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Nonremovable Sets for Hölder Continuous
Quasiregular Mappings in the Plane

Albert Clop

1. Introduction

Let α ∈ (0,1). A function f : C → C is said to be locally α-Hölder continuous,
that is, f ∈ Lipα(C), if

|f(z)− f(w)| ≤ C|z − w|α (1)

whenever z,w ∈ C and |z − w| < 1. A set E ⊂ C is said to be removable for
α-Hölder continuous analytic functions if every function f ∈ Lipα(C), holomor-
phic on C \ E, is actually an entire function. It turns out that there is a character-
ization of these sets E in terms of Hausdorff measures. For α ∈ (0,1), Dolženko
[7] proved that a set E is removable for α-Hölder continuous analytic functions
if and only if H1+α(E) = 0. When α = 1, we deal with the class of Lipschitz
continuous analytic functions. Although the same characterization holds, a more
involved argument, due to Uy [12], is needed to show that sets of positive area are
not removable.

The same question may be asked in the more general setting of K-quasiregular
mappings. Given a domain � ⊂ C and K ≥ 1, one says that a mapping f : � →
C is K-quasiregular in � if f is a W 1,2

loc (�) solution of the Beltrami equation

∂̄f (z) = µ(z)∂f(z)

for almost every z∈�; here µ, the Beltrami coefficient, is a measurable function
such that |µ(z)| ≤ K−1

K+1 at almost every z ∈�. If f is a homeomorphism, then f
is said to be K-quasiconformal. When µ = 0, we recover the classes of analytic
functions and conformal mappings on �, respectively.

It was shown in [6] that if E is a compact set satisfying Hd(E) = 0 for d =
21+αK

1+K , then E is removable for α-Hölder continuous K-quasiregular mappings.
This means that any function f ∈ Lipα(C), K-quasiregular in C \ E, is actually
K-quasiregular on the whole plane. To look for results in the converse direction,
one observes that any compact setE with H1+α(E) > 0 is nonremovable for holo-
morphic functions and hence also for K-quasiregular mappings in Lipα. We are
thus interested in dimensions between d and 1+ α. In this paper we show that the
index d is sharp in the following sense: Given α ∈ (0,1) and K ≥ 1, for any t >

d there exist (i) a compact set E of dimension t and (ii) a function f ∈ Lipα(C)
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that is K-quasiregular in C \E yet has no K-quasiregular extension to C. In other
words, we will construct nonremovable sets of any dimension exceeding d.

We first have a look at the case K = 1. Given a compact set E with H1+α(E) >

0, by Frostman’s lemma (see e.g. [10, p. 112]) there exists a positive Radon mea-
sure ν supported on E such that ν(B(z, r)) ≤ Cr1+α for any z ∈ E. Thus, the
function h = 1

πz
∗ ν is α-Hölder continuous everywhere, is holomorphic outside

the support of ν, and has no entire extension.
A similar situation is found in the limiting case α = 0, where Lipα(C) should

be replaced by BMO(C). In this case, a set E is called removable for BMO K-
quasiregular mappings if every BMO(C) function f that is K-quasiregular on
C \E is actually K-quasiregular on the whole plane. When K = 1, Král [9] char-
acterized these sets as those with zero length. When K > 1, it is known [3; 5] that
sets with H2/(K+1)(E) = 0 are removable for BMO K-quasiregular mappings. In
fact, the appearance of this index 2

K+1 is not strange. Astala [2] has shown that,
for any K-quasiconformal mapping φ and any compact set E,

1

K

(
1

dim(E)
− 1

2

)
≤ 1

dim(φ(E))
− 1

2
≤ K

(
1

dim(E)
− 1

2

)
. (2)

Furthermore, both equalities are always attainable. In particular, sets of dimen-
sion 2

K+1 are K-quasiconformally mapped to sets of dimension at most 1, which
is the critical point for the analytic BMO situation. Hence, from equality at (2), for
any t > 2

K+1 there exist a compact set E of dimension t and a K-quasiconformal
mapping φ that maps E to a compact set φ(E) with dimension

t ′ = 2Kt

2 + (K − 1)t
> 1.

