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1. Introduction

LetE be a pluripolar set inCN. That is, for eachz0 ∈E, there exists a neighbor-
hoodU of z0 and a plurisubharmonic (psh) functionu 6≡ −∞ onU with

E ∩ U ⊂ { z∈U : u(z) = −∞}.
From the well-known result of Josefson (cf. [K, Thm. 4.7.4]), there exists a
plurisubharmonic functionu on CN, u 6≡ −∞, with E ⊂ { z ∈ D : u(z) =
−∞}. For example, iff is holomorphic in an open setD, then

E := { z∈D : f(z) = 0 } = { z∈D : u(z) := log|f(z)| = −∞}
is pluripolar. It can happen that any psh functionu that is−∞ on a pluripolar set
E ⊂ D is automatically−∞ on a larger set. As a simple example, if

E = { z∈CN : |z1| < 1, z2 = · · · = zN = 0 },
then any globally defined psh functionu that is−∞ onE must be−∞ on

E∗ = { z∈CN : z1 ∈C, z2 = · · · = zN = 0 }.
This follows sinceU(z1) := u(z1,0, . . . ,0) is subharmonic onC and−∞ on the
nonpolarset{ z1∈C : |z1| < 1}. To describe this phenomenon of “propagation”
of pluripolar sets more concretely, given a pluripolar setE in CN and a neighbor-
hoodD of E, we define two types ofpluripolar hulls of E relative toD:

E∗D :=⋂{ z∈D : u(z) = −∞},
where the intersection is taken overall psh functions inD that are−∞ onE; and

E−D :=⋂{ z∈D : u(z) = −∞},
where the intersection is taken over allnegativepsh functions inD that are−∞
onE. Clearly,E∗D ⊂ E−D and ifE ⊂ D1⊂⊂ D2 then

E−D1
⊂ E∗D2

∩D1.
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In general, a precise description of the pluripolar hullsE∗D andE−D is very dif-
ficult. One way of obtaining points in these hulls is ifE hits a one-dimensional
analytic varietyA in a nonpolar set of points ofA. Then the points ofA lying in
D belong to the hull. In the preceding example, the setE = { z ∈CN : |z1| < 1,
z2 = · · · = zN = 0 } hit the one-dimensional analytic varietyA := {z2 = · · · =
zN = 0} in a nonpolar set of points;E ∩ A was a disk. However, an example
in [L] shows thatE∗D \ E can be non-empty even ifE hits all such varietiesA in
polar sets (cf. the remark at the end of Section 2).

In this paper we offer two criteria for a point to belong toE−D . The first one
(Theorem 2.1; see also Corollary 2.2) works for arbitrary pluripolar setsE and
claims thatE−D = { z ∈ D : ω(z,E,D) > 0 }, whereω(z,E,D) is the har-
monic measure ofE relative toD (see Section 2). However, evaluation of the
harmonic measure is in general quite difficult; thus, in Corollary 2.6 we present
another criterion, which is valid for compact pluripolar setsE and claims thatz∈
E−D if and only if there is a Jensen measureµ onD with barycenter atz such that
µ(E) > 0. Note that, by [P2], every Jensen measure is the limit of a sequence
of push-forwards of the standard Lebesgue measure on the boundary of the disk
under holomorphic mappingsfj (j = 1,2, . . . ) of the disk intoD.

Theorems 2.4 and 2.5 allow us to switch toE∗D fromE−D . Note that a pointz∈
D lies outside ofE∗D (E

−
D ) precisely when there existsu psh (and negative) inD

with u = −∞ onE but with u(z) > −∞; that is,u “separates”E andz. The
question as to whether one could find a pshu in C2 that separates the origin from
the set{w = zα, z 6= 0}, whereα > 0 is an irrational number, is related to a prob-
lem of Sadullaev (see [S] and [B]). We solve this problem in Section 3 by using
our techniques to determine the pluripolar hull of this set (Theorem 3.5).

