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Reflexive Intermediate First-Order Logics

Nathan C. Carter

Abstract It is known that the set of intermediate propositional logics that can
prove their own completeness theorems is exactly those which prove every in-
stance of the principle of testability, ¬ϕ∨¬¬ϕ. Such logics are called reflexive.
This paper classifies reflexive intermediate logics in the first-order case: a first-
order logic is reflexive if and only if it proves every instance of the principle of
double negation shift and the metatheory created from it proves every instance
of the principle of testability.

1 Introduction

The question asked both here and in Carter [1] is which intermediate logics can prove
their own completeness theorems. By way of introduction, I summarize the work of
[1], which formulated this general question specifically as, “For which intermediate
propositional logics L can a metatheory constructed from L prove countermodel
completeness of L with respect to truth-functional semantics?” Those logics for
which the answer is yes I called reflexive, and the set of such logics I called RProp.

The motivation for the work in [1] was that classical propositional logic (Cl) has
long been known to be reflexive, and intuitionistic propositional logic (Int) not re-
flexive.1 Thus the domain of investigation naturally became the intermediate logics,
because they range from Int to Cl. As [1] explained, formulations of completeness
other than countermodel completeness (Definition 3.2) give uninteresting results,
forcing RProp to be either { Cl } or all of the intermediate logics. But when us-
ing countermodel completeness, RProp is the principle filter generated by testability
logic (Test = Int + ¬ϕ ∨ ¬¬ϕ, Definition 4.1).2 Truth-functional semantics was
an acceptable alternative to Kripke semantics because RProp = { L | L ⊇ Test } no
matter which is used.
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Herein I ask the question for intermediate first-order logics. Analogous to RProp,
I call the set of reflexive intermediate first-order logics RFO (defined formally in
Definition 3.10), and I seek to classify membership therein. In order to use a logic to
reason about itself, one needs to make a metatheory from the logic. Section 2 defines
the collection of intermediate first-order logics and how I construct metatheories
from them. Section 3 defines how I express proofs and first-order models in the
second-order language of the metatheories. The stage is then set to demonstrate
necessary and sufficient conditions for membership in RFO, with which Sections 5
and 6 concern themselves.

When I ask whether intuitionistic logic can prove completeness for its first-order
portion, I’m really asking whether a basic intuitionistic metatheory that is capable
of reasoning about a first-order language and models can carry out the completeness
proof for first-order intuitionistic logic. I use the term “metatheory” quite often in
this way throughout this paper, as in [1]. One might say that the work of this paper is
therefore done in a metametatheory, because the reasoning is done in ordinary Eng-
lish prose using classical rules about various subclassical logics and metatheories.

2 First-Order Logics, Second-Order Metatheories

Definition 2.1 (FO) The first-order language I use is

FO = { ∀, ∃,∧,∨,→,⊥,= } ∪ { xi | i ∈ N } ∪
{

f n
i | i ∈ N

}
.

Here, the xi are first-order variables and f n
i is function symbol i , which has arity

n. (Later I will use these f n
i as the primitive recursive functions of arithmetic. At

such a time I will let 0 stand for f 0
0 and S stand for f 1

1 for easier reading. But at
this point I am only defining the language, and thus no interpretation comes into
play.) For any formulas ϕ and ψ in FO, the notation ϕ ↔ ψ is a convenience
standing for (ϕ → ψ)∧ (ψ → ϕ) and the notation ¬ϕ is a convenience standing for
ϕ → ⊥. I may occasionally use letters like x and y as first-order variables to improve
readability of expressions when no ambiguity results. The word term will be used
in the usual way, referring to elements of syntax constructed using only function,
variable, and constant symbols.

In order to be able to do significant work with first-order logics, I need to restrict
our attention to a set of them about which a few fundamental things are known. The
following definition picks out the collection of intermediate first-order logics about
which this paper is concerned.

Definition 2.2 (IFO) The collection IFO of intermediate first-order logics is the set
of all L satisfying the following criteria.

1. L is a set of formulas of FO that is closed under modus ponens. That is,
whenever

ϕ1 ∈ L , . . . , ϕn ∈ L , and (ϕ1 ∧ · · · ∧ ϕn → ψ) ∈ L ,

then we also have ψ ∈ L .
2. Int ⊆ L ⊆ Cl.
3. The logic L can be described as the closure under modus ponens of the set of

all instantiations of a finite list of Hilbert-style axiom schemes.
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Axiom schemes contain statement variables for substitution, logical connectives,
quantifiers, and variables of SO, but no constant symbols or function symbols.
Therefore, the logic L is the closure of the set of instantiations of such schemes
under the deductive rule modus ponens.

The first two requirements in Definition 2.2 are quite straightforward; the third may
be unexpected. It is present because it enables me to prove several useful theorems
about each logic L ∈ IFO and removes some unreasonable logics from consideration.
(See Theorem 3.5 and the material that follows it.)

Because this paper will reason formally about first-order logics, I will need a
second-order language in which to do so. For instance, the statement of counter-
model completeness (Definition 3.2) quantifies over sets of formulas and over first-
order models. Thus, even to express completeness, one needs a second-order lan-
guage.

Definition 2.3 (SO) The second-order language I use is

SO = FO ∪ { Ai | i ∈ N } ∪
{

Cn
i | i ∈ N

}
.

Here, Ai are second-order variables and each Cn
i is a second-order constant of arity

n. Here also I may write A and B for second-order variables when it improves
readability; the point of the definition is that the language is countable. It will be
evident from the case of the variable whether quantification is over first- or second-
order objects (e.g., ∀x vs. ∀A).

I describe a process for converting a first-order logic into a second-order metathe-
ory, and I write Meta(L) for the result of applying that process to L . The next few
definitions, and most notably Definition 2.6, accomplish this.

Definition 2.4 (Heyting arithmetic, HAS) I write HAS for the set of axioms of
second-order Heyting arithmetic in the language SO. The variables x, y are first-
order (natural number variables) and the symbol ϕ ranges over all second-order for-
mulas containing no occurrences of the second-order variable A. (Recall that 0 is
shorthand for f 0

0 and S shorthand for f 1
1 .)

1. ∀x(S(x) 6= 0).
2. ∀x∀y(S(x) = S(y) → x = y).
3. [ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)))] → ∀xϕ(x).
4. For each primitive recursive function, include here its defining equations us-

ing the remaining f n
i . For example, if f 2

9 were to be used for addition, the
following two equations should be included in HAS.

∀x( f 2
9 (0, x) = x) ∀x∀y( f 2

9 (Sx, y) = S( f 2
9 (x, y)))

5. Comprehension axiom:

∃A∀x1, . . . ,∀xn(ϕ(x1, . . . , xn) ↔ A(x1, . . . , xn)).

Definition 2.5 (second-order logics) Because each L ∈ IFO is given by a set of
axiom schemes (as per Definition 2.2), we may speak of the closure under modus
ponens of the set of all SO instances of those axiom schemes. I denote it by LSO.
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Definition 2.6 (Meta) For any logic L ∈ IFO, write Meta(L) to indicate the
second-order metatheory LSO ∪ HAS, where the closure is under modus ponens,
as in Definition 2.2.

