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A GENERAL STABILITY CONDITION FOR MULTI-STAGE

VORTICITY BOUNDARY CONDITIONS

IN INCOMPRESSIBLE FLUIDS∗

CHENG WANG†

Abstract. A stability condition is provided for a class of vorticity boundary formulas used with
the second order finite-difference numerical scheme for the vorticity-stream function formulation of
the unsteady incompressible Navier-Stokes equations. These local vorticity boundary formulas are
derived using the no-slip boundary condition for the velocity. A new form of these long-stencil
formulas is needed to classify the stability property, in which local terms are controlled by global
quantities via discrete elliptic regularity for the stream functions.
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1. Introduction. The vorticity-stream function formulation of the 2-D Navier-
Stokes equations is given by

(1.1)






∂tω + ∇·(uω) = ν∆ω ,
∆ψ = ω ,

u = −∂yψ , v = ∂xψ ,

where u = (u, v), ω = ∇ × u = −∂yu + ∂xv and ψ denote the velocity vector, the
vorticity and the stream function, respectively. The no-penetration, no-slip boundary
condition can be rewritten as

(1.2) ψ = 0 ,
∂ψ

∂n
= 0 , on ∂Ω ,

in a simply-connected domain.
When solving these equations numerically, the absence of an explicit formula for

the boundary values of the vorticity makes it difficult to enforce a correct boundary
condition. The study of the vorticity boundary condition has a long history, going
back to the pioneering work of A. Thom [9] in 1933. Local vorticity boundary formulas
for the vorticity, such as Thom’s formula or Pearson-Wilkes’ formula, have obvious
advantages in terms of simplicity and numerical efficiency. In these cases, a biharmonic
equation is avoided and there is no coupling between the kinematic equation and the
vorticity boundary condition. Relevant discussions on this subject can be found in
[1, 2, 5, 6, 8].

Thom’s formula, which is the simplest of these local boundary formulas, includes
only one interior point of stream function, and its stability analysis is straightforward.
The corresponding theoretical convergence analysis of the full second order scheme
can be found in Hou and Wetton’s work [4]. However, it is significantly harder to
perform the stability analysis for the long-stencil formulas, such as Wilkes’ formula,
in which more than one interior point values of stream function are utilized. The
main difficulty in this analysis is that the boundary term complicated the process of
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energy estimates. A new technique to overcome this difficulty was proposed in [10]:
rewrite the vorticity boundary formula in terms of the second derivative of stream
function near the boundary, whose L2 norm can be controlled by that of the vorticity.
This approach allowed a stability analysis for Wilkes’ formula, which is given in detail
in that article. The bounds resulting from this analysis can be viewed as an elliptic
regularity at the discrete level.

In this paper, this methodology is extended to a class of local vorticity boundary
formulas in terms of one-sided extrapolation for stream function values at interior
grid point. This analysis relies on a reformulation of the boundary formula, which
makes the verification of stability straightforward. The resulting numerical stability
condition is provided in terms of the coefficients for the stream function values at
different numerical grid indices.

2. The second order finite difference scheme with the vorticity bound-

ary condition. For simplicity of presentation, the computation domain is chosen
to be Ω = (0, 1) × (0, 1) and the grid sizes are ∆x = ∆y = h. Consequently, the
numerical grid points will be denoted as (xi , yj), where xi = i∆x and yj = j∆y for
0 ≤ i, j ≤ N . A standard centered difference approximation to (1.1) at the interior
grid points gives

(2.1)





∂tω + D̃x(uω) + D̃y(vω) = ν∆hω ,

∆hψ = ω , ψ |Γ= 0 ,

u = −D̃yψ , v = D̃xψ ,

with

(2.2)

D̃xui,j =
ui+1,j − ui−1,j

2h
, D̃yui,j =

ui,j+1 − ui,j−1

2h
, ∆h = D2

x +D2
y ,

D2
xui,j =

ui−1,j − 2ui,j + ui+1,j

h2
, D2

yui,j =
ui,j−1 − 2ui,j + ui,j+1

h2
.

