definition of this function has a new clause for each r.

$$
\operatorname{Reg}(j, e, x, n+1)=H_{r}\left(\operatorname{Reg}\left((i)_{1}, \epsilon, x, n\right)\right) \text { if }(i)_{0}=3 \&(i)_{3}=r \&(i)_{2}=j .
$$

This means that in the definition of $T_{k}{ }^{\Phi}(e, \vec{x}, y), H_{r}$ appears only in contexts $H_{r}(X)$ where X designates a number appearing in a register during the P-computation from \approx and hence $<y$. Thus we may replace $H_{r}(X)$ by $\left.{ }^{\left(H_{r}(y)\right.}\right)_{X}$.

If Φ is H_{1}, \ldots, H_{m}, we write $\bar{\Phi}(z)$ for $\overline{H_{1}}(z), \ldots, \overline{H_{m}}(z)$. The above can be summarized as follows: there is a recursive relation $T_{k, m}$ such that

$$
\begin{equation*}
T_{k}^{\Phi}(e, \vec{x}, y) \mapsto T_{k, m}(e, \vec{x}, y, \bar{\Phi}(y)) \tag{1}
\end{equation*}
$$

Thus if $\{e\}^{\Phi}\left(\frac{\star}{}\right) \simeq z$ with computation number y, and $\bar{\Phi}(y)=\overline{\Phi^{\prime}}(y)$, then $\{e\}^{\Phi^{\prime}}\left({ }^{\prime}\right) \simeq z$.

13. The Arithmetical Hierarchy

We are now going to study the effect of using unbounded quantifiers in definitions of relations. From now on, we agree that n designates a non-zero number. The results of this section are due to Kleene.

A relation R is arithmetical if it has an explicit definition

$$
\begin{equation*}
R(\vec{x}) \mapsto Q y_{1} \ldots Q y_{n} P\left(\vec{x}, y_{1}, \ldots, y_{n}\right) \tag{1}
\end{equation*}
$$

where each $\mathcal{Q} y_{i}$ is either $\exists y_{i}$ or $\forall y_{i}$ and P is recursive. We call $\mathcal{Q} y_{1} \ldots Q y_{n}$ the prefix and $P\left(\vec{x}, y_{1}, \ldots, y_{n}\right)$ the matrix of the definition. We are chiefly interested in the prefix, since it measures how far the definition is from being recursive.

We shall first see how prefixes can be simplified. As z runs through all number, $(z)_{0},(z)_{1}$ runs through all pairs of numbers. It follows that
and

$$
\begin{aligned}
& \forall x \forall y R(x, y) \mapsto \forall z R\left((z)_{0},(z)_{1}\right) \\
& \exists x \exists y R(x, y) \hookleftarrow \exists z R\left((z)_{0},(z)_{1}\right) .
\end{aligned}
$$

Using these equivalences, we can replace two adjacent universal quantifiers in a prefix by a single such quantifier, and similarly for existential quantifiers. For example, a definition

$$
R(x) \mapsto \forall y \forall z \exists v P(x, y, z, v)
$$

can be replaced by

$$
R(x) \mapsto \forall w \exists v P\left(x,(w)_{0},(w)_{1}, v\right) .
$$

Of course, the matrix has changed; but it is still a recursive function of its variables because $(w)_{0}$ and $(w)_{1}$ are recursive functions of w. This sort of simplification of a prefix is called contraction of quantifiers.

A prefix is alternating if it does not contain two successive existential quantifiers or two successive universal quantifiers. A prefix is Π_{n}^{0} if it is alternating, has n quantifiers, and begins with \forall. A prefix is Σ_{n}^{0} if it is alternating, has n quantifiers, and begins with \exists. A relation is Π_{n}^{0} if it has an explicit definition with a Π_{n}^{0} prefix and a recursive matrix; similarly for Σ_{n}^{0}. A relation is Δ_{n}^{0} if it is both Π_{n}^{0} and Σ_{n}^{0}. We sometimes use Π_{n}^{0} for the class of Π_{n}^{0} relations; similarly for Σ_{n}^{0} and Δ_{n}^{0}.
13.1. Proposition. Every arithmetical relation is Π_{n}^{0} or Σ_{n}^{0} for some n.

