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ABSTRACT. Consider distribution functions F and G and suppose that F(x) < G(x)

for all x. The problem of estimating F or G, or both, arises quite naturally in

applications. For example, in corrosion engineering it is of interest to estimate

the pitting times of metals under two different strengths of corrosive environments.

The empirical distribution functions F m and Gn will not necessary satisfy the or-

der constraint imposed by the experimental conditions. Lo (1987) proposed the

estimators F m = min(Fm,Gn) and Gn — max(Fm,Gn), which satisfy the con-

straint of interest, and showed that these estimator are asymptotically minimax,

under suitable conditions, for a large class of loss functions. Although F m and

Gn are strongly uniformly consistent when both m and n tend to infinity, neither

one is when only m or n go to infinity. Here, the estimators F^ (G*) are pro-

posed which are strongly uniformly consistent for F (G) when only m (ή) —• oo.

The case of censored data is also considered. Under suitable conditions, weak con-

vergence of the processes {y/m^F^x) — F(x)), 0 < x < oo, m = 1,...} and

{^Jn{G^(x) - G(x)), 0 < x < oc, n = 1,...} is demonstrated. As a consequence,

asymptotic confidence bands are obtained. For testing the hypothesis of identical dis-

tributions against a stochastic order alternative, the asymptotic distribution of the

estimators under the assumption that F(x) = G(x) for all x is also discussed. The

results of a Monte-Carlo study show that the new estimators perform better than Fm

and Gn and the non-parametric maximum likelihood estimators in terms of bias and

mean squared error for a large class of examples.

1. INTRODUCTION

In many experimental sciences it is often of interest to estimate lifetime of experimental

units when two different treatments are applied. For example, in corrosion engineering,

the times until pitting of metals immersed in a corrosive environment are measured

under two different solution corrosivities. Shibata and Takeyama (1977), for example,

present data which strongly supports the belief that the times until pitting should be

shorter in some sense, for the more corrosive environment. In toxicity studies, cells are
37
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grown in environments containing different levels of toxic materials (e.g. Arenaz et al

(1992)). Invariably, the data supports the intuitive notion that the stronger the toxic

solution is, the shorter the lifetimes of the organisms. Thus, it is of interest to estimate

the lifetime distributions of these cells when it is know that one lifetime distribution is

stochastically smaller.

To make this precise, let X and Y represent the random lifetimes under two different

environments and let X and Y have F and G as their distribution functions. Lehmann

(1955) defines the random variable X to be stochastically larger than the random

variable Y ]£F(x) < G(x) for all x. Lehmann and Rojo (1992) provide characterizations

of stochastic ordering in terms of the maximal invariant GF~ι with respect to the

group of monotone transformations, and connections with other partial orderings are

provided. The problem of interest is the estimation of F and G based on independent

random samples Xλ,..., Xm, and Yί,..., Yn, subject to the constraint that F(x) <

G{x) for all x. In terms of survival functions P = 1 — F and Q = 1 — G, one must

estimate P and Q subject to the condition that P >Q.

As a way of illustrating the wide range of possible applications of partial orders

of distributions in general, and of stochastic order in particular, consider Figure 1.1

which shows the Kaplan-Meier estimator for the data obtained in a clinical trial which

was run to evaluate the efficiency of maintenance chemotherapy for acute myelon-

geneous leukemia (AML). The trial was conducted at Stanford University (Embury et

al (1977)). After reaching a state of remission through treatment by chemotherapy,

the patients who entered the study were randomized into two groups. The first group

received maintenance chemotherapy; the second group did not. One would then expect

that in this case, the survival times in the control group would be stochastically smaller

than those in the first group. Figure 1 elucidates this fact. The clinical trial data are

as follows: ( + denotes a censored observation)

Mantained group: 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+.

Control Group: 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45.
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Figure 1.2 shows the Kaplan-Meier estimators for the survival functions for two

groups of patients with squamous carcinoma in the oropharynx with different degrees

of deterioration. The data is taken from Kalbfleisch and Prentice (1980). For patients

with degree one and degree two of lymph node deterioration, the survival times (in

days) are as follows:

Degree 1: 261, 324, 338, 347, 599, 763, 929, 1086+, 1092, 1317+, 1609+.

Degree 2: 105, 222, 279, 395, 465, 546, 915, 918, 1058+, 1455+, 1644+.