In particular, H1(φ(E)) > 0. As before, we have a positive Radon measure ν

supported on φ(E), with linear growth, whose Cauchy transform h = 1
πz

∗ ν is
holomorphic on C \E and has a BMO(C) extension that is not entire. Now, since
BMO(C) is invariant under quasiconformal changes of variables [11], the com-
position g = h � φ is a BMO(C) K-quasiregular mapping on C \ E that has no
K-quasiregular extension to C. In other words, the setE is not removable for BMO
K-quasiregular mappings. This argument shows that the index 2

K+1 is somewhat
critical for the BMO K-quasiregular problem.

Our plan is to repeat the foregoing argument after first replacing BMO(C) with
Lipα(C). That is, given any dimension t > 21+αK

1+K , we will construct a compact
setE of dimension t and a Lipα(C) function that isK-quasiregular on C\E but not
on C. We will start with a compact set E of dimension t and a K-quasiconformal
mapping φ such that dim(φ(E)) = t ′ = 2Kt

2+(K−1)t
. Then, we will show that there

are Lipβ(C) functions for some β > 0, analytic outside of φ(E), that in turn in-
duce (by composition)K-quasiregular functions on C\E with some global Hölder
continuity exponent. This construction will encounter two obstacles. First, the ex-
tremal dimension distortion of sets of dimension 21+αK

1+K throughK-quasiconformal
mappings is not exactly 1+ α, the critical number in the analytic setting (this was
so for α = 0). Second, the composition of β-Hölder continuous functions with



Nonremovable Sets for Hölder Continuous Quasiregular Mappings 197

K-quasiconformal mappings is only in Lipβ/K(C), so there is some loss of regular-
ity that might be critical. To avoid these troubles, we will construct in an explicit
way the mapping φ. This concrete construction allows us to show that φ exhibits
an exponent of Hölder continuity given by

t

t ′
= 1

K
+ K − 1

2K
t,

which is larger than the usual 1
K

obtained from Mori’s theorem. This regular-
ity will be sufficient for our purposes. On the other hand, if dim(E) = t and
dim(φ(E)) = t ′ then it is natural to expect φ to be Lipt/t ′ .

2. Extremal Distortion

Throughout this section, D(z, r) will denote the open disk of center z and radius r.
By diam(D)we mean the diameter of the diskD, and λD will denote the disk con-
centric with D having diameter diam(λD) = |λ| diam(D). By D we will mean
the unit disk, and Jf will denote the Jacobian determinant of the function f.

Recall that a Cantor-type set E of m components is the only compact set that is
invariant under a fixed family of m similitudes,

ϕj : D → D,

z �→ ϕj(z) = aj + bjz,

with aj , bj ∈ C for all j = 1, . . . ,m and such that Di = ϕi(D̄) are disjoint disks
and Di ⊂ D. In other words, E ⊂ D is the only solution to the equation

E =
m⋃
j=1

ϕj(E).

Constructively, we have

E =
∞⋂
N=1

( ⋃
&(J )=N

ϕJ(D)

)
,

where ϕJ = ϕj1 � · · · � ϕjN for any chain J = (j1, . . . , jN) of length &(J ) = N of
members of {1, . . . ,m}. The Hausdorff dimension of E is the only solution d to
the equation

m∑
j=1

|ϕ ′
j |d = 1.

Under the additional assumption |ϕ ′
i | = r for all i, one easily obtains

dim(E) = d = logm

log(1/r)
.

Another typical situation appears when the image sets Di are uniformly distrib-
uted in D; then there is a constant C such that, for any disk D,
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∑
Di∩D �=∅

diam(Di)
d ≤ diam(D)d,

where the sum runs over all disks Di that intersect D. In this case, E is said to be
a regular Cantor-type set. For these sets, 0 < Hd(E) < ∞.

