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EHRESMANN CONNECTIONS FOR A FOLIATED MANIFOLD AND

CERTAIN KINDS OF RECTANGLES WITHOUT TERMINAL VERTEX

NAOYUKI KOIKE

Abstract

We define the notion of a non-extendable rectangle without terminal vertex for a

foliated manifold (M, g) with a complementary distribution D and classify them into

non-smgular ones and singular ones. It is easy to show that D is an Ehresmann

connection in the sense of R. A. Blumenthal and J. J. Hebda if and only if there is no

non-extendable rectangle without terminal vertex. One of our purposes is to investigate

the existence of singular non-extendable rectangle without terminal vertex. Another

purpose is to obtain a new sufficient condition for the orthogonal complementary

distribution of a foliation on a Riemanman manifold to be an Ehresmann connection by

investigating a property of singular non-extendable rectangles without terminal vertex.

Introduction

Throughout this paper, unless otherwise mentioned, we assume that all
objects are smooth (i.e., of class C0 0) and all manifolds are connected ones
without boundary. For a foliated manifold (M, g) with a complementary
distribution D, R. A. Blumenthal and J. J. Hebda considered a piecewise smooth
map δ : [0,1] x [0,1] —> M such that, for every fixed so, the curve δ So := <5( ,.?o) is
a horizontal curve, and, for every fixed to, the curve δto :=δ(to, ) is a vertical
curve, where a horizontal curve is a piecewise smooth map from [0,1] to M
whose velocity vector field lies in D and a vertical curve is a piecewise smooth
map from [0,1] to a leaf of g. They called such a piecewise smooth map δ a
rectangle. If, for every vertical curve α and every horizontal curve β with
α(0) = /?(0), there is the rectangle δ with δo. = oc and δ.o = β, then they called D
an Ehresmann connection for g (see [2]). They proved the following so-called
global stability theorem and decomposition theorem (see [2]):

(i) If % admits an Ehresmann connection, then the universal coverings of leaves
of 5 are diffeomorphic to one another.

(ii) If D is an integrable Ehresmann connection for g, then for each p e M,

there is a covering map π of the product manifold ΪX x ΪJί onto M satisfying

π*(TLζ) = F and π^(TL^) = D, where ίζ (resp. ΪJjj) is the universal covering of
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a leaf of g through p {resp. that of the maximal integral manifold of D through p),

π* is the differential of π, TLv

p {resp. TL^) is the tangent bundle of the foliation

Lp x {•} {resp. {•} x LjJ) on tζ x L^ and F is the tangent bundle of g.

Thus we can apply the study of an Ehresmann connection to those of
the global stability of a foliation and the decomposition of a manifold into a
product manifold (furthermore, the geometric decomposition of a manifold with
a geometric structure). Therefore, it is very interesting to investigate what kind
of foliation admits an Ehresmann connection.

In this paper, we consider a piecewise smooth map δ : [0,1] x [0,1]\{(1,1)} —•
M such that, for every fixed so e [0,1), the curve δ.SQ is a horizontal curve, for
every fixed to e [0,1), the curve δίo is a vertical curve and δ. \ (resp. δ\ ) is a
horizontal (resp. vertical) curve without terminal point. We shall call such a
piecewise smooth map δ & rectangle without terminal vertex. If there is not
a rectangle δ satisfying <JL0 1ixr0 ^ r^ ^ =δ, then we shall say that δ is non-
extendable. By imitating the proof of Proposition 2.3 of [13], it is shown that D
is an Ehresmann connection for g if a n d o n l y if there is no non-extendable
rectangle without terminal vertex. Thus the study of a non-extendable rectangle
without terminal vertex leads to that of an Ehresmann connection. According to
Lemma 3.5 of [11], if δ is a non-extendable rectangle without terminal vertex,
then linv^i_o<S(l,£) does not exist. However, limί_i_o5(ί, 1) is possible to exist.
If limt->\-oδ{t, 1) exists (resp. does not exist), then we shall say that δ is singular
(resp. non-singular).

Remark. If δ is singular, then a continuous curve c : [0,1] —> M defined by

(δ{t,\) ( 0 < ί < l )

is not of class C 1 at t = 1. In fact, it is shown in terms of a foliated coordinate
neighbourhood about c{\) that δ is extendable if c is of class C 1 at t— 1.