Note that although it is expected that the survival function for patients in the group

of degree one will be everywhere larger than that for patients in the group of degree two,

due the small samples, the survival functions do not satisfy the constraint. Therefore,

alternative estimators must be considered. The nonparametric maximum likelihood ap-

proach has been discussed by Dykstra (1982) and Dykstra and Fletz (1989). Dykstra,

Kochar, and Robertson (1991), commenting on the availability of statistical inferential

procedures when stochastic ordering obtains, conclude that "Unfortunately, statistical

inference procedures have not been developed for many problems involving stochas-

tic ordering and the development of the necessary theory for these problems seems

to be a difficult task." Since then, however, there has been progress in developing

the asymptotic theory needed for the nonparametric maximum likelihood estimator

(Praestgaard and Huang (1996)). Nevertheless, the present approach provides estima-

tors which dominate the NPMLE in terms of bias and mean squared error. Ma (1991),

Rojo and Ma (1993), and Puri and Singh (1992) considered the one-sample problem

and proposed an alternative to the maximum likelihood approach. Lo (1987), proposed

estimators in the two sample problem which, under suitable conditions, are asymptot-

ically minimax for a wide class of loss functions. Ma (1991) and Rojo and Ma (1993)

considered estimators proposed by Lo (1987) and using Monte-Carlo simulation showed

that these estimators behave better than their NPMLE counterparts in terms of bias

and mean squared error for a large class of distributions. The case of censored data

was also considered by Ma (1991) and Rojo and Ma (1993). Some possible drawbacks

of the nonparametric maximum likelihood estimators are their large bias and lack of

any distribution theory (finite-sample or asymptotic) that allows for the construction

of confidence bands. In the two-sample problem the estimators of Lo (1987), although
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consistent when both sample sizes go to infinity, fail to be consistent when only one of

the sample sizes goes to infinity.

The goal of this paper is to provide new estimators that remedy the problems alluded

to earlier, and to discuss their asymptotic distribution theory. Under suitable condi-

tions, the resulting processes converge weakly to the weak limit of the empirical process

in the case of complete data, and to the weak limit of the Kaplan-Meier estimator in

the case of censored data. As a consequence, standard results for the construction

of confidence bands can be applied in the cases considered in this work. For testing

purposes, the asymptotic distribution theory of the estimators is also considered when

P(x) = Q{x) for all x.
The organization of this paper is as follows: Section 2 defines the estimators and

their strong uniform consistency is demonstrated. Section 3 discusses the case of cen-

sored data and proves the weak convergence of the processes defined by the proposed

estimators. As a consequence, confidence bands for F and G can be obtained using

standard results available for the empirical process and for the Kaplan-Meier process.

Section 4 develops the asymptotic theory of the estimators when P(x) — Q(x) for all x.

The results can be used for testing for stochastic order. Section 5 reports on simulation

results which suggest that the new estimators perform well in terms of bias and mean

squared error when compared to the estimators of Lo (1987) and the non-parametric

maximum likelihood estimators.

2. NEW ESTIMATORS AND THEIR STRONG UNIFORM CONSISTENCY

Let Xi,. . .,Xm and Yi,.. .,Yn be independent random samples from the distribution

F and G respectively, and let Fm and Gn be the empirical distribution functions based

o n l i , . . . , Xm and Yu . . . , Yn.

Suppose that it can be assumed that F(x) < G(x) for all x. Let P{x) = 1 — F(x) and

Q(x) = 1 — G(x) denote their respective survival functions. Lo (1987) considered the

problem of the estimation of F and G under the stochastic order constraint and derived

the asymptotic minimax estimators with respect to a wide class of loss functions. The

estimators proposed by Lo (1987) were given as

Pmn = max(Pm, Qn) and Qmn = min(Pm, Qn),
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where P m and Qn represent the empirical survival functions. It is not difficult to see

that

sup \Pmn -P\< max(sup \Pm - P | , sup \Qn - Q\)
X X X

and similarly for Qmn- Therefore a s m , n - > o o , Qmn and Pmn converge uniformly with

probability one to Q and P respectively. Rojo (1995) demonstrated the weak conver-

gence of Pmn and Qmn under the assumption that P(x) > Q(x) for all x. However,

if P(xo) = Q{xo) for some :r0, then weak convergence does not hold for the process

One possible drawback of these estimators is that the asymptotic minimaxity and

strong uniform consistency require that both m and n tend to infinity. In fact, it is

not difficult to see that Pmn is not consistent if only m or n tend to infinity. This can

easily be seen as follows. Since Pmn(x) — P(x) = msx(Pm(x) — P{x), Qn{x) — P(x)),

then

lim P { ( P m n ( z ) - P(x)) >ε}> P{Qn(x) - P(x) > ε} > 0.

Similarly,

lim P{{Qmn{x) - Q(x)) >ε}> P{Pm{x) - P{x) > ε} > 0.
n—*oo

Also, since the influence of Qn on Pmn does not vanish as m —> oo, the estimator

Pmn will tend to have a large bias. To correct these problems the following estimators

are proposed. Define Rm+n to be the empirical cumulative survival function of the

combined samples (see, e.g., Dykstra (1982)). That is

^ ^ (2-1)ix) Qn + ^
m + n m + n

Now define the estimators

ix) = max(Pm(x), iWπ(z)), and (2.2)

Qmn(x) = min(Qn(x), Rm+n{x)) (2.3)

Clearly, Pmn and Qmn satisfy the stochastic order constraint. Since

min(Pm, Qn) < i ^ ^ < max(Pm, Qn),



On the Estimation of Survival Functions Under a Stochastic Order Constraint 43

it follows easily that Pmn < P m n and Qmn > Qmn. Consequently, P m n (Qmn) has less

positive (negative) bias than Pmn (<2mn). The strong uniform consistency of Pmn and

Qmn is given in the following result.

