) = G(a → b)× d

=

∑{∏
i∈I j

G
(
y j

i
) ∣∣∣ (

∀v ∈ V
)(∏

i∈I j

G
(
y j

i
)
�M

∏
u∈Uv

G
(
xvu

))}
× d.

It suffices to show that, given j ∈ J , if
∏

i∈I j
G

(
y j

i
)

satisfies(
∀v ∈ V

)(∏
i∈I j

G
(
y j

i
)
�M

∏
u∈Uv

G
(
xvu

))
,

then
∏

i∈I j
G

(
y j

i
)
× d ≤M z. Suppose

∏
i∈I j

G
(
y j

i
)

is such a meet. Then we know(
∀v ∈ V

)(
∃u ∈ Uv

)(∏
i∈I j

G
(
y j

i
)
�M G

(
xvu

))
.

By choosing such a u ∈ Uv , for every v ∈ V , and by appealing to Lemma 3.2, items
(i) and (ii), we see that there is an α ∈

∏
v∈V Uv such that∏

i∈I j

G
(
y j

i
)
�M

∑
v∈V

G
(
xvα(v)

)
. (2)
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Distributing
∑
v∈V

∏
u∈Uv G

(
xvu

)
in the right-hand side of (1) yields∏

i∈I j

G
(
y j

i
)
× d ≤M

∑
v∈V

G
(
xvα(v)

)
+ z.

The degree
∑
v∈V G

(
xvα(v)

)
is a finite join of degrees of the form [B f ] and thus has

a representative U such that σaU ⊆ U for all σ ∈ ω<ω. So, by Lemma 4.3, there
are mass problems Zi for i ∈ I j and Ẑi for i ∈ ω such that

z =

(∏
i∈I j

[Zi ]
)

×

[⋃
i∈ω

iaẐi

]
,

G
(
y j

i
)
≤M

∑
v∈V

G
(
xvα(v)

)
+[Zi ] for each i ∈ I j , and

[Di ] ≤M
∑
v∈V

G
(
xvα(v)

)
+[Ẑi ] for each i ∈ ω.

Each G
(
y j

i
)

is join-irreducible, and G
(
y j

i
)
�M

∑
v∈V G

(
xvα(v)

)
by (2). Thus

G
(
y j

i
)
≤M[Zi ] for each i ∈ ω, so

∏
i∈I j

G
(
y j

i
)
≤M

∏
i∈I j

[Zi ]. Each [Di ] is
join-irreducible by assumption, and [Di ] �M

∑
v∈V G

(
xvα(v)

)
because the right-

hand side is ≤M[A] but the left-hand side is not. It follows that [Di ] ≤M[Ẑi ]

for each i ∈ ω, and so Ẑi ⊆ Di for each i ∈ ω because each Di is Tur-
ing upward-closed. Thus,

⋃
i∈ω iaẐi ⊆ D , so d ≤M

[⋃
i∈ω iaẐi

]
. Therefore,∏

i∈I j
G

(
y j

i
)
× d ≤M

(∏
i∈I j

[Zi ]
)
×

[⋃
i∈ω iaẐi

]
= z as desired. �

Corollary 4.5 If a ≥M d are degrees such that d =
[⋃

i∈ω iaDi
]

where [Di ]>M 0′

and is join-irreducible for each i ∈ ω, then 0 ⊕ Fr(2ω) B+-embeds into M /a.

Proof Let a, d, and Di , for i ∈ ω, be as in the statement of the corollary. Let
d0 =

[⋃
i∈ω iaC(Di )

]
and notice that d ≥M d0. Di ≡M C(Di ) for each i ∈ ω

by Lemma 2.3, so d0 satisfies the hypotheses of Theorem 4.4. Thus, 0 ⊕ Fr(2ω)
B+-embeds into M /d0 which B+-embeds into M /a. �

Corollary 4.6 If a ≥M d are degrees such that d =
[⋃

i∈ω iaDi
]

where [Di ]>M 0′

and is join-irreducible for each i ∈ ω, then Th(M /a) ⊆ JAN.