One of the main results in [2] is the sharpness of the dimension distortion equa-
tion (2). To obtain the equality there, the author distorted holomorphically a fixed
Cantor-type set F. This deformation defined actually a holomorphic motion on F.
An interesting extension result, known as the λ-lemma, allows this motion to be
extended quasiconformally from F to the whole plane. This procedure avoided
most of the technicalities and gave the desired result in a surprisingly direct way.
However, since we look both for extremal dimension distortion and higher Hölder
continuity, φ must be constructed explicitly. Thus, let t ∈ (0, 2) andK ≥ 1 be fixed
numbers, and denote t ′ = 2Kt

2+(K−1)t
. As in [2], we first give a K-quasiconformal

mapping φ that maps a regular Cantor setE of dimension t to another regular Can-
tor set φ(E) for which dim(φ(E)) is as close as we want to t ′. Later, again as in
[2], we will glue a suitable sequence of such mappings in the convenient way.

Proposition 1. Given t ∈ (0, 2),K ≥ 1, and ε > 0, there exist a compactE ⊂ D

and a K-quasiconformal mapping φ : C → C with the following properties:

1. φ is the identity mapping on C \ D;
2. E is a self-similar Cantor set, constructed with m = m(ε) similarities;
3. dim(φ(E)) ≥ t ′ − ε;
4. Jφ ∈L

p

loc(C) if and only if p ≤ K

K−1;
5. |φ(z)− φ(w)| ≤ Cm1/t−1/t ′|z − w|t/t ′ whenever |z − w| < 1.

Proof. Our construction follows the scheme in [4]. Thus, we will obtain φ as a
limit of a sequence of K-quasiconformal mappings

φ = lim
N→∞φN ,

where every φN will act at the N th step of the construction of E. More precisely,
both E and φ(E) will be regular Cantor sets associated to two fixed families of
similitudes (ϕj )j=1,...,m and (ψj )j=1,...,m. At the N th step, φN will map each gen-
erating disk of E, ϕj1 ...jN (D), to the corresponding generating disk of the image
set, ψj1 ...jN (D). Since φ is supposed to be K-quasiconformal and to give extremal
distortion of dimension, we think about using a typical radial stretching,

f(z) = z|z|1/K−1,

conveniently modified. It turns out that this radial stetching f is extremal for
some basic properties of K-quasiconformal mappings, such as Hölder continuity.
In order to find φ in a better Hölder space (this fails for f ), we will replace f by a
linear mapping in a small neighborhood of its singularity. This change will not af-
fect the exponent of integrability but will enable some improvement on the Hölder
exponent.

Take m ≥ 100 and consider m disjoint disks inside of D, D(zi, r), uniformly
distributed and all with the same radius r = rm. By taking m large enough, we
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may always assume that cm = mr 2 ≥ 1
2 . Given any σ ∈ (0,1) to be determined

later, we can consider m similitudes

ϕi(z) = zi + σrz, z∈ D,

and denote, for every i = 1, . . . ,m,

Di = 1

σ
ϕi(D) = D(zi, r1),

D ′
i = ϕi(D) = D(zi, σr1);

here we have written r1 = r. We define

g1(z) =




σ 1/K−1(z − zi)+ zi if z∈D ′
i,∣∣∣∣z − zi

r1

∣∣∣∣
1/K−1

(z − zi)+ zi if z∈Di \D ′
i,

z otherwise.

It may be easily seen that g1 defines a K-quasiconformal mapping that is confor-
mal everywhere except on each ring Di \D ′

i . Moreover, if we put

ψi(z) = zi + σ 1/Krz, z∈ D,

then g1 maps every Di to itself while each D ′
i is mapped to D ′′

i = ψi(D); see Fig-
ure 1. Now we denote φ1 = g1.

D D

D′
i D′′

i

Di Dig1

Figure 1

At the second step, we repeat this procedure inside of every D ′′
i and leave the

rest fixed. That is, we define g2 on the target set of φ1 and then construct φ2 as

φ2 = g2 � φ1.

To do this more explicitly, we denote

Dij = 1

σ
φ1(ϕij(D)) = D(zij , r2),

D ′
ij = φ1(ϕij(D)) = D(zij , σr2);
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D′′
i D′′

i

DijDij
D′

ij D′′
ij

g2

Figure 2

a computation shows that r2 = σ 1/Krr1. Now we define

g2(z) =




σ 1/K−1(z − zij )+ zij if z∈D ′
ij ,∣∣∣∣z − zij

r2

∣∣∣∣
1/K−1

(z − zij )+ zij if z∈Dij \D ′
ij ,

z otherwise.

