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L2 HARMONIC 1-FORMS ON COMPLETE SUBMANIFOLDS

IN EUCLIDEAN SPACE

Hai-Ping Fu and Zhen-Qi Li

Abstract

Let Mn ðnb 3Þ be an n-dimensional complete noncompact oriented submanifold in

an ðnþ pÞ-dimensional Euclidean space Rnþp with finite total mean curvature, i.e,Ð
M
jHjn < y, where H is the mean curvature vector of M. Then we prove that each

end of M must be non-parabolic. Denote by f the traceless second fundamental form

of M. We also prove that if
Ð
M
jfjn < CðnÞ, where CðnÞ is an an explicit positive

constant, then there are no nontrivial L2 harmonic 1-forms on M and the first de

Rham’s cohomology group with compact support of M is trivial. As corollaries, such a

submanifold has only one end. This implies that such a minimal submanifold is plane.

1. Introduction

Let us recall that the well-known Berstein’s theorem asserts that an entire
minimal graph Mn HRnþ1 must be linear if na 7. Moreover, the dimension
restriction is necessary as indicated by the examples of Bombieri, De Giorgi and
Giusti. Because of the stability of minimal entire graphs, one is naturally led to
the generalization of the classical Bernstein theorem to the question of asking
whether all stable minimal hypersurfaces in Rnþ1 are hyperplanes when na 7.
In the case when n ¼ 2, this problem was solved independently in [6] and [7].
For higher dimension, this problem is still open. However, Cao-Shen-Zhu
proved a topological obstruction for complete immersed stable minimal hyper-
surface Mn of Rnþ1 with nb 3 that M must have only one end [2]. Its strategy
was to utilize a result of Schoen-Yau asserting that a complete stable minimal
hypersurface of Rnþ1 can not admit a non-constant harmonic function with
finite Dirichlet integral [15]. Assuming that Mn has more than one end, they
constructed a non-constant harmonic function with finite Dirichlet integral in
[2]. According to the work of Li-Tam [11], Li-Wang modified this proof to show
that each end of a complete immersed minimal submanifold must be non-
parabolic in [12]. Due to this connection with harmonic functions, this allows
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one to estimate the number of ends of the above hypersurface by estimating the
dimension of the space of bounded harmonic functions with finite Dirichlet
integral [11]. Since the exterior di¤erential form of harmonic function is an L2

harmonic 1-form, the theory of L2 harmonic forms give one to study minimal
submanifolds in Rnþ1 [12, 19].

Let Mn be an n-dimensional complete oriented submanifold isometrically
immersed in an ðnþ pÞ-dimensional Euclidean space Rnþp. Fix a point x A M
and choose a local orthonormal frame fe1; e2; . . . ; enþpg such that fe1; e2; . . . ; eng
are tangent fields. For each a, nþ 1a aa nþ p, define a linear map Aa :
TxM ! TxM by

hAaX ;Yi ¼ h~‘‘XY ; eai;

where X , Y are tangent fields and ~‘‘ denotes the Euclidean connection on Rnþp.
We denote by H the mean curvature vector of M, i.e.,

H ¼ 1

n

Xnþp

a¼nþ1

ðTr AaÞea:

For each a, nþ 1a aa nþ p, define a linear map fa : TxM ! TxM by

hfaX ;Yi ¼ hX ;YihH; eai� hAaX ;Yi;

and a bilinear map f : TxM � TxM ! TxM
? by

fðX ;YÞ ¼
Xnþp

a¼nþ1

hfaX ;Yiea:

It is easy to see that the tensor f is traceless. Denote by A the second
fundamental form of M. We have

jAj2 ¼ jfj2 þ njHj2:
By Ho¤man and Spruck’s Sobolev inequality, there exists an explicit positive
constant SðnÞ depending only on the dimension n such thatð

M

j f jn=ðn�1Þ
� �ðn�1Þ=n

aSðnÞ
ð
M

ðj‘f j þ njHj j f jÞ; Ef A C1
0 ðMÞ:ð1:1Þ

Ð
M
jfjn � 1 and

Ð
M
jHjn � 1 are called the total curvature of M and the total mean

curvature of M respectively. Let H 1ðL2ðMÞÞ denote the space of L2 harmonic
1-forms on M, H 1

0 ðMÞ denote the first de Rham’s cohomology group with
compact support of M and D denote the Laplacian on M.

