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New Examples of Constant Mean Curvature
Surfaces in S2 ×R and H2 ×R

José M. Manzano & Francisco Torralbo

Abstract. We construct nonzero constant mean curvature H surfaces
in the product spaces S2 × R and H2 × R by using suitable conju-
gate Plateau constructions. The resulting surfaces are complete, have
bounded height, and are invariant under a discrete group of horizon-
tal translations. A one-parameter family of unduloid-type surfaces is
produced in S2 ×R for any H > 0 (some of which are compact) and
in H2 ×R for any H > 1/2 (which are shown to be properly embed-
ded bigraphs). Finally, we give a different construction in H2 ×R for
H = 1/2, giving surfaces with the symmetries of a tessellation of H2

by regular polygons.

1. Introduction

In 1970, Lawson [Law70] established a celebrated correspondence between sim-
ply connected minimal surfaces in a space form M3(κ) (with constant curvature
κ) and constant mean curvature (CMC) H surfaces in the space M3(κ − H 2).
This result motivated the construction of two doubly periodic constant mean cur-
vature one surfaces in the Euclidean 3-space. The procedure used to obtain such
examples is known as the conjugate Plateau construction and has become a fruit-
ful method to obtain constant mean curvature surfaces in space forms (e.g., see
[KPS88; K89; GB93; Po94]). We summarize the steps of this construction as fol-
lows:

(1) Solve the Plateau problem in a geodesic polygon in M3(κ).
(2) Consider the conjugate CMC H surface in M3(κ −H 2), whose boundary lies

on some planes of symmetry since the initial surface is bounded by geodesic
curves (see [K89, Section 1]).

(3) Reflect the resulting surface across its edges to get a complete constant mean
curvature H surface in M3(κ − H 2).

The key property of this method is that a geodesic curvature line in the initial
surface becomes a planar line of symmetry in the conjugate one. This is crucial
in order to extend by reflection the conjugate piece to a complete constant mean
curvature surface. Hence, it is important to cleverly choose the appropriate geo-
desic polygon once the desired symmetries in the target surface have been fixed.
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Sometimes it is not possible to explicitly determine the conjugate surface, and
continuity or degree arguments come in handy (cf. [KPS88; Po94]).

Nevertheless, one of the main drawbacks of the conjugate Plateau construc-
tion is that the produced surfaces are hardly ever known to be embedded since
the correspondence consists in integrating geometric data. Hence, embeddedness
has to be proven separately, and it becomes a difficult task. Some useful results
are the Krust conjugate graph theorem [DHKW92, vol. I, p. 118] and its general-
izations to M × R (M being a nonpositive constant Gaussian curvature surface;
see [HST08]) and to homogeneous Riemannian 3-manifolds (see [CH13]). These
results ensure that the conjugate surface is embedded, provided that the initial
surface is a graph over a convex domain (see [K89] for several applications). In
most of the cases (e.g., the double periodic CMC surface of R3 contained in a
slab constructed by Lawson [Law70] and generalized by Karcher [K89]; see also
[GB93] and [GB05, Sect. 4]), the examples are broadly supposed to be embedded,
but this has hitherto lacked a proof as far as we know.

In the last few years, the study of constant mean curvature surfaces in the ho-
mogeneous Riemannian 3-manifolds has become an active research topic (see, for
example, [DHM09] for a survey on recent results). Daniel [Dan07] established a
Lawson-type correspondence between constant mean curvature surfaces in ho-
mogeneous Riemannian 3-manifolds with isometry group of dimension 4 (see
Section 2.1) that gives rise to an extension of the conjugate Plateau construction
to this class of 3-manifolds. It also generalizes the correspondence by Hauswirth,
Sa Earp, and Toubiana [HST08] between minimal surfaces in the product case,
where some authors have made their contributions [MR12; R; MRR].

This paper has a double aim: on the one hand, to extend the conjugate Plateau
construction to the homogeneous Riemannian 3-manifolds by using the Daniel
correspondence and, on the other hand, to obtain, applying this procedure, new
constant mean curvature surfaces in the product spaces S2 ×R and H2 ×R, where
S2 and H2 stand for the sphere and the hyperbolic plane with curvature one and
minus one, respectively.

Section 2 introduces the Daniel correspondence and studies how curves and
symmetries in the corresponding surfaces are related. We will realize that it is
important to deal with polygons made of vertical and horizontal geodesics and
also that the phase angle θ of the Daniel correspondence is equal to π/2 because
this will be the case where we will be able to handle the geometry of the conju-
gate surface. It will turn out that the target space must be a Riemannian product
manifold, which makes sense since they are the only E(κ, τ )-spaces admitting
totally geodesic surfaces [ST09] and thus enabling mirror symmetries (see Lem-
mas 1 and 2). All these features make the choice of the initial geodesic polygon
more rigid, so the needed arguments become more subtle than in the Lawson set-
ting. We will finish Section 2 by discussing the smooth extension of the Plateau
solution by reflection across its border.

In Section 3 we include a brief description of those homogeneous spaces in-
volved in the construction, as well as their needed properties.
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Section 4 is devoted to the first nontrivial examples of conjugate Plateau con-
struction, showing that the one-parameter family of spherical helicoids in the
Berger spheres (which are surfaces ruled by horizontal geodesic and invariant by
a screw motion) corresponds to the rotationally invariant unduloids and nodoids
[HH89; PR99] in S2 × R and H2 × R (see Proposition 1), except for a special
case that corresponds to a torus in S2 ×R or a cylinder in H2 ×R, both of them
invariant by a one-parameter group of horizontal isometries.

Section 5 deals with the construction of a one-parameter family of complete
singly periodic CMC H surfaces in the product spaces S2 ×R (H > 0) and H2 ×R

(H > 1/2), coming from minimal surfaces in Berger spheres. The surfaces we
obtain are extended by reflection to complete ones that are invariant by discrete
one-parameter groups of isometries, consisting of rotations in S2 × R or hyper-
bolic translations in H2 × R (see Theorem 1). In the case of H2 × R, the con-
structed surfaces are proved to be embedded. The case of S2 × R is more subtle
due to the compactness of S2, and we will be able to show that for H < 1/2, there
are nonembedded ones. Nonetheless, this family provides CMC H tori for each
H > 0. In both cases, we will give a quite precise description of them. An inter-
esting property of these new examples is that their height is bounded and takes
all values in between the height of the rotationally invariant sphere and the height
of the rotationally invariant torus in S2 ×R (resp. cylinder invariant under hyper-
bolic translations in H2 × R). Note that the height of the aforementioned torus
(resp. cylinder) is a half of that of the corresponding sphere.

Finally, in Section 6 we will construct CMC 1/2 bi-multigraphs in H2 ×R that
have the symmetries of a tessellation of H2 by regular polygons (see Theorem 2),
coming from minimal surfaces in the Heisenberg group. Recall that the value
H = 1/2 is critical in the sense that CMC surfaces for H > 1/2 and H ≤ 1/2
are of different nature (e.g., CMC spheres only exist for H > 1/2). Besides, we
give some applications to the construction of CMC 1/2 surfaces in M ×R, where
M is a compact surface with negative Euler characteristic and constant curva-
ture −1.