To motivate our results, recall that in [P1] the second author gave a characteri-
zation of the polynomial hull̂X of a compact setX in CN ; here,

X̂ := { (z1, . . . , zN)∈CN : |p(z1, . . . , zN)| ≤ ‖p‖X for all polynomialsp }.
If X contains the boundary of an analytic disk—that is, if there exists a noncon-
stant holomorphic mapg = (g1, . . . , gN) from the unit diskU ⊂ C intoCN with
g∗(eit ) ∈ X for a.e.t (whereg∗(eit ) denotes the radial limit value ofg at eit )—
then, by the maximum modulus principle,X̂ contains the analytic diskg(U). In
[P1], the following result is proved.

Theorem 1.1. LetX be a compact set and letD be a Runge neighborhood ofX.
Fix z0 ∈D. Thenz0 ∈ X̂ if and only if, for any open setV ⊂ D containingX and
for anyε > 0, there exists an analytic diskg : Ū → D in D with g(0) = z0 and

m({ t ∈ [0,2π] : g(eit )∈V }) > 2π − ε.
Here we writeg : Ū → D to meang is holomorphic onU and continuous on̄U.
In Corollary 2.2 of the next section, we give an analogous characterization for a
point z0 to lie in the pluripolar hullE−D of a pluripolar setE ⊂ D.

This research was undertaken while the authors were visiting the mathematics
departments at Indiana University (Bloomington) and the University of Toronto.
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2. Construction of Pluripolar Hulls

We write PSH(D) for the class of psh functions onD. Given a functionφ on a
domainD in CN, we define thepsh envelope ofφ to be

Pφ(z) := sup{ u(z) : u∈PSH(D), u ≤ φ inD }.
If φ is upper semicontinuous onD thenPφ(z) is psh inD and, by [P1],

Pφ(z) = inf

{
1

2π

∫ 2π

0
φ(f(eit )) dt : f : Ū → D holomorphic, f(0) = z }.

For a subsetE of a domainD ⊂ CN, we defineω(z,E,D) := −Pφ(z), where
φ = −χE, and call this quantity theharmonic measure ofE (relative toD) at z.
If E is open then, by the preceding equation,

ω(z,E,D) = 1

2π
sup{m{ t ∈ [0,2π] : f(eit )∈E }}, (1)

where the supremum is taken over allf : Ū → D with f(0) = z. In particular,
if there exists anf : Ū → D with f(0) = z andm{ eit ∈ ∂U : f(eit ) ∈ E } >
2πa, thenω(z,E,D) > a; and ifω(z,E,D) < a then, for anyf : Ū → D with
f(0) = z, we havem{ eit ∈ ∂U : f(eit )∈E } < 2πa.

It follows that, for a subsetE of D,

ω(z,E,D) = inf {ω(z, V,D) : V ⊂ D is open andE ⊂ V }. (2)

Indeed, clearly the right-hand side of (2) is greater than or equal toω(z,E,D). On
the other hand, for anyε >0 and any pointz0∈D, by definition ofω(z0, E,D)we
can find a psh functionu onD with u ≤ −χE onD such thatω(z0, E,D)+ ε >
−u(z0). Let V = { z ∈ D : u(z) < −1+ ε }. ThenV is open and containsE.
Moreover,

ω(z, V,D) ≤ − u(z)
1− ε

for all z∈D; thus,

ω(z0, V,D) ≤ −u(z0)

1− ε <
ω(z0, E,D)+ ε

1− ε .

Sinceε > 0 andz0 ∈D are arbitrary, we obtain (2).
In the next three results (Theorems 2.1 and Corollaries 2.2 and 2.3), to avoid

trivialities, we assume thatD admits negative, nonconstant psh functions.

Theorem 2.1. LetD be a domain inCN, and letE ⊂ D be pluripolar. Then
E−D = { z∈D : ω(z,E,D) > 0 }.
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Proof. First of all, if z0 ∈D andω(z0, E,D) > 0 then, for anyv ∈PSH(D) with
v < 0 inD andv = −∞ onE, we haveun(z) := v(z)/n ≤ −ω(z0, E,D) for
each positive integern = 1,2, . . . . Thus, in particular,

v(z0) ≤ −nω(z0, E,D), n = 1,2, . . . ;
lettingn→∞, we obtainv(z0) = −∞ and hencez0 ∈E−D . Conversely, ifz0 ∈
D andω(z0, E,D) = 0 then, by definition of−ω, we can find a sequence of
negative psh functions{uj } in D with uj ≤ −1 onE anduj(z0) > −1/2j . Then