In [19], Yun proved that if Mn ðnb 3Þ is a complete oriented minimal
hypersurface in Rnþ1 and ifð

M

jAjn < n� 2

2ðn� 1ÞSðnÞ

� �n
;
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then there are no L2 harmonic 1-forms on M, and M has only one end. When
Mn ðnb 3Þ is a complete oriented immersed minimal submanifold in Rnþp, Ni
showed that if ð

M

jAjn <
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
n� 2

2ðn� 1ÞSðnÞ

 !n
;

then M has only one end in [14]. Seo improved the upper bound of total scalar
curvature and proved if M has the same upper bound of total scalar curvature,
there is no nontrivial L2 harmonic 1-form on M in [16]. In [8], the first author
and Xu studied complete noncompact oriented submanifolds with bounded total
curvature and bounded total mean curvature in Rnþp. In this paper, following
the work due to Li-Wang and Yun, we study complete noncompact oriented
submanifolds with bounded total curvature and finite total mean curvature in
Rnþp. Throughout this article, we always assume that M is a complete, non-
compact, connected Riemannian manifold without boundary. In this case, we
will simply say that M is a complete manifold.

Our main result in this paper is stated as follows:

Theorem 1.1. Let Mn ðnb 3Þ be an oriented complete submanifold with
finite total mean curvature vector in Rnþp. Then there exists an explicit positive
constant CðnÞ such that if ð

M

jfjn < CðnÞ;

then H 1ðL2ðMÞÞ ¼ 0, and M must have only one end. Moreover, H 1
0 ðMÞ ¼ 0.

2. Preliminary

Let Mn ðnb 3Þ be an oriented complete immersed submanifold with mean
curvature vector H in Rnþp.

If
Ð
M
jHjn < y, then there exists a compact subset DHM such that

ð
MnD

jHjn
 !1=n

a
1

anSðnÞ ; a > 1:

Thus

nSðnÞ
ð
MnD

jHj j f ja nSðnÞ
ð
MnD

jHjn
 !1=n ð

MnD
j f jn=ðn�1Þ

 !ðn�1Þ=n

a
1

a

ð
MnD

j f jn=ðn�1Þ
 !ðn�1Þ=n

:
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Substituting the above inequality into (1.1), we haveð
MnD

j f jn=ðn�1Þ
 !ðn�1Þ=n

a
a

a� 1
SðnÞ

ð
MnD

j‘f j; Ef A C1
0 ðMnDÞ:ð2:1Þ

Putting f ¼ g2ðn�1Þ=ðn�2Þ with g A C1
0 ðMnDÞ in (2.1), we obtainð

MnD
jgj2n=ðn�2Þ

 !ðn�2Þ=n

a 4
a2ðn� 1Þ2

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

ð
MnD

j‘gj2:ð2:2Þ

According to [4], from (2.2) we haveð
M

jgj2n=ðn�2Þ
� �ðn�2Þ=n

a 4
a2ðn� 1Þ2

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

ð
M

j‘gj2; Eg A Cy
0 ðMÞ:ð2:3Þ

If H ¼ 0, H. Muto [13] improved on Ho¤man and Spruck’s Sobolev
inequality as follows:ð

M

j f j2n=ðn�2Þ
� �ðn�2Þ=n

a
96

p2

ð
M

j‘f j2; Ef A C1
0 ðMÞ:ð2:4Þ

In this paper, we will discuss the number of ends of submanifolds. Now we
state some definitions and well-known theorems.

Definition 2.1. Let DHM be a compact subset of M. An end E of M
with respect to D is a connected unbounded component of MnD. When we say
that E is an end, it is implicitly assumed that E is an end with respect to some
compact subset DHM.

Definition 2.2. A manifold is said to be parabolic if it does not admit a
positive Green’s function. Conversely, a nonparabolic manifold is one which
admits a positive Green’s function. An end E of a manifold is said to be
nonparabolic if it admits a positive Green’s function with Neumann boundary
condition on qE. Otherwise, it is said to be parabolic.

Theorem 2.3 ([11]). Let M be a complete manifold. Let H0
D ðMÞ denote the

space of bounded harmonic functions with finite Dirichlet integral. Then the
number of non-parabolic ends of M is at most the dimension of H0

D ðMÞ.