We want to mention that CMC 0 < H < 1/2 surfaces in H2 × R can be ob-
tained by the conjugate construction from minimal surfaces in the symplectic
group Sl2(R) endowed with an appropriate homogeneous metric, though the anal-
ysis of such surfaces is beyond the goal of this paper.

2. Preliminaries on Homogeneous 3-Manifolds

Simply connected homogeneous Riemannian 3-manifolds with isometry group of
dimension 4 or 6, different from the hyperbolic space H3, form a two-parameter
family E(κ, τ ), κ, τ ∈ R (see [Dan07]). Moreover, every E(κ, τ ) admits a fibration
over the simply connected constant curvature κ surface whose vertical field ξ is
Killing and τ represents the bundle curvature. In particular, E(1,0) = S2 ×R and
E(−1,0) = H2 ×R.
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We will say that a geodesic in E(κ, τ ) is horizontal if its tangent vector is or-
thogonal to ξ and vertical if its tangent vector is colinear with ξ . For our purposes,
the following property will be essential:

Given a vertical or horizontal geodesic, there exists a unique involutive isometry of
E(κ, τ ) that fixes each point in the geodesic. It will be called a geodesic reflection with
respect to the geodesic.

2.1. The Daniel Correspondence

Lawson correspondence [Law70, Section 14] was generalized by Daniel [Dan07,
Theorem 5.2] to the context of E(κ, τ )-spaces. More explicitly, given E = E(κ, τ )

and E∗ = E(κ∗, τ ∗) such that κ − 4τ 2 = κ∗ − 4(τ ∗)2 and given θ,H,H ∗ ∈ R

satisfying H + iτ = eiθ (H ∗ + iτ ∗), the following statement holds:
Let φ : � → E an isometric constant mean curvature H immersion of a simply con-
nected surface �. There exists an isometric immersion φ∗ : � → E∗ of CMC H∗ such
that:

(a) ν∗ = ν,
(b) T ∗ = eθJ T ,
(c) S∗ = eθJ (S − H · id) + H∗ · id,

where eθJ , ν = 〈N,ξ 〉, T = ξ − νN , and S are the positive oriented rotation of angle
θ in the tangent plane to �, the angle function, the tangent part of the vertical field,
and the shape operator for φ, and N is a unit normal vector field to the immersion.
The elements ν∗, T ∗ , and S∗ are the corresponding ones for φ∗ .
The immersion φ∗ is unique up to an ambient isometry in E∗ and is called a sister
immersion of φ.

We recall that we are interested in applying the correspondence between a
minimal surface in some E(κ, τ ) and a CMC H surface in M2(ε) ×R = E(ε,0),
so the parameter θ must be π

2 (there is no loss of generality in considering θ to
be positive). Hence, (κ, τ ) must be equal to (4H 2 + ε,H), and this leads to the
following relations between the sister surfaces:

ν∗ = ν, T ∗ = JT , S∗ = JS + H · id. (2.1)

The possible choice of parameters is given by Figure 1, as well as, for H = τ = 0,
the families of associate minimal surfaces in S2 × R or H2 × R (notice that θ is
free in that case).

We will now make precise what the horizontal and vertical geodesics contained
in a minimal surface become in the sister surface for the cases in Figure 1. Notice
that the choice θ = π

2 is instrumental in the proof.

Initial E(κ, τ ) Surfaces in H2 ×R Surfaces in S2 ×R

κ > 0 E(4H 2 + ε,H) CMC H > 1/2 CMC H > 0
κ = 0 E(0,1/2) CMC H = 1/2 –
κ < 0 E(4H 2 − 1,H) CMC 0 < H < 1/2 –

Figure 1 Possible configurations of parameters
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Lemma 1. Given ε ∈ {−1,1} and H ≥ 0, let φ : � � E(4H 2 + ε,H) be an
isometric minimal immersion of a simply connected Riemannian surface � and
suppose that φ∗ : � � M2(ε)×R is its sister CMC H immersion. Given a smooth
curve α : [a, b] → �:

(a) If φ(α) is a horizontal geodesic, then φ∗(α) is contained in a vertical plane
that is met by the immersion orthogonally.

(b) If φ(α) is a vertical geodesic, then φ∗(α) is contained in a horizontal plane
that is met by the immersion orthogonally.

Proof. The first part of this lemma was proved by Torralbo (see [Tor10a, Propo-
sition 3]), but, for completeness, we include the proof here.

We will follow the above notation and consider γ = φ(α) and γ∗ = φ∗(α) =
(β,h) ⊆ � ⊆ M2(ε) × R, where there is no loss of generality in considering α

to be parameterized by its arc length. Moreover, it is possible to immerse isomet-
rically M2(ε) × R in ⊆ R3 × R if ε = 1 or R3

1 × R if ε = −1 with unit normal
along γ given by (β,0).

We will start by proving item (a). We claim that Jγ ′∗ is constant, where Jγ ′∗ is
considered to be a curve in R4 or R4

1.

〈(Jγ ′∗)′, γ ′∗〉 = −〈Jγ ′,∇γ ′γ ′〉 = 0 (since γ is a geodesic),

〈(Jγ ′∗)′, J γ ′∗〉 = 0 (since Jγ ′∗ has length 1),

〈(Jγ ′∗)′,N∗〉 = −〈Jγ ′∗, dN∗(γ ′∗)〉 = 〈Jγ ′∗, S∗γ ′∗〉
= 〈Jγ ′,−Sγ ′ + τγ ′〉
= −〈γ ′, Sγ ′〉 = 0 (since γ is an asymptote line),

where we take into account relation (2.1). Thus, the tangent part of (Jγ ′∗)′ to
M2(ε) ×R vanishes, so (Jγ ′∗)′ is proportional to (β,0). On the other hand, since
γ is an horizontal curve in E(4H 2 +ε,H), we know that 〈γ ′, ξ 〉 = 〈γ ′, T 〉 = 0, so
γ ′ is proportional to JT , and since it has unit length, we can suppose that, up to
a sign, γ ′ = JT /

√
1 − ν2. Therefore, T ∗ = γ ′∗

√
1 − ν2 and (0,1) = T ∗ + νN∗ =√

1 − ν2γ ′∗ + νN∗.
This last relation implies that 〈Jγ ′∗, (0,1)〉 = 0. Hence,

〈(Jγ ′∗)′, (β,0)〉 = −〈Jγ ′∗, (β ′,0)〉 = h′〈Jγ ′∗, (0,1)〉 = 0,

where we have used that 0 = 〈Jγ ′∗, γ ′∗〉 = 〈Jγ ′∗, (β ′,0)〉 + 〈Jγ ′∗, h′(0,1)〉, and the
claim is proved.