If codimg = 1, that is, dimD = 1, then D is integrable and hence all non-
extendable rectangles without terminal vertex are non-singular. It is very im-
portant to investigate the existence of a singular non-extendable rectangle without
terminal vertex in case of codimg>2. In this paper, we shall prove the following
result related to its existence.

THEOREM 1. For every r > 3 and every n > r + 1, there is a triple (M, g, D)
of an n-dimensional manifold M, a foliation g °f codimension r on M and a
complementary distribution D to 3 which admits a singular non-extendable rectangle
without terminal vertex.

It is natural to ask what kind of foliation admits an Ehresmann connection
on a manifold with a geometric structure. On a Riemannian manifold, such a
study has been already done by some geometers as follows. Let FL be the
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orthogonal complementary distribution of a foliation g on a Riemannian
manifold (M,g). It is known that F1- is an Ehresmann connection if one of the
following conditions holds (see [2], [4], [8], [15]):

(I) (M,g) is complete and g is bundle-like for g,
(II) the induced Riemannian metrics on leaves of g are complete and g is

totally geodesic,
(III) d i m g > 3 , the induced conformal structures on leaves of g are

complete and g is totally umbilic.
In [7], for each vertical curve α, we defined a function G^ on the set Rec(α, •) of
all rectangles δ such that δo. = α and δ.o is a regular curve by G^(δ) := l(δ \)/
l(δ.o) for <SeRec(α, •), where /(•) is the length of a curve with respect to g.
Also, for each horizontal curve β, we defined a function Gj on the set Rec(•,/?)
of all rectangles δ such that δ.o = β and <?o is a regular curve by Gί(δ) :=
/(<$i )/l(δo) for <S G Rec( ,/?). In the paper, we proved that FL is an Ehresmann
connection if one of the following conditions holds:

(IV) (M,g) is complete and sup j e [ 0 1 ) supGjr < oo for every vertical curve
α : [0,1) —• M without terminal point, I M

(V) the induced Riemannian metrics on leaves of g a r e complete and
sup Gΐ < oo for every horizontal curve β.

Here we note that Ga

x = l holds for every vertical curve α if g is bundle-like for
g and that GJ = 1 holds for every horizontal curve β if g is totally geodesic.
Thus these results are generalizations of I and II above. In this paper, we shall
furthermore improve one of these results as follows.

THEOREM 2. If (Λf, g) is complete and sup G^r < oo for every vertical curve α,
then F1 is an Ehresmann connection.

This theorem will be proved by investigating a property of singular non-
extendable rectangles without terminal vertex. We shall also give examples
showing that this improvement is essential (see §3). Furthermore, we shall give
examples showing the topological gap between foliations admitting a Riemannian
metric such that sup Gjr < oo for every vertical curve α and foliations admitting a
bundle-like metric (see §3). The following corollary is directly deduced from Theorem
2 and the sufficient condition (V) for F1 to be an Ehresmann connection.

COROLLARY. Let g be a foliation on a Riemannian manifold (M,g) satisfying
the above condition (V) or the assumption of Theorem 2. Then the following
statements (i) and (ii) hold:

(i) The universal coverings of leaves of 5 are diffeomorphic to one another.

(ii) If codim g = 1, then the universal covering of M is diffeomorphic to Lζ x

R, where p is an arbitrary point of M and Lζ is the universal covering of the leaf of

g through p.

In §1 and §2, we prove Theorems 1 and 2, respectively. In §3, we give
examples of a non-extendable rectangle without terminal vertex and those of a
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foliated Riemannian manifold which satisfies the assumption of Theorem 2 but
does not satisfy the condition (IV). Furthermore, we give examples of a foliated
manifold which admits a Riemannian metric satisfying the assumption of Theorem
2 but does not admit a bundle-like metric.

1. Proof of Theorem 1

In this section, we shall prove Theorem 1 by constructing a triple (M, g, D)
admitting a singular non-extendable rectangle without terminal vertex. First we
shall present a plan of construction of such a triple (M, g,Z>).

PLAN OF CONSTRUCTION. Let (x\,...,xn) be the natural coordinate of an n-
dimensional affine space Rn and g a foliation on Rn whose leaves are fibres of the
projection π : Rn -> Rr defined by π(x\,..., xn) = (x\,..., xr) {r > 2, n > r + 1).