These definitions enable me to express second-order theories built from each logic
in IFO. I use the notation Meta(L) because not only is what it denotes a theory built
from L , but also I use that theory to reason about first-order logics like L .

Since later sections define sets recursively in SO, it is important to point out that a
recursively defined sequence of sets can be formed using the comprehension axiom
from HAS. For instance, the existence of a set A satisfying the requirements

A(0, x1, . . . , xn) ↔ ϕbase(x1, . . . , xn)

and
∀m[A(S(m), x1, . . . , xn) ↔ ϕind(m, x1, . . . , xn)],

is guaranteed by the comprehension axiom, provided that ϕbase and ϕind are both
second-order formulas with at most x1, . . . , xn free and no occurrences of the vari-
able A. The following instantiation of the HAS comprehension axiom demonstrates
this.

∃A∀y∀x1 · · · ∀xn
[
∀B

(
(B(0, x1, . . . , xn) ↔ ϕbase(x1, . . . , xn)

∧ ∀m(B(S(m), x1, . . . , xn) ↔ ϕind(m, x1, . . . , xn)))

→ B(y, x1, . . . , xn)
)

↔ A(y, x1, . . . , xn)
]
.

Theorem 2.7 For any two logics L1, L2 ∈ IFO, if L1 ⊆ L2 then

Meta(L1) ⊆ Meta(L2).

Proof Straightforward, and analogous to the proof of Theorem 2.17 of [1]. �

The classification results in Sections 5 and 6 of this paper could be strengthened
if this Meta operator were also known to be injective (e.g., Theorem 6.1 and its
preceding comments). Such a result is more difficult to obtain here than in the case
of [1]. It is not true, for instance, that Meta(L1) and Meta(L2) must differ in their
first-order fragments whenever L1 and L2 differ. For instance, in the presence of
decidability of atomic formulas (which arithmetic provides), the intermediate first-
order logic Gabbay calls C D ([4], pp. 40ff.) becomes classical. Thus the second-
order portions of the language would need to be used for disambiguation. But a
theorem demonstrating that this can be done (analogous to Theorem 2.21 from [1])
is harder to come by in the first-order case; whether it can be shown remains open.

3 Syntax and Semantics

Since this paper discusses many different logics, I need to subscript the derivability
symbol to remove ambiguity; thus `L means “provable in the logic L .”

Definition 3.1 (derivability ` in SO) In SO, the notation 0 `L ϕ is shorthand for
the expression

∃n ∈ N ∃γ1, . . . , ∃γn ∈ 0 ((γ1 ∧ · · · ∧ γn → ϕ) ∈ L).

Finiteness of proofs is inherent in the definition of derivability.
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Definition 3.2 (Cpl) I write Cpl(L) to abbreviate “the logic L is standard-
countermodel-complete,” expressed by the formal statement

∀0((0 0L ⊥) → ∃A(A � 0))

in the language SO. The second-order predicate � has not yet been defined; I address
that issue now.

It is natural to ask which semantics should be used in the formal investigation of
reflexivity. That is, in Definition 3.2, what sort of object must A be? Since the
syntactic symbol ` has a different meaning for each logic, one might expect that
the set of models under consideration would also change with L . However, I use
classical semantics for every logic, and the remarks after Definition 3.4 and after
Theorem 6.1 explain why this is legitimate.

I am about to define the notion of a first-order model in a way that is both ex-
pressible in SO and usable in Meta(L) for any L ∈ IFO. In order to have models that
are second-order structures, rather than strictly third-order structures, I must ensure
that the universe of each model is a set of numbers, not a set of sets of numbers.
For this reason, the standard technique of creating a model whose universe contains
equivalence classes of constants cannot work here. Rather, I avoid grouping into
equivalence classes and interpret the equality sign in FO by a relation that is not
strict equality in the metatheory. I interpret the equality in FO by the equivalence re-
lation by which I would have grouped the constants had I not been concerned about
type. Without loss of generality, I will adopt the convention that the universe of every
model is the same: all first-order objects (in this case natural numbers).

I will use in my metatheories notation such as 〈a1, . . . , an〉 for first-order terms
ai , because among the primitive recursive functions f n

i of Definition 2.4 occur en-
codings to translate from N to N<ω (all finite sequences from N) and back again. I
will also quote terms and formulas, as in p f 3

2 (x, y, z)q and make various statements
about them in Meta(L), such as “pxq is a variable,” because there are well-known
primitive recursive arithmetizations of first-order syntax.

Definition 3.3 (variable assignment) A variable assignment is a finite sequence of
pairs representing a partial function from natural numbers to natural numbers. If
v is a variable assignment containing 〈i, j〉, I will write v(xi ) = j . Thus variable
assignments are first-order objects. The notation v/xi = j means the sequence v
with any pair whose first component is i removed and then the pair 〈i, j〉 added.

Definition 3.4 (first-order model) From a binary equivalence relation E and a
binary function F we can construct the following SO objects to obtain a model
A = (E, F). We use E as the equivalence relation interpreting equality, and F
as a list of functions interpreting the f n

i .

1. Define an interpretation function [[−]] on terms t of FO and variable assign-
ments v as follows.

[[t]]v =

{
v(xi ) if t = pxiq

F(i, 〈[[t1]]v, . . . , [[tn]]v〉) if t = p f n
i (t1, . . . , tn)q .

As is common, I may affix the model’s name to this notation, as in [[t]]A
v .
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2. Define a function T mapping pairs 〈ϕ, v〉 to truth values, which are subsets
of { 0 }. Here ϕ is a formula of FO and v is a variable assignment. We write
A � ϕ[v] as a convenience for 0 ∈ T (ϕ, v). The following cases define T
recursively.
(a) A � t1 = t2[v] iff E([[t1]]A

v , [[t2]]
A
v );

(b) A � ϕ ∧ ψ[v] iff A � ϕ[v] and A � ψ[v];
(c) A � ϕ ∨ ψ[v] iff A � ϕ[v] or A � ψ[v];
(d) A � ϕ → ψ[v] iff A � ϕ[v] implies A � ψ[v];
(e) A � ∀xϕ[v] iff ∀a(A � ϕ[v/x = a]);
(f) A � ∃xϕ[v] iff ∃a(A � ϕ[v/x = a]);
(g) A 2 ⊥.

In order to ensure that E and F allow for the construction of a model, I should point
out that F must not simply be a function with respect to =, but with respect to E as
well. That is, the above construction can only be done if for any n, w, x , y, and z,

E(w, x) ∧ F(n, w) = y ∧ F(n, x) = z → E(y, z).

Otherwise, we would have E and F generating an inconsistent theory, and thus
A � ⊥, contrary to the requirements above.