In fact, we have proved that Jγ ′∗ = (v,0) ∈ R3 × R for some fixed v ∈
T M2(ε) ⊂ R3. Taking this into account, we have

〈γ∗, (v,0)〉′ = 〈γ ′∗, (v,0)〉 = 〈γ ′∗, J γ ′∗〉 = 0,

which implies that 〈γ∗, (v,0)〉 is constant, but 〈γ∗, (v,0)〉 = 〈β,v〉 = 0 since β is
normal to M2(ε) and v is tangent.
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All this information says that γ∗ lies in the vertical plane P = {(p, t) ∈
M2(ε) × R : 〈p,v〉 = 0}. Moreover, the immersion φ∗ is orthogonal to P since
the tangent plane along γ∗ is spanned by {γ ′∗, J γ ′∗ = (v,0)}.

Let us now prove item (b). Observe first that if γ is a vertical geodesic, then
ν = 0 along it, so ξ∗ = T ∗ + νN∗ = T ∗ along γ∗. Thus,

〈γ ′∗, ξ∗〉 = 〈γ ′∗, T ∗〉 = 〈γ ′, JT 〉 = 0.

The last equality follows from the fact that γ ′ is vertical, whereas JT is horizontal
(T is vertical along γ since γ is a vertical curve contained in the surface). Finally,
notice that 0 = 〈γ ′∗, ξ∗〉 = 〈(β ′, h′), (0,1)〉 = h′, so h is constant along γ∗, that
is, this curve is contained in a horizontal slice. Since ν = 0 along γ∗, the surface
meets that slice orthogonally. �

2.2. Smooth Extension of Surfaces Bordered by Geodesics

Let � be a minimal surface immersed in E(κ, τ ), and γ a vertical or horizontal
geodesic of E(κ, τ ) contained in ∂�. Then, it is possible to extend � by geodesic
reflection around γ (we recall that every geodesic reflection, whenever the geo-
desic is horizontal or vertical, is an isometry of E(κ, τ )). This extension is smooth
in view of [DHKW92, vol. II, Theorem 4].

Moreover, taking into account Lemma 1 and the data (ν, T ,S) of a minimal
surface invariant with respect to either a vertical or horizontal geodesic reflec-
tion, it is easy to prove the following result that establishes the behavior of this
symmetries with respect to the Daniel correspondence.

Lemma 2. Let φ : � � E(4H 2 + ε,H) be a minimal immersion of a simply
connected surface, and φ∗ : � � M2(ε) ×R its sister immersion. Then:

(i) If φ(�) is invariant by a horizontal (resp. vertical) geodesic reflection, then
φ∗(�) is invariant by a reflection over a vertical (resp. horizontal) plane.

(ii) The axis of reflection in the original surface corresponds to the curve where
the sister immersion meets the plane of reflection.

Another interesting situation that will often appear is when ∂� contains two dif-
ferent vertical or horizontal geodesics meeting at some point p ∈ ∂�. Then, the
surface can be extended by reflection over both geodesics, producing, in each step,
a new vertical or horizontal geodesic passing through p. If the angle between the
two geodesics is π

k
for some k ∈ N, then a surface is produced after 2k reflec-

tions, which is smooth in every point except possibly at p. Nevertheless, if such
a surface is locally embedded around the point p, then, thanks to the removable
singularity result [CS85, Proposition 1], it will be also smooth at p.

3. Models for Homogeneous Spaces

For our purposes we will restrict ourselves to the construction of minimal surfaces
in E(κ, τ ) spaces where τ �= 0. In what follows, we will only consider the cases
where κ ≥ 0 (i.e., either the Berger spheres or the Heisenberg group), so CMC
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H > 0 in S2 × R and H ≥ 1/2 in H2 × R will be produced. In this section, we
will introduce briefly the aforementioned homogeneous spaces, focusing on the
properties needed in the paper.

3.1. The Berger Spheres

A Berger sphere is a 3-sphere S3 = {(z,w) ∈ C2 : |z|2 + |w|2 = 1} endowed with
the metric

g(X,Y ) = 4

κ

[
〈X,Y 〉 +

(
4τ 2

κ
− 1

)
〈X,V 〉〈Y,V 〉

]
,

where 〈·, ·〉 stands for the usual metric on the sphere, V(z,w) = J (z,w) = (iz, iw)

for each (z,w) ∈ S3, and κ , τ are real numbers with κ > 0 and τ �= 0. From now
on, we will denote the Berger sphere (S3, g) as S3

b(κ, τ ). We note that if κ = 4τ 2,
then S3

b(κ, τ ) is, up to homotheties, the round sphere. The Berger spheres are
examples of E(κ, τ ) for κ > 0 and τ �= 0 (see [Tor10b] for a detailed description).

The Hopf fibration � : S3
b(κ, τ ) → S2(κ), where S2(κ) stands for the 2-sphere

of radius 1/
√

κ , given by

�(z,w) = 2√
κ

(
zw̄,

1

2
(|z|2 − |w|2)

)
,

is a Riemannian submersion whose fibers are geodesics. The vertical unit Killing
field is given by ξ = κ

4τ
V . It is easy to check that both the horizontal and verti-

cal geodesic are great circles. It is interesting to remark that the length of every
vertical geodesic is 8τπ/κ , whereas the length of every horizontal geodesic is
4π/

√
κ .

3.2. The Product Spaces

As it has been pointed out before, the only simply connected homogeneous spaces
with isometry group of dimension four and zero bundle curvature are the Rie-
mannian products M2(κ)×R = E(κ,0), where M2(κ) stands for the simply con-
nected surface with constant curvature κ . The Riemannian submersion coincides
with the natural projection � : M2(κ) ×R → M2(κ).

Totally geodesic surfaces of M2(κ) × R are either vertical planes, that is, the
product of a geodesic of M2(κ) with the real line (they are topological cylinders
if κ > 0 and planes if κ < 0), or horizontal planes (also called slices), that is,
M2(κ) × {t0}, t0 ∈ R. It is well known that the reflection over a horizontal or
vertical plane is an ambient isometry.

If a CMC surface � meets a horizontal or vertical plane orthogonally, we can
smoothly extend this surface by reflecting over this plane. This is a consequence
of the continuation result of Aronszajn [Aron57] for elliptic PDE’s joint with the
fact that the reflection over horizontal and vertical planes are ambient isometries.
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3.3. The Heisenberg Group

The Heisenberg group Nil3 = E(0, 1
2 ) is a Lie group whose Lie algebra consists

of the upper-triangular nilpotent 3 × 3 real matrices. It can be modeled by R3,
endowed with the metric

ds2 = dx2 + dy2 +
(

1

2
(y dx − x dy) + dz

)2

,

where (x, y, z) are the usual coordinates of R3. The projection � : Nil3 → R2

given by �(x,y, z) = (x, y) is a Riemannian submersion, and ∂z is a unit vertical
Killing vector field.

All vertical and horizontal geodesics in Nil3 are Euclidean straight lines, not
necessarily linearly parameterized. Moreover, every nonvertical Euclidean plane
is minimal, and any two of them are congruent by an ambient isometry. Vertical
Euclidean planes are also minimal in Nil3.