u(z) :=
∞∑
j=1

uj(z)

is a negative psh function inD (the partial sums form a decreasing sequence of
psh functions, since eachuj is nonpositive) that is not identically−∞—indeed,
u(z0) > −1—but sinceuj ≤ −1 onE for eachj, we haveu = −∞ onE. Since
u(z0) > −1, we havez0 /∈E−D .
Remark. If F ⊂ E ⊂ D with E pluripolar and ifE ⊂ F−D , then of course
E−D = F−D ; thus, in this situation,

E−D = { z∈D : ω(z, F,D) > 0 }.
This observation will be used in the proof of Theorem 3.5.

Theorem 2.1, together with equation (2), immediately implies the following.

Corollary 2.2. LetD be a domain inCN, and letE ⊂ D be pluripolar. Fix
z0 ∈D. Thenz0 ∈E−D if and only if there exists ana > 0 such that, for any open
neighborhoodV ⊂ D of E, there exists a holomorphic mapf : Ū → D with
f(0) = z0 and

m({ t ∈ [0,2π] : f(eit )∈V }) > 2πa.

Proof. Suppose first that there does exist ana > 0. Then

ω(z0, V,D) > a

for every open neighborhoodV ⊂ D of E; from (2) we obtain

ω(z0, E,D) ≥ a,
so thatz0 ∈ E−D by Theorem 2.1. Conversely, supposez0 ∈ E−D but that for all
a > 0 there exists a neighborhoodV ⊂ D of E such that, for any holomorphic
mapf : Ū → D with f(0) = z0,

m({ t ∈ [0,2π] : f(eit )∈V }) < 2πa.

Thenω(z0, V,D) < a. From (2),ω(z0, E,D) < a; this being valid for alla > 0,
we haveω(z0, E,D) = 0, which contradicts Theorem 2.1.

If E is compact, we can find a sequence of holomorphic maps throughz0 which
(eventually) works foranyneighborhood ofE.
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Corollary 2.3. LetD be a domain inCN, and letE ⊂ D be compact and
pluripolar. Fix z0 ∈D. Thenz0 ∈ E−D if and only if there exists ana > 0 and a
sequence{fj } of holomorphic mapsfj : Ū → D with fj(0) = z0 such that, for
any open neighborhoodV ⊂ D of E, there existsj0 such that, for allj ≥ j0,

m({ t ∈ [0,2π] : fj(e
it )∈V }) > 2πa.

Proof. The “if ” follows from Corollary 2.2. For the “only if ”, supposez0 ∈E−D .
For eachj = 1,2, . . . , set

Vj := { z∈D : dist(z, E) < 1/j }.
From Corollary 2.2, for eachj we get a holomorphic mapfj : Ū → D with
fj(0) = z0 and

m({ t ∈ [0,2π] : fj(e
it )∈Vj }) > 2πa.

The open sets{Vj } are nested and, for any open neighborhoodV ⊂ D of E, there
is an integerj0(V ) such thatVj ⊂ V for j > j0; this completes the proof.

To pass from local pluripolar hulls to global pluripolar hulls, we prove the follow-
ing theorem.

Theorem 2.4. LetD be a pseudoconvex domain inCN. Let {Dj } be an increas-
ing sequence of relatively compact subdomains with

⋃
jDj = D. LetE ⊂ D be

pluripolar. Then
E∗D =

⋃
j (E ∩Dj)−Dj .