Proof The Brouwer algebra 0 ⊕ Fr(n) B+-embeds into 0 ⊕ Fr(2ω) for each n,
and 0 ⊕ Fr(2ω) B+-embeds into M /a by Corollary 4.5. Thus, Th+(M /a)
⊆

⋂
n∈ω Th+(0 ⊕ Fr(n)) = LM+

= IPC+. So Th(M /a) ⊆ JAN. �

Theorem 4.4 can be modified to B-embed 0 ⊕ Fr(2ω) ⊕ 1 into M /d for degrees d
as in the statement of Theorem 4.4. However, if a ≤ b in a Brouwer algebra B, it is
not in general the case that B /a B-embeds into B /b. So the proof of Corollary 4.5
fails for B-embedding 0 ⊕ Fr(2ω) ⊕ 1. Theorem 4.4 can also be modified to prove
a more precise analogue of [14], Theorem 2.11 (restated as Theorem 4.1 above).
Let d =

[⋃
i∈ω iaDi

]
where [Di ]>M 0′, [Di ] is join-irreducible, and Di is Turing

upward-closed for each i ∈ ω. Then 0 ⊕ Fr(P,≤P ) ⊕ 1 B-embeds into M /d for
every countable partial order (P,≤P ).
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5 Fcl Is Not Prime

Recall that a filter F in a lattice is called prime if a + b ∈ F → a ∈ F ∨ b ∈ F for all
a and b in the lattice. Theorem 2.5 can be phrased as a characterization of the prime
principal filters in M: a degree a generates a prime filter if and only if a = [ωω − I]

for some Turing ideal I. There is little general theory of the nonprincipal filters in M,
but several specific cases have been studied in Dyment [3], Sorbi [11], Bianchini and
Sorbi [2], and Lewis, Shore, and Sorbi [7]. See also [15] for a summary of many of
the results appearing in these works. We consider the filters F and Fcl.

Definition 5.1

(i) A degree a is called dense (closed) if a = [A] for an A that is dense (closed)
in ωω.

(ii) I denotes the ideal generated by {a | a is dense}.
(iii) F denotes M − I.
(iv) Fcl denotes the filter generated by {a | a>M 0 and is closed}.

The join and meet of two dense degrees is dense [3], and the join and meet of two
closed degrees is closed [2]. It follows that I = {b | (∃a ≥M b)(a is dense)} and
Fcl = {b | (∃a ≤M b)(a>M 0 and is closed)}. The basic properties of I, F, and Fcl
are as follows: I is a prime ideal [11], F is a prime filter [2], I is not principal [3],
F and Fcl are not principal [2], and Fcl ( F [2]. Both [2] and [15] ask for a proof
that Fcl is not prime. We provide a proof of this fact now.

Lemma 5.2 For any f ∈ ωω there are A,B ⊆ ωω such that A + B ≥M{ f } and,
for any closed C ⊆ ωω, if A ≥M C or B ≥M C, then C contains a recursive function.

Proof Fix a recursive bijection ω ↔ ω<ω. For e, n ∈ ω, if

∀m∀σ(∃τ ⊇ σ)(8e(naτ)(m)↓),

then define η(e, n, i) ∈ ω<ω by induction on i ∈ ω as follows. Let η(e, n, 0) =

naσ , where σ is the least string such that 8e(naσ)(0)↓. Given η(e, n, i), let
η(e, n, i + 1) = η(e, n, i)a0aσ , where σ is the least string such that

8e(η(e, n, i)a0aσ)(i + 1)↓ .