(Step I) First we construct a complementary ((^^distribution Z>i to g, a
C00-curve yS = (βu . . . ,/?r) : [0,1) -> /?r without terminal point and a C00-curve

π~1(y5(0)) satisfying the following conditions:
exists and a continuous curve β : [0,1] -* Rr defined by

α : [0,1]

(i) 1

is not of class C 1 at t= 1.

lim/?(r) (/ =

(ii) For every j e [0,1], there is the Dλ-\\ϊiβs : [0,1)

(iii) For every ^ e [0,1), l im^i-o^ir+i

(iv) lim^i_o/?i(0 exists.

> /?Λ of Ŝ starting from α(j)

= °°

Figure 1.1.
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(Step II) Next, we construct a homeomorphism φ of Rn which admits closed
sets S\ and S2 of Rn satisfying the following conditions:

(v) Φ\R»\(SI\JS2)
 ι s a ^^-diff^omoφhism.

(vi) (Si U S2) Π (π-ι(β([0,l))) U {Iim^i_oA(0}) = 0 and S2 Π
ι 0

(vii) Let γ=(γu..., yn_r) : [0,1] -> Rnr be an arbitrary C0 0-curve in Rnr

with y(l) e π'(S2 Ππ~1(lim?_^i_o)S(0)) and /?y a continuous curve in Rn defined by

Pr{t): ' ' '• n / Λ ,Jjm oA(/),y I(l),...,y I M(l)

where π' is the projection of Rn onto Rnr defined by π'(x\,... ,xn) — (JCΓ+I, ,
xn). Then φoβγ is of class C 0 0 over [0,1].

(viii) Give Rn\S\ a C00-structure {(/?w\5Ί,^|i?«\1s1)}. Denote this C 0 0-
manifold by M. Then g becomes a (C°°-)foliation on M.

(Step III) Furthermore, we construct a complementary (C°°-)distribution D
to g on ¥ satisfying the following conditions:

(ix) D — D\ on a neighbourhood of /^([0,1)) U { l im^i-o^^)}-
(x) For every s e [0,1), there is the ZMift β^ : [0,1) -> M of j? starting from

(xi) For every 5 G [0,1), linv^i_o/?f (/) exists and lim^i-oπ'OS^ί)) belongs

(xii) Let π1 o β^ : [0,1] —>> Rn~r(se [0,1)) be a continuous curve in /?M~r

defined by

( 0 < ί < l )

Then π'oβί becomes a C0 0-curve for every s e [ 0 , 1 ) .
Then we define a map δ : ([0,1] x [0,1]\{(1,1)}) -> M by

(t=l,O<s<l)

U i ( 0 (0 < r < 1, j = l ) .

It follows from the definition of S that (5 5 (s e [0,1)) are given by

which is a C00-curve in M by the conditions (vii), (xi) and (xii). Hence
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β

Figure 1.2.

δ s (s e [0,1)) are horizontal curves (with respect to D). Also, it follows from the
conditions (v), (vi) and (ix) that βx(= δ.\) is a horizontal curve (with respect to D)
without terminal point. These facts imply that δ is a rectangle without terminal
vertex on (M, 5,Z>). By the condition (iv), Iim^i_o4.(^ 1) e χ i s t s Moreover, by
the conditions (i), (v) and (vi), a continuous curve δ.\ : [0,1] —> M defined by

{0<t< 1)

is not of class C 1 at ί = 1. This fact implies that δ is non-extendable and
singular. Thus this triple (M, g, Z>) admits a singular non-extendable rectangle J
without terminal vertex.

Proof of Theorem 1. Following to the above plan of construction, we shall
concretely construct a triple (M, 5, ^ ) which admits a singular non-extendable
rectangle without terminal vertex in case of r > 3. Let gr, (*i,... ,*«), π and π'
be as above. First we define a complementary ((^^distribution D\ to g on /?",

a C00-curve = QSj,... ,y?r) : [0,1)
V by

Jfr without terminal point and a C00-curve

:= Span

β(t) : = i f - 1 , ( / -

<7XW d X 4

, ( ί - l)cos ί

: = ( — 1 , - s i n 1, — c o s 1 , 0 , . . . , 0 , ^ — 1 ) ,

,O, . . . ,θ j (0 < t < 1),

respectively. Clearly β satisfies the condition (i). The Di-lift βs of β starting
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from oc(s) is given by