Theorem 2.1.- Suppose that P(x) > Q(x) for all x. The estimator Pmn converges

uniformly with probability one to the underlying survival function P, as m —> oo.

Similarly, Qmn converges uniformly with probability one to Q as n —» oo.

Proof.- Only the result for Pmn is shown here. The corresponding proof for Qmn

is similar.

Using (2.1), note that

\Pmn -P\ = \Pm ~ P + — £ - max(0, Qn - Pm)\
ίi I lib

< \Pn -P\ + -?— max(0, Qn - Pm)
n + m

n-\- m

Now, it is clear from (2.4) that | P m n - P | converges uniformly to zero with probability

one as m —• oo.

We now turn our attention to the weak convergence of the processes {y/m{Pmn(t) —

P(t)),t > 0} and {y/n(Qmn(t) - Q{t)),t > 0}. To try to motivate some of the results

below, perhaps some intuitive remarks are in order. It is not difficult to see that

if P(xo) = Q{XQ) for some xo, the asymptotic distribution of Pmn when m/n —> 0,

suitably normalized, puts 1/2 of mass at zero while "spreading" the other half of the

mass on the positive real axis according to a normal distribution. That is, if m/n —> 0,

then

y/rn{Pmn{xo) - P(x0)) % max(0, T)

where T is a normal random variable with mean zero and variance F(xo)P{xo) If

m/n —> oo, then y/m(Pmn(xo) — P{%o)) converges in distribution to a mean zero

normal distribution with variance F(xo)P(xo) If m/n —> c, 0 < c < oo, then the

asymptotic distribution of \frn(Pmn(xo) — P{xo)) is somewhat more complex. The
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following theorem provides the precise statement for the asymptotic distribution of

Vra(Pm n(z 0) - P{χo)) in the case that P(x0) = Q(xo) The proof follows from a direct

application of the continuous mapping theorem for weak convergence and Slutsky's

theorem.

Theorem 2.2.- Let P m n be defined by (2.2) and suppose that P(xo) = Q(xo) for some

xO Let m/n —> c, where 0 < c < oo. Then,

y/m(Pmn(x0) ~ P{oco)) -• m a x ( ^ b * — ),
X i C

where W\ and W2 are two independent and identically distributed mean zero normal

random variables with variance F(x§)P{x^), and where the asymptotic limit is inter-

preted as W\ when c = oo, and as max(Wi, 0) when c = 0.

Proof.- To facilitate the notation, we drop the argument x0 throughout, and hence

write, e.g., P instead of P(xo) By the central limit theorem and the independence of

Pm and Qn, it follows that

\

where W\ and W<ι are wd, mean zero normal random variables with variance P(xo)^(^o)

By the continuity of the mapping /ι(x, y) = {^ry, x + y), for 0 < c < oo, it then follows

by the continuous mapping theorem that, since

n ~P)= max(vMPm - P), -JL-χl™yfr(Qn - Q)χyfr(Qn Q) +
n-\- m \ n m + n

(2.5)

then, for 0 < c < oo,

y/m(Pmn - P) -> max(Wi, ).

1 + c

Note that the result holds for c = 0 since then, as m —> oo with m/n —> 0, the second

term on the right side of (2.5) converges in probability to zero. On the other hand,

when m/n —» oo the second term on the right side of (2.5) converges in distribution to

Wλ. Thus interpreting max(Wi, v ^ 2

+ ^ c V K l ) to mean W\ when c = oo the result follows.

On the other hand, if P(xo) > Q{xo), note that writing

m
-P +Pm-
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it is clear that for ^ —• c, 0 < c < oo, the second term on the right side of the

previous expression converges to zero in probability and hence y/rn(Pmn(xo) —P(#o)) -^

iV(0, F(xo)P(xo)). Therefore, if there is an interval, say (x0, XQ+CL], where P{x) > Q(x),

while P(xo) = Qfao), the asymptotic probabilistic behavior of the process at x0 is

totally different than that of the process at x0 + ε, for every sufficiently small ε > 0,

and hence tightness can not hold on [xo^o + α], for some a > 0, and hence weak

convergence can not hold. These arguments are made precise in the following Theorem.

Theorem 2.3.- Let W\ and W2 denote independent Gaussian processes with E{W\{t))

= 0, E(W2(t)) = 0, J5(Wk(t)W'i(s)) - F(s)P(t), and E(W2(s)W2(t)) = G{s)Q{t),

respectively, for s < ί, and suppose that F and G are continuous distributions functions

with the same support.