From (1.2), we see that we need two boundary conditions for ψ. The Dirichlet
boundary condition ψ = 0 on Γ is implemented to solve the stream function via the
vorticity as in (2.1). The normal boundary condition, ∂ψ

∂n = 0 cannot be enforced di-
rectly, so it is converted into a vorticity boundary condition. Because of the identically
zero values for the stream function on the boundary, the vorticity on the boundary
on Γx, j = 0, can be approximated by

(2.3) ωi,0 = D2
yψi,0 =

1

h2
(ψi,1 + ψi,−1) =

2ψi,1
h2

−
2

h

ψi,1 − ψi,−1

2h
,

where (i,−1) refers to the “ghost” grid point outside of the computational domain.

Taking the approximation identity
ψi,1 − ψi,−1

2h
= 0 as a second order normal bound-

ary condition for (∂yψ)i,0 = 0, we arrive at Thom’s formula

(2.4) ωi,0 =
2ψi,1
h2

, ψi,−1 = ψi,1 .

Note that Thom’s formula is only first order accurate for ω on the boundary, by
a Taylor expansion for ψ. To improve the formal accuracy, a third order one-sided
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approximation for the normal boundary condition ∂ψ
∂n = 0 can be used:

(2.5)

(∂yψ)i,0 =
−ψi,−1 + 3ψi,1 −

1

2
ψi,2

3h
= 0 , which leads to ψi,−1 = 3ψi,1 −

1

2
ψi,2 .

Its substitution into the difference equation (2.3) results in Wilkes-Pearson’s for-

mula

(2.6) ωi,0 =
1

h2

(
4ψi,1 −

1

2
ψi,2

)
, ψi,−1 = 3ψi,1 −

1

2
ψi,2 .

See [7] for more details.

In general, we represent the vorticity boundary condition as

(2.7) ωi,0 =
1

h2

(
C1ψi,1 + C2ψi,k + ...+ Ckψi,k

)
,

by assuming that altogether k interior grid point values of ψ are utilized in the formula.
This representation includes Thom’s formula, the Wilkes-Pearson formula, and other
local vorticity boundary conditions such as:
(2.8)

Fromm (1963) : ωi,0 =
1

h2
ψi,1 , ψi,−1 = 0 ,

Orszag and Israeli (1974) : ωi,0 =
1

h2

(10

3
ψi,1 −

1

3
ψi,2

)
, ψi,−1 =

7

3
ψi,1 −

1

3
ψi,2 ,

Orszag and Israeli (1974) : ωi,0 =
1

h2

(35

13
ψi,1 −

1

13
ψi,2

)
, ψi,−1 =

22

13
ψi,1 −

1

13
ψi,2 ,

Briley (1971) : ωi,0 =
1

h2

(
6ψi,1 −

3

2
ψi,2 +

2

9
ψi,3

)
, ψi,−1 = 5ψi,1 −

3

2
ψi,2 +

2

9
ψi,3 .

It should be noted that Briley’s formula was originally proposed in [1] as a local
vorticity boundary condition for a fourth order difference method, due to its O(h3)
consistency on the boundary. In the next section we will see that this three-stage
formula preserves L2 stability.

3. A stability classification of vorticity boundary formula in terms of

the stream function. When the one-sided (in terms of stream function at interior
mesh points) formula (2.7) is used to approximate the boundary value of vorticity,
the symmetry of the difference operator is broken. As a result, direct calculations and
standard local estimates cannot ensure its stability. To overcome this difficulty, we
can rewrite the formula (2.7) in terms of the second normal derivative of the stream
function near the boundary (at a discrete level). This transformation leads to some
local terms around the boundary, such asD2

xψ andD2
yψ. Certainly, the local terms are

bounded by the global quantities of ‖D2
xψ‖

2 and ‖D2
yψ‖

2, respectively. Moreover, by
an application of elliptic regularity at the discrete level, namely Lemma 3.3 below (its
proof can be found in the earlier article [10]), these global quantities can be controlled
by the diffusion term in the energy estimate. This process gives the L2-stability of a
general vorticity boundary condition.

For simplicity, let’s consider the Stokes equations to illustrate the numerical sta-
bility of a general vorticity boundary condition (2.7). The corresponding second order
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scheme becomes

(3.1)

{
∂tω = ν∆hω ,

∆hψ = ω , ψ |Γ= 0 ,

with a boundary formula (2.7).
Using the property that ψ vanishes on the boundary, we rewrite (2.7) in the

following form to facilitate the analysis

(3.2)
C1ψi,1 + C2ψi,2 + ...+ Ckψi,k

= C∗
1ψi,1 + C̃1h

2D2
yψi,1 + C̃2h

2D2
yψi,2 + ...+ C̃k−1h

2D2
yψi,k−1 .