Let f ∈ ωω. We construct A and B such that
(i) if g ∈ A, then g(0) has the form

g(0) = 〈 `, 〈 n0, x0, y0 〉, . . . , 〈 n`−1, x`−1, y`−1 〉 〉,

where ` ∈ ω and ni ∈ ω, xi ∈ {0, 1}, and yi ∈ ω for each i < `;
(ii) if g ∈ A and 〈 ne, 0, ye 〉 is in the eth position of g(0), then

(a) ∃m∃σ(∀τ ⊇ σ)(8e(ne
aτ)(m)↑),

(b) any h ∈ B with h(0) = ne is of the form h = ne
aσa f , where |σ | = ye;

(iii) if g ∈ A and 〈 ne, 1, ye 〉 is the eth position of g(0), then
(a) ∀m∀σ(∃τ ⊇ σ)(8e(ne

aτ)(m)↓),
(b) any h ∈ B with h(0) = ne is of the form h = η(e, ne, i)a1a f for some

i ∈ ω;
(iv) the above properties hold with the roles of A and B reversed.

We construct A and B in stages. The construction is similar to the construction in
Lemma 2.3 in that if g goes into A before h goes into B, then h(0) codes how to
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recover f from g, and similarly with the roles of A and B reversed. Start at stage 0
with A = ∅, B = ∅, s = 〈 〉, and t = 〈 〉.

Stage e + 1 Set ne = eat .

Case 1 ∃m∃σ(∀τ ⊇ σ)(8e(ne
aτ)(m)↑). Choose such a σ and put ne

aσa f in A.
Update s = sa

〈 ne, 0, |σ | 〉.

Case 2 ∀m∀σ(∃τ ⊇ σ)(8e(ne
aτ)(m)↓). Put the functions η(e, ne, i)a1a f in A

for each i ∈ ω. Update s = sa
〈 ne, 1, 0 〉.

Repeat the above procedure with the roles of A and B reversed and the roles of s and
t reversed. This completes stage e + 1. Then go on to stage e + 2. This completes
the construction.

Suppose A ≥M C where C is closed. We show that C contains a recursive func-
tion. The proof with B in place of A is the same. Let 8e(A) ⊆ C . Consider
stage e + 1 of the above construction. Case 1 must not have occurred because
otherwise A would contain a function ne

aσa f such that 8e(ne
aσa f ) is not

total. Thus case 2 occurred, and so A contains the function η(e, ne, i)a1a f for
each i ∈ ω. Let k be the recursive function k = ne

aσ0
a0aσ1

a0aσ2
a0a

· · · ,
where η(e, ne, i) = ne

aσ0
a0a

· · ·
a 0aσi for each i ∈ ω (think of k as the

“limit” of the strings η(e, ne, i) as i → ∞). Then 8e(η(e, ne, i)a1a f ) ∈ C and
8e(η(e, ne, i)a1a f ) � i = 8e(k) � i for each i ∈ ω. Thus C contains the recursive
function 8e(k) because C is closed.

We now describe a uniform procedure for producing f from g ⊕ h ∈ A + B.
First decode h(0) as h(0) = 〈 `, 〈 n0, x0, y0 〉, . . . , 〈 n`−1, x`−1, y`−1 〉 〉 and look for
g(0) among the ne. If 〈 g(0), 0, ye 〉 appears in h(0) at position e, then output g
from position ye + 1 onward as in this case g = σa f for some string σ of length
ye + 1. If 〈 g(0), 1, 0 〉 appears in h(0) at position e, then g = η(e, g(0), i)a1a f
for some i ∈ ω. Compute which i by successively computing the η(e, g(0), j),
matching them against g, and checking if the next bit of g is 0 (in which case compute
η(e, g(0), j + 1)) or 1 (in which case j = i). Output f once i is found.

The number g(0) appears among the ne coded into h(0) if g went into A before
h went into B. Otherwise, h went into B before g went into A, so h(0) appears
among the ne coded in g(0). In this case, switch the roles of g and h and apply the
above procedure to compute f . �

Theorem 5.3 Fcl is not prime. In fact, if G ⊆ Fcl, G 6= {1} is a filter, then G is
not prime.

Proof Suppose G ⊆ Fcl is a filter such that G 6= {1}. Let f >T 0 be such that
[{ f }] ∈ G. Let A,B ⊆ ωω be as in Lemma 5.2 for this f . Let a = [A] and
b = [B]. Then a,b /∈ G because a,b /∈ Fcl, but a + b ∈ G because a + b ≥M[{ f }].