(i) If P(x) >: Q(x) for all x, then as r?2 —> 00, with m/n —^00, (n —> 00 and

n/m —* 00)

x/^(Pmn - P) Z Wλ ^Qmn-Q)Zw2).

(ii) If P(xo) = Q(xo) f°Γ some x0, P Φ Q-> and m/n —» c, (n/m —> c), 0 < c < 00

then the process Λ/rn(Pmn — P) (y/nίQmn — Q)) does not converge weakly as

m —> 00 (n —» 00).

If P(x) > Q(x) for all x, then as m —> 00, (n —> 00)

n - 0) Z W2).

Proof.- To prove (i) note that

Pmn = Pm + ~^— max(0, Qn - Pm) (2.6)
n + m

and hence, the weak limit of φn(Pmn—P), as m —> 00, is the weak limit of ^^(Pr^—P).

To prove (^, suppose that P(xo) = Q(xo)- Recall that if y/m(Pmn - P) converges

weakly, then the sequence Tjm(Pmn — P) must be tight on [XQ^XQ + α], for example,

for any a > 0. It is now demonstrated that if P(xo) = Q{xo) for some x0 ? then the

sequence y/rn(Pmn - P) is not tight when 0 < c < 00 and hence can not converge

weakly as m —• 00. Consider first the case m/n —> 0. Without loss of generality

suppose that the support of F and G is [0,1], and that there is 7 > 0 such that P > Q
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on (x0, ̂ o + 7). Define Zmj7l(x) = y/m(Pmin(x) - P(x)), and consider for δ > 0

SUp |Zm,nO) - 2m,n(Xo)| = V™ SUp | max(Pm(x0) ~
xo<s<xo+δ xo<s<xo+δ

- max(Pm(s) - P ( 5

sup |max(Pm(x 0) -
5

(<?„(*„) - Q(^o)) + - ^ - ( P m ( χ o ) - P(χ 0 ))

( m ( ) ()) ^ ( , g n ( ) m ( ) ) | ,
(2.7)

where the sup in the above expressions is taken over [xo, 1] if #o + δ > 1. For 5o =

Xo + m i n^' 7) ? eventually with probability one, Pm(so) > Qn{so) so that, eventually with

probability one,

SUp \Zm,n(s) ~ Zm
xo<s<xo+δ

- Zm,n(xQ)\

> y/m\ max(Pm(x0) - P{XQ),
n + rn

2 + m

V^(P() - P(xo))) - yM(Pm(s0) - P(s o )) | . (2.8)

Since a , ^ , and - ^ - go to zero, it follows from (2.8) that, for ε > 0
n 7 τn-|-n' m+n ° 7 \ / '

lim Pr{ sup |Zm,n(s) - Z r o,n(x 0)| >
m,n->oo X 0<s<χ 0+,5

x0) - P(x 0)), ̂ ^ ( Q n ( x 0 ) - Q(xo))

- P(XO))) -

- P(Xθ)) -
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P(so)(l-P(xo)))'

where Φ denotes the standard normal distribution. It follows from (2.9) that (15.8) in

Theorem 15.3 in Billingsley (1968) does not hold for the interval [zo^o + a]. Conse-

quently, the sequence {Zm,n}m,n=i ι s n o t tiφ*> o n [χo, ^o + α] and hence the process can

not converge weakly.

Now consider the case m/n —> c, 0 < c < oo. Without loss of generality suppose

that F(t) = t and that there is 7 > 0 such that P(x) > Q(x) on (xo,^o + τ) Define

Zm,n{t) = y/m{Pmn{t) - (l -1)) and consider, for ί > 0,

sup |Zm > n(s) - Zm > n(x 0) | =

sup | λ/mmax(x 0 - i^mί^o), — fao - Gn(x0)) +
nrm

sup | λ/mmax(x 0 imί^o), fao Gn(x0)) +
xo<s<xo+δ n-rm n-tm

^ - Gn(s)) ^( m ( ) , ^ ( n ( ) ) ^ ( m ( ) ) ) |

Now, for s0 = £0 + min(ί,7)/2, eventually with probability one, Gn(s0) > Fm(so), so

that eventually with probability one,

SUp \Zmin(s) ~ Zm^Xo)] > \Zm,n(s0) ~ Zmjn(x0)\
xo<s<xo+-γ

= y/m\x0 - Fm(x 0)+max(0, {Fm(xo)-xo) + — (xo - Gn(x0)))-s0 + F
m-\- n n + m

- Fm(x0)) 4- y/m(Fm{sv) - 50) + max(0,

m + n

Therefore, limm)n^oo P(mpXo<3<Xo+δ \Zm,n(s) - Zm > n(x 0) | > ε) >

lim / / P{max(0, zXQ + •—J — Yn) > ε - zxo -
m,π->oo JQ Jε n + m m + n\j n

where Hm(zXQ1zS0) denotes the joint distribution of y/rn(Fm(so) - s0) and y/m(x0 —