By construction, g2 is K-quasiconformal on C, is conformal outside a union of
m2 rings, and maps D ′

ij to D ′′
ij = ψij(D) while every point outside of the disks

Dij remains fixed under g2; see Figure 2. Thus, the composition φ2 = g2 � φ1

(see Figure 3) is still K-quasiconformal and agrees with the identity outside of D;
moreover,

φ2(ϕij(D)) = ψij(D)

for any i, j = 1, . . . ,m.

D

φ2

D

Figure 3
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After N −1 steps, we will define gN on the target side of φN−1. For each multi-
index J = (j1, . . . , jN) of length &(J ) = N, we denote

DJ = 1

σ
φN−1(ϕJ(D)) = D(zJ , rN),

D ′
J = φN−1(ϕJ(D)) = D(zJ , σrN);

now rN = σ 1/KrrN−1. Then the mapping

gN(z) =




σ 1/K−1(z − zJ )+ zJ if z∈D ′
J ,∣∣∣∣z − zJ

rN

∣∣∣∣
1/K−1

(z − zJ )+ zJ if z∈DJ \D ′
J ,

z otherwise,

isK-quasiconformal on the plane and conformal outside a union ofmN rings. Fur-
thermore, gN(DJ ) = DJ and gN(D ′

J ) = D ′′
J , where D ′′

J = ψJ(D).

As a consequence, the composition φN = gN � φN−1 is also K-quasiconformal
and

φN(ϕJ(D)) = ψJ(D).

With this procedure, it is clear that the sequence φN is uniformly convergent to
a homeomorphism φ. It is also clear that φ has distortion bounded by K almost
everywhere and, in fact, that φ is a K-quasiconformal mapping. By construction,
φ maps the regular Cantor set

E =
∞⋂
N=1

( ⋃
&(J )=N

ϕJ(D)

)

to

φ(E) =
∞⋂
N=1

( ⋃
&(J )=N

ψJ(D)

)
,

which obviously is also a regular Cantor set. If now we choose σ so that

m(σr)t = 1

we directly obtain 0 < Ht(E) < ∞ as well as

1

dim(φ(E))
= 1

t ′
+ K − 1

2K

log(1/mr 2)

logm
.

Since cm ≥ 1
2 for all m, we can always get

dim(φ(E)) ≥ t ′ − ε

simply by increasing m if needed.
Now we must look at the regularity properties of our mapping φ. To do so, we

introduce the following notation. Put G0 = D, and denote by PN
J and GN

J (re-
spectively) the peripheral and generating disks of generation N. That is, for any
chain J = (j1, . . . , jN),
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PN
J = 1

σ
ϕJ(D),

GN
J = ϕJ(D).

With this notation, DJ = φN−1(P
N
J ), D ′

J = φN−1(G
N
J ), and D ′′

J = φN(G
N
J ).

Now take any p such that Jφ ∈ L
p

loc(C). Of course, we can assume p ≥ 1.
Then, one may decompose the p-mass of Jφ over D as follows:∫

D

Jφ(z)p dA(z) =
∫

D\⋃
iP

1
i

Jφ(z)p dA(z)

+
m∑
i=1

∫
P 1
i
\G1

i

Jφ(z)p dA(z)+
m∑
i=1

∫
G1
i

Jφ(z)p dA(z).

Since φ = φ1 on C \ ⋃
i G

1
i , it follows that∫

D

Jφ(z)p dA(z) =
∫

D\⋃
iP

1
i

Jφ1(z)
p dA(z)

+m

∫
P 1\G1

Jφ1(z)
p dA(z)+m

∫
G1
Jφ(z)p dA(z),

where P 1 and G1 denote (respectively) any of the first-generation peripheral and
generating disks. One may repeat this argument for the last integral, which by a
recursive argument yields∫

D

Jφ(z)p dA(z) =
∞∑

N=0

mN

∫
GN \⋃

iP
N+1
i

JφN+1(z)
p dA(z)

+
∞∑
N=1

mN

∫
PN \GN

JφN(z)
p dA(z);

here, as before, PN and GN denote (respectively) any N th-generation peripheral
or generating disk.