Proof. Without loss of generality, we letρ be a psh exhaustion function forD
and assume thatDj := { z ∈D : ρ(z) < rj }, rj ↑ +∞, with rj − rj−1 ≥ 1. For
if we have any increasing sequence of relatively compact subdomains{Gj } with⋃
j Gj = D, then eachGj is contained inDk for k sufficiently large. Takez0 ∈⋃
j(E ∩Dj)−Dj . Thenz0 ∈ (E ∩Dj)−Dj for somej. For anyv ∈PSH(D) with v =
−∞ onE, we can find a constantc = c(v) such thatv− c < 0 onDj . Sincez0 ∈
(E ∩ Dj)−Dj, it follows thatv(z0) − c = −∞ sov(z0) = −∞; that is,z0 ∈ E∗D.
For the reverse inclusion, takez0 ∈E∗D and supposez0 /∈

⋃
j(E ∩Dj)−Dj ; for sim-

plicity in notation, we assumez0 ∈D1. Then, for eachj = 1,2, . . . , we can find
uj ∈PSH(Dj ) with uj < 0 inDj anduj = −∞ onE ∩Dj butuj(z0) > −1/2j .
We define the following (psh) functions inD:

pj(z) :=
{

max[uj(z), ρ(z)− rj ], z∈Dj,
ρ(z)− rj, z∈D \Dj .

Setp(z) :=∑∞j=1pj(z). Note first of all thatp 6≡ −∞ sincepj(z0) ≥ uj(z0) >

−1/2j implies thatp(z0) ≥ −1. Next, we claim thatp ∈ PSH(D). For if ω ⊂⊂
D then we haveω ⊂ Dj for j > j0 = j0(ω). Sincepj < 0 onDj,we havepj < 0
onω for j > j0 and so the partial sums in the series definingp form a decreas-
ing sequence of psh functions onω; hencep is psh onω. Finally, to show that
p = −∞ onE, from the assumption thatrj − rj−1 ≥ 1 it follows thatpj ≤ −1
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onE ∩ Dj−1. Thus, for any pointz ∈ E, sincez ∈ Dj−1 for j > j0(z) we have
p(z) = −∞. Thusz0 /∈E∗D, a contradiction.

SupposeD is hyperconvex—that is,D admits a continuousnegativepsh exhaus-
tion functionρ; thus{ z ∈ D : ρ(z) < c } ⊂⊂ D for all c < 0. Then we get a
similar conclusion for the hullE−D .

Theorem 2.5. LetD be a hyperconvex domain inCN. Let {Dj } be an increas-
ing sequence of relatively compact subdomains with

⋃
j Dj = D. LetE ⊂ D be

pluripolar. Then
E−D =

⋃
j (E ∩Dj)−Dj .

Proof. We may takeDj := { z ∈ D : ρ(z) < −1/2j }, whereρ is a negative
psh exhaustion function forD. The inclusion

⋃
j(E ∩ Dj)−Dj ⊂ E−D is obvious

from the definitions. For the reverse inclusion, takez0 ∈ E−D and supposez0 /∈⋃
j(E ∩ Dj)−Dj ; again we assumez0 ∈D1. Then, for eachj = 1,2, . . . , we can

find uj ∈ PSH(Dj ) with uj < 0 in Dj anduj = −∞ onE ∩ Dj but uj(z0) >

−1/2j . As in the proof of Theorem 2.4, we define (psh) functions inD via

pj(z) :=
{

max[uj(z), ρ(z)+1/2j ], z∈Dj,
ρ(z)+1/2j , z∈D \Dj .

Setp(z) := [∑∞
j=1pj(z)

] − 1. Note first of all thatp 6≡ −∞ sincepj(z0) ≥
uj(z0) > −1/2j implies thatp(z0) ≥ −2. Next, we claim thatp ∈PSH(D). For
anyω ⊂⊂ D we haveω ⊂ Dj for j > j0 = j0(ω). Sincepj < 0 onDj, we have
pj < 0 onω for j > j0(ω); hence the partial sums in the series definingp form a
decreasing sequence of psh functions onω andp is psh onω. Clearlyp < 0 on
D, since eachpj < 1/2j onD. Finally, to show thatp = −∞ onE, fix z ∈ E.
Sincez ∈ Dj for j ≥ j0(z), it follows thatpj(z) ≤ ρ(z) + 1/2j for j ≥ j0(z).

Thus, using the fact thatρ(z) < 0, we get

p(z)+1=
j0(z)∑
j=1

pj(z)+
∑

j>j0(z)

pj(z)

≤
j0(z)∑
j=1

pj(z)+
∑

j>j0(z)

(
ρ(z)+ 1

2j

)
= −∞.