Note that such a transformation is always possible by taking recursive formulas:

(3.3)
C̃k−1 = Ck , C̃k−2 = Ck−1 + 2C̃k−1 , C̃k−3 = Ck−2 − C̃k−1 + 2C̃k−2 , ... ,

C̃1 = C2 − C̃3 + 2C̃2 , C∗
1 = C1 − C̃2 + 2C̃1 .

3.1. The stability condition and its derivation. The stability condition for
a general formula (2.7) is given in the following theorem.

Theorem 3.1. The second order scheme (3.1) along with the vorticity bound-
ary condition (2.7) is L2-stable if the reformulated coefficients satisfy the following
criterion:

(3.4) C∗
1 −

1

4

(
C̃2

1 + C̃2
2 + ...+ C̃2

k−1

)
≡ B∗ > 0 .

To facilitate the proof of this theorem, we first define the discrete L2-norm and
L2-inner product.

Definition 3.2. The discrete L2-norm and L2-inner product are defined as

(3.5) ‖u‖ = 〈u , u〉1/2 , 〈u , v〉 =
∑

1≤i,j≤N−1

ui,j vi,j h
2 .

For u |Γ= 0, the notation ‖∇hu‖ is introduced by

(3.6)

‖∇hu‖
2 =

N−1∑

j=1

N−1∑

i=0

(D+
x ui,j)

2h2 +
N−1∑

i=1

N−1∑

j=0

(D+
y ui,j)

2h2 , with

D+
x ui,j =

ui+1,j − ui,j

h
, D+

y ui,j =
ui,j+1 − ui,j

h
.

Proof of Theorem 3.1. Taking the inner product of the momentum equation in
(3.1) with −ψ gives −〈ψ, ∂tω〉+ 〈ψ,∆hω〉 = 0. Because of the homogeneous Dirichlet
boundary condition for ψ, integration by parts at a discrete level shows that the first
term becomes

(3.7) −〈ψ, ∂tω〉 = −〈ψ, ∂t∆hψ〉 =
1

2

d

dt
‖∇hψ‖

2 .

Similarly, summation by parts for the second term gives

(3.8a) 〈ψ,∆hω〉 = 〈∆hψ, ω〉 + B = ‖ω‖2 + B , with
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(3.8b)
B = B1 + B2 + B3 + B4 ,

B1 =
N−1∑

i=1

ψi,1ωi,0 ,B2 =
N−1∑

i=1

ψi,N−1ωi,N ,B3 =
N−1∑

j=1

ψ1,jω0,j ,B4 =
N−1∑

j=1

ψN−1,jωN,j ,

where we used the fact that ∆hψ = ω.
Obviously, to demonstrate numerical stability we need to control the boundary

term B. For simplicity of presentation, we only consider B1 here. Boundary condition
(2.7) is applied to recover B1

(3.9) B1 =

N−1∑

i=1

ψi,1

h2

(
C1ψi,1 + C2ψi,2 + ...+ Ckψi,k

)
.

It can be seen that a direct calculation cannot control B1, since many interior points
of stream function: ψi,1, ψi,2, ..., ψi,k, are involved in the formula. At this point, the
reformulation (3.2) allows us to carry out the stability analysis, and its substitution
into (3.9) yields

(3.10) B1 =

N−1∑

i=1

[
C∗

1

ψ2
i,1

h2
+ ψi,1

(
C̃1D

2
yψi,1 + C̃2D

2
yψi,2 + ...+ C̃k−1D

2
yψi,k−1

)]
.

This transformation lets us control local terms by global terms; it will later become
clear how this is useful. In addition, we define a constant 0 < C̃∗ < 1 as

(3.11) C̃∗ =
C∗

1 −B∗

C∗
1

, in which 0 < B∗ < C∗
1 is given in (3.4) .

Applying the Cauchy inequality to ψi,1 ·D
2
yψi,j , 1 ≤ j ≤ k − 1, shows that

(3.12)

C̃1ψi,1D
2
yψi,1 ≥ −

C̃2
1

4C̃∗
·
ψ2
i,1

h2
− C̃∗|D2

yψi,1|
2h2 ,

C̃2ψi,1D
2
yψi,2 ≥ −

C̃2
2

4C̃∗
·
ψ2
i,1

h2
− C̃∗|D2

yψi,2|
2h2 ,

... C̃k−1ψi,1D
2
yψi,k−1 ≥ −

C̃2
k−1

4C̃∗
·
ψ2
i,1

h2
− C̃∗|D2

yψi,k−1|
2h2 .