Fm{xo)) and Yn = y/n(x0 - Gn(x0)) Now note that the integrand in (2.10) for zxo > ε

and zxo > 0, equals one. Consequently,

lim Pr{ sup |Zm,n(s) - Zm,n(x0) > e} (2.11)
τn,n—^00 χo<s<xo+δ



48 Rojo

lim Pr{V^(Fm(s0) - so) > 0, V^(x0 - Fm(xQ) > e}.
om,n—

Now, as n —» oo, the right side of (2.11) converges to Pr {X > 0, Y > ε}, where

(X,Y) has a bivariate distribution with mean vector (0,0) and Var(X) = F(so)(l —

F(s 0 )), Var(Y) = F(x0) (1— F(XQ)), and Cov(X, Y) — XQSQ— min(xθ3 £o) Therefore,

lim Pr{ sup |Z m > n ( 5 ) - Zm,n(xo)| > ε} > Pr{X > 0,y > e}. (2.12)
π^oc 5

It follows from 2.12 that (15.8) in Theorem 15.3 in Billingsley (1968) does not hold

for the interval [xo,^o + °\, and therefore the sequence {Zm,n}m,n=i ^s n o ^ tight on

[xo, ̂ o + °] 3-nd hence can not converge weakly.

To prove (in), note that because of (i), it is enough to consider the case where

m = O(n). Assume without loss of generality that F(x) = x, 0 < x < 1. Let

0 < X\ < , . . . , < Xk < 1, and consider the random vector with components

max(0, Qn(Xi) -
m + n

for i = 1,..., k. Since G(x{) > xι for z = 1,..., fc, it follows that with probability one,

n{χi) — (1 — #;)) converges to —oo, and hence, eventually, with probability one,

{xi) - (1 - Xi)) = y/m{Pm(xi) - (1 - xτ)) for i = 1,..., &. Therefore, the

finite-dimensional distributions of the process {y/rn(Pmn(x) — ( 1 — x)), 0 < x < l }

converge to the finite-dimensional distributions of W°, where W° denotes Brownian

bridge. It remains to show the tightness of {Zm,n}. Since Z m n (0) = 0, and using

Theorem 15.2 and inequality (14.9) in Billingsley (1968), it is enough to prove that for

each positive ε and r/, there exists a 5, 0 < δ < 1/2, and integers no, ra0 such that

P{ sup \Zm,n(s) - Zmjn(t)\ > ε} < η for n > n 0, m > m0, and all t (2.13)
t<s<t+δ
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Note that using expression (2.5),

sup | Z m , n ( 5 ) - Z m , n ( t ) |
t<s<t+δ

sup |pm(t)_(l-t) + -
t<s<t+δ n +

sup \pm(t)+t + Pm{s)-s\ + y/m sup — ^ — max(0, Qn(t) - Pm(t))
t<s<t+δ t<s<t+δ n + m

sup max(0, Qn(s) - Pm(s)).
t<s<t+δ n + m

Since {Pm(t) — (1 — ί), 0 < ί < 1, m = 1,2,...} is known to be tight, and max(0, ζ?n(t) —

Pm(t)) = 0 eventually with probability one, (2.13) will follow if it can be shown that

sup y/mmax{O,Qn(s)-Pm{s)) (2.14)
5

converges to zero in probability for all t and all δ > 0. In fact, it is now demonstrated

that

sup v/mmax(0, Qn(t) - Pm(t)) ^ 0. (2.15)
0<ί<l

The proof of (2.15) follows along the lines of Rojo (1995). Let βm be a decreasing

sequence of positive real numbers, such that βm —> 0 and ̂ /rnβm —> oo. Define km [ 0

such that i n f j f c ^ ^ i . ^ G ^ ) - F(x)) = /3m, and let Λm = {x : A:m < x < 1 - A;m}

and Bmn = {x : Fm(x) > Gn(x)}. Note that for x G B m n , max(0, Qn(x) - Pm(x)) =

Qn{x)-Pm(x). Therefore,

sup max(0, Qn{β) — Pm(s)) = V ^ m a x j sup max(0, Qn(s) — Pm(s)),
0<s<l s<km

sup max(0, Qn(s) - Pm(s)), sup max(0, Qn(s) - Pm{s))}
A S>l-km

Now,

sup max(0, Qn(s) - P m ( 5 )) > ε}
0<<l0<s<l

sup max(0, Qn{s) — Pm(s)), y/m sup max(0, Qn(s) - Pm(s))} > ε}
A A

sup (Qn(s) - Pm{s)) > ε} + P r { v ^ sup (Qn{s) - Pm(s)) > ε},
Λ£,nBmn s€AmΠBmn
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since max(0, Qn(s) - Pm(s)) = 0 on Bc

mn. Now, for s 6 Am P(s) - Q(s) > βm, and

therefore,

sup {Qn{s) - Pm{s)) > ε}
Bmn

sup (Qn(s) - Q(s) + Q(s) - P{s) + P(s) - Pm(s)) > ε}
m^Bmn

sup (Qn(s) - Q{s) + P(s) - Pm(s)) >ε + V^iβm} -> 0,
B

since y/mβrn —* oo and m = O(n).