Now we compute separately the integrals in both sums. On one hand, if J =
(j1, . . . , jN) then∫

PN
J

\GN
J

JφN(z)
p dA(z) =

∫
PN
J

\GN
J

JgN(φN−1(z))
pJφN−1(z)

p dA(z)

=
∫
DJ \D ′

J

JgN(w)
pJφN−1(φ

−1
N−1(w))

p−1 dA(w)

= (σ 1/K−1)2(N−1)(p−1)
∫
DJ \D ′

J

JgN(w)
p dA(w)

= r 2Nσ (N−1)γ 2π

Kp

∣∣∣∣1 − σγ

γ

∣∣∣∣
under the additional assumption p �= K

K−1; here γ = 2p
( 1
K

−1
) + 2. If p = K

K−1,
then
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∫
PN
J

\GN
J

JφN(z)
K/(K−1) dA(z) = r 2N 2π

KK/(K−1)
log

1

σ
.

On the other hand, for any value of p,∫
GN
J

\⋃
iP

N+1
(J i)

JφN+1(z)
p dA(z) =

∫
GN
J

\⋃
iP

N+1
(J i)

JgN+1(φN(z))
pJφN(z)

p dA(z)

=
∫
D ′′
J

\⋃
iD(J i)

JgN+1(w)
pJφN(φ

−1
N (w))p−1 dA(w)

= (σ 1/K−1)2N(p−1)
∫
D ′′
J

\⋃
iD(J i)

JgN+1(w)
p dA(w)

= (σ 1/K−1)2N(p−1)
∫
D ′′
J

\⋃
iD(J i)

1dA(w)

= (σ 1/K−1)2N(p−1)
∣∣D ′′

J \ ⋃
i D(J i)

∣∣
= r 2NσNγπ(1 − cm).

Thus, for any p �= K

K−1,

∫
D

Jφ(z)p dA(z) =
(
π(1 − cm)+ cm

2π

Kp

∣∣∣∣1 − σγ

γ

∣∣∣∣
) ∞∑

N=0

(cmσ
γ )N.

Since p is such that Jφ ∈ L
p

loc(C), we necessarily have σγ < 1/cm. For m large
enough, this is equivalent to γ > 0; that is, p < K

K−1.At the critical pointp = K

K−1,
∫

D

Jφ(z)K/(K−1) dA(z) =
(
π(1 − cm)+ cm

2π

KK/(K−1)
log

1

σ

) ∞∑
N=0

(cm)
N,

which will always converge for any fixed value of m. This shows that we can
choose m large enough so that Jφ ∈L

p

loc(D) if and only if p ≤ K

K−1.

Finally, it remains only to check that φ is Hölder continuous with exponent γ =
t/t ′. By means of Poincaré inequality together with the quasiconformality of φ, it
is enough [8, p. 64] to show that, for any disk D,∫

D

Jφ(z) dA(z) ≤ C diam(D)2t/t ′.

Hence, for some fixed disk D, take N such that (σr)N ≤ 1
2 diam(D) < (σr)N−1.

Then ∫
D

Jφ(z) dA(z) ≤
∫
D\⋃

GN
J

Jφ(z) dA(z)+
∫

⋃
GN
J

Jφ(z) dA(z),

where the union
⋃
GN
J runs over all disksGN

J such thatGN
J ∩D �= ∅. OnD\⋃

GN
J ,

we easily see that

Jφ = JφN ≤ 1

K
(σ 1/K−1)2N.
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Thus,∫
D\⋃

GN
J

Jφ(z) dA(z) ≤ 1

K
(σ 1/K−1)2Nπ

(
1

2
diam(D)

)2

≤ π

K
(c(K−1)/2K

m )2Nm2(1/t−1/t ′ )
(

1

2
diam(D)

)2t/t ′

.

On the other hand, recall that φ(GN
J ) = φN(G

N
J ) are disks of radius (σ 1/Kr)N.