We conclude thatz0 /∈E−D , a contradiction.

Remark. Note that the sets(E ∩Dj)−Dj in Theorems 2.4 and 2.5 are monotone.
That is,

(E ∩Dj+1)
−
Dj+1
⊃ (E ∩Dj)−Dj, j = 1,2, . . . .

Forz∈D,we denote byJz(D) the set of allJensen measures(with respect to psh
functions onD) with barycenter atz; precisely,µ ∈ Jz(D) if µ is a probability
measure with compact support inD and, for eachu∈PSH(D),
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u(z) ≤
∫
u dµ.

It follows that if φ : D→ R is Borel measurable then

Pφ(z) ≤ inf

{ ∫
φ dµ : µ∈Jz(D)

}
:= Jφ(z). (3)

Clearly, iff : Ū → D is holomorphic withf(0) = z thenµf := push-forward of
dt/2π underf is an element inJz(D).
Corollary 2.6. LetD be a hyperconvex domain inCN, and letE ⊂ D be com-
pact and pluripolar. Fixz0 ∈ D. Thenz0 ∈ E−D if and only if there exists aµ ∈
Jz0(D) withµ(E) > 0.

Proof. Let φ = −χE. If z0 ∈D and there exists aµ ∈ Jz0(D) with µ(E) > 0,
then

Jφ(z0) ≤
∫
φ dµ = −µ(E) < 0;

thus, by (3),Pφ(z0) < 0. Hencez0 ∈E−D by Theorem 2.1. Conversely, ifz0 ∈E−D
then, by Theorem 2.5 (and using the same notation),z0 ∈ (E ∩Dj)−Dj for j suffi-
ciently large. Fix such aj. As in the proof of Corollary 2.3, we takea > 0 and
fk : Ū → Dj holomorphic withfk(0) = z0 and

m({ t ∈ [0,2π] : fk(e
it )∈Vk }) > a, k = 1,2, . . . , (4)

whereVk := { z∈Dj : dist(z, E) < 1/k }. We take a subsequence of the mappings
{fk} such that the corresponding measures{µfk } converge weak-∗ to a measure
µ∈Jz0(D) supported inD̄j ; by (4),µ(E) > a.

Remark. We cannot replaceµ∈Jz0(D) in Corollary 2.6 byµf for some holo-
morphicf : Ū → D with f(0) = z0. To see this, recall that Wermer [W] con-
structed a compact setX in ∂U × C ⊂ C2 with X̂ ⊂ Ū × C and such thatY :=
X̂ \ X ⊂ U × C does not contain any analytic disk; that is, there is no noncon-
stant holomorphicg : U → C2 with g(U) ⊂ Y. In [L], we showed that such a set
can be constructed so thatY is pluripolar; then in [LS] we showed that any such
pluripolar Wermer-type setY is complete pluripolar inU ×C; that is, there exists
a u psh inU × C with E = { z ∈ U × C : u(z) = −∞}. LetM > 1 be chosen
sufficiently large so thatY ⊂ D := { (z, w) : z ∈ U, |w| < M }. ThenY = Y ∗D.
Fix r < 1 and letYr := { (z, w)∈ Y : |z| = r }. Using standard properties of poly-
nomial hulls,Ŷr = { (z, w)∈ Y : |z| ≤ r }. SinceD is Runge, it follows that̂Yr ⊂
(Yr)

∗
D and so

Yr ⊂ Ŷr ⊂ (Yr)∗D ⊂ (Yr)−D.
Fix a point(z0, w0)∈ Ŷr \ Yr ⊂ (Yr)−D \ Yr . If f : Ū → D is holomorphic with

f(0) = (z0, w0) andµf (Yr) > 0, then for anyu psh inD that is−∞ on Yr we
haveu = −∞ onf(U); thus,

f(U) ⊂ (Yr)∗D ⊂ Y ∗D = Y,
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which implies—sinceY contains no nonconstant analytic disk—thatf is constant.
This contradicts the fact thatf(0) = (z0, w0)∈ Ŷr \ Yr whileµf (Yr) > 0.