Theorem 2.4 ([12]). Let E be an end of a complete manifold. Suppose for
some nb 1, E satisfies a Sobolev type inequality of the formð

E

j f j2n
� �1=n

aC

ð
E

j‘f j2; Ef A C1
0 ðEÞ:

then E must either have finite volume or be non-parabolic.
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Proposition 2.5. Let Mn ðnb 3Þ be a complete manifold. If there exists a
constant CðnÞ > 0 depending only on n such thatð

M

j f j2n=ðn�2Þ
� �ðn�2Þ=n

aCðnÞ
ð
M

j‘f j2; Ef A Cy
0 ðMÞ:

then the volume of each end E of M is infinite, and each end of M is non-parabolic.

Proof. By the definition of end, every end E of M is contained in MnD,
then ð

E

j f j2n=ðn�2Þ
� �ðn�2Þ=n

aCðnÞ
ð
E

j‘f j2; Ef A Cy
0 ðEÞ:ð2:5Þ

According to proposition 2.4 in [3], we know the sobolev inequality (2.5) implies
a uniform lower bound on the volume of geodesic ball:

Ex A M; Erb 0 : vol BrðxÞbC 0ðnÞrn

for some explicit positive constant C 0ðnÞ depending only on n.
Let R > 0 large enough so that DHBRðpÞ. For k A N we choose

x A qBRþð2kþ1ÞeðpÞVE and consider g : ½0;Rþ ð2k þ 1Þe� ! M a minimizing geo-
desic from p to x. Necessary for all t A ðR;Rþ ð2k þ 1Þe� we have gðtÞ A E;
moreover for l ¼ 0; 1; . . . ; k, the open geodesic ball BeðRþ ð2l þ 1ÞeÞ are in E and
disjiont. Hence

vol Eb
Xk
l¼0

vol BeðRþ ð2l þ 1ÞeÞb ðk þ 1ÞC 0ðnÞen:

Therefore the volume of every end E of M is infinite. By Theorem 2.4 and (2.5),
every end of M is non-parabolic. r

By (2.3) and Proposition 2.5, we get

Corollary 2.6. Let Mn ðnb 3Þ be an oriented complete submanifold with
finite total mean curvature in Rnþp. Then each end of M must be non-parabolic.

Remark 2.7. It is showed that each end of the oriented complete minimal
submanifold Mn ðnb 3Þ in Rnþp must be non-parabolic in [2, 10].

3. Proof of the theorems

For each o A H 1ðL2ðMÞÞ, we have the following well-known Bochner
formula.

Djoj2 ¼ 2ðj‘oj2 þ Ricðo;oÞÞ:ð3:1Þ
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On the other hand, we have

Djoj2 ¼ 2ðjojDjoj þ j‘joj j2Þ:ð3:2Þ

From (3.1), (3.2) and the generalized Kato’s inequality
n

n� 1
j‘joj j2 a j‘oj2, we

obtain

jojDjojbRicðo;oÞ þ 1

n� 1
j‘joj j2:ð3:3Þ

In [18], Shiohama and Xu proved that the following estimate holds for Ricci
curvature of a submanifold M in the simply connected space form NnþpðcÞ with
constant sectional curvature c.

Ricb
n� 1

n
ncþ 2njHj2 � nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p jHj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj2 � njHj2

q
� jAj2

 !
:

Applying the above inequality to the traceless second fundamental form jfj and
using the identity jAj2 ¼ jfj2 þ njHj2, we get

Ricb ðn� 1Þcþ ðn� 1ÞjHj2 � ðn� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
jfj jHj

n
� ðn� 1Þjfj2

n
:ð3:4Þ

Substituting (3.4) into (3.3), we obtain

jojDjojb 1

n� 1
j‘joj j2 þ ðn� 1Þcjoj2ð3:5Þ

� ðn� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
jfj jHj

n
þ ðn� 1Þjfj2

n
� ðn� 1ÞjHj2

" #
joj2:

Theorem 3.1. Let Mn ðnb 3Þ be an oriented complete submanifold with
finite total mean curvature in Rnþp. Ifð

M

jfjn < ðn� 2Þ
ðn� 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
SðnÞ

 !n
;

then H 1ðL2ðMÞÞ ¼ 0, moreover H 1
0 ðMÞ ¼ 0.