where s e [0,1]. Hence βs(s e [0,1)) is defined over [0,1). Furthermore, we have

Thus the conditions (ii)-(iv) hold.
Next we define a homeomorphism φ = (yXi..., yn) of Rn by

where μ is a C00-function over /?2 defined by

r

 z . e-(w2/kl) ( z
μ(z, w) :=

0

and λ is a C00-function over R with λ~ι(0) = [-(1/2), oo), λ~ι(l) = (-00,-1]
and 0 < λ < 1. Now we shall show that φ admits closed sets S, (/ = 1,2) of Rn

satisfying the above conditions (v)-(viii). Define closed sets S/ (/ = 1,2) of Rn by

Si := \(xh...,xn)\(2xι+x2)(2xι+x3)=0 and -1 <xn<-:

and

= 0 and xn < -1} ,

respectively. Clearly Si and S2 satisfy the conditions (v) and (vi). Take
an arbitrary C 0 0 -curve y = (yi,. . . , y«_r) : [0,1] -> Rnr with y(l) e π'(S2 Π
π~1(lim/_i_o^(0)) Let βy be a continuous curve defined as in (vii). We
must show that φoβγ is of class C 0 0 over [0,1]. Since y ( l ) e π / ( S 2 Π
π~1(limί_^i_o^(ί))) and hence yΛ_r(l) < —1, we see that yn_r < — 1 holds over
(1 — e, 1] for a sufficiently small ε > 0. Hence we have λ o yn_r — 1 over (1 — ε, 1],
that is,

' ''-'.c- ̂ +^V""
ί-1) 2 + cos-

V (

1
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This implies that φ o βγ is of class C 0 0 over (1 — ε, 1] and hence so is it over [0,1].
Thus S\ and 52 satisfy the condition (vii). Since Φ\R

\^S1US2)
*S a C°°-diffeo-

morphism, g becomes a foliation on M\S2. Let <Sι be a foliation on M whose
leaves are the fibres of the projection π\ : M —> Rr defined by π\(x\,... ,xn) =
(yι(xu...,xn),...,yr(xu...,xn)) ((xu... ,xn)eM). Set W:={(xι,...,xn)eM
I xn<-l}. O n W, φ(x\,...,xn) = (x\,μ(2x\ + X2,1), μ(2x\ + x 3 ,1) ,*4, ,*«)
holds. This implies that 3 = Si o n ^ Therefore, g becomes a foliation on
(M\S2) ΌW = M. Thus 5i and 5 2 satisfy the condition (viii).

Next we shall construct a complementary distribution D to % on M
satisfying the conditions (ix)-(xii). Let {U\,U2} be an open covering of M
defined by

U\ := {{xu...,xn) eM\xn > - 1 or

(-2 < xn < - 1 and (2xi + x2)(2x\ +x $) Φ 0)},

•t/2 := {(xu...,xn) eM\xn < -1}

and {̂ 1,̂ /2} a partition of unity subordinating to {ί/i, C/2}- Set

: dyι

+ηι\dXι dy2

 + δXι δr ' '

xrt dy3 dyn

f dy3 \ d

ηxη2x2xn

dy2 d dy3 d d

dyn

Since x^dyjdxuδyjδx^dyjdxn (ί = 2,3) are C00-functions on M \ 5 2 and
/ / ! = 0 o n a neighbourhood of 52, we see that ηxxu ηι(δyi/δx\), ηι(δyi/δxι),
ηiidyjdxn) (i = 2,3) are C°°-functions on M. Also, it is clear that xn is a C 0 0-
function on M. Furthermore, for / = 2,3, we have

t,
|2Λ:I

. e-λM/\2xι+xt\

+xt=0,xn> - -

+ x, = 0, xΛ < - -
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and hence yi\(βyi/dxι)-\-η1 > 0 (/= 2,3) hold on M. Thus Xι (i — 1,2,3) are
C00-vector fields on M and furthermore (X\,X2,X$, d/dy4,..., d/dyn) is a frame
field on M. Define a (C°°-)distribution D on M by Z> := Span{Zi, X2,X^
d/dyA,..., d/dyr}. Since the tangent bundle of g is given by Span{d/<9j r + 1,...,
d/dyn}, we see that D is a complementary distribution to 5 First we shall show
that D satisfies the condition (ix). Since Φ\R»US1US2) ^S a C°°-diifeomorphism,
d/dxt = YJl^\{dyk/dxι){d/dyk) (1 < i < n) hold on 2M\S2. In more detail, we
can obtain