3. The Setw=== zααα

The goal of this section is to find the pluripolar hull of the set

Ẽα := { (z, w)∈C2 : w = zα, z 6= 0 }
whenα > 0 is irrational. A preliminary remark on the definition of this set is in
order. Consider the real-analytic curve

Eα := { (x, y)∈R2 : y = xα, x > 0 }.
We consider all analytic continuations off(x) = xα on x > 0; thenẼα is the
Riemann surface generated byEα. In particular, note that̃Eα contains no points
of the form(0, w).

We mention that ifα = p/q is rational then, using the psh functionv(z,w) :=
log|wq − zp|, we see that the pluripolar hull of̃Eα with respect toC2 is contained
in the union ofẼα and the origin. But the origin also belongs to the pluripolar
hull because, if a psh functionu(z,w) is equal to−∞ on Ẽα, then the function
U(ζ) := u(ζ q, ζ p) equals−∞ on C \ {0} and hence equals−∞ everywhere.
Thus the pluripolar hull ofẼα equals the union of̃Eα and the origin.

We show (Theorem 3.5) that, whenα is irrational, the pluripolar hull ofẼα
equalsẼα. We begin with the essential lemmas.

Lemma 3.1. LetD ⊂ CN andE ⊂ D and letA ⊂ D be a closed, pluripolar set
withE ∩ A = ∅. Thenω(z,E,D) = ω(z,E,D \ A) onD \ A.
Proof. Clearlyω(z,E,D) ≥ ω(z,E,D \ A). On the other hand, ifu is a neg-
ative psh function onD \ A andu ≤ −1 onE, thenu extends to be psh and neg-
ative inD (cf. [K, Thm. 2.9.22]). Thus, sinceE ∩ A = ∅, the extension is less
than or equal to−1 onE and thereforeω(z,E,D) ≤ ω(z,E,D \ A).
Lemma 3.2. LetD ⊂ CN andG ⊂ CM be domains, and leth : D → G be a
holomorphic mapping. IfE ⊂ G thenω(z, h−1(E),D) ≤ ω(h(z), E,G).
Proof. If u is a negative psh function onG that is less than or equal to−1 on
E, thenu B h is a negative psh function onD that is less than or equal to−1 on
h−1(E). Thus,ω(z, h−1(E),D) ≤ ω(h(z), E,G).
We need equality to hold for holomorphic covering mapsh in certain circum-
stances.

Lemma 3.3. LetD andG be domains inCN, and leth : D→ G be a holomor-
phic covering mapping. Suppose that a setE ⊂ G has a simply connected open
neighborhoodV such thath−1(V ) is the union of disjoint connected open setsVj
(j = 1,2, . . . ) and that, for some pointz∈D,
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lim
j→∞

ω
(
z,
⋃∞

k=jVk,D
) = 0.

Thenω(z, h−1(E),D) = ω(h(z), E,G).
Proof. By Lemma 3.2,ω(z, h−1(E),D) ≤ ω(h(z), E,G). To verify the reverse
inequality, we first fixε > 0 and takej sufficiently large so that

ω
(
z,
⋃∞

k=jVk,D
)
< ε.

Take an open neighborhoodW of h−1(E) such that

ω(z, h−1(E),D) ≥ ω(z,W,D)− ε. (5)

LetWj = W ∩ Vj andW ′ = ⋂j−1
k=1h(Wk). ThenW ′ is an open set containingE

andW ′ ⊂ V. Thus, using (1) and (2), we can find a holomorphic mappingf : Ū →
G such thatf(0) = h(z) and

m({ t ∈ [0,2π] : f(eit )∈W ′ }) > 2π(ω(h(z), E,G)− ε). (6)

Let g be a lifting off, that is,h B g = f andg(0) = z. If W̃ = h−1(W ′) andA =
{ t ∈ [0,2π] : g(eit )∈ W̃ }, then

m(A) = m({ t ∈ [0,2π] : f(eit )∈W ′ }). (7)

SinceW̃ =⋃∞k=1(W̃ ∩ Vk) and this is a union of disjoint sets, we have

ω
(
z,
⋃∞

k=j (W̃ ∩ Vk),D
)
< ε.