This definition is equivalent (in a classical context) to the standard one which
appears in many introductory logic textbooks, such as Enderton [2]. Common results
found in such sources include the theorem that for formulas ϕ without free variables,
the value of A � ϕ[v] does not depend on v. In such cases, we write A � ϕ. This
notation extends to A 2 ϕ and A � 1 in the usual ways.

The reason that it is safe to use the same semantics with every logic is that the
behavior of the models themselves changes based on their context. For instance, a
classical metatheory can prove that for any model A and any formula ϕ without free
variables, (A � ϕ) ∨ (A 2 ϕ), but a strictly intuitionistic metatheory cannot prove
this. Thus the behavior of the models actually depends on the metatheory, obviating
the need for any other semantics. This tactic has been used in [1], Leivant [5], and
McCarty [6].

I need terms such as Int and Cl in SO to signify specific first-order logics. Such
logics are closures under modus ponens of Hilbert-style axiom schemes. These clo-
sures are not only expressible in SO, but the comprehension axiom from Defini-
tion 2.4 guarantees their existence, as per the comments about recursive definitions
which follow it. Consider the following technique for defining the term Int recur-
sively in SO. The set PInt(n) is the set of all proofs of length at most n from the
axioms of Int. Although some English phrases appear in these expressions, each
simply describes a recursive procedure for which we could name a function if we
chose.

PInt(0) = { 〈ϕ〉 | ϕ is an instance of an Int axiom }.

PInt(n + 1) =

{
the list δ with the formula ϕ appended

∣∣∣
δ ∈ PInt(n) ∧

[
ϕ is an instance of an Int axiom

∨ ∃i∃ j (δi = (δ j → ϕ))
] }
.

Int = { the last entry in the list δ | ∃i(δ ∈ PInt(i)) }.
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Such a definition enables me to write a term for any L ∈ IFO and to inspect a
derivation for any ϕ ∈ L , because

ϕ ∈ L iff ∃i∃δ ∈ PL(i)
(
the last entry in the list δ is ϕ

)
.

Then δ is the derivation of ϕ from the L axioms. Furthermore, this makes Defi-
nition 2.2 usable within any Meta(L) because now all parts of that definition are
expressible in SO.

3.1 What the Meta operator knows There is a noteworthy concern related to ex-
pressing members of IFO as terms in SO. The same logic may be described by
several terms, but a theory such as Meta(Int)may be unable to prove the equivalence
of those terms. Thus which term is used to refer to a logic becomes a significant
choice. Theorem 3.5 below shows that Meta(Int) is aware of individual derivations
from each L ∈ IFO, but stronger statements may not be true. For instance, it is not
at all obvious whether L1 = L2 implies Meta(Int) ` L1 = L2, nor whether for an
axiom scheme S, L ` S implies Meta(L) ` (L ` S). It is this latter case that arises
in this paper and which I address in the following paragraphs. Several proofs in Sec-
tion 5 depend not only on the fact that a logic L derives every instance of the scheme
DNS (of Definition 4.2) but also that Meta(L) knows so, Meta(L) ` (L ` DNS).

One possible way to ensure that Meta(L) ` (L ` DNS) whenever L ` DNS is to
carefully select the SO term describing L , one that makes it trivial for even Meta(Int)
to deduce the desired property. For instance, explicitly mentioning the scheme DNS
in the term defining L would make it straightforward for Meta(Int) to prove that
L ` DNS using the base case of the inductive definition of P above.

Another solution that does not depend upon the terms chosen for describing logics
is to augment the definition of Meta so that it includes in each Meta(L) every true50

2
sentence, the total Turing-computable functions. The sentence ∀ϕ ∈ DNS.(L ` ϕ),
if true, would therefore be in every Meta(L), because ϕ ∈ DNS is recursive and
L ` ϕ is 60

1 .
I assume henceforth that one of these techniques (or an equally effective one) has

been adopted; it is not important which. Thus I actually operate under a stronger
version of Theorem 3.5, and whenever L derives every instance of an axiom scheme,
I assume that Meta(L) is aware of this fact.

3.2 Basic definitions and results I conclude this section by proving some foun-
dational facts about the logics L ∈ IFO and their metatheories Meta(L).

Theorem 3.5 For any logic L ∈ IFO, whenever `L ϕ, it is also the case that
Meta(Int) ` (`L ϕ).

Proof Assume `L ϕ, and because L is deductively closed by Definition 2.2, ϕ ∈ L .
Because L is a term for a logic in IFO, by the discussion above, we have a derivation
δ of ϕ from the L axioms, using only modus ponens. It is clear from the inspection
of the definition of PInt above (as a prototype for all PL ) that Meta(Int) is more than
sufficient to prove that such a derivation exists; it is simply a matter of verifying
that certain pairs of primitive recursive computations come out equal. Therefore,
Meta(Int) ` (ϕ ∈ L). By Definition 2.2 again, ϕ ∈ L is equivalent to `L ϕ. �
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If IFO did not have this property, one could define logics like

{ϕ | χ and `Int ϕ } ,

where χ is a formula that is not decidable intuitionistically. Then Meta(Int) would
be at a loss as to whether such a logic was even at least as big as Int. This is undesir-
able, and therefore its prevention is an important consequence of the assumptions in
Definition 2.2.

The theorems and proofs below differ from those above in that they are proofs in a
formal metatheory. Thus the following theorems do not aim to prove results for their
own sake, but instead to show that those results can be proven by a certain metathe-
ory. The following two theorems are like those one would find in an introductory
logic text such as [2]; they appear here to make it clear that the work can be done
using only the language SO and the theory Meta(Int).

Lemma 3.6 For any L ∈ IFO, Meta(Int) is sufficient to show that for any set 0 of
formulas of FO and any ϕ with at most x free, if x does not occur free in any formula
of 0 and 0 `L ϕ then 0 `L ∀xϕ.

Proof By Definition 2.2, L has a Hilbert-style axiomatization in which the only
deductive rule is modus ponens. I show that the set of all ϕ for which 0 `L ∀xϕ in-
cludes all the ϕ for which 0 `L ϕ. I do this by showing that the set { ϕ | 0 `L ∀xϕ }

contains 0 and each instance of an L axiom, and that it is deductively closed. Since
all the reasoning is sufficiently simple to be within Meta(Int), it establishes this
lemma.

First I show that 0 ⊆ { ϕ | 0 `L ∀xϕ }, so begin by assuming ϕ ∈ 0. In this
case, x is not free in ϕ, and I wish to show that 0 `L ∀xϕ, which is defined as

∃n∃γ1, . . . , ∃γn ∈ 0((γ1 ∧ · · · ∧ γn → ∀xϕ) ∈ L).

Simply letting n = 1 and γ1 = ϕ means I only need to show (ϕ → ∀xϕ) ∈ L . By
Theorem 3.5, Meta(Int) knows that `L ϕ → ∀xϕ, because L ⊇ Int.

Next I show that every instance of an L axiom is in { ϕ | 0 `L ∀xϕ }. Let ϕ be an
instance of an L axiom. Meta(Int) knows that because L ⊇ Int, `L ϕ → ∀xϕ, and
therefore Meta(Int) also knows that (∀xϕ) ∈ L . Let n = 0 and let us say an empty
conjunction is expressed by the true statement ⊥ → ⊥. Because (⊥ → ⊥) → ∀xϕ
must also be in L , this case is complete.