d d δy2 d dy3 d
is— — "5 1"^— "5 ~"5— "5—>

OXi OJj OXi ^ J 2 ^ x l ^^3

5 3 Vo d d d y? d d d

dx2 dx2 dy2' dx3 dx3 dy3' dxt dyt ~ ~~
and

dy7 d dy-t d d
τ - = τ - (r+l<j<n-l),

δxn δxn δy2 dxn δy3

on M\S2. Since ηx = 1 and η2 = 0 on M\U2, we have X\=d/dx\, X2
x3xn(d/Bxn) and X3 — d/dx3 — X2Xn{S/dxn) on M\U2. Hence D = D\ holds on
Λf\C/2. Since M\U2 is a neighbourhood of βx([0,1)) U {lim^i-ojS(O}, D satisfies
the condition (ix). Next we shall show that D satisfies the conditions (x)-(xii).
Let β^ (resp. βs) be the ZMift (resp. the Z>i-lift) of β starting from φ). Fix
s e [0,1). Set t0 := sup{t\β^ is defined over [0, t]}. Set tx := sup{ί e [0, t0) \
βf([O, t]) a M\U2}. Since D = Dx on M\(72, we have j8f = βs on [0, ίi). From
lim^i_o xn(βs(ή) = lim^i-o^—1)/(1 — 0 = — oo5 we have ίi < to. We can express
Aί as

y?L(ί) = fr - l, (f - 1) sin —j, (t - 1) eos i - ^ ,

0,... ,0,xr+i(βϊ(t)), • • . ,*„(#(/))) (ί ε [0,

Then we have

(1.4) ft{t)=*+
(t-lf

2 . 1 \ δ
Γ sin 5 - —
2 2)

siny H Γ sin 5 - —

( ί-1) 2 ( ? - l ) 2 (t-l)2)dx3

Set / := {/ e [0, f0) I ^ ( 0 6 t72}. It follows from Λ = μ(2xi + Λ,, 1(Λ:«)) (I = 2,3)
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= 1 thatand

This together with (1.2), (1.3) and (1.4) deduces

(i 6) m=~+{di

x sin-
1

(t-ιy
cos-

(t-l)2 ( / - I ) 2 (t-\)2))dy,

1 2
cos- — + — sin-

ι=r+\
dt

Since this vector belongs to
n—\) and

(1.7)
dt

= (X O

^, we can obtain d(xt oβ^)/dt = 0 (r + 1 < / <

O»ί(0)+ η2)

x 12η2(βϊ(t)) (r - 1) (cos—1—2 - sin-^-

on I, where we use dyi/dxι(βjJ(ή)=2(dyi/dxι)(βjJ(ή) (/ = 2,3, r e / ) . In par-

ticular, if β^(ή is a boundary point of C/2, then rj2(β^{ή) — 0 and hence

(d{xnoβί)/dt)(t) = (xnoβ^)(ή x 2/(1 - 0 < -2/(1 - 0 < 0. This implies that

β^(ήeU2 holds for every te(t\,to). Suppose that there is t2e[t\,to) with

(xnoβί)(t2) < - 2 . Then, since β^(t2)eM\Uι and hence ^ ( ^ ( f e ) ) = 0, by

(1.7), we have d(xnoβ^)/dt\t=t2 = 0. This implies that (xnoβ^)(ή > -2 for

every f e [0, fo), which furthermore implies to = 1. That is, /?f is defined over

[0,1). Also, we have / = [tu 1). It follows from (1.1) and [λoχn)\U2 = 1 that

(1.9)

for tel= [ίi,l). Therefore, from (1.7), (1.8), (1.9) and (xnoβ^)(ή < - 1 (ί e
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7 = [ ί i , l ) ) , we see that d(xnoβ^)/dt < 0 holds on [max{ίi,l - 1/(V2)},1).
This together with xnoβ^> — 2 implies that lim^i_o(x« °β^)(ή exists and
lim^i_0(x« °β^){t) < - 1 , which furthermore implies lim^i-oπ^/?^/)) e π ' ^ Π
π~1(limr^i_oy8(ί))). Since lim^i_o/?f(0 E M\U\, there is a sufficiently small
positive number ε with ηλ(βf{t)) = 0 for t e [1 - ε, 1). It follows from (1.7) that
d{xn o β/O/ίft = 0 over [1 - e, 1). This together with c, o βf = 0 (r + 1 < / <