Also,

sup (Q n ( 5 ) - Pm(s)) > ε} < P r { v ^ sup (Gm(s) - G(s)) > ε/2}
A^ΠBmn seA^ΠBrnn

sup (G(s) - Fn{s)) > e/2}. (2.16)

Now consider

sup (Gn(s) - G(s)) > ε/2} + P r { ^ sup (Gn(s) - F m ( 5 )) > ε/2}. (2.17)

Since G(s) < ̂ (5) for all 5, and using inequality 1 on page 134 of Shorack and Welner

(1986) with g(t) = 1, for 0 < t < 1, it follows that (2.17) is bounded above by

n sup (F{s) - Fn(s)) >
S<km

< 4G(/cm)/ε2 + AmF{km)/nε2 -> 0 since m = 0{n).

By symmetry then Pr{λ/msup s>1_ f c m(Qn(5) — Pm{s)) > ε} —> 0 and hence (2.13)

follows.

3. T H E CASE OF CENSORED DATA

The case of censored data is now considered. As before, let Xi, . . . , Xm be a ran-

dom sample from F and let Yί,..., Yn be a random sample from G. Following Csorgo

and Horvath (1983), random samples X[,..., X'm and Y{,..., Y* with left-continuous

distributions i ί ' and H*, respectively, censor Xλ,..., X m and Yί,..., Ϋ^ on the right.

Therefore, the observations available consist of the pairs (Z[, δ^, (Z*, ί*), i = 1,..., ra,

j = 1,..., n, where Z2' = minpQ, X2'), Z* = min(Y^, Y *̂), and δi and 5* are the indica-

tors of the events {Z\ = Xi} and {Z* = Yj} respectively. Let Pm and Qn denote the
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Kaplan-Meier (1958) estimators of F and G respectively. That is,

rm-Mi:m-l\δi

 t < z '
m-Mι:m ' - ^

Pm{t) =

*

where Z[m) = max(Z l 5..., Zm) and Mi:m = Σ7=ι l{z'h<z'xγ Replacing P m by Qn, X{

and Yi, Mi:rn by Nj:n = Σ2=ι I{zι<z*}i a n ( i δ\ by δ* a similar expression for Qn is

obtained. Note that the distribution W' and W* of Z2- and Z* are given, respectively,

by W'{t) = F{t)H'(t) and W*(t) = G(t)H*(t) for each t. Csorgδ and Horvath (1983),

considered the rate of convergence of Pm (Qn) to F (G).

For a distribution F, let TF = inΐ{t : F(t) = 1}. The weak convergence of the

Kaplan-Meier estimator Fm as defined by (3.1) is provided by the following Theorem

of Breslow and Crowley (1974). Define T' = min{TF, TH>).

Theorem 3.1.- Let F and H* be continuous and consider T < T' with W'(T) < 1.

Then the process {ZΪm{t) = y/m(Pm(t) — F(t)), 0 < t < T}, converges weakly to a zero

mean Gaussian process Z with covariance function

Cov(Z(s), Z(t)) = C(s)F(s)F(t), s < t,

where

With appropriate changes and similar assumptions, the corresponding weak conver-

gence of {^(ί) - φι{Qn{t) - Q(t)), 0 < t < T}, T < T* = mm(TGyT*H), W*(T) < 1,

follows.

Now suppose F(x) < G(x) for all x. To estimate F and G based on (Zt ,<$ί) and

(Z*,δ*) define, as in (2.1),

= max(Pm(x), i^+^x)) (3.3)

= min(Qn(x), Rm+n(x)). (3.4)
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As it was the case in section 2, P m n and ζ ) m n are stochastically ordered with

Pmn > Rm+n > Qmn- Figures 2.1, 2.2, and 2.3, show the Kaplan-Meier estimators,

the estimators defined by (3.3) and (3.4) and their Nonparametirc Maximum Likeli-

hood counterparts, for the Squamous Carcinoma data. Note that the modification of

the Kaplan-Meier estimators provided by (3.3) and (3.4) is substantially smaller than

that provided by the Nonparametirc Maximum Likelihood estimators. Thus, the new

estimators only modify the Kaplan-Meier estimators where the stochastic order con-

straint is violated, while the Nonparametric Maximum Likelihood estimators, "push"

both Kaplan-Meier estimators apart until the violation of the order disappears. This,

therefore, causes the NPMLE to have a larger bias than the estimators proposed here.

The strong uniform convergence of Pmn and Qmn is discussed next. Th following

result hinges on the work of Stute and Wang (1993). Note that in particular, the

following result does not require F nor H' to be continuous, and the strong convergence

is demonstrated on (—oo,TM'], where TM'=mm(Tw>,T).