Last I show that { ϕ | 0 `L ∀xϕ } is deductively closed. Let ψ and ψ → ϕ be in
{ ϕ | 0 `L ∀xϕ }; I need to show 0 `L ∀xϕ, but this is simply a consequence of the
fact that

`L (∀x(ψ → ϕ)) → ((∀xψ) → (∀xϕ)),

again because Meta(Int) knows that L ⊇ Int and that the sentence in question is an
Int theorem.

Thus { ϕ | 0 `L ∀xϕ } contains 0 and all instances of L axioms and is closed
under modus ponens. Therefore, it contains the `L -closure of 0; so if 0 `L ϕ then
0 `L ∀xϕ. �



Reflexive Intermediate First-Order Logics 83

In the following theorem and thereafter, I use the standard notation ϕ[a := b] to
mean the formula ϕ with all (free) instances of a simultaneously replaced by the
term b. Theorem 3.7 and Corollary 3.8 are used in Section 5.

Theorem 3.7 (Generalization on constants in the metatheory) For any L ∈ IFO,
Meta(Int) is sufficient to show the generalization on constants theorem for L, abbre-
viated GC(L). Specifically, if 0 `L ϕ and c is a constant not in 0, then there is a
variable x not in ϕ such that 0 `L ∀x(ϕ[c := x]).

A formal SO expression for GC(L) can be written out, but to do so digresses too far
from the purpose of this paper and is not necessary.

Proof The following proof of GC(L) uses only principles available in Meta(Int).
Its existence proves this theorem as stated.

From 0 `L ϕ, Definition 3.1 gives us an L-derivation δ of (γ1 ∧ · · · ∧ γn) → ϕ
whose steps are δ1, . . . , δn , where the γi come from 0. Let x be the smallest-
indexed variable not appearing in the derivation (a primitive recursive computa-
tion), and I claim that the sequence δ1[c := x], . . . , δn[c := x] is a valid derivation of
((γ1 ∧· · ·∧γn) → ϕ)[c := x] in L . By the informal definition of PL preceding The-
orem 3.5, Meta(Int) knows that the steps in the derivation fall into two categories:
they are instances of an L axiom or they follow by modus ponens from earlier steps
in the derivation. I handle each case separately.

If δi is an instance of an L axiom, then consider the list of FO formulas χ1, . . . , χk
that were substituted into the axiom to create δi . Using χ1[c := x], . . . , χk[c := x]

instead would also be an instance of the same axiom. Because Definition 2.2 requires
that no constants may appear in an axiom scheme, an easy induction argument can
show that the resulting formula is exactly δi [c := x]. Thus δi [c := x] is a valid step
in the new derivation, because it is an instance of an L axiom.

If δi was obtained from earlier steps in the derivation using modus ponens, then
there must be some j, k < i such that δ j = (δk → δi ). Then

δ j [c := x] = (δk → δi )[c := x] = δk[c := x] → δi [c := x],

and so modus ponens allows us to conclude δi [c := x] from

δ1[c := x], . . . , δi−1[c := x]

in the new derivation also.
Therefore, δ1[c := x], . . . , δn[c := x] witness that L derives

((γ1 ∧ · · · ∧ γn) → ϕ)[c := x].

Applying Lemma 3.6, we conclude

`L ∀x(((γ1 ∧ · · · ∧ γn) → ϕ)[c := x]),

and by intuitionistic deductions (which Meta(Int) knows to be valid in L) obtain

`L ∀x((γ1 ∧ · · · ∧ γn)[c := x]) → ∀x(ϕ[c := x]).

But because each γi ∈ 0, it contains no instances of c, and thus

(γ1 ∧ · · · ∧ γn)[c := x] = (γ1 ∧ · · · ∧ γn),

and thus simple substitution yields

`L ∀x(γ1 ∧ · · · ∧ γn) → ∀x(ϕ[c := x]).



84 Nathan C. Carter

By the choice of x , it does not appear in any γi , and so

`Int (γ1 ∧ · · · ∧ γn) ↔ ∀x(γ1 ∧ · · · ∧ γn),

yielding
`L (γ1 ∧ · · · ∧ γn) → ∀xϕ[c := x].

By Definition 3.1, this means that 0 `L ∀x(ϕ[c := x]), as desired. �

Corollary 3.8 For any logic L ∈ IFO, Meta(L) ` GC(L), where GC(L) stands
for “the generalization on constants theorem holds for L.”

We are now in a position to use the metatheories I have constructed to reason about
first-order logics. This accomplishes the main goal of the paper, analyzing reflexivity,
for which I can now give a formal definition.

Definition 3.9 (reflexive) A logic L ∈ IFO is reflexive if and only if

Meta(L) ` Cpl(L),

where Cpl was defined in Definition 3.2.

In Section 1, I introduced the important difference between Int and Cl which mo-
tivates the work of this paper: A classical metatheory can prove the completeness
of classical first-order logic, but a strictly intuitionistic metatheory cannot prove
the completeness of intuitionistic first-order logic. Using the notation from Defi-
nition 3.9, I can write these two facts more formally.

Meta(Cl) ` Cpl(Cl) Meta(Int) 0 Cpl(Int)

Thus one can say that Cl is reflexive and Int is not.

Definition 3.10 (RFO) For the set of reflexive first-order logics, I write RFO. That
is, L ∈ RFO if and only if L ∈ IFO and Meta(L) ` Cpl(L).

So I can write Cl ∈ RFO and Int /∈ RFO. It is natural to ask whether the elements
of RFO are not simply scattered about IFO, but perhaps a boundary line exists be-
tween Int and Cl delimiting RFO. Indeed it does, and the following sections find that
boundary line explicitly.

4 Logical Principles

The principle of testability figures prominently in the work of [1] and this document.

Definition 4.1 (testability) The principle of testability is the scheme ¬ϕ ∨ ¬¬ϕ, a
classical tautology that is not intuitionistically valid. I may use it in either a FO or SO
context, and that context will determine the range of ϕ. Testability logic, Test, is the
logic obtained by adding to intuitionistic first-order logic the principle of testability
as an axiom scheme.

I define the scheme Double Negation Shift (DNS) below because I show in this
section and the next that the derivability of DNS conjoined with the principle of
testability is both necessary and sufficient for membership in RFO. Because DNS
is a less common first-order principle, I use Section 6.1 to discuss it, mentioning its
relationship both to Gödel translations and to coconsistency.

Section 5 of this paper shows that deriving the two schemes DNS and Test is
sufficient to make a first-order logic reflexive. I do this by performing a Henkin
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construction in Meta(L), for a logic L deriving DNS and Test. Observe that the
proofs in Section 5 use only principles valid in such a metatheory. Section 6 of this
paper shows that a logic’s reflexivity implies that the logic contains DNS and its
metatheory contains Test.

