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definition of this function has a new clause for each r

Reg(j,e,x,n+l) = Hr(Reg((i)vc,x,n)} if (ί)Q = 3 fc (ί)3 = r & (ί)2 = j.

This means that in the definition of T^ (f,x,y), #Γ appears only in contexts

H (X) where A" designates a number appearing in a register during the

P-computation from ί and hence < y. Thus we may replace H (X) by

If Φ is //p...,// , we write Φ(z) for HJz),...,H (z). The above can be

summarized as follows: there is a recursive relation TV _ such that
Λ , Til

(1) Γφ(e,j,y) -

Thus if {e} (ί) 2 2 with computation number y, and Φ(y) = Φ'(y), then

13. The Arithmetical Hierarchy

We are now going to study the effect of using unbounded quantifiers in

definitions of relations. From now on, we agree that n designates a non— zero

number. The results of this section are due to Kleene.

A relation R is arithmetical if it has an explicit definition

(1) RCx)~QyΓ..QynPCx,yΓ...,yn)

where each Qy^ is either 3w. or V y . and P is recursive. We call βy,...βyn the

prefix and P(x,y^,...,y^ the matrix of the definition. We are chiefly interested

in the prefix, since it measures how far the definition is from being recursive.

We shall first see how prefixes can be simplified. As z runs through all

number, (Z)^(Z) runs through all pairs of numbers. It follows that

and

Using these equivalences, we can replace two adjacent universal quantifiers in a

prefix by a single such quantifier, and similarly for existential quantifiers. For

example, a definition
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R(x) «

can be replaced by

Of course, the matrix has changed; but it is still a recursive function of its

variables because (W)Q and (w)^ are recursive functions of w. This sort of

simplification of a prefix is called contraction of quantifiers.

A prefix is alternating if it does not contain two successive existential

quantifiers or two successive universal quantifiers. A prefix is Π if it is

alternating, has n quantifiers, and begins with V. A prefix is Σj! if it is

alternating, has n quantifiers, and begins with 3. A relation is Π if it has an

explicit definition with a Π prefix and a recursive matrix; similarly for Σ . A
71 71

relation is Δ^ if it is both ΓΓ and Σ .̂ We sometimes use IF for the class of ΓΓ

relations; similarly for ΣW and Δ^.

13.1. PROPOSITION. Every arithmetical relation is Π%r Σ^for some n.

Proof. By contraction of quantifiers. D

13.2. PROPOSITION. If R is Π^ or Σ^, then R is Δ? for every k > n. If R is
71 71 K

recursive, then R is Δ^ for all n.

Proof. By adding superfluous quantifiers. For example, suppose

that R is IK; say R( x) <-* VyBzP(x,y,z). To show that R is Δ^, we note that

<-* 3vHylzP(x,y,z). Ώ

A relation P is many-one reducible, or simply reducible, to a relation Q if

it has a definition

P® ~ ttFfi),...^))

where each F is total and recursive. If P is reducible to Q and Q is recursive,

then P is recursive. From this we obtain the following result.

13.3. PROPOSITION. If P is reducible to Q and Q is Π^, then P is Π .̂ The

same holds with Σ^ or Δ^ in place of IF. D
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The contraction . formulas show that R and <β> are reducible to one

another; so R is Π° iff <β> is Π^, and similarly for Σ*J and Δ .
71 7* 71 ιl

We now consider the effect of applying propositions! connectives to

arithmetical relations. The key tools are the prenex rules, which are certain

rules for bringing quantifiers to the front of an expression. They are

QxR(x)V P*->Qx(R(x)V P),

P & QxR(x) «-» Qx(P & β(x)),

where Q is either V or 3 and Q' is 3 if Q is V and V if Q is 3. These rules are well

known and easily seen to be valid.

From the first rule (and the fact that -» is a recursive symbol) we see that

the negation of a Γr relation is Σ^ and the negation of a Σ^ relation is Π^. For

example, to see that the negation of a IL relation is Σ«, note that by the prenex

rules

The next four rules together with contraction of quantifiers show that the

disjunction and conjunction of two Π^ relations is Π ;̂ and similarly for Σ^. For

example, to treat the disjunction of two ΓK relations, observe that by the prenex

rules

V

and then use contraction of quantifiers.

Now consider a definition R(x) <-» VyP(5,y) where P is arithmetical. By

replacing P in this definition by the right side of the definition of P and then

using contraction of quantifiers if possible, we see that if P is Π ,̂ then R is Π°;

and if P is ΣW, then R is Π^ j. A similar result holds if Vy is replaced by 3y.

Now we consider the effect of bounded quantifiers. We need the following
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equivalences:

(Vy < x)VzR(x,y,z) ~ W(V2/ < x)R(x,y,z),

(3y < j)

(3y < x)VzR(x,y,z] «-* V*(3y < x}R(x,y,(z)y).