�

If x and y are degrees such that y is closed and y �M x, then there is no dense degree z
such that y ≤M x + z [7]. Therefore, if G ⊆ Fcl, G 6= {1} is a filter, then any degrees
a and b witnessing that G is not prime must both be in F − G.
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The results of Section 3 suggest two new filters to study.

Definition 5.4

(i) G denotes the filter generated by

{d | d>M 0′ and is join-irreducible}.

(ii) H denotes the filter generated by{[⋃
i∈ω

iaDi

] ∣∣∣ (∀i ∈ ω)([Di ]>M 0′ and is join-irreducible)
}
.

G is exactly the set of all degrees b for which b ≥M
∏n

i=0 di for some join-
irreducible degrees di >M 0′, i ≤ n, and H is exactly the set of all degrees b for
which b ≥M

[⋃
i∈ω iaDi

]
for some join-irreducible degrees [Di ]>M 0′, i ∈ ω.

Theorem 5.5 Fcl ( G ( H ( {a | a>M 0′
}. G * F (hence also H * F). Neither

G nor H is principal.

Proof Every closed degree >M 0 bounds a join-irreducible degree >M 0′ [16].
Hence Fcl ⊆ G. G ⊆ H is clear. To see G * F, observe that every B f is dense, so
if f >T 0, then [B f ] ∈ G − F. This also shows G * Fcl. The degree constructed in
Theorem 3.8 witnesses H * G. The degree constructed in Theorem 3.10 witnesses
{a | a>M 0′

} * H. We show that G is not principal. The proof for H is the same.
First, if A is countable and contains no recursive functions, then there is a function
f >T 0 such that g �T f for all g ∈ A. Thus B f ≤M A (as A ⊆ B f ) for this f .
Every [B f ] for f >T 0 is in G, so every [A] where A is countable and contains no
recursive function is in G. If G were principal, it would be generated by a degree
x such that x ≤M[A] for all countable A not containing a recursive function. By
Lemma 4.2, the only such x are 0 and 0′. We know 0 and 0′ are not in G, so G
cannot be principal. �

We end with a question.

Question 5.6

(i) Is F ⊆ G? Is F ⊆ H?
(ii) Is G prime? Is H prime?

(iii) Is {a | Th(M /a) ⊆ JAN} a filter?

To prove that {a | Th(M /a) ⊆ JAN} is a filter, it suffices to prove that Th(M /
(a × b)) ⊆ JAN whenever both Th(M /a) and Th(M /b) are ⊆ JAN because
{a | Th(M /a) ⊆ JAN} is upward-closed in M.
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grafie Matematyczne, Tom 41. Państwowe Wydawnictwo Naukowe, Warsaw, 1963.
Zbl 0122.24311. MR 0163850. 29

[10] Skvortsova, E. Z., “A faithful interpretation of the intuitionistic propositional calculus by
means of an initial segment of the Medvedev lattice,” Sibirskiı̆ Matematicheskiı̆ Zhurnal,
vol. 29 (1988), pp. 171–78, 225. Zbl 0661.03003. MR 936795. 23, 30

[11] Sorbi, A., “On some filters and ideals of the Medvedev lattice,” Archive for Mathemati-
cal Logic, vol. 30 (1990), pp. 29–48. Zbl 0704.03025. MR 1074447. 34

[12] Sorbi, A., “Some remarks on the algebraic structure of the Medvedev lattice,” The
Journal of Symbolic Logic, vol. 55 (1990), pp. 831–53. Zbl 0703.03022. MR 1056392.
22

[13] Sorbi, A., “Embedding Brouwer algebras in the Medvedev lattice,” Notre Dame Journal
of Formal Logic, vol. 32 (1991), pp. 266–75. Zbl 0737.06009. MR 1123000. 25, 26, 30,
31