Proof. By contraction of quantifiers. \square
13.2. Proposition. If R is Π_{n}^{0} or Σ_{n}^{0}, then R is Δ_{k}^{0} for every $k>n$. If R is recursive, then R is Δ_{n}^{0} for all n.

Proof. By adding superfluous quantifiers. For example, suppose that R is Π_{2}^{0}; say $R(x) \hookrightarrow \forall y \exists z P(x, y, z)$. To show that R is Δ_{3}^{0}, we note that

$$
\begin{aligned}
R(x) \mapsto & \forall y \exists z \forall w P(x, y, z) \\
& \mapsto \exists w \forall y \exists z P(x, y, z) . \square
\end{aligned}
$$

A relation P is many-one reducible, or simply reducible, to a relation Q if it has a definition

$$
P(\vec{x}) \mapsto Q\left(F_{1}(\vec{x}), \ldots, F_{n}(\vec{x})\right)
$$

where each F_{i} is total and recursive. If P is reducible to Q and Q is recursive, then P is recursive. From this we obtain the following result.
13.3. Proposition. If P is reducible to Q and Q is Π_{n}^{0}, then P is Π_{n}^{0}. The same holds with Σ_{n}^{0} or Δ_{n}^{0} in place of Π_{n}^{0}. 口

The contraction formulas show that R and $\langle R\rangle$ are reducible to one another; so R is Π_{n}^{0} iff $<R>$ is Π_{n}^{0}, and similarly for Σ_{n}^{0} and Δ_{n}^{0}.

We now consider the effect of applying propositional connectives to arithmetical relations. The key tools are the prenex rules, which are certain rules for bringing quantifiers to the front of an expression. They are

$$
\begin{aligned}
& \neg Q x R(x) \mapsto Q^{\prime} x \neg(x), \\
& \mathcal{Q} x R(x) \vee P \mapsto \mathcal{Q}_{x}(R(x) \vee P), \\
& P \vee \mathcal{Q} x R(x) \mapsto \mathcal{Q}_{x}(P \vee R(x)), \\
& \mathcal{Q} x R(x) \& P \mapsto \mathcal{Q}_{x}(R(x) \& P), \\
& P \& Q_{x R}(x) \mapsto \mathcal{Q}_{x}(P \& R(x)),
\end{aligned}
$$

where \mathcal{Q} is either \forall or \exists and \mathcal{Q}^{\prime} is \exists if \mathcal{Q} is \forall and \forall if \mathcal{Q} is \exists. These rules are well known and easily seen to be valid.

From the first rule (and the fact that \neg is a recursive symbol) we see that the negation of a Π_{n}^{0} relation is Σ_{n}^{0} and the negation of a Σ_{n}^{0} relation is Π_{n}^{0}. For example, to see that the negation of a Π_{2}^{0} relation is Σ_{2}^{0}, note that by the prenex rules

$$
\neg \forall x \exists y P \mapsto \exists x \forall y\ulcorner P .
$$

The next four rules together with contraction of quantifiers show that the disjunction and conjunction of two Π_{n}^{0} relations is $\Pi_{n^{0}}^{0}$; and similarly for $\Sigma_{n^{0}}^{0}$. For example, to treat the disjunction of two Π_{2}^{0} relations, observe that by the prenex rules

$$
\forall x \exists y P \vee \forall z \exists w Q \mapsto \forall z \forall z \exists y \exists w(P \vee Q)
$$

and then use contraction of quantifiers.
Now consider a definition $R(\vec{x}) \mapsto \forall y P(\vec{x}, y)$ where P is arithmetical. By replacing P in this definition by the right side of the definition of P and then using contraction of quantifiers if possible, we see that if P is Π_{n}^{0}, then R is Π_{n}^{0}; and if P is Σ_{n}^{0}, then R is Π_{n+1}^{0}. A similar result holds if $\forall y$ is replaced by $\exists y$.