Theorem 3.2.- Suppose that F and H\ and G and H* do not have any jumps

in common, and that F{x) < G(x) for all x. Let TW'—mϊ{t : W'(t) = 1}, and

7V.=inf{ί : W*(t) = 1}, and W=Fff, W*=GH*. Then,

sup \Pmn - P\ -> 0, (3.5)
-oo<t<<TM,

with probability one as m —> oo, if and only if F(TW>) = 0 or F(TW') > 0 but

H'(TW,) < 1, and G(T^) = 0 or, G(Γ^) > 0 but H*{T^m) < 1.

Proof.- The result follows immediately from Corollary 1.3 in Stute and Wang (1993)

after writing

\Pmn -P\ = \Pm~P+ - ^ ~ max(0, QnPm)\
Th I T

\ m \ + ^ ^ , Q n Q + Q
n + m

< \Pm -P\ + -^—(\Qn -Q\ + \Pm - P\).
L I it

A similar result holds for

We now turn our attention to the weak convergence of the processes {Pm n, 0 < t <

i} and {(9mn,0 < t < T2}, where Tλ < T\W\Tλ) < 1 and T2 < T\W*(T2) < 1. In
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what follows, {Z(t),0 < t < T} denotes the Gaussian process in Theorem 3.1. Only

the case of Pmn is considered. Similar results hold for Q m n .

Theorem 3.3.- Suppose that F, G, H\ and H* are continuous and F and G have the

same support.

(i) If P(x) > Q(x) for all x, then a s m - > o o , with m/n —> oo, {^/rn(Pmn — P), 0 <

t<T\} converges weakly to the process {Z(t), 0 < t < Γi}.

(ϊi,) If P{xo) = Q{xo) for some xo, P Φ Q, and m/n —> c, 0 < c < oo, then the

process, {y/m(Pmn — P), 0 < t < Γi} does not converge weakly as m —> oo.

fin,) If P(x) > Q(x) for all x, then as m —> oo, the process {^/m(Pmn — P), 0 < t <

Γi} converges weakly to {Z(t), 0 < t < Tλ}.

sup \Prn(t)-P(t)\ = O(m~ι/2(\ogm)1/2) (3.6)
0<t<7\

Proof.- The proofs of (i) and (ii) are similar to those of (z) and [ii) in Theorem 2.2

by replacing the empirical distribution functions by the corresponding Kaplan-Meier

estimators. The proof of (Hi), although similar to that of (in) in Theorem 2.2, requires

some more detail and hence is given here. Note that because of (i) only the case of

m = O(n) is considered here. Consider the process Sm(t) = mι^2(Pmn(t) — P(t)), 0 <

t < Ti, and select, for arbitrary fc, 0 = t x < t2 .. - < tk = T\. Now consider the random

vector with components (S m ( ί i ) , . . . , Sm(tk)) and ( Z ^ ( t i ) , . . . , Z'm(tk)) where Z'm is as

defined in Theorem 3.1. By a result of Foldes and Rejtό (1981),

and

Since m = O(jι) and 5 m (ί) - m1/2(Pm( ί) _ p( t )) + ^ m a x ( 0 ) Q n ( ί ) - p m (ί)), and

<5(x) < P(x) for all x, it follows that almost surely, eventually,

Therefore, Theorem 3.1 implies that the finite-dimensional distributions of the process

{Sm(t), 0<t<Tλ} converge to those of the process {Z(t),0 < t < Tλ}.

It remains to show that {Sm} is tight. For that purpose, for arbitrary ε > 0, consider

for δ > 0, note that, by using arguments similar to those used in the proof of Theorem

sup \Qn(t)-Q(t)\ = O(rΓι'2(}ogn)1'2). (3.7)
0<t<T2
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2.2

sup |5 m ( s )-S ' m ( ί ) |= sup \pmn(s) - Pmn(t) - P{s) + P{t)\
t<s<t+δ t<s<t+δ

< sup \Z'm(s)-Z'm(t)\
t<s<t+δ

+ - ^ ^ sup |max(0,Qn(s)-Pm(s))
m + n t<s<t+s

-max(0,Qn(ί)-Pm(ί))| (3.8)

where Z'm( ) = ^(Pm(-) - P(-)).

Since Z'^ converges weakly, it follows that Z'^ is tight on [t, t + δ] for t + S < Ti, and

hence

limTSΓPr{ sup |^m(s) - <,(t)| > ε} = 0.
S-^o m->oo t<s<t+δ

Also since m = O(n), it follows from the strong uniform convergence of Qn and Pm

to Q and P respectively, that the second term on the right side of the inequality (3.8)

equals zero with probability one, and hence

lim lim Pr{ sup \Sm(s) - 5 m (t) | > ε} = 0

and therefore {Sm} is tight and hence converges weakly.