Proof. Let o A H 1ðL2ðMÞÞ. Fixing a point p A M and for r > 0, we
choose a C1 cut-o¤ function h satisfying 0a ha 1, h1 1 on BrðpÞHM,

h1 0 on MnB2rðpÞ, and j‘hja 1

r
on B2rðpÞnBrðpÞHM. Multiplying (3.5) by

h2 and integrating by parts over M, we get
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0a

ð
M

h2jojDjoj � 1

n� 1
h2j‘joj j2

� �
ð3:6Þ

þ
ð
M

h2
ðn� 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
jfj jHj

n
þ ðn� 1Þjfj2

n
� ðn� 1ÞjHj2

 !
joj2

¼ �2

ð
M

hh‘h;‘jojijoj � n

n� 1

ð
M

h2j‘joj j2 þ n� 1

n

ð
M

h2jfj2joj2

þ ðn� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
n

ð
M

jfj jHjh2joj2 � ðn� 1Þ
ð
M

jHj2h2joj2

a�2

ð
M

hh‘h;‘jojijoj � n

n� 1

ð
M

h2j‘joj j2 þ n

4

ð
M

h2jfj2joj2:

On the other hand, it follows from (2.3) and Hölder inequality that

n

4

ð
M

h2jfj2joj2 a n

4

ð
M

jfjn
� �2=n ð

M

ðhjojÞ2n=ðn�2Þ
� �ðn�2Þ=n

ð3:7Þ

a
na2ðn� 1Þ2f0

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

ð
M

j‘ðhjojÞj2

¼ na2ðn� 1Þ2f0
ða� 1Þ2ðn� 2Þ2

S2ðnÞ
ð
M

ðjoj2j‘hj2 þ h2j‘joj j2Þ

þ na2ðn� 1Þ2f0
ða� 1Þ2ðn� 2Þ2

S2ðnÞ
ð
M

2hh‘h;‘jojijoj;

where f0 ¼ ð
Ð
M
jfjnÞ2=n. Substituting (3.7) into (3.6), we have

0a 2
na2ðn� 1Þ2f0

ða� 1Þ2ðn� 2Þ2
S2ðnÞ � 1

 !ð
M

hh‘h;‘jojijojð3:8Þ

þ na2ðn� 1Þ2f0
ða� 1Þ2ðn� 2Þ2

S2ðnÞ � n

n� 1

 !ð
M

h2j‘joj j2

þ na2ðn� 1Þ2f0
ða� 1Þ2ðn� 2Þ2

S2ðnÞ
ð
M

joj2j‘hj2

Using Schwarz inequality, we get

2

ð
M

hh‘h;‘jojijoj
����

����a e

ð
M

h2j‘joj j2 þ 1

e

ð
M

joj2j‘hj2:ð3:9Þ

From (3.8) and (3.9), we obtain
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n

n� 1
� na2ðn� 1Þ2f0
ða� 1Þ2ðn� 2Þ2

S2ðnÞ
 !

� 1� na2ðn� 1Þ2f0
ða� 1Þ2ðn� 2Þ2

S2ðnÞ
�����

�����e
 !ð

M

h2j‘joj j2

a
1

e
1� na2ðn� 1Þ2f0

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

�����
�����þ na2ðn� 1Þ2f0

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

 !ð
M

joj2j‘hj2

a
1

e
1� na2ðn� 1Þ2f0

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

�����
�����þ na2ðn� 1Þ2f0

ða� 1Þ2ðn� 2Þ2
S2ðnÞ

 !
1

r2

ð
B2rðpÞ

joj2:

Since
Ð
M
jfjn < ðn� 2Þ

ðn� 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
SðnÞ

 !n
, choosing e > 0 su‰ciently small and

letting r ! y, we get ‘joj ¼ 0 on M, i.e., joj is constant. Since
Ð
M
joj2 < y,

and the volume of M is infinite by Proposition 2.5, we have o ¼ 0, thus get
H 1ðL2ðMÞÞ ¼ 0. Hence we obtain H 1

0 ðMÞ ¼ 0 by Proposition 2.11 in [4]. r

Observe that if f is a harmonic function with finite Dirichlet integral then
its exterior df is an L2 harmonic 1-form. Moreover, df ¼ 0 if and only if f is
identically constant. By Theorems 2.3 and 3.1 and Corollary 2.6, one has the
following result.