Now we consider the effect of bounded quantifiers. We need the following
equivalences:

$$
\begin{aligned}
& (\forall y<x) \forall z R(x, y, z) \mapsto \forall z(\forall y<x) R(x, y, z), \\
& (\exists y<x) \exists z R(x, y, z) \mapsto \exists z(\exists y<x) R(x, y, z), \\
& (\forall y<x) \exists z R(x, y, z) \mapsto \exists z(\forall y<x) R(x, y,(z) y), \\
& (\exists y<x) \forall z R(x, y, z) \mapsto \forall z(\exists y<x) R\left(x, y,(z)_{y}\right) .
\end{aligned}
$$

The first two of these are obvious. Both sides of the third says that there is a sequence z_{0}, \ldots, z_{x-1} such that $R\left(x, y, z_{y}\right)$ for all $y<x$. Now replace R by $\neg R$ in the third equivalence, bring the negation signs to the front by means of the prenex rules, and then drop the negations signs from the front of both sides of the equivalence. We then obtain the fourth equivalence.

Now consider a definition $R(\vec{x}, z) \mapsto(Q y<z) P(\vec{x}, y, z)$ where P is arithmetical. Substitute the right side of the definition of P for P. We can then apply the above equivalences to bring all of the unbounded quantifiers to the left of $(Q y<z)$. Since bounded quantifiers are recursive, we may now consider $\left(Q_{y}<z\right)$ as part of the matrix. It follows that if P is Π_{n}^{0}, then so is R; and similarly for Σ_{n}^{0}.

We can summarize our results in the following table, which gives the classification of various combinations of P and Q in terms of the classifications of P and Q.

P, Q	$\neg P$	$P \vee Q$	$P \& Q$	$\forall x P$	$\exists x P$	$(Q x<y) P$
Π_{n}^{0}	Σ_{n}^{0}	Π_{n}^{0}	Π_{n}^{0}	Π_{n}^{0}	Σ_{n+1}^{0}	Π_{n}^{0}
Σ_{n}^{0}	Π_{n}^{0}	Σ_{n}^{0}	Σ_{n}^{0}	Π_{n+1}^{0}	Σ_{n}^{0}	Σ_{n}^{0}
Δ_{n}^{0}	Δ_{n}^{0}	Δ_{n}^{0}	Δ_{n}^{0}	Π_{n}^{0}	Σ_{n}^{0}	Δ_{n}^{0}

(The last row of the table follows from the first two rows.) To treat the case in which P and Q do not have the same classification, we use 13.2. For example, if P is Π_{2}^{0} and Q is Σ_{2}^{0}, then P and Q are Δ_{3}^{0}, and we can use the last row of the table. To treat \rightarrow and \mapsto, we replace $X \rightarrow Y$ by $\neg X \vee Y$ and $X \mapsto Y$ by $(X \rightarrow Y) \&$ $(Y \rightarrow X)$. Every recursion theorist should learn this table.

The classification of the arithmetical relations into Π_{n}^{0} and Σ_{n}^{0} relations is called the arithmetical hierarchy. We have not yet shown that the classes in this hierarchy are distinct.

Let Φ be a class of k-ary relations. We say that a $(k+1)$-ary relation Q enumerates Φ if for every R in Φ, there is a e such that $R(\vec{x}) \mapsto Q(\vec{x}, e)$ for all \vec{x}.
13.4. Arithmetical Enumeration Theorem. For every n and k, there is a $(k+1)$-ary Π_{n}^{0} relation which enumerates the class of k-ary Π_{n}^{0} relations; and similarly with Σ_{n}^{0} for Π_{n}^{0}.