4. Spherical Helicoids and Their Correspondent Sister Surfaces

In this section we are going to illustrate the construction method. For that purpose,
we focus on the Berger sphere case, that is, we are going to work in S3

b(4H 2 +
ε,H) and analyze what the correspondent to the so-called spherical helicoids are.
The latter form a one-parameter family of well-known minimal immersions in the
round 3-sphere, introduced by Lawson in [Law70] and given by

�c : R2 → S3 ⊂ C2,

(x, y) �→ (cos(x)eicy, sin(x)eiy).

All these immersions are minimal in S3
b(κ, τ ) for any κ and τ . In fact, they

are the only immersions in the 3-sphere that are minimal with respect to all the
Berger metrics (see [Tor10a, Proposition 1]).

Remark 1.

(1) We can restrict the parameter c to the interval [−1,1] since the surfaces �1/c

and �c are congruent up to a reparameterization, that is, (L ◦ �1/c)(
π
2 −

x, cy) = �c(x, y), where L(z,w) = (w, z).
(2) �0 : ]0,π[× [0,2π] → S3 is the minimal sphere (except two points) that is

embedded. On the other hand, if c ∈ Q, then the immersion �c is induced
to a torus. Moreover, �1 is the Clifford torus, and �0 and �1 are the only
embedded spherical helicoids since �c(

π
2 , 2π

c
) = �c(

π
2 , 2π

c
(1−c)) and 2π

c
=

2π
c

(1 − c) (mod 2π) if and only if c ∈ {0,1}. Observe that a Clifford torus
is nothing but the lift by the Hopf projection of a geodesic in S2(κ). Given
p ∈ S3

b(κ, τ ) and a horizontal vector u at p, there exists a unique Clifford
torus passing through p with tangent plane at p orthogonal to u.

(3) For every c, the surface �c is invariant by the one-parameter group of isome-
tries t → (

eict 0
0 eit

)
.
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Figure 2 Polygon �c (c �= −1) in the Berger sphere (left) and its
sister contour in M2(ε) × R (right) for c > 0 (solid line) and c < 0
(dashed line)

We will now focus on the case c �= −1 because the sister surface of the spheri-
cal helicoid �−1 is of different nature and will be treated in Section 5.2. Let us
consider the polygon �c, c �= −1, consisting of the curves:

h1(t) = (cos(t), sin(t)) = �c(t,0), t ∈
[

0,
π

2

]
,

h2(t) = (cos(t)eiπc/(2(1+c)), sin(t)eiπ/(2(1+c))) = �c

(
t,

π

2(1 + c)

)
,

t ∈
[

0,
π

2

]
,

v1(t) = (eict ,0) = �c(0, t), t ∈
[

0,
π

2(1 + c)

]
,

v2(t) = (0, eit ) = �c

(
π

2
, t

)
, t ∈

[
0,

π

2(1 + c)

]

(see Figure 2). It is easy to check that the curve hθ (t) = �c(t, θ), θ ∈ [0, π
2(1+c)

],
is a horizontal geodesic and v1, v2 are vertical ones for all c. Moreover, we can
recover the whole surface �c(R

2) by geodesic reflection of the piece �c([0, π
2 ]×

[0, π
2(1+c)

]) across the edges of �c.

Consider now the sister immersion �∗
c : [0, π

2 ]×[0, π
2(1+c)

] → M2(ε)×R and
denote by h∗

θ and v∗
j , j = 1,2, the corresponding curves. In view of Lemma 1, h∗

θ

are contained in a vertical plane of symmetry, Pθ , whereas v∗
j is contained in a

slice M2(ε)×{pj }, j = 1,2. To understand the behavior of these curves, one can
compute their curvature as curves in the vertical or horizontal plane they lie in. Let
us observe firstly that since the sister surface intersects the slice and the vertical
plane where the curves h∗

j and v∗
j meet orthogonally, the curvatures of these two
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curves (supposed to be parameterized by arc length) are given by

k
M2(ε)×{pj }
v∗
j

= 〈S∗(v∗
j )′, (v∗

j )′〉 = H − 〈Sv′
j , J v′

j 〉,
k
Pθ

h∗
θ

= 〈S∗(h∗
θ )

′, (h∗
θ )

′〉 = H − 〈Sh′
θ , Jh′

θ 〉,
where S and S∗ denote the shape operators of �c and �∗

c , respectively. The sec-
ond identity follows from the last equation in (2.1).

Finally, since we know explicitly the shape operator of �c , straightforward
computations show that v∗

j are constant curvature curves in M2(ε) × {pj }, j =
1,2. On the other hand, all the curves h∗

θ have the same curvature since the im-
mersion �c is invariant by a one-parameter group of isometries that transform
each hθ1 into another hθ2 . Hence, every point of v∗

j is contained in a vertical plane
of symmetry, so the sister surface must be rotationally invariant.

Proposition 1. The sister surface of the spherical helicoid �c is a rotationally
invariant surface. More precisely:

(i) The sister surface of the minimal sphere �0 is the constant mean curvature
H sphere.

(ii) The sister surface of the Clifford torus �1 is the vertical cylinder, that is, the
product of a constant curvature 2H curve of M2(ε) with the real line.

(iii) The sister surface of �c for 0 < c < 1 is an unduloid [PR99, Lemma 1.3].
(iv) The sister surface of �c for −1 < c < 0 is a nodoid [PR99, Lemma 1.3].

Proof. On the one hand, the previous argument shows that the sister surface of
�c must be a rotationally invariant CMC H surface in M2(ε) × R. On the other
hand, the first assertion is trivial, and the second one is easy because the Clifford
torus has vanishing constant angle, which remains invariant under the Daniel cor-
respondence. Finally, (iii) and (iv) are a consequence of a deep analysis of the
curvature of the curves hθ , which will be omitted since it is long and straightfor-
ward. �

Remark 2. The previous argument shows that every minimal surface that is ruled
by horizontal geodesics becomes, via the Daniel correspondence, a CMC surface
invariant by a one-parameter group of isometries.

In the round sphere case (via the Lawson correspondence), the corresponding
surfaces to the spherical helicoids are the Delaunay CMC rotationally invariant
examples in R3 [GB93, Theorem 2.1].

5. Constant Mean Curvature Surfaces in S2 ×R and H2 ×R

In this section we will construct, for each H > 0 (resp. H > 1/2), a one-parameter
family of constant mean curvature H surfaces in S2 ×R (resp. H2 ×R). We will
first build a one-parameter family of minimal surfaces �λ in the Berger sphere
S3

b(4H 2 + ε,H), ε ∈ {−1,1}, by solving the Plateau problem over an appropriate
geodesic polygon �λ (see Figure 3). The desired surfaces will be the correspond-
ing CMC H surfaces.
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Figure 3 Polygon �λ (left) and its Hopf projection �(�λ) (right).
The parameter λ represents the marked angle

5.1. Geodesic Polygons

Let us consider λ ∈ [0, π
2 ] a real parameter and define the geodesic polygon �λ,

explicitly parameterized as

h0(t) = 1√
2
(eit , e−it ), t ∈

[
0,

π

2

]
,

h1(t) = (cos t, sin t), t ∈
[
λ

2
,
π

4

]
,

h2(t) = (i cos t, i sin t), t ∈
[
−π

4
,
λ

2

]
,

v(t) =
(

eit cos
λ

2
, eit sin

λ

2

)
, t ∈

[
0,

π

2

]
.