Hence,∫
⋃

J G
N
J

Jφ(z) dA(z) =
∑
J

∫
GN
J

Jφ(z) dA(z) =
∑
J

|φ(GN
J )|

=
∑
J

|φN(GN
J )| =

∑
J

π(σ 1/Kr)2N

= π(c(K−1)/2K
m )2N

(
1

2
diam(D)

)2t/t ′ ∑
J

(
(σr)N

1
2 diam(D)

)2t/t ′

and it just remains to bound
∑

J

(
(σr)N

1
2

diam(D)

)2t/t ′
. Actually, this is equivalent to find-

ing some constant C such that∑
GN
J

∩D �=∅
diam(GN

J )
2t/t ′ ≤ C diam(D)2t/t ′.

But the disksGN
J come from a self-similar construction that is said to give a regular

Cantor set of dimension t. In particular, they may be chosen uniformly distributed
so that the t-dimensional packing condition is satisfied:∑

GN
J

∩D �=∅
diam(GN

J )
t ≤ C diam(D)t.

It is easy to show that this condition implies the s-dimensional one for all s > t

(in particular, for s = 2t/t ′). Hence, the constant C exists and is independent of
m. Thus, what we finally obtain is that

∫
D

Jφ(z) dA(z) ≤ Cm1/t−1/t ′(c(K−1)/2K
m )2N

(
1

2
diam(D)

)2t/t ′

,

and the result follows.

Corollary 2. Let K ≥ 1 and t ∈ (0, 2), and denote t ′ = 2Kt
2+(K−1)t

. There exist a
t-dimensional compact set E and a K-quasiconformal mapping φ : C → C such
that

1. Ht(E) is σ -finite,
2. dim(φ(E)) = t ′, and
3. |φ(z)− φ(w)| ≤ C|z − w|t/t ′ whenever |z − w| < 1.
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Proof. Given ε > 0, K ≥ 1, and t ∈ (0, 2), let φ : C → C and E be as in Proposi-
tion 1. Then, for any fixed r > 0, the mapping

ψr(z) = rφ(z/r)

and the setEr = rE exhibit the same properties as φ andE, since neitherK-quasi-
conformality nor Hausdorff dimension is modified through dilations. However,
when computing the new Lipt/t ′ constant, if |z − w| < r then

|ψr(z)− ψr(w)| = r|φ(z/r)− φ(w/r)| ≤ Cm1/t−1/t ′r1−t/t ′|z − w|t/t ′.
Thus, as in [2], let Dj = D(zj , rj ) be a countable disjoint family of disks in-

side of D, and let εj be a sequence of positive numbers, εj → 0 as j → ∞. For
each j, let φj and Ej be as in Proposition 1, so that dim(φj(Ej )) ≥ t ′ − εj . In par-
ticular, each Ej is a regular Cantor set of mj components. Denote then ψj(z) =
rj φj

( z−zj

rj

)
and Fj = zj + rjEj , and define

ψ(z) =
{
ψj(z) if z∈Dj ,

z otherwise.

By construction, ψ is a K-quasiconformal mapping: it maps the set F = ⋃
j Fj to

the set ψ(F ) = ⋃
j ψj(Fj ). Moreover, Ht(F ) is σ -finite and

dim(φ(F )) = sup
j

dim(ψj(Fj )) = t ′.

Finally, assume that z lies inside some fixed Dk and that w ∈ D \ ⋃
j Dj . Then,

consider the line segment L between z and w, and denote {zk} = L ∩ ∂Dk. Then
both zk and w are fixed points for ψ, so that

|ψ(z)− ψ(w)| ≤ |ψ(z)− ψ(zk)| + |ψ(zk)− ψ(w)|
≤ Cm

1/t−1/t ′
k r

1−t/t ′
k |z − zk|t/t ′ + |zk − w|.

Since we are still free to choose radii rj , we may do so such that

m
1/t−1/t ′
k r

1−t/t ′
k < 1

or, equivalently, mjr
t
j < 1. Under this assumption, we finally get

|ψ(z)− ψ(w)| ≤ (C + 1)|z − w|t/t ′

whenever |z − w| < 1. This clearly shows that ψ ∈ Lipt/t ′(C).