Proof. We suppose that $n=2$; other values of n are similar. Suppose that R is Π_{2}^{0}; say $R(\vec{x}) \mapsto \forall y \exists z P(\vec{x}, y, z)$ where P is recursive. Let e be an index of χ_{P}. Then

$$
\begin{aligned}
R(\vec{x}) & \mapsto \forall y \exists z(\{e\}(\vec{x}, y, z) \simeq 0) \\
& \mapsto \forall y \exists z \exists s\left(\{e\}_{S}(\vec{x}, y, z) \simeq 0\right) .
\end{aligned}
$$

If we let $Q(\vec{x}, \varepsilon)$ be the right side of this equation, then Q is Π_{2}^{0} by 8.4 and the table; so Q is the desired enumerating relation for Π_{2}^{0}. By the table, $\neg Q$ is the desired enumerating relation for Σ_{2}^{0}. 口

Suppose that R is a binary relation which enumerates the class Φ of sets. We can use the diagonal method to define a set A which is not in Φ. Since we want $A(x)$ to be different from $R(x, e)$ when $x=e$, we set $A(e) \mapsto \neg R(e, e)$. To put it another way, let D be the diagonal set defined by $D(e) \mapsto R(e, e)$. Then if R enumerates $\Phi, \neg D$ is not in Φ.
13.5. Arithmetical Hierarchy Theorem. For each n, there is a Π_{n}^{0} unary relation which is not Σ_{n}^{0}, hence not Π_{k}^{0} or Σ_{k}^{0} for any $k<n$. The same holds with Π_{n}^{0} and Σ_{n}^{0} interchanged.

Proof. We prove the first half; the second half is similar. Let P be a binary Π_{n}^{0} relation which enumerates the class of unary Π_{n}^{0} relations, and define $D(e) \hookrightarrow P(e, e) . \quad$ By $13.3, D$ is $\Pi_{n}^{0} . \quad$ By the above discussion, $\neg D$ is not Π_{n}^{0}; so by the table, D is not Σ_{n}^{0}. By $13.2, D$ is not Π_{k}^{0} or Σ_{k}^{0} for any $k<n$. .

The Arithmetical Hierarchy Theorem shows that there are no inclusions among the classes Π_{n}^{0} and Σ_{n}^{0} other than those given by 13.2.

The Arithmetical Enumeration Theorem is false for Δ_{n}^{0} relations; for if it were true, we could use the proof of the Arithmetical Hierarchy Theorem to show that there is a Δ_{n}^{0} relation which is not Δ_{n}^{0}.

Let Φ be a set of total functions. If Q is any concept defined in terms of recursive functions, we can obtain a definition of Q in Φ or relative to Φ by replacing recursive everywhere in the definition of Q by recursive in Φ. For example, R is arithmetical in Φ if it has a definition (1) where P is recursive in Φ; and R is Π_{n}^{0} in Φ if it has such a definition in which the prefix is Π_{n}^{0}. We shall assume that this is done for all past and future definitions.

Now let us consider how the results of this section extend to the relativized case. Up to the Enumeration Theorem, everything extends without problems. The rest extends to finite Φ but not to arbitrary Φ. For example, if Φ is the set of all reals, then every unary relation is recursive in Φ and hence Π_{n}^{0} and Σ_{n}^{0} in Φ for all n. Thus the Hierarchy Theorem fails. Since the Hierarchy Theorem is a consequence of the Enumeration Theorem, the Enumeration Theorem also fails.

14. Recursively Enumerable Relations

A relation R is semicomputable if there is an algorithm which, when applied to the inputs \vec{x}, gives an output iff $R(\vec{x})$. If F is the function computed by the algorithm, then the algorithm applied to \vec{x} gives an output iff \neq is in the domain of F. Hence R is semicomputable iff it is the domain of a computable function.

As an example, let A be the set of n such that $x^{n}+y^{n}=z^{n}$ holds for some positive integers x, y, and z. Then A is semicomputable; the algorithm with input n tests each triple (x, y, z) in turn to see if $x^{n}+y^{n}=z^{n}$. On the other