The first two of these are obvious. Both sides of the third says that there is a

sequence ZQ, ..., z , such that R(x,y,z ) for all y < x. Now replace R by -*R in

the third equivalence, bring the negation signs to the front by means of the

prenex rules, and then drop the negations signs from the front of both sides of the

equivalence. We then obtain the fourth equivalence.

Now consider a definition R(x,z) <—> (Qy < z)P(~x,y,z) where P is

arithmetical. Substitute the right side of the definition of P for P. We can

then apply the above equivalences to bring all of the unbounded quantifiers to

the left of (Qy < z). Since bounded quantifiers are recursive, we may now

consider (Qy < z) as part of the matrix. It follows that if P is Γr, then so is Λ;

and similarly for Σ .

We can summarize our results in the following table, which gives the

classification of various combinations of P and Q in terms of the classifications of

P and Q.

P,Q -iP PvQ PfeQ VzP 3xP (Qx<y)P

(The last row of the table follows from the first two rows.) To treat the case in

which P and Q do not have the same classification, we use 13.2. For example, if

P is Γu and Q is Σ«, then P and Q are Δ^, and we can use the last row of the

table. To treat -» and «-*, we replace X -» y by -.X V V and X *-> Y by (X -* V) &

(V-» Λ). Every recursion theorist should learn this table.
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The classification of the arithmetical relations into Ir and Σ^ relations is
Ti 71

called the arithmetical hierarchy. We have not yet shown that the classes in

this hierarchy are distinct.

Let Φ be a class of fc-ary relations. We say that a (fc+l)-ary relation Q

enumerates Φ if for every R in Φ, there is a 6 such that R(~x) <— > Q(i,e) for all x.

13.4. ARITHMETICAL ENUMERATION THEOREM. For every n and k, there is a

(fc+l)-ary Γr relation which enumerates the class of £-ary Π relations; and
71 71

similarly with Σ^ for Π^.
TI 71

Proof. We suppose that n = 2; other values of n are similar.

Suppose that R is IK; say fl(5) <-> V]βzP(x,y,z) where P is recursive. Let e be

an index of \p Then

If we let 0(5, e) be the right side of this equation, then Q is ΓL by 8.4 and the

table; so Q is the desired enumerating relation for U^. By the table, ~>Q is the

desired enumerating relation for Σ!>. α

Suppose that R is a binary relation which enumerates the class Φ of sets.

We can use the diagonal method to define a set A which is not in Φ. Since we

want A(x) to be different from R(x,e) when x = e, we set A(e) «-» -<R(e,e). To

put it another way, let D be the diagonal set defined by D(e) <-> Λ(e,e). Then if

R enumerates Φ, -«D is not in Φ.

13.5. ARITHMETICAL HIERARCHY THEOREM. For each w, there is a Π^ unary

relation which is not Σ^, hence not IT? or Σ? for any k < n. The same holds

with Π and Σ interchanged.TI TL

Proof. We prove the first half; the second half is similar. Let P be

a binary Π^ relation which enumerates the class of unary Γr relations, and define

D(e) <— > P(e,e). By 13.3, D is Π1^. By the above discussion, -»D is not Π^; so by
71 71

the table, D is not Σ .̂ By 13.2, D is not Π^ or Σ^ for any k < n. o
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The Arithmetical Hierarchy Theorem shows that there are no inclusions

among the classes Γr and Σ^ other than those given by 13.2.
71 71

The Arithmetical Enumeration Theorem is false for Δ relations; for if it

were true, we could use the proof of the Arithmetical Hierarchy Theorem to show

that there is a Δ relation which is not Δ^.

Let Φ be a set of total functions. If Q is any concept defined in terms of

recursive functions, we can obtain a definition of Q in Φ or relative to Φ by

replacing recursive everywhere in the definition of Q by recursive in Φ. For

example, R is arithmetical in Φ if it has a definition (1) where P is recursive in Φ;

and R is Π in Φ if it has such a definition in which the prefix is Π . We shall

assume that this is done for all past and future definitions.

Now let us consider how the results of this section extend to the

relativized case. Up to the Enumeration Theorem, everything extends without

problems. The rest extends to finite Φ but not to arbitrary Φ. For example, if

Φ is the set of all reals, then every unary relation is recursive in Φ and hence Π

and Σ in Φ for all n. Thus the Hierarchy Theorem fails. Since the Hierarchy

Theorem is a consequence of the Enumeration Theorem, the Enumeration

Theorem also fails.

14. Recursively Enumerable Relations

A relation R is semi computable if there is an algorithm which, when

applied to the inputs x, gives an output iff Λ(5). If F is the function computed

by the algorithm, then the algorithm applied to 3 gives an output iff 1 is in the

domain of F. Hence R is semicomputable iff it is the domain of a computable

function.

As an example, let A be the set of n such that xn + yn = zn holds for

some positive integers j, y, and z. Then A is semicomputable; the algorithm

with input n tests each triple (x,y,z) in turn to see if xn + yn = zn. On the other