Therefore, the measure of those pointst in A whereg(eit ) ∈ ⋃∞k=j(W̃ ∩ Vk) is
less than 2πε. Thus,

ω
(
z,
⋃j−1

k=1(W̃ ∩ Vk),D
) ≥ 1

2π
m(A)− ε > ω(h(z), E,G)− 2ε,

where the second inequality uses (6) and (7). But
⋃j−1

k=1(W̃ ∩ Vk) ⊂
⋃j−1

k=1Wk ⊂
W, and from the preceeding inequality together with (5) we obtain

ω(z, h−1(E),D) ≥ ω(z,W,D)− ε > ω(h(z), E,G)− 3ε.

Sinceε is arbitrary, we deduce thatω(z, h−1(E),D) = ω(h(z), E,G).
Lemma 3.4. Let D ⊂⊂ G be domains inCN. Let E ⊂ D be compact, and
let V be a domain inG that contains a pointz ∈ D and does not intersectE.
Let K = ∂V ∩D. If ω(z,E,D) = a then there is a pointw ∈ K such that
ω(w,E,G) ≥ a.
Proof. Note thatK separateszandE inD. To prove the lemma, we take a sequence
of open(1/j)-neighborhoodsVj ⊂ D of E so thatω(z, Vj,G)→ ω(z,E,G) as
j → ∞. For eachj, we take a holomorphic mappingfj : Ū → D such that
fj(0) = z and such that the length of the setAj = { t ∈ [0,2π] : fj(eit ) ∈ Vj } is
greater than or equal to 2π(a − 1/j). Let hj be a harmonic function onU with
boundary values equal toχAj . Thenhj(0) ≥ a − 1/j and, by the maximum prin-
ciple, there is a pointζj ∈ f −1

j (K) with hj(ζj ) > a − 1/j. SinceK is compact,
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we may assume (by taking a subsequence if necessary) that the pointswj = f(ζj )
converge to a pointw ∈ K. We may also assume that|wj − w| < 1/j2 and that
fj(Ū)− wj + w ⊂ G for all j. Let

ej(ζ) = ζ + ζj
1+ ζj ζ

and setgj(ζ) = fj(ej(ζ)) − wj + w. Thengj : Ū → G andgj(0) = w. If A′j =
e−1
j (Aj ) thenm(A′j ) ≥ 2π(a−1/j); furthermore,gj(A′j ) ⊂ Vj−1 since|wj−w| <

1/j2. Thusω(w,E,G) ≥ a.
Now we can commence with the proof of the following theorem.

Theorem 3.5. If E = { (z, w) ∈ C2 : w = zα, z 6= 0 }, whereα > 0 is an
irrational number, thenE∗C2 = E.

Proof. By Theorem 2.4 it suffices to prove that(E∩D)−D = E∩D for each bidisk
D ⊂ C2. For simplicity in exposition and notation, we takeD := U × U and
writeE− for (E ∩D)−D.

Note that if we take a nonpolar piece of a “branch” ofE, for example, by setting
1 := { z : |z−1/2| ≤ 1/4 } and taking

F := { (z, w) : z∈1, w = eα log |z|+iα Arg z },
thenE ⊂ F−D . ThusF−D = E− and, by the remark after Theorem 2.1, our goal is to
evaluateω((z,w), F,D). We show for points(z, w)∈D thatω((z,w), F,D) >
0 if and only if (z, w) ∈E. For future use, we setT := { z : |z − 1/2| < 3/8} so
that 0/∈ T̄ .

We first consider a point(z, w)∈D \E with z 6= 0. LetA = D ∩ {z = 0}. By
Lemma 3.1,

ω((z,w), F,D \ A) = ω((z,w), F,D).
LetH := { ξ ∈ C : <ξ < 0 } andG =: H × U, and defineh : G → D \ A via
h(ξ,w) = (eξ , w). Thenh is a holomorphic covering mapping.