Notice that h0, h1, and h2 are horizontal geodesics that project by � on two
orthogonal great circles (h1 and h2 in the same one), whilst v is a vertical one
(none of them are arc-length parameterized). In fact, the dependence on λ lies in
where we choose the point to split the geodesic and do the horizontal lift (see
Figure 3). Observe that two consecutive curves of �λ meet at a π

2 angle.

In the sequel, let us consider W = �−1(Ŵ ), where Ŵ is the convex compact
domain in S2(4H 2 + ε) bounded by �(�λ), which is nothing but a quarter of the
sphere. Thus, W is a solid torus whose boundary is made out of two pieces of
Clifford tori (see Remark 1) that meet at a π

2 angle.

Proposition 2. There exists a unique minimal surface �λ ⊂ W with border �λ.
Moreover, the interior of �λ is a graph over Ŵ and can be extended smoothly
across its boundary.

Proof. We know that W is a mean convex body, and it is clear that �λ is null-
homotopic in W , so the existence follows from the results by Meeks and Yau
[MY82]. Hence, there exists a minimal surface �λ with border �λ that is C2 in
the interior and C0 in the boundary.
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Figure 4 Deformations �−
n (left) and �+

n (right) of the original poly-
gon �λ whose associated Plateau solutions converge to the minimal
graphs �− and �+

Notice that, working in the Riemannian universal cover of W , the maximum
principle for minimal graphs in Killing submersions given by Pinheiro in [P, The-
orem 2.1] (see also [Man12, Corollary 3.9, p. 100]) ensures that there exists at
most one minimal graph in W with boundary �λ. Therefore, to finish the proof, it
suffices to show that �λ is a graph, that is, its angle function ν never vanishes.

Let us consider �, a small deformation of �λ in a neighborhood of the ver-
tical component v such that �|� is injective and � lies above �λ. Then, by the
existence result and a classic application of the maximum principle, there exists a
minimal graph � with border �, and it lies above �λ. We can consider a decreas-
ing sequence {�n}n of such deformations (i.e., �n lies above �n+1 for every n)
that converge to �λ (see Figure 4). The corresponding solutions �n to the Plateau
problem with border �n will be graphs and will converge to a minimal surface
�+ with border �λ (each of the surfaces �n is stable, and their geometries are
uniformly bounded, so standard converge arguments can be applied; note also that
the sequence is monotonic). Hence, �+ is above �λ, and it is a graph. This last
property is a consequence of being limit of graphs, so its angle function does not
change sign: since the angle function is a Jacobi function and �+ is stable, it is
either identically zero or never vanishes. The first case is obviously not possible.

Likewise, we can deform the curve �λ so that the new one will be below and
construct a minimal graph �− with border �λ below �λ. Finally, Pinheiro’s ar-
gument shows that �+ = �−. Thus, �λ = �+ and, in particular, �λ is a graph.
The smooth extension property follows from Section 2.2. �

Remark 3.

(1) If λ = 0 or λ = π
2 , then it is easy to check, due to the uniqueness of �λ, that

�0 is a piece of the spherical helicoid �−1 (see Proposition 2) and �π/2 is a
piece of the sphere {(z,w) ∈ S3 : Re(z − w) = 0}.

(2) The deformation technique used in the proof can be applied to show the exis-
tence and uniqueness of graphical solutions of the Plateau problem in Killing
submersions for a wide family of contours, known as Nitsche contours (see
also [Man12, Theorem 3.11, p. 101]).

Now, we will focus on the dependence of the family �λ on λ. First, notice that h0
does not depend on λ and both h1 and h2 lie in horizontal geodesics that differ
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on a vertical translation. Thus, working in the universal cover of W and given
0 ≤ λ1 < λ2 ≤ π

2 , the maximum principle applied to �λ1 and �λ2 ensures that
they do not intersect except in the common boundary. This fact proves that the
family {�λ : 0 ≤ λ ≤ π

2 } is vertically ordered with respect to the parameter λ.
We claim it defines a foliation of the domain U ⊂ W bounded by the sphere

�π/2, the spherical helicoid �0, and the Clifford torus �−1(�(h2)). To prove the

claim, it suffices to check that U = ⋃π/2
λ=0 �λ, so we will prove that there exists

no p0 ∈ U such that it is not contained in any �λ. If this situation occurred, then,
since the family is vertically ordered, we could define λ0 such that �λ would lie in
one side of p0 for λ > λ0 and in the other side for λ < λ0. Since the involved sur-
faces are stable, we can take limits as λ ↗ λ0 and λ ↘ λ0. The limit surfaces are
minimal and have the same boundary �λ0 , so, by uniqueness (see Proposition 2),
p0 must lie in �λ0 .

Take a point p ∈ h0(]0, π
2 [) ∪ h1(]0, π

4 [). If p ∈ �λ0 for some λ0, then there
exists ε > 0 such that p ∈ �λ for all λ ∈ [0, λ0 + ε[. On the other hand, let p ∈
h2(]−π

4 , π
4 [). If p ∈ �λ0 for some λ0, then there exists ε > 0 such that p ∈ �λ for

all λ ∈]λ0 − ε, π
2 ]. Hence, it makes sense to study the function λ �→ νλ(p) for λ

in the appropriate interval, which is the purpose of the following lemma.
We choose a unit normal vector field N to �λ, so the angle function νλ =

〈N,ξ 〉 is negative in �λ.

Lemma 3. The angle function νλ of the surface �λ satisfies:

(i) νλ(p) = 0 for p ∈ �λ if and only if p ∈ v([0, π
2 ]).

(ii) νλ does not take the value −1 in �λ, and it only takes that value in �λ at
h0(0) and h0(

π
2 ) for 0 < λ < π

2 .
(iii) If p ∈ h0(]0, π

2 [) ∪ h1(]0, π
4 [), then the function λ �→ νλ(p) is continuous

and strictly increasing.
(iv) If p ∈ h2(]−π

4 , π
4 [), then the function λ �→ νλ(p) is continuous and strictly

decreasing.

Proof. To prove (i), if νλ(p) = 0 for some p ∈ �λ not lying in v, then p ∈ hi for
some i ∈ {0,1,2}. Moreover, p must lie in the interior of the curve hi since, at
its vertices, the angle function either has value −1, or p also lies in v. Thus, the
piece of Clifford torus given by �−1(�(hi)) is tangent to �λ at p, and we get a
contradiction to the boundary maximum principle.

Next we prove (ii) by contradiction. Let us suppose that there is an interior
point p ∈ �λ such that νλ(p) = −1 and consider the surface � consisting of the
horizontal geodesics passing through p, which is in fact a minimal sphere tangent
to �λ at p. Then, the intersection � ∩ �λ forms a system of differentiable curves
that meet transversely at some points (where both surfaces are tangent). Thus, at
the point p, at least two of them meet, but they cannot enclose a compact region
(due to the maximum principle), so they necessarily die in ∂�λ (notice that in the
Berger spheres, the umbrella � is a sphere). If we prove that � intersects ∂�λ in
two points at most, then the contradiction will be clear. On the one hand, show-
ing that � cannot intersect the vertical boundary twice is an explicit computation,
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and, on the other hand, if � intersected the horizontal boundary twice, since � is
made out of horizontal geodesics starting at p, we would find a closed horizon-
tal geodesic polygon that projects one-to-one by the Hopf projection, and this is
impossible.