[14] Sorbi, A., “Some quotient lattices of the Medvedev lattice,” Zeitschrift für mathematis-
che Logik und Grundlagen der Mathematik, vol. 37 (1991), pp. 167–82. Zbl 0702.03021.
MR 1155135. 23, 25, 30, 33

[15] Sorbi, A., “The Medvedev lattice of degrees of difficulty,” pp. 289–312 in Computability,
Enumerability, Unsolvability. Directions in Recursion Theory, edited by S. B. Cooper,
T. A. Slaman, and S. S. Wainer, vol. 224 of London Mathematical Society Lecture Notes,
Cambridge University Press, Cambridge, 1996. Zbl 0849.03033. MR 1395886. 21, 22,
23, 34

[16] Sorbi, A., and S. A. Terwijn, “Intermediate logics and factors of the Medvedev lat-
tice,” Annals of Pure and Applied Logic, vol. 155 (2008), pp. 69–85. Zbl 1156.03026.
MR 2455558. 22, 23, 26, 28, 30, 36

[17] Terwijn, S. A., “Constructive logic and the Medvedev lattice,” Notre Dame Journal of
Formal Logic, vol. 47 (2006), pp. 73–82. Zbl 1107.03024. MR 2211183. 25

http://www.emis.de/cgi-bin/MATH-item?0498.03036
http://www.ams.org/mathscinet-getitem?mr=603223
http://www.emis.de/cgi-bin/MATH-item?0187.26306
http://www.ams.org/mathscinet-getitem?mr=0237298
http://www.emis.de/cgi-bin/MATH-item?0542.03023
http://www.ams.org/mathscinet-getitem?mr=708718
http://www.emis.de/cgi-bin/MATH-item?0286.02028
http://www.ams.org/mathscinet-getitem?mr=0133233
http://www.emis.de/cgi-bin/MATH-item?0122.24311
http://www.ams.org/mathscinet-getitem?mr=0163850
http://www.emis.de/cgi-bin/MATH-item?0661.03003
http://www.ams.org/mathscinet-getitem?mr=936795
http://www.emis.de/cgi-bin/MATH-item?0704.03025
http://www.ams.org/mathscinet-getitem?mr=1074447
http://www.emis.de/cgi-bin/MATH-item?0703.03022
http://www.ams.org/mathscinet-getitem?mr=1056392
http://www.emis.de/cgi-bin/MATH-item?0737.06009
http://www.ams.org/mathscinet-getitem?mr=1123000
http://www.emis.de/cgi-bin/MATH-item?0702.03021
http://www.ams.org/mathscinet-getitem?mr=1155135
http://www.emis.de/cgi-bin/MATH-item?0849.03033
http://www.ams.org/mathscinet-getitem?mr=1395886
http://www.emis.de/cgi-bin/MATH-item?1156.03026
http://www.ams.org/mathscinet-getitem?mr=2455558
http://www.emis.de/cgi-bin/MATH-item?1107.03024
http://www.ams.org/mathscinet-getitem?mr=2211183


38 Paul Shafer

Acknowledgments

Thanks to my advisor, Richard Shore, for introducing me to the Medvedev degrees and
for many helpful discussions about them. Thanks also to Andrea Sorbi and Sebasti-
aan Terwijn for suggesting several of the problems considered here. This research was
partially supported by NSF grants DMS-0554855 and DMS-0852811.

Department of Mathematics
Malott Hall
Cornell University
Ithaca NY 14853
USA
pshafer@math.cornell.edu
http://www.math.cornell.edu/~pshafer/

mailto:pshafer@math.cornell.edu
http://www.math.cornell.edu/~pshafer/

	1. Introduction
	2. Characterizing the Join-Irreducible Medvedev Degrees
	3. Degrees That Bound No Join-Irreducible Degrees `39`42`"613A``45`47`"603A>M0'
	4. New Degrees Whose Corresponding Logic Is Contained in `39`42`"613A``45`47`"603AJAN
	5. `39`42`"613A``45`47`"603A`39`42`"613A``45`47`"603AFcl Is Not Prime
	References
	Acknowledgments