Although the set in Corollary 2 is more critical than the one we constructed in
Proposition 1 (in the sense that the first gives precisely the extremal dimension
distortion), both do the same work when studying nonremovable sets for Hölder
continuous quasiregular mappings.

Corollary 3. Let K ≥ 1 and α ∈ (0,1). Then, for any t > 21+αK

1+K , there exists
a compact set E with 0 < Ht(E) < ∞ that is nonremovable for K-quasiregular
mappings in Lipα.
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Proof. Let E and φ be such that dimφ(E) ≥ t ′ − ε > 1 for some sufficiently
small ε. Hence, by Frostman’s lemma, we can construct a positive Radon mea-
sure µ supported on φ(E) with growth t ′ − 2ε. Its Cauchy transform g = Cµ
defines a holomorphic function on C \ φ(E), not entire and with a Hölder contin-
uous extension to the whole plane, with exponent t ′ − 2ε − 1. Set

f = g � φ.
Clearly, f is K-quasiregular on C \ E and has no K-quasiregular extension to C.

Indeed, if f̃ extends f K-quasiregularly to C then g̃ = f̃ � φ−1 would provide an
entire extension of g, which is impossible. Furthermore, f is Hölder continuous
with exponent

(t ′ − 2ε − 1)
t

t ′
= t − (2ε + 1)

t

t ′
.

Thus, we just need ε > 0 small enough that

t − (2ε + 1)
t

t ′
≥ α;

but this inequality is equivalent to(
t − 2

1 + αK

1 +K

)
≥ ε

2

K + 1
(2 + (K − 1)t)

and so the proof is complete.

Something similar may be said when dealing with finite distortion mappings. Re-
call that if � ⊂ C is an open set then a mapping of finite distortion on � is a
function f : � → C in the Sobolev class W 1,1

loc (C) with locally integrable Jaco-
bian, Jf ∈ L1

loc(C), and such that there exists a measurable function Kf : � →
[1, ∞], called the distortion function of f , that is finite almost everywhere and for
which

|Df(z)|2 ≤ Kf (z)Jf(z)

at almost every z ∈ �. When Kf ∈ L∞ and ‖Kf‖∞ = K, one recovers the class
of K-quasiregular mappings. However, weaker assumptions on Kf also give in-
teresting results. The most typical situation appears when we ask the distortion
function Kf to be such that

exp{Kf } ∈L
p

loc(C)

for some p large enough. Then we say that Kf is exponentially integrable and
that f is a mapping of exponentially integrable distortion. In [6], it was shown
that compact sets E with σ -finite H2α(E) are removable for α-Hölder continuous
mappings of exponentially integrable distortion.

Corollary 4. Let α ∈ (0,1). For any t > 2α there exist a compact set E of
dimension t and a function f ∈ Lipα(C) that defines a mapping of exponentially
integrable distortion C \ E and has no finite distortion extension to C.
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Proof. If t > 2α, then there exists K ≥ 1 such that t > 21+αK

1+K . Thus, we have
a compact set E of dimension t and a Lipα(C) function f that is K-quasiregular
on C \ E but not on C. Of course, f is a mapping of exponentially integrable
distortion on C \ E, with distortion function Kf essentially bounded by K. If f
extended to a mapping of finite distortion on C, then in particular we would have
Jf ∈ L1

loc(C). But then, since Kf ≤ K at almost every point, this would imply
that actually f extends K-quasiregularly.

At this point, it should be said that above the critical index 21+αK

1+K one might find
also some removable set. For instance, an unpublished result of S. Smirnov shows
that if E = ∂D and φ is a K-quasiconformal mapping then

dim(φ(E)) ≤ 1 +
(
K − 1

K + 1

)2

,

which is better than the usual dimension distortion equation (2). Hence, if we
choose K ≥ 1 small enough then there exists an α that satisfies

K

(
K − 1

K + 1

)2

< α <
K − 1

2K
.

For those values of α, the set E = ∂D is removable for α-Hölder continuous K-
quasiregular mappings, although

2
1 + αK

1 +K
< dim(E).

This suggests that everything could happen between 21+αK

1+K and 1 + α.
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