Definition 4.2 (Double Negation Shift, DNS) The principle of Double Negation
Shift is the first-order scheme

∀x¬¬ϕ → ¬¬∀xϕ,

for ϕ an arbitrary first-order formula.

Double Negation Shift is the contrapositive of the scheme Quantifier Negation Ex-
change (QNE) and is strictly weaker intuitionistically.

Definition 4.3 (Quantifier Negation Exchange, QNE) The principle of Quantifier
Negation Exchange is the first-order scheme

¬∀xϕ → ∃x¬ϕ,

for ϕ an arbitrary first-order formula.

Neither DNS nor QNE is intuitionistically derivable.

5 Sufficiency for RFO

In this section, I establish a sufficient condition for membership in RFO by working
in a metatheory created from any first-order logic that proves the principle of testa-
bility and the principle of Double Negation Shift and proving the completeness of
the first-order logic that underlies that metatheory. I perform the standard construc-
tion of a Henkin model, by taking a consistent set and making it maximal consistent,
adding witnesses, and then creating a model from those witnesses. The complete-
ness proof is therefore split into three lemmas, one for extending a consistent set to be
maximal consistent (Lemma 5.1), one for extending a maximal consistent set to have
witnesses (Lemma 5.4), and one for constructing a model (Lemma 5.5). These three
lemmas are then assembled into the actual completeness theorem (Theorem 5.6).

Allow me to reiterate the most important detail to which the reader should
attend—that all the theorems in this section are proven using only the metatheory
Meta(L), for L ∈ IFO. As in Section 3, the import of the following theorems is not
so much what is being proven, but that it can be proven in the theory Meta(L).

Lemma 5.1 (on constructing maximal consistent sets) Given L ∈ IFO and any L-
consistent set T of formulas (T 0L ⊥), if Meta(L) ` Test then Meta(L) is sufficient
to show that T has a maximal consistent extension T ′. The maximal consistency of
T ′ means that each of the following hold.

1. T ⊆ T ′.
2. T ′ is consistent (T ′ 0L ⊥).
3. T ′ is closed under derivability (if T ′

`L ϕ then ϕ ∈ T ′).
4. For every formula ϕ, either ϕ ∈ T ′ or ¬ϕ ∈ T ′.

Proof The proofs of each of these four claims are analogous to parts of Lemma 3.4
of [1], which used Meta(Test). �
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Lemma 5.1 depends upon the principle of testability. In general, the typical con-
struction of a maximal consistent set (deciding for each formula whether or not to
include it) cannot be performed in a subclassical context because there is no effective
procedure for making each decision. The principle of testability allows it, because
the particular instance of the tertium non datur invoked is a negative one. (For further
details, refer to the proof of Lemma 3.4 in [1].)

The second step in a Henkin proof is adding witnesses to a theory, accomplished
by Lemma 5.4. The proof of that lemma depends upon the following theorem.

Theorem 5.2 (Deduction Theorem in the metatheory) For any logic L ∈ IFO,
Meta(L) is sufficient to prove the Deduction Theorem for L.

Proof The proof is the same as for Theorem 2.13 of [1] and the subsequent corol-
lary. �

Definition 5.3 (witnesses) A set of constants C is a set of witnesses for a first-order
theory T if and only if for any first-order formula ϕ with at most x free, there is a
constant c ∈ C such that T ` (∃xϕ) → (ϕ[x := c]).

Lemma 5.4 (on creating witnesses) Let T be a first-order theory and take any
L ∈ IFO such that T 0L ⊥. Then Meta(L) is sufficient to prove that there exists a
consistent extension T % T in an expanded language (constants C = { ci | i ∈ N }

have been added) such that T has witnesses in C.

Proof Create countably many new constants { ci | i ∈ N } as mentioned in the state-
ment of the lemma. How one would do this in Meta(L) depends upon our arithmeti-
zation of formulas from FO. For instance, we might ensure that all other terms have
been encoded using even numbers, so that we may create a countable set of new
constants cn as { 2n + 1 | n ∈ N }.

Arrange all formulas of the expanded language with at most x free into an enu-
meration 〈ϕi | i ∈ N 〉. This can be done recursively, by asking, “Does 0 encode a
formula with at most x free?” then “Does 1 encode a formula with at most x free?”
and so on. Define a recursive sequence ki of natural numbers by k0 = 0 and kn+1 =

the smallest k such that ∀m ≤ n, k 6= km and ck does not appear in ϕm .
Define a sequence of sets recursively by T0 = T and

Tn+1 = Tn ∪
{

p(∃xϕn) → (ϕn[x := ckn ])q
}
.

Using the definition of ki , one can show by an easy induction that the constant ckn

does not appear in Tn .
I now prove that each Tn is consistent. Because consistency is a negative state-

ment, even in a subclassical logic it can be shown indirectly, a fact on which I rely
twice below.

The following induction argument shows that for any n ∈ N, Tn 0L ⊥. The base
case is complete because T0 = T and T 0L ⊥ by assumption. For the induction
step, assuming Tn+1 is inconsistent gives

Tn ∪
{

p(∃xϕn) → (ϕn[x := ckn ])q
}

`L ⊥,



Reflexive Intermediate First-Order Logics 87

and so we have
Tn `L ¬((∃xϕn) → (ϕn[x := ckn ]))

by Theorem 5.2, the Deduction Theorem for L . Since L ⊃ Int, I can use Theorem 3.5
and apply valid rules of intuitionistic deduction to obtain

Tn `L (¬¬∃xϕn) ∧ (¬ϕn[x := ckn ]).

The generalization on constants theorem for L , usable by Theorem 3.7 and the con-
struction of kn , gives us

Tn `L (¬¬∃xϕn) ∧ (∀x¬ϕn),

and using L ⊃ Int and Theorem 3.5 again gives us

Tn `L (¬¬∃xϕn) ∧ (¬∃xϕn),

a contradiction to the induction hypothesis that Tn 0L ⊥. Thus Tn+1 0L ⊥.
Having established that each Tn is consistent, I let T =

⋃
n∈N Tn and show it to

be consistent in the usual way. Assume T `L ⊥, and thus by Definition 3.1 we have
∃γ1, . . . , γk ∈ T such that (γ1 ∧ · · · ∧ γk → ⊥) ∈ L . Now for each γi , because it is
in T =

⋃
n∈N Tn , there is some j such that γi ∈ T j . Let m be the largest such j , and

thus ∃γ1, . . . , γk ∈ Tm such that (γ1 ∧ · · · ∧ γk → ⊥) ∈ L , and so Tm `L ⊥. This
contradicts the consistency of Tm , and so establishes the consistency of T .

Lastly, I prove the main assertion of the lemma, that for any first-order for-
mula ϕ (in the expanded language) with at most x free, ∃i ∈ N such that
T `L (∃xϕ) → (ϕ[x := ci ]). Let ϕn be any formula in our enumeration of
all formulas with at most x free. Then the natural number i we seek is kn , because
((∃xϕn) → (ϕn[x := ckn ])) ∈ Tn+1 ⊂ T . �

The third and final step in a Henkin proof is the actual construction of the model as
a second-order structure.