Consequently, under the conditions of (i) and (ii) in Theorem 3.3, since the weak

limit of the process {y/rn{Pmn — -P), 0 < t < Γi} is the same as the wealc limit of the

Kaplan-Meier process, the standard results of Hall and Wellner (1980) may be applied

to construct confidence bands for the survival functions of interest. Note that, although

Hall and Wellner (1980) conjecture that the confidence bands hold for all t up to the

last failure time, recently Chen and Ying (1996), have provided a counterexample to

the conjecture.

4. TESTING THE HYPOTHESIS OF EQUALITY OF DISTRIBUTIONS AGAINST THE

ALTERNATIVE OF STOCHASTIC ORDERING

For the purpose of testing the null hypothesis Ho : F(x) = G(x) for all x against the

alternative that HA : F(x) < G(x) for all x, with F{x) < G(x) for at least some x, it

is of interest to study the asymptotic behavior of the estimator Pmn defined by (2.2).

Only the case of complete data will be considered, as a parallel argument will yield
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similar results for the case of censored data by replacing the empirical distribution

functions by their Kaplan-Meier counterparts.

Because of part (z) in Theorem 2.2, it follows that for the case ^ —> oo, the process

{v/ra(Pmn — P), — oo < £ < 00} converges weakly to the Gaussian process W\ defined

in Theorem 2.2. Therefore it is sufficient to consider the case when ^—»c, 0 < c < o o .

For this purpose, write, as before,

- P), -^-V^{Pm -P) + ̂ ^MQn - Q)). (4.1)
Tπ -\~ n Tit •+• n

It follows immediately from (4.1), and the continuity of the map (x)+ = max(0, x) with

respect to the sup norm, that if ^ —> 0 then

yM(Pmn -P)^ W+, (4.2)

where Wx is the Gaussian process defined in Theorem 2.2. Thus, in these two cases,

Kolmogorov-Smirnov-type test statistics may be constructed to test the null hypothesis.

The asymptotic distributions of such statistics have been discussed, for example, in

Shorack and Wellner (1986).

It remains to consider the case where ^ —> c, with 0 < c < oo. In this case, consider

the sequence

- Pit)), MQn(t) ~ Q(t)), -OO < t < OO} (4.3)

and note that the "component" processes {\/rn(Pm(t) — P(t)),—oo < t < 00} and

{y/n(Qn(t) — Q(t)), —00 < t < 00} are independent, each converging weakly to the

Gaussian processes VFi* and W2 of Theorem 2.2 respectively. It follows from example

1.4.6 in van der Vart and Wellner (1996), that the sequence defined by (4.3) converges

weakly to the process (Wι(t), W2(t), —00 < t < 00) where W\ and W2 are as in Theorem

2.2 and are also independent.

Now, for / and g G D[—00,00], the set of all right-continuous functions with left

limits everywhere, the map (/, g) —• max(/, af + bg) is continuous with respect to

the norm defined by m a j φ u p . ^ ^ ^ |/(z) | , sup_ o o < x < o o \g(x)\) Therefore, by the

continuous mapping theorem for weak convergence,

Z ^-Wx + γ£fiW2). (4.4)
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5. SIMULATION WORK

Monte Carlo simulations were performed to study the finite-sample properties of

the estimators defined by (2.2) and (3.3). Figures 3.1-3.8 are representative of the

results obtained from the simulations. Each simulation consisted of 10,000 replications.

Figures 3.1-3.4 show the mean squared error functions for the case of censored and

uncensored data, while figures 3.5-3.8 show the bias functions. The distributions and

sample sizes used for the simulations are as follows:

Underlying Distributions Sample sizes Censoring Distributions

Figures 3.1 and 3.5: F(x) = 1 - e~

G{x) = 1 - e~

m = 10 H{x) = e~15

m = 20 H'(x) = e~15

n = 10 H*(x) = e"1-5

m = 10

n = 10

m = 20

n = 20

No censoring

No censoring

No censoring

No censoring

Figures 3.2 and 3.6: F(x) = 1 - e~x

G(x) = 1 - e~12x

Figures 3.3 and 3.7: F(x) = 1 - e~x

G(x) = 1 - e"1-2*

Figures 3.4 and 3.8: F(x) = 1 - e~x

G{x) = 1 - e-1-5*

In the plots, the Nonparametric Maximum Likelihood estimator is denoted by

NPMLE, Lo's estimator defined by Pmn=πiax(Pm,(5n) is denoted by Maxl, and the

estimator defined by (3.3) is denoted by Max2.

As can be seen from the representative results presented in Figures 3.1-3.8, the new

estimators seem to behave better than the estimator max(Pm, Qn) and the nonpara-

metric maximum likelihood estimator in terms of the mean squared error, in both

the censored and uncensored case. When dealing with bias, the estimator defined by

(2.2) behaves better than the NPMLE and max(Pm,ζ)n) in the uncensored case, and

the estimator defined by (3.3) behaves well in terms of squared error and bias when

compared to the NPMLE in the case of censored data.
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