Going back to (3.10), we arrive at
(3.13)

B1 ≥

N−1∑

i=1

[ψ2
i,1

h2

(
C∗

1 −
C̃2

1

4C̃∗
−

C̃2
2

4C̃∗
...−

C̃2
k−1

4C̃∗

)
− C̃∗h2

(
|D2

yψi,1|
2 + ...+ |D2

yψi,k−1|
2

)]

≥

N−1∑

i=1

[ψ2
i,1

h2

(
C∗

1 −
4(C∗

1 −B∗)

4C̃∗

)
− C̃∗h2

(
|D2

yψi,1|
2 + ...+ |D2

yψi,k−1|
2

)]

≥ −C̃∗h2

N−1∑

i=1

(
|D2

yψi,1|
2 + ...+ |D2

yψi,k−1|
2

)
,
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where in the second step we used the identity C̃2
1 + C̃2

2 + ... + C̃2
k−1 = 4(C∗

1 − B∗)

indicated by (3.4), and in the last step we used (3.11). If we apply the same argument
to B2, B3 and B4, we get
(3.14)

B ≥ −C̃∗h2

N−1∑

i=1

(
|D2

yψi,1|
2 + ...+ |D2

yψi,k−1|
2 + |D2

yψi,N−k+1|
2 + ...+ |D2

yψi,N−1|
2
)

−C̃∗h2

N−1∑

j=1

(
|D2

xψ1,j |
2 + ...+ |D2

xψk−1,j |
2 + |D2

xψN−k+1,j |
2 + ...+ |D2

xψN−1,j |
2

)

≥ −C̃∗‖D2
xψ‖

2 − C̃∗‖D2
yψ‖

2 .

Note again that the transformation (3.2) leads to a bound of the boundary term,
which is a local term, by global terms ‖D2

xψ‖
2 and ‖D2

yψ‖
2.

To control the terms ‖D2
xψ‖

2, ‖D2
yψ‖

2 by the diffusion term ‖ω‖2, we use the
following Lemma, which was proved in the author’s earlier article [10].

Lemma 3.3. For any ψ such that ψ |Γ= 0, we have

(3.15) ‖D2
xψ‖

2 + ‖D2
yψ‖

2 ≤ ‖(D2
x +D2

y)ψ‖
2 = ‖ω‖2 .

Applying Lemma 3.3 to inequality (3.14) implies

(3.16) B ≥ −C̃∗‖ω‖2 .

Substituting back into (3.8), along with (3.7), we arrive at the stability estimate of
the second order scheme with vorticity boundary formula (2.7):

(3.17)
1

2

d

dt
‖∇hψ‖

2 + (1 − C̃∗)ν‖ω‖2 ≤ 0 .

3.2. Verification of the stability condition for some commonly used

vorticity boundary condition. The second order scheme (3.1) is L2 stable when
coupled with any of the local boundary formulas cited in Section 2, including Thom’s
formula (2.4), Wilkes’ formula (2.6) or the ones given in (2.8), because all these
formulas satisfy the criterion (3.4). It is particularly interesting that the three-stage
Briley’s formula is also stable by the condition given by Theorem 3.1. This stability
property has also been verified by various numerical experiments.

(3.18)

Thom (1933) : C∗
1 = 2 , C̃1 = 0 , B∗ = 2 > 0 ,

Fromm (1963) : C∗
1 = 1 , C̃1 = 0 , B∗ = 1 > 0 ,

Pearson − Wilkes (1965) : C∗
1 = 3 , C̃1 = −

1

2
, B∗ =

47

16
> 0 ,

Orszag and Israeli (1974) : C∗
1 =

8

3
, C̃1 = −

1

3
, B∗ =

95

36
> 0 ,

Orszag and Israeli (1974) : C∗
1 =

33

13
, C̃1 = −

1

13
, B∗ =

1715

676
> 0 ,

Briley (1971) : C∗
1 =

11

3
, C̃2 =

2

9
, C̃1 = −

19

18
, B∗ =

4375

1296
> 0 .
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