« — 1) implies that a continuous curve π' o β^ : [0,1] —> /?w~r defined as in (xii) is
a C00-curve. Thus D satisfies the conditions (x)-(xii). That is, this triple
(M, g, Z>) admits a singular non-extendable rectangle without terminal vertex.
In this example, it is sufficient that r > 3 and n > r + 1. Therefore, Theorem 1
has been proved. •

It is natural to consider the following problem.

PROBLEM. IS there a triple (M, 5, D) admitting a singular non-extendable
rectangle without terminal vertex for r = 2 and n>3Ί

2. Proof of Theorem 2

In this section, we shall prove Theorem 2 by investigating a property of a
singular non-extendable rectangle without terminal vertex. First we prepare the
following lemma.

LEMMA. Let g be a foliation on a Riemannian manifold (Λf, g) and take the
orthogonal complementary distribution FL of % as a complementary distribution
to 5 If δ is a singular non-extendable rectangle without terminal vertex, then
lim^- î-o /(<5-1 |[o,ί]) = °° holds.

Proof Set p0 := lim^i_0<S(ί, 1). Take a foliated coordinate neighbourhood
(U,φ=(xu...,xn)) around p0 with φ(p0) = (0 } J . . , 0) and φ(ΰ) = (-2,2)",
where n = dim M and the foliatedness of ( ϋ , φ) implies that fibres of the
submersion n := (xu ... ,xr) : ϋ —> Rr (r = codimg) are leaves of g | # . Let Z>
be a complementary distribution to 5 o n U spanned by d/dx\,...,d/dxr. De-
note by LpQ the leaf of g | ^ through /?0 and L Ĵ the maximal integral manifold of

D through p0. Let πv : C/ —> L^ (resp. π/> : t/ —> Lj£) be the projection whose
fibres are the maximal integral manifolds of D (resp. leaves of %\^). Give U a
flat Riemannian metric go defined by go(d/δxnd/dxj) =δy (i,j = 1,...,«) and
denote by d0 the distance function induced from g0, where <5y is the Kronecker's
delta. Set U := φ~ι((-\,\)n). Take increasing sequences \tk}%=\ and {sk}%=ι

in [0,1) satisfying lim^^oo tk = lim^oo ^ = 1, δ. i([^, 1)) U<J/jk. ([^, 1]) c (7,
max/6feji)έJb(π/)(<ϊ(ί, l )) ,^ 0 ) < l/ f c a n d ^
Figure 2.1).
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We can show that δ.Sk{[tk,X\) is not contained in ϋ for every k. In fact, if
δ.Sk{[tkA]) ^ U for some k, then the existence of the i^-lift of noδ.Sk\^tk^
starting from δ(tk, 1) is assured because lim^i_0(S.i(ί) = p0 e ϋ and hence δ is
extendable. This contradicts the fact that δ is non-extendable. Thus δ.Sk([tk,l])
Φ U for every k. That is, δ Sk{[tk, 1]) Π dU φ 0 holds for every k, where dU is
the boundary of U in M. Set ^ := min{ί e [tk, 1] |δ.Sk{t) e dU}. Take (ί£,4) e
(fe,^] x [jfc, 1) satisfying ^([^,^] x WkΛ])ndU = {δ(tf^sf

k)} (see Figure 2.2).

δ(tk,l)

Figure 2.2.



4 1 4 EHRESMANN CONNECTIONS FOR A FOLIATED MANIFOLD

Denote by S(D) the unit tangent bundle of Ό with respect to g0 and F the
tangent bundle of g, where D is the closure of U. Define J?fc : [tk, t'£\ —• M by
βk(ή :=δs.(t) for te[tk,tZ\ and **(/) :=&(0/llAWII e S(U), where

^9o(βk(ή,βk(t)). Take if e [fc, 4'] such that

_ m a x
— lllclA

m a x

IIW) II "**v\\Mt)D\\'
where Ajt(ί)^ (resp. Xk(ήD) is the F-component (resp. the Z>-component) of Xk(ή.
It follows from the compactness of S( U) that there is a convergent subsequence
{Yk}k=\ of {Xk{t'l')}^=l. Set r 0 := lim*-α> Yk Since F ^ e F 1 for every k, we

have Γ o e F 1 . Suppose lim^ooll^^ίΠ^II/II^^D^II = °° τ h e n

?