Items (iii) and (iv) hold since the family {�λ : 0 ≤ λ ≤ π
2 } is vertically ordered

and foliates the domain U , as we showed before. Finally, the second part of (ii)
follows from (iii) and (iv) and from the well-known behavior of the angle function
on �0 and �π/2 along their boundary. To be more precise, let us distinguish two
cases:

• If p ∈ h2(]−π
4 , π

4 [), then we compare with �π/2. Since νλ is strictly decreasing
along this border, we get that νλ(p) > νπ/2(p) > −1.

• If p ∈ h0(]0, π
2 [) ∪ h1(]0, π

4 [), then we compare with �0. Since νλ is strictly
increasing along this border, we get that νλ(p) > ν0(p) ≥ −1. �

5.2. Properties of the Conjugate Surface

In this section, we will consider the CMC H sister surfaces in S2 ×R (for H > 0)
or H2 ×R (for H > 1/2) corresponding to �λ, which will be denoted by �∗

λ .
First of all, recalling Section 2.2, we know that �λ can be extended to a simply

connected minimal surface in such a way that �λ lies in its interior, so the Daniel
correspondence may be applied to the extended surface, and it provides an isom-
etry between �λ and �

∗
λ by restriction. This property guarantees that the lengths

of the components of the boundary and the angles they make are preserved. We
will denote by h∗

0, h∗
1, h∗

2, and v∗ the corresponding curves of the boundary of
�∗

λ . In view of Lemma 1, the curves h∗
j , j ∈ {0,1,2}, are contained in vertical

planes Pj , and the surface meets these planes orthogonally. Hence, the angle that
Pi and Pj make is the same as that the curves h∗

i and h∗
j make, which is in turn

the same that hi and hj make, so P0 is orthogonal to P1, and P1 is orthogonal to
P2. On the other hand, the curve v∗ is contained in a horizontal slice, which will
be supposed to be M2(ε) × {0} after a vertical translation. Hence, we can extend
the piece �∗

λ to a complete CMC H surface in M2(ε) ×R.
We will first analyze the extremal cases λ = 0 and λ = π

2 . The surface �π/2

is a part of a minimal sphere in S3
b(4H 2 + ε,H) (see Remark 3), and so �∗

π/2

must be a piece of the CMC H rotationally sphere in M2(ε) × R. On the other
hand, the surface �0 satisfies ν = 1 along the horizontal geodesic h0. Thus, h∗

0
has constant height and is contained in a vertical plane, so it must be a hori-
zontal geodesic in M2(ε) × R. Moreover, �0 is foliated by horizontal geodesics
(i.e., t �→ (eiθ cos t, e−iθ sin t), θ ∈ [0,π/2]), orthogonal to the boundary curve v.
Thus, �∗

0 is foliated by curves γt satisfying:

• γt connects the point h∗
0(t) to a point in v∗.

• γt is contained in a vertical plane orthogonal to h∗
0 and v∗.

• The curves �◦γt satisfy ‖(�◦γt )
′‖ = −ν, so all of them have the same length.

Thus, the curve v∗, which is contained in a horizontal slice, must be a curve
equidistant to � ◦ h∗

0 in M2(ε). In particular, v∗ has constant geodesic curvature
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in M2(ε). From the parameterization of �0 given in Section 4, it is easy to show
that such a geodesic curvature is given by κg = ε

2H
.

In view of [Man13, Thm. 4.2], the surface �∗
0 must be a part of a rotationally

invariant torus if ε = 1 or a part of a horizontal cylinder, invariant under hyper-
bolic translations, if ε = −1.

Theorem 1. Given ε ∈ {−1,1} and H > 0 with 4H 2 + ε > 0, there exists a one-
parameter family {Sλ(H) : λ ∈ [0,π/2]} of complete constant mean curvature H

surfaces in M2(ε)×R. All of them have a horizontal plane of symmetry, and they
are invariant under a discrete one-parameter group of isometries acting trivially
on the factor R (consisting of rotations if ε = 1, or hyperbolic translations if
ε = −1). Furthermore:

(i) S0(H) is the CMC H rotationally invariant torus (resp. cylinder) in S2 ×R

(resp. H2 ×R), and Sπ/2(H) is the CMC H sphere.
(ii) If ε = −1, then all the surfaces in the family are embedded.

(iii) If ε = 1, then for each H < 1/2, there exists λ∗ such that for all λ ≥ λ∗, the
surfaces Sλ(H) are not embedded.

Moreover, the maximum height of the surface varies continuously between the
maximum height of the upper half of the horizontal cylinder and the maximum
height of the hemisphere.

Remark 4.

(1) In the case of S2 × R, the one-parameter group is generated by a rotation of
angle 2�(λ), whilst in H2 × R it is generated by a hyperbolic translation of
length 2�(λ), where �(λ) = − ∫ π/2

0 νλ(h0(t))dt is the length of the projection
of h∗

0 to the slice M2(ε) × {0} (see Figure 5).
(2) We conjecture that the fundamental piece of the CMC H surface in S2 ×R is

embedded for all values of λ ∈ [0,π/2]. Thus, for a suitable choice of λ, they
will produce embedded CMC tori, different from the rotationally invariant
one S0(H).

Figure 5 Representation of the polygon �∗
λ (left), where the dotted

lines represent geodesics in M2(ε) ×R, and a sketch of the profiles of
the projections of �∗

λ to the vertical plane containing h∗
0 (right). Note

that the height of the cylinder is a half of the height of the sphere
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Proof. The previous reasoning ensures that we can extend the surface �∗
λ to a

complete CMC H surface in M2(ε) ×R that we will denote by Sλ(H), and it is
clear that the extended surface is invariant by the mentioned group of isometries.
We also know that S0(H) is the rotationally invariant torus (resp. cylinder) and
Sπ/2(H) is the CMC sphere in S2 ×R (resp. H2 ×R).

In the case of H2 ×R, since the minimal surface �λ is a graph over a convex
domain (see Proposition 2), the conjugate surface �∗

λ is a graph over a certain
domain of H2 by the generalized Krust theorem given by [CH13]. Moreover, we
claim that the surface �∗

λ is contained in the region limited by the vertical planes
P0, P1, and P2 and the slice H2 × {0}, which is equivalent to prove that the curve
v∗ is contained in such a region. This follows from the fact that the length of v∗
does not depend on λ, and its geodesic curvature κg (computed as a curve of the
slice H2 × {0} with respect to its normal vector field pointing outside the domain
of the graph) satisfies the lower bound κg ≥ −(1 + 4H 2)/4H (i.e., it is bounded
by the geodesic curvature of the equator of the CMC sphere of the same mean
curvature; see [Man13, Theorem 3.3]). Reasoning by contradiction, if the curve v∗
were not contained in the aforementioned region, it can be shown that the estimate
above forces the length of the curve v∗ to be bigger than it is allowed to be. Finally,
the complete surface Sλ(H) is embedded since the reflected fundamental regions
do not intersect each other.