Lemma 5.5 (on creating a model) For any logic L ∈ IFO such that L ` DNS,
Meta(L) is sufficient to prove that for any maximal L-consistent set of sentences T
with witnesses in C = { ci | i ∈ N }, there is a model A � T .

Recall from Section 3.1 that when L ` DNS, Meta(L) ` (L ` DNS).

Proof To create a model A = (E, F) satisfying Definition 3.4, I must define SO
objects E and F using the HAS comprehension axiom.

For any f n
i in FO, define F(i, 〈c j1 , . . . , c jn 〉) = cm where m is the smallest num-

ber satisfying T `L cm = f n
i (c j1 , . . . , c jn ). Such an m is guaranteed to exist be-

cause `L ∃x .x = f n
i (c j1 , . . . , c jn ) and T has witnesses in C . Because T is maximal

consistent, membership in T is decidable, and so it is acceptable to invoke the least
number principle in this case, even in a subclassical context such as Meta(L).

Claim For any term t of FO and any variable assignment

v = 〈〈i1, c j1〉, . . . , 〈iN , c jN 〉〉

mentioning every variable in t , if [[t]]A
v = ck then

T `L (ck = t[xi1 := c j1 , . . . , xiN := c jN ]).

For easier reading, I write t[v] in place of t[xi1 := c j1 , . . . , xiN := c jN ].
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Proof of claim The base case is when t is a variable, which of course must appear
in v, say xim .

t[v] = xim [v] t = xim

= c jm notation just introduced
= v(xim ) contents of v, given above

= [[t]]A
v Definition 3.4

= ck above assumption

Therefore, T `L ck = t[v] holds if and only if T `L ck = ck does, and this last
is clearly true. The other base case, when t is a constant, is a special case of the
induction step with n = 0.

The induction step is when t = f n
i (t1, . . . , tn). In this case if we say [[ti ]]A

v = cki

for 1 ≤ i ≤ n, then

F(i, 〈ck1 , . . . , ckn 〉) = F(i, 〈[[t1]]A
v , . . . , [[tn]]

A
v 〉) assumption about cki

= [[t]]A
v Definition 3.4

= ck earlier assumption.

Because F(i, 〈ck1 , . . . , ckn 〉) was defined as cm for the least m such that T `L cm =

f n
i (ck1 , . . . , ckn ), in this case m = k. And by the induction hypothesis we have

T `L cki = ti [v] for 1 ≤ i ≤ n. Therefore, T `L ck = f n
i (t1[v], . . . , tn[v]), which

is the same as T `L ck = f n
i (t1, . . . , tn)[v], as desired. This completes the proof of

the claim. I will use the claim in the proof that the following definition of E pairs
with that of F to create a valid model A = (E, F).

Define an equivalence relation E ⊆ C × C by

cEd iff T `L c = d.

This is equivalent to requiring (c = d) ∈ T , because T is maximal consistent. E is
an equivalence relation because

` c = c, c = d ` d = c, and c = d, d = e ` c = e.

It should also be noted that such an E and F meet the restriction mentioned after
Definition 3.4 simply by transitivity of = in L .

Recall that by Definition 3.4, the equality symbol in FO is interpreted by the
relation E on C2. That is, A � (t1 = t2)[v] if and only if E([[t1]]A

v , [[t2]]
A
v ). This

guarantees that A identifies terms that T does, as follows. Call ci the result of [[t1]]A
v

and c j the result of [[t2]]A
v . Then we see that A and T agree on atomic formulas as

follows.

A � (t1 = t2)[v] ⇐⇒ E([[t1]]A
v , [[t2]]

A
v ) Definition 3.4

⇐⇒ E(ci , c j ) [[t1]]A
v = ci , [[t2]]A

v = c j
⇐⇒ T `L ci = c j Definition of E
⇐⇒ T `L (t1 = t2)[v] above claim

It remains to show that A satisfies all sentences in T . The base case (where ϕ is
atomic) has just been shown. The other cases are treated individually below. In all of
them the commutativity of variable substitution with all logical connectives is used
silently, as is Theorem 3.5.
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When ϕ = ψ1 ∧ ψ2, proceed as follows.

A � ψ1 ∧ ψ2[v] ⇐⇒ A � ψ1[v] and A � ψ2[v] Definition 3.4
⇐⇒ T `L ψ1[v] and T `L ψ2[v] induction hypothesis
⇐⇒ T `L ψ1 ∧ ψ2[v] L ⊃ Int

For the other cases, it is helpful to recall from Lemma 5.1 that every formula or its
negation appears in T .

When ϕ = ψ1 ∨ ψ2 we have the following implication.

A � ψ1 ∨ ψ2[v] ⇐⇒ A � ψ1[v] or A � ψ2[v] Definition 3.4
⇐⇒ T `L ψ1[v] or T `L ψ2[v] induction hypothesis
⇒ T `L ψ1 ∨ ψ2[v] L ⊃ Int

The converse of the final implication also holds, as follows. Recall that ψ1[v] ∈ T
or ¬ψ1[v] ∈ T . In the first case, the desired conclusion is immediate; the second
case follows from the intuitionistic tautology ((ψ1 ∨ ψ2) ∧ ¬ψ1) → ψ2.

When ϕ = ψ1 → ψ2, proceed as follows. (Recall that ϕ = ¬ψ is a special case
of this one.)

T `L ψ1 → ψ2[v] ⇒ if T `L ψ1[v] then T `L ψ2[v] L ⊃ Int
⇐⇒ if A � ψ1[v] then A � ψ2[v] induction hypothesis
⇐⇒ A � ψ1 → ψ2[v] Definition 3.4

The converse of the initial implication also holds, again using ψ1[v] ∈ T or
¬ψ1[v] ∈ T . The first case implies T `L ψ2[v] and the desired conclusion is
immediate. In the second case, the conclusion comes from a single application of
the intuitionistic axiom ex falso quodlibet, ⊥ → χ for any formula χ .

The quantifier cases remain; the case when ϕ = ∃xψ is fairly straightforward.

A � ∃xψ[v] ⇐⇒ ∃a (A � ψ[v/x = a]) Definition 3.4
⇐⇒ ∃a (T `L ψ[v/x = a]) induction hypothesis
⇒ T `L ∃xψ[v] L ⊃ Int, drop variable

The converse of the final implication also holds, because T has witnesses.
Last, when ϕ = ∀xψ , we have the following.