Corollary 3.2. Let Mn ðnb 3Þ be an oriented complete submanifold with
finite total mean curvature in Rnþp. Ifð

M

jfjn < ðn� 2Þ
ðn� 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
SðnÞ

 !n
;

then there are no non-constant harmonic functions on M with finite Dirichlet
integral, and M has only one end.

Corollary 3.3. Let Mn ðnb 3Þ be an oriented complete submanifold with
parallel mean curvature in Rnþp. Ifð

M

jAjn < np

4
ffiffiffi
6

p
ðn� 1Þ

 !n
;

then H 1ðL2ðMÞÞ ¼ 0, and M has only one end. Moreover M is a plane.

Proof. From the main theorem in [17], we see that if Mn ðnb 3Þ is an
oriented complete submanifold with parallel mean curvature and finite total
curvature in Rnþp, then M must be minimal. Applying the same argument as
in the proof of Theorem 3.1 and (2.4), we conclude that under assumption of
Corollary 3.3, there are no nontrivial L2 harmonic 1-forms on M and M has
only one end. A theorem due to Anderson [1] says that the minimal submani-
fold with only one end and finite total curvature in Rnþp is an a‰ne plane.
Hence M must be a plane. r
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Remark 3.4. Theorem 1.1 can be considered as a generalization of Ni and
Yun’s results [14, 19].
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205–232.

[ 4 ] G. Carron, L2 harmonic forms on non compact manifolds, arXiv:0704.3194vl.

[ 5 ] X. Cheng, L. F. Cheung and D. T. Zhou, The structure of weakly stable constant mean

curvature hypersurfaces, Tohoku Math. J. 60 (2008), 101–121.

[ 6 ] M. do Carmo and C. K. Peng, Stable complete minimal surfaces in R3 are planes, Bull.

Amer. Math. Soc. 1 (1979), 903–906.

[ 7 ] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in

3-manifolds of nonnegative scalar curvature, Comm. Pure. Appl. Math. 33 (1980), 199–211.

[ 8 ] H. P. Fu and H. W. Xu, L2 harmonic 1-forms on complete submanifolds in space forms,

preprint.

[ 9 ] D. Hoffman and J. Spruck, Soblev and isoperimetric inequalities for Riemannian sub-

manifolds, Comm. Pure. Appl. Math. 27 (1974), 715–727.

[10] P. Li, Curvature and function theory on Riemannian manifolds, In Honor of Atiyah, Bott,

Hirzebruch, and Singer, Survey in di¤erential geometry VII, International Press, Cambridge,

2000, 71–111.

[11] P. Li and L. F. Tam, Harmonic functions and the structure of complete manifolds, J.

Di¤erential Geom. 35 (1992), 359–383.

[12] P. Li and J. P. Wang, Minimal hypersurfaces with finite index, Math. Res. Lett. 9 (2002),

95–103.

[13] H. Muto, Sobolev inequality and stability of minimal submanifolds, Kodai Math. J. 18

(1995), 266–274.

[14] L. Ni, Gap theorems for minimal submanifolds in Rnþ1, Comm. Anal. Geom. 9 (2001),

641–656.

[15] R. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and

manifolds with non-negative Ricci curvature, Comm. Math. Helv. 51 (1976), 333–341.

[16] K. Seo, Minimal submanifolds with small total scalar curvature in Euclidean space, Kodai

Math. J. 31 (2008), 113–119.

[17] Y. B. Shen, On complete submanifolds with parallel mean curvature in Rnþp, Topology and

Geometry: Commemorating SISTAG, Contemp. Math. 314. AMS, 2002, 225–234.

[18] K. Shiohama and H. W. Xu, The topological sphere theorem for complete submanifolds,

Compositio Math. 107 (1997), 221–232.

[19] G. Yun, Total scalar curvature and L2 harmonic 1-forms on a minimal hypersurface in

Euclidean space, Geom. Dedicata 89 (2002), 135–141.

440 hai-ping fu and zhen-qi li



Hai-Ping Fu

Department of Mathematics

Nanchang University

Nanchang 330047

P.R. China

E-mail: mathfu@126.com

Zhen-Qi Li

Department of Mathematics

Nanchang University

Nanchang 330047

P.R. China

E-mail: zhenqili@263.net

441L2
harmonic 1-forms on complete submanifolds