The open setV = T ×U is simply connected and containsF. Clearlyh−1(V ) =⋃∞
j=−∞(T

′
j × U), where the setT ′j lies in the semi-infinite strip{<ξ < 0,

(2j − 1)π < =ξ < (2j + 1)π}. These sets are open and disjoint. Thus, for
everyR > 0 we can choosej sufficiently large such that

⋃
|k|≥j T

′
k lies outside

the disk of radiusR centered at 0. Hence

lim
j→∞

ω
(
ξ,
⋃
|k|≥j T

′
k , H

) = 0

for everyξ ∈ H. From Lemma 3.2, using the projection map(ξ, w) → ξ we
conclude that

lim
j→∞

ω
(
(ξ, w),

(⋃
|k|≥j T

′
k

)× U,G) = 0

for every point(ξ, w)∈G. Thus, by Lemma 3.3,

ω((ξ,w), h−1(F ),G) = ω((eξ , w), F,D). (8)
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The seth−1(E ∩ (D \ A)) is the disjoint union of the analytic sets

Ej = { (ξ, w)∈G : w = e2jαπieαξ } (j = 0,±1,±2, . . . )

in G. For eachj, we consider the negative psh function

uj(ξ, w) := ln|w − e2jαπieαξ | − 2

onG. Sinceuj is−∞ precisely onEj, we conclude that

ω((ξ,w),Ej,G) = 0 for (ξ, w) /∈Ej ;
thus, we conclude thatω((ξ,w), h−1(E),G) = ∑∞

j=−∞ ω((ξ,w),Ej,G) = 0
when(ξ, w) /∈ h−1(E). Then, because

ω((ξ,w), h−1(E),G) ≥ ω((ξ,w), h−1(F ),G) = ω((eξ , w), F,D)
onG (here we use (8)), we deduce thatω((z,w), F,D) = 0 if (z, w) ∈ D \ E
andz 6= 0.

Now suppose that(z, w)∈E. We take a point(ξ, w)∈E0 such thath(ξ,w) =
(z, w). Sinceω((ξ,w),Ej,G) = 0 whenj 6= 0, we see that

ω((ξ,w), h−1(F ),G) = ω((ξ,w), F0,G),

whereF0 = h−1(F ) ∩ E0. Note thatF0 = { (ξ, w) : ξ ∈10, w = eαξ }, where
10 is the connected component of the preimage of1 under the mappingz = eξ
lying in the strip{<ξ < 0,−π < =ξ < π}. Here we are using the hypothesis that
α is irrational to conclude thatF0 consists of a single component; clearly, then,
ω(ξ,10, H )→ 0 as<ξ → −∞. By Lemma 3.2 applied to the projection map
(ξ, w)→ ξ, it follows thatω((ξ,w), F0,G)→ 0 as<ξ → −∞. Finally, using
Lemma 3.3 we conclude thatω((z,w), F,D) → 0 as|z| → 0. This statement
remains valid if we replaceD by a larger (but fixed) polydisk.

To finish the proof, we consider points of the form(0, w) ∈ D. Suppose that
there is a point(0, w) ∈ D with ω((0, w), F,D) = a > 0. Let G̃ = { (z, w) :
|z| < 2, |w| < 2 }. By the previous paragraph, we can chooser > 0 sufficiently
small so thatω((z,w), F, G̃) < a/2 when|z| ≤ r. Take

V =: { (z, w) : |z| < r, |w| < 2 }.
By Lemma 3.4, there is a point(r, w) ∈ G̃ such thatω((r, w), F, G̃) ≥ a > a/2.
Hencea = 0.

This concludes the proof that, for points(z, w) ∈ D, ω((z,w), F,D) > 0 if
and only if(z, w) ∈E. By Theorem 2.1,E−D = E ∩D; finally, by Theorem 2.4,
E∗C2 = E.
This fact also answers an old question of Sadullaev. A setE ∈ CN is called
plurithin at a pointz0 ∈ Ē if there exists a psh functionu onCN such that

lim sup
z→z0, z∈E

u(z) < u(z0).

For example, every real-analytic curve is not plurithin at each of its points (see [S,
Prop. 4.1]). Sadullaev asked whether the setE in Theorem 3.5 is plurithin at the
origin (see [S, 5.3]).
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Corollary 3.6. The setẼα is plurithin at the origin whenα > 0 is irrational.

Proof. SinceE∗C2 = E, there is a psh functionu onC2 such thatu(z) = −∞
whenz∈E andu(0) > −∞.
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