On the other hand, we analyze the case of S2 × R, focusing on the length
a(λ) = − ∫ λ

−π/4 νλ(h2(t))dt of the projection to S2 × {0} of the curve h∗
2 (see

Figure 5). The function a(λ) is strictly increasing by Lemma 3(iv) and takes all the
values in between the corresponding length of the rotationally torus arctan(1/2H)

and the sphere 2 arctan(1/2H). Now, if H < 1/2, then there exists a unique λ∗
such that a(λ∗) = π/2, so a(λ) > π/2 for all λ ∈ [λ∗,π/2[. For these values of
λ, the complete surface Sλ(H) has a self-intersection around the north pole of
the sphere (we have to consider �(h∗

0) as the equator in S2 × {0}), so it is not
embedded.

It is also clear that the maximum height must be attained at a point with νλ =
−1. Lemma 3 ensures that this only happens at h∗

0(0) and h∗
0(

π
2 ). In the case of

the horizontal cylinder, both points are at the same height, and in the case of the
sphere, it is trivial that the maximum height is attained at h∗

0(
π
2 ). We are going to

prove that, for 0 < λ < π
2 , the maximum height is attained at h∗

0(
π
2 ).

Let us consider h∗
i for i ∈ {0,1,2} and write h∗

i = (βi, ri) ∈ M2(ε) ×R. Since
h∗

i is contained in a vertical plane that �∗
λ meets orthogonally, it is easy to check

that |r ′
i (t)|2 = 1 − νλ(h

∗
i (t))

2 and ‖β ′
i (t)‖ = −νλ(h

∗
i (t)). Since the angle function

does not take the value −1 in the interior of h∗
i , we deduce that r ′

i �= 0 along
h∗

i , that is, the height function is strictly monotonic along h∗
i for i ∈ {0,1,2}. In

particular, we deduce that the points h∗
0(0) and h∗

0(
π
2 ) do not have the same height.

Moreover, taking this into account, the height μπ/2(λ) of the point h∗
0(

π
2 ) in �∗

λ

is given by

μπ/2(λ) =
∫ λ/2

−π/4

√
1 − νλ(h

∗
2(t))

2 dt.
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In particular, μπ/2(λ) is a continuous function of λ. Now, in view of Lemma 3, if
λ1 < λ2, then

μπ/2(λ1) =
∫ λ1/2

−π/4

√
1 − νλ1(h

∗
2(t))

2 dt <

∫ λ2/2

−π/4

√
1 − νλ1(h

∗
2(t))

2

<

∫ λ2/2

−π/4

√
1 − νλ2(h

∗
2(t))

2 dt = μπ/2(λ2).

Hence, the height of the point h∗
0(

π
2 ) is strictly increasing in λ. Finally, we get

that μπ/2(λ) ∈]μπ/2(0),μπ/2(π/2)[ for every λ ∈]0, π
2 [.

On the other hand, a similar argument shows that μ0(λ), that is, the height of
the point h∗

0(0) in �∗
λ , is a continuous strictly decreasing function of λ, and so

μ0(λ) ∈]0,μ0(0)[= ]0,μπ/2(0)[ for 0 < λ < π
2 . Hence, the maximum height is

attained at h∗
0(

π
2 ), and it is between the height of the upper half of the horizontal

cylinder and the height of the hemisphere. �

The properties shown in the proof allow us to make a quite precise depiction
of the polygon �∗

λ , as can be seen in Figure 5. It is important to observe that
no information is obtained about v∗ apart from the fact that it is contained in a
horizontal plane, so the representation may not be exact.

Aledo, Espinar, and Gálvez proved [AEG08] that if � ⊆ M2(ε) ×R is a con-
stant mean curvature H > 0 graph over a compact open domain, with 4H 2 + ε >

0, whose boundary lies in the slice M2(ε) × {0}, then � can reach at most the
height of the hemisphere, and equality holds if and only if the surface is a rota-
tionally invariant hemisphere. The construction above provides examples where
the height varies between the height of the horizontal cylinder and the sphere.
Those examples are not compact in general, but in the case of S2 × R, we get
some compact ones.

Corollary 1. The family {Sλ(H) : λ ∈]0,π/2[} provides many compact sur-
faces of constant mean curvature H > 0 in S2 ×R, whose maximum heights are
dense between the height of the horizontal cylinder and the sphere.

Proof. Let us consider the function � : [0, π
2 ] → R defined in Remark 4. This

function is nothing but the length of the geodesic segment �(h∗
0) ⊆ M2(ε) (see

Figure 5). Due to Lemma 3(i), this function is continuous and strictly decreasing.
Now, it is clear that, by successively reflecting the piece �∗

λ , the obtained surface
is compact if and only if �(λ) is a rational multiple of π , and so the corollary is
proved. �

Remark 5. In fact, by analyzing more deeply the arguments used in the proof, it
can be shown that, for H ≥ 1/2, it is possible to choose the parameter λ so that
the resulting compact surface closes the first time it goes all the way round the
equator. Indeed, the suitable choice for λ is that one for which �(λ) = π

k
for some

integer k ≥ 2.
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6. Constant Mean Curvature 1/2 Surfaces in H2 ×R

This last section is devoted to construct CMC 1/2 surfaces in H2 × R that have
the symmetries of a tessellation of H2 by regular polygons. As we pointed out
in the introduction, these surfaces arise from conjugation of minimal surfaces in
the Heisenberg space. Recall that CMC 0 < H < 1/2 surfaces in H2 × R are
obtained by the same procedure from minimal surfaces in the symplectic group
Sl2(R), though this case is not considered in this paper. Let us introduce some
notation to study that problem.

Lemma 4. Given m,k ∈ N, there exists a tessellation of H2 by regular m-gons
such that k of them meet at each vertex if and only if

1

m
+ 1

k
<

1

2
.

Furthermore, such a tessellation is unique up to an isometry of H2. We will call it
an (m, k)-tessellation.

Observe that each polygon in such a tessellation can be triangulated in 2m trian-
gles whose angles are π

k
, π

2 , and π
m

. Hence, we will construct a CMC 1/2 piece in
the product of the triangle and the real line that will orthogonally meet the vertical
planes passing through the sides of the triangles, as well as the slices where the
triangle lies in (see Figure 6). This will be achieved by choosing an appropriate
geodesic polygon in Nil3 and using the conjugate Plateau construction.

Given � > 0 and 0 < α < π
2 , let us consider the geodesic polygon in Nil3 = R3

given by

h0(t) =
(

�, t� cotα,
1

2
t�2 cotα

)
, t ∈ [0,1],

h1(t) = (t�,0,0), t ∈ [0,1],

Figure 6 An (m, k)-tessellation of H2 for m = 5 and k = 4 (left) and
the fundamental piece of the CMC surface (right) that fits in the shaded
triangle
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h2(t) =
(

t�, t� cotα,
1

2
�2 cotα

)
, t ∈ [0,1],

v(t) =
(

0,0,
1

2
t�2 cotα

)
, t ∈ [0,1].