T `L ∀xψ[v] ⇒ ∀a (T `L ψ[v/x = a]) L ⊃ Int
⇐⇒ ∀a (A � ψ[v/x = a]) induction hypothesis
⇐⇒ A � ∀xψ[v] Definition 3.4

The converse of the initial implication also holds as follows. Assume that for all a,
T `L ψ[v/x = a], and I show that T `L ∀xψ[v]. From that assumption we have
T 0L ∃x¬ψ[v] because T has witnesses and is consistent. In fact, it is maximal
consistent, and so we may even conclude T `L ¬∃x¬ψ[v]. Intuitionistic deduction
then leads to T `L ∀x¬¬ψ[v], from which L ` DNS yields T `L ¬¬∀xψ[v].
(Because ψ is arbitrary, this requires not only the assumption L ` DNS but the full
power of the statement Meta(L) ` (L ` DNS). Hence the comment preceding this
proof.) By the maximal consistency of T once again, we have T `L ∀xψ[v], as
desired.

So by induction on ϕ I have shown that for any first-order formula ϕ and any
variable assignment v containing all the (indices of the) free variables in ϕ, A � ϕ[v]
if and only if T `L ϕ[v]; A is a model of T . �



90 Nathan C. Carter

Theorem 5.6 (completeness) For any L ∈ IFO with Meta(L) ` Test, if L ` DNS,
then Meta(L) is sufficient to prove that for any first-order theory T , if T 0L ⊥ then
∃A(A � T ).

As with Lemma 5.5, when L ` DNS, we also have that Meta(L) ` (L ` DNS) by
the comments in Section 3.1.

Proof Create an extension T ′
⊇ T that is maximal consistent, as per Lemma 5.1.

Create an extension T % T ′ with new constants C = { ci | i ∈ N } as per Lemma 5.4.
Create a model A of T by Lemma 5.5. The restriction of A to FO is the desired
model. �

Corollary 5.7 (sufficient condition for membership in RFO) For any L ∈ IFO, if
Meta(L) ` Test and Meta(L) knows that L ` DNS, then L ∈ RFO.

This completes the portion of the paper in which reasoning is restricted to a particular
metatheory.

6 Necessity for RFO

Perhaps the most elegant result regarding necessary conditions for membership in
RFO would be L ` Test and L ` DNS. But I content myself with showing the
weaker statement that L ∈ RFO implies Meta(L) ` Test and L ` DNS. Because
L ` Test implies Meta(L) ` Test, having the stronger converse would result in
the classification L ∈ RFO if and only if L ` Test and L ` DNS. As is, the
result I obtain makes reference to the metatheory. Showing that L ∈ RFO leads to
Meta(L) ` Test is done using the technique used by McCarty in [6], which was used
in Theorem 3.7 of [1]. Yet unlike the case of [1], the injectivity of Meta is unavailable
to conclude L ` Test thereafter. Whether L ∈ RFO implies L ` Test remains in the
realm of conjecture.

Showing L ` DNS is done using the concept of coconsistency defined in Def-
inition 6.2. I show below that coconsistency with classical logic is necessary for
membership in RFO and that it implies L ` DNS.

Because DNS is not a very common principle, the significance of its role here
may seem a bit unusual. On that note, Section 6.1 reviews a few other interesting
uses of that principle.

Theorem 6.1 If L ∈ RFO then Meta(L) ` Test.

Proof Let L ∈ RFO, and choose any formula ϕ of SO. The following reasoning is
valid in Meta(L) and proves ¬ϕ∨¬¬ϕ. It constructs a model specific to ϕ using the
completeness theorem provided by the assumption L ∈ RFO, and from the existence
of the model deduces ¬ϕ ∨ ¬¬ϕ. As the reasoning is all in Meta(L) and is valid for
any ϕ, it establishes the theorem.

Consider a very simple formula in the language of FO that is neither always logi-
cally true nor always logically false, say S(0) = 0. (Meta(L) is aware that S(0) = 0
is neither a tautology nor a contradiction.) Let

T = { pS(0) = 0q | ϕ } ∪ { pS(0) 6= 0q | ¬ϕ } ∪ { pS(0) = 0 ∨ S(0) 6= 0q } .

This notation may be unfamiliar; { pS(0) = 0q | ϕ } means the set containing
S(0) = 0 if and only if ϕ holds, and containing nothing else. In subclassical logics,
the cardinality and membership of sets defined in such a way are not always decided.
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To clarify, the sentence S(0) = 0 is one from FO, an object about which Meta(L) is
reasoning; the sentence ϕ is one from SO, part of a set-theoretic expression that is
part of the reasoning being done in Meta(L).

I wish to create a model of T by completeness, so I begin by showing that T
is consistent. Assume toward a contradiction that T `L ⊥. Then we would have
T `Cl ⊥, because by Definition 2.2, L ⊆ Cl (and Meta(L) knows so because it
knows the schemes that define L). But since { pS(0) = 0 ∨ S(0) 6= 0q } ⊂ Cl, we
therefore have

{ pS(0) = 0q | ϕ } ∪ { pS(0) 6= 0q | ¬ϕ } `Cl ⊥.

Now if ϕ held, then the left side of the turnstile above would equal { pS(0) = 0q }.
Yet because { pS(0) = 0q } 0Cl ⊥, that brings a contradiction, and so we conclude
¬ϕ. But this would make the left side of the turnstile { pS(0) 6= 0q }, which also
cannot derive ⊥ classically. Therefore, we have reached a contradiction, and our
original assumption T `L ⊥ must be false; T must be consistent.

So by completeness, create a model A � T . Because (S(0) = 0 ∨ S(0) 6= 0) is in
T , we have A � (S(0) = 0∨ S(0) 6= 0), and thus A � (S(0) = 0) or A � (S(0) 6= 0)
by Definition 3.4. In the first case, we have A 2 (S(0) 6= 0), and so (S(0) 6= 0) /∈ T ,
giving ¬¬ϕ by the construction of T . In the second case, by a similar argument, ¬ϕ.
Thus we have the desired instance of the principle of testability: ¬ϕ ∨ ¬¬ϕ. �

As in the propositional case from [1], this proof which establishes necessary condi-
tions for membership in RFO did not depend on the fact that the semantics in question
was classical. The one way in which the model behaved classically was guaranteed
not by the model itself, but by the theory it was required (by completeness) to sat-
isfy. Thus had I defined reflexivity in terms of weak Kripke completeness instead,
this proof would still be valid.

I now show that DNS is necessary for reflexivity. These results are also inde-
pendent of semantics, because they only mention semantics in passing, never in a
substantive way.

Definition 6.2 (coconsistency, Cocons) I call two logics L1, L2 coconsistent when
they judge the same sets of formulas to be consistent. That is, for any set 0 of
formulas,

0 0L1 ⊥ iff 0 0L2 ⊥.

Theorem 6.3 If L ∈ RFO then L and Cl are coconsistent.

Proof What it means for L to be a member of RFO is that

Meta(L) ` ∀T (T 0L ⊥ ↔ ∃A(A � T )).

In particular, since Cl ∈ RFO, we have

Meta(Cl) ` ∀T (T 0Cl ⊥ ↔ ∃A(A � T )).

Also, because L ⊆ Cl, what L proves Cl also proves. So one can transfer the
statement in Meta(L) up into Meta(Cl):

Meta(Cl) ` ∀T (T 0L ⊥ ↔ ∃A(A � T )).