This polygon is nothing but the horizontal lift of a triangle whose angles are π
2 ,

α, and π
2 −α, where a vertical segment v has been placed in the vertex with angle

π
2 −α. The boundary of the polygon lies in the boundary of a mean-convex body,
namely, the lift of the whole triangle in R2 whose boundary consists of three
vertical (and thus minimal) planes (see Section 3.3).

Following the ideas developed in previous sections, it is possible to solve the
Plateau problem for this polygon in Nil3, and we obtain a minimal quadrilateral,
which is also a graph over an Euclidean right triangle in the plane z = 0. The
angle determined by h0 and h2 is equal to α, whereas the three remaining angles
are equal to π

2 . If we apply the Daniel correspondence, then it provides a CMC
1/2 quadrilateral in H2 × R for which the corresponding edges h∗

i , i ∈ {0,1,2},
lie in vertical planes Vi in such a way that V0 and V2 meet with angle α and V0
and V1 are orthogonal.

Nevertheless, we would like the planes V0, V1, and V2 to fit the triangle con-
structed in the tessellation of H2, for what we choose α = π

k
. Next step will con-

sist in estimating the length of �(h∗
0) ⊂ H2 when varying the parameter � > 0.

Notice that that length is the integral of the angle function of �∗ along h∗
0 and the

angle function is preserved by the correspondence.

Lemma 5. In the construction above, the length of the segment �(h∗
0) ⊂ H2 di-

verges as � → ∞ (for fixed α ∈]0,π/2[).
Proof. On the one hand, let us consider P to be the surface given by the equation
z = 1

2 (2� − x)y. Then P is a minimal graph (it is congruent to z = xy
2 by an am-

bient isometry), contains the horizontal geodesics h0 and h1, and it is a horizontal
surface (i.e., νP = −1) along h0. Moreover, a direct application of the maximum
principle yields that � lies above P , and hence the angle function of � satisfies
−1 < ν < 0 in the interior of h0.

On the other hand, let Q ⊂ Nil3 be the image of the plane {z = 0} by a trans-
lation that sends the origin to the intersection of h0 and h2. Again the maximum
principle guarantees that � lies in a region bounded by P and Q. Since ν > −1,
it is possible to compare the angle functions of � and Q along h0, concluding
that −1 < ν ≤ νQ < 0 in the interior of h0. Moreover, the integral of νQ along h0
can be computed explicitly to show that it diverges as � → ∞, which forces the
integral of ν along h0 (i.e., the length of �(h∗

0) ⊂ H2) to diverge, and the proof is
finished. �

Since the length of �(h∗
0) ⊂ H2 is a continuous function of �, we deduce that it

takes all positive values. In particular, Lemma 5 implies the construction of the
fundamental piece for any regular tessellation.
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Theorem 2. Given an (m, k)-tessellation of H2 × {0}, there exists a constant
mean curvature 1/2 bi-multigraph in H2 ×R with bounded height, invariant un-
der any isometry of H2 ×R that preserves the tessellation.

Remark 6. The fundamental piece of the surface is known to be embedded by
the results in [CH13], but some issues appear to conclude that the whole surface
remains embedded after reflecting such a piece. Our conjecture is that all con-
structed surfaces are properly embedded bigraphs.

Finally, we will apply this result to study CMC 1/2 surfaces when considering
some quotients of the hyperbolic plane rather than the plane itself. Let us take a
regular 2m-gon (m ≥ 2) in the hyperbolic plane and suppose that we can identify
some of its sides in pairs to obtain a compact surface in such a way that there
exists a positive integer k ≥ 3 such that the vertices of the polygon are identified
in classes of k elements each. We will call it a regular gluing pattern. Then, the
surface and the identifications can be carried out in a (2m,k)-tessellation of the
hyperbolic plane (observe that 1

2m
+ 1

k
< 1

2 , and so Lemma 5 can be applied),
which shows a way to endow the resulting surface with a metric of constant cur-
vature −1 whose universal Riemannian cover is the hyperbolic plane (see [Thu,
Section 1.3] for a more detailed description). The Gauss–Bonnet formula implies
that the resulting surfaces have negative Euler characteristic. Let us illustrate this
situation with some examples.

• Given g ≥ 2, consider the gluing pattern in a 4g-gon defined by

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·agbga
−1
g b−1

g .

All vertices are identified together so it leads to a (4g,4g)-tessellation. The
obtained surface is a genus g orientable surface.

• For g ≥ 3, consider now the gluing pattern in a 2g-gon given by

a1a1a2a2 · · ·agag.

All vertices are identified together again, so it leads to a (2g,2g)-tessellation.
The quotient is a nonorientable genus g surface.

The conditions on g are the geometric restrictions on a surface of genus g to have
negative Euler characteristic. Other identifications give rise to the same topologi-
cal surfaces but not isometric to these ones.

Suppose now that we have a regular gluing pattern to which we associate a
(2m,k)-tessellation. By applying the Gauss–Bonnet formula to a regular 2m-gon
P(2m,k) in H2 with interior angles equal to 2π/k we get∫

P(2m,k)

KH2 = 2π

(
1 + 2m

k
− m

)
.

If a compact surface M is obtained from P(2m,k) when identifying some of its
edges, then it has the Euler characteristic χ(M) = 1 + 2m

k
− m. Let us now con-

sider the surface �∗
(2m,k) given by Theorem 2. Since every symmetry of the tiling

is also a symmetry of the surface, its edges can be identified in the same way as
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those of P(2m,k) when constructing M , and it provides a compact CMC 1/2 sur-
face in the quotient space M ×R. Finally, we will compute the Euler characteris-
tic of �̂∗

(2m,k), the quotient surfaces. Since it consists of 8m pieces, each of which
coming from the piece � constructed in Nil3, which satisfies

∫
�

K� = π/k−π/2
(notice that � is a quadrilateral whose angles are π/2, π/2, π/2, and π/k), we
obtain ∫

�̂∗
(2m,k)

K
�̂∗

(2m,k)
= 4π

(
2m

k
− m

)
,

so χ(�̂∗
(2m,k)) = 2( 2m

k
− m).

Now observe that the gluing pattern in M induces other pattern in �∗
(2m,k)

,
which can be seen as a certain polygon whose sides have been identified in pairs,
and it is easy to realize that �̂∗

(2m,k)
is orientable if and only if M is orientable.

For orientable surfaces, the genus and Euler characteristic satisfy χ = 2(1 − g),
whereas χ = 2 − g is satisfied for the nonorientable case. From this the following
result follows.

Corollary 2. Let M a compact Riemannian surface with negative Euler char-
acteristic and constant curvature −1 that can be realized by a regular gluing
pattern. Then the construction above induces a compact constant mean curvature
1/2 bi-multigraph � immersed in M ×R satisfying:

(i) � is orientable if and only if M is orientable.
(ii) If M has genus g, then � has genus 2g.
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