Putting these last two facts together, we find

Meta(Cl) ` ∀T (T 0L ⊥ ↔ T 0Cl ⊥).
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Thus L is coconsistent with Cl by the soundness of Meta(Cl). Although the proof
uses metatheories, the theorem simply states that L and Cl are coconsistent, not that
any particular metatheory knows so. Thus the desired result has been obtained. �

Lemma 6.4 L and Cl are coconsistent if and only if for every set 0 of formulas,
for every formula ϕ,

0 `Cl ϕ iff 0 `L ¬¬ϕ.

Proof (⇒) Let 0 be an arbitrary set of formulas and ϕ be an arbitrary formula.
Then

0 `Cl ϕ ⇐⇒ 0 ∪ { ¬ϕ } `Cl ⊥ ⇐⇒ 0 ∪ { ¬ϕ } `L ⊥ ⇐⇒ 0 `L ¬¬ϕ,

where the central equivalence comes from the assumption of coconsistency.

(⇐) Given that for every set 0 of formulas, for every formula ϕ, 0 `Cl ϕ if and
only if 0 `L ¬¬ϕ, taking ϕ = ⊥ gives

0 `Cl ⊥ ⇐⇒ 0 `L ¬¬⊥ ⇐⇒ 0 `L ⊥. �

Lemma 6.5 If L and Cl are coconsistent then L ` DNS.

Proof Assume L is coconsistent with classical logic. Then by Lemma 6.4, we have
that L ` ¬¬QNE because QNE (from Definition 4.3) is classically valid. Because
`Int (¬¬QNE) ↔ DNS, this establishes L ` DNS. �

Corollary 6.6 L ∈ RFO if and only if Meta(L) ` Test and L ` DNS.

Proof Section 5 showed that Meta(L) ` Test and L ` DNS implies L ∈ RFO.
That L ∈ RFO implies Meta(L) ` Test comes from Theorem 6.1, and that it implies
L ` DNS comes from the composition of Theorem 6.3 with Lemma 6.5. �

6.1 The Role of Double Negation Shift Since the principle of Double Negation
Shift plays a prominent role here, I take a moment to point out a few of its other
uses. First, a logic L derives DNS if and only if L is sufficient to show that every
formula’s Gödel translation is logically equivalent to the formula’s double negation.
Troelstra [8] sketches a proof of this and says that it “attaches considerable technical
interest” to DNS (p. 87). The proof is simply a good helping of intuitionistic first-
order derivations, one for each case of an induction argument on ϕ.

Troelstra also points out that Spector [7] used DNS in work on intuitionistic anal-
ysis. Because DNS enables one to derive the Gödel translation of the axiom of choice
from the axiom of choice itself, the Gödel translation can be used to embed “clas-
sical analysis, formulated with sequence variables and the axiom of choice, in the
corresponding intuitionistic theory + DNS” ([8], p. 93).

Gabbay [3] and [4] has shown that Int + DNS, which he calls MH, is the smallest
intermediate first-order logic L for which `Cl ϕ if and only if `L ¬¬ϕ. He also
shows that MH is characterized by the set of Kripke models in which every node has
a leaf node above it (pp. 41, 57 of [4]).
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7 Conclusion

I have shown that an intermediate first-order logic L can prove its own completeness
theorem (when used as a metatheory) just when it contains every instance of the
scheme DNS and when its metatheory contains every instance of the principle Test.
Comments have been made up to this point that indicate that it is acceptable to use
classical models for every intermediate logic, because the nonclassical metatheory
doing the reasoning makes the model behave nonclassically. But a clearer reason
can be given establishing that the semantics chosen is irrelevant.

As in Section 4.1 of [1], I prove informally that using Kripke semantics in place of
classical semantics would not change the results at all. The same argument used there
applies here: Because classical countermodel completeness implies Kripke counter-
model completeness, a change to Kripke completeness would result in an RFO that
is at least as large as now. Because Theorem 6.1 does not use the classicality of the
structures directly, but introduces classical aspects via the theory, Kripke semantics
would serve just as well. Thus reflexivity phrased in terms of Kripke countermodel
completeness necessitates the same properties of L that reflexivity phrased in terms
of classical countermodel completeness does, meaning RFO would be no larger than
it is now. Thus the choice of semantics is irrelevant.

The work in this paper raises an interesting open question: Is the Meta operator in-
jective? More specific to the conclusions herein, if Meta(L) ` Test, does L ` Test?
As mentioned at the end of Section 2, an argument establishing an answer to either of
these questions would need to rely on the second-order portions of the metatheories
to disambiguate them. Such a proof would strengthen the results of this paper to the
conclusion that L ∈ RFO if and only if L ` DNS + Test.

This paper has investigated what the metatheory built from a first-order logic can
say about the original logic. But enough machinery has been developed to easily
extend this to answer questions about what the metatheory from one first-order logic
can say about a different first-order logic. The following theorem is analogous to
Theorem 4.1 of [1].

Theorem 7.1 The following are equivalent for a logic L1 ∈ IFO.

1. Meta(L1) ` Cpl(Cl).
2. For some L2 ∈ IFO, Meta(L1) ` Cpl(L2).
3. For every L2 ∈ IFO coconsistent with Cl, Meta(L1) ` Cpl(L2).

Proof I show (3) ⇒ (2) ⇒ (1) ⇒ (3), in that order.

(3) ⇒ (2) Given that for every L2 ∈ IFO coconsistent with Cl, we have

Meta(L1) ` Cpl(L2),

it is immediate that ∃L2 ∈ IFO such that Meta(L1) ` Cpl(L2) as long as some
L2 ∈ IFO is coconsistent with Cl. Many are, obviously including Cl itself.

(2) ⇒ (1) Assuming that ∃L2 ∈ IFO(Meta(L1) ` Cpl(L2)), we can rewrite this as

Meta(L1) ` ∀0(0 0L2 ⊥ → ∃A.A � 0).

Because Meta(L1) is aware of the inclusion L2 ⊆ Cl, we also have

Meta(L1) ` ∀0(0 0Cl ⊥ → 0 0L2 ⊥).
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Putting the above two displays together gives

Meta(L1) ` ∀0(0 0Cl ⊥ → ∃A.A � 0),

which is the same as Meta(L1) ` Cpl(Cl).

(1) ⇒ (3) Assume that Meta(L1) ` Cpl(Cl) and that L2 ∈ IFO is coconsistent with
Cl. Then by Lemma 6.5, L2 ` DNS. Furthermore, the argument in Theorem 6.1
serves to show that Meta(L1) must contain every instance of Test. The arguments
in Section 5 depended only on the fact that the metatheory contain every instance of
Test and be aware that the logic in question contained every instance of DNS; they
establish Meta(L1) ` Cpl(L2) in this case as well. �

Notes

1. One can obtain intuitionistic completeness proofs of intuitionistic first-order logic if
some modifications to Kripke semantics are permitted (Veldman [9]).

2. Another common name for testability logic is KC, as in [4]. The principle of testability
is also often called the weak law of the excluded middle.
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