 w e h a v e

lim^oolir/ll/liy^H = oo, which implies YoeF. Thus Yo e F Π f 1 , that is,
To = 0 is deduced. This contradicts Yo e S(U). Therefore, l im^oo| |^(^ ') F | | /
II^W')^!! = °° ^ o e s n o t h°ld. Hence, for a sufficiently large positive number c,
there is a subsequence {Xφ)(Qk))}tι of {^(4"))Γ=. such that | | X α W ( ^ ) ) Ί l /

I I - W ^ H < c f o r e v e r y k- s i n c e ll^»(t)(0Kll/ll^e(*)(0I)ll < ί ( ' e M , C W D
by the definition of t"\ky we have

(2.1) h(πDoβa{k))>-k(πvoβa{k)),

where /o( ) is the length of a curve with respect to go. Also, it follows
from maxse[s<khi] do{πv(δ(ta{khs)),po) < \/a(k) and δ{t'^ky s'a{k)) e dU that

do(πv(δ(ta{k),s'a{k))),po)< \/a{k) and *(πκ(5(^w,^(ife)))^o) ̂  ^ respectively.
Hence we have

(2.2) lo(πvoβa{k))

Since ^ l ^ . i ] (ί e [tφ),t^k)]) are vertical curves in U by ^([ία(/t),C(/t)]x

[<(*). Φ n 3 £ / = W(*).sβ(*))}» w e h a v e πD°δ-Ata{kht:(k)\ =πD°βa(ky Therefore,
it follows from (2.1) and (2.2) that k{πDoδ.λt ],, ,) > (l/c)(l - 1/fc). We

may assume that tk<tk+ι holds for every k by retaking {^}£=i if necessary.
Hence we obtain
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(]),;]) > ; Hm o k(π D oδ.,|[/>(i)><])

= 00.

Define a function p on the projective bundle Pr(TU) of TV by

for W e Pr(TU), where I is a non-zero vector belonging to W. It is clear
that p is continuous. Since δ.\(\ta{\), 1)) U {p0} is compact, so is also
i>K^^)b.1([^(1),i))u{^} Therefore, the minimum of p on Pr{TU)\δι{[ta^ι))u{po}

exists. Denote by c' this minimum. Clearly we have c' > 0. Then, it is easy
to show that /(&i|[,fl(1),,]) > c//o(*ilfe(1),ί]) f o r e v e r y ί e [ f β ( 1 ) , l ) . Therefore, we
obtain

that is, lim^i_0/(<S i|[o,r]) = °° •

Now we shall prove Theorem 2 in terms of this lemma.

Proof of Theorem 2. Suppose that F1 is not an Ehresmann connection.
Then there is a non-extendable rectangle δ without terminal vertex. If δ is non-
singular, then lim^i_o/((5 I L *) = oo is deduced from the completeness of (M,g).
Also, if δ is singular, then' lim^i_o/(<S i L *) = oo is deduced from Lemma.
Whether δ is non-singular or not, we obtain lϊmt->\-ol(δ. i|[0 ^) = oo. This de-
duces l im^i-oG^ ((5|[O J /]X[O J 1]) = oo. Hence supG^ < oo does not hold, which
contradicts the assumption. Therefore, F1- is an Ehresmann connection. •

3. Examples

In this section, we shall first give examples of non-singular non-extendable
rectangles without terminal vertex.

EXAMPLE 1. Let B := {(xu... ,xn) e Rn \ x\ + + x2

n < 1} (n > 2) and g

a foliation of codimension r on B whose leaves are fibres of the projection π :
B —> Rr defined by π(x\,..., xn) = (x\,..., xr) for (x\,..., xn) e B, where 1 < r <
n — 1. Let D — Span{5/3xi,..., d/dxr}, where we regard (xi, . . . ,xn) as a co-
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ordinate of B. Define a rectangle δ without terminal vertex by δ(t,s) := (t/V2,
0,... ,0, J/Λ/2). It is clear that δ is non-extendable and non-singular (see Figure
3.1).

Figure 3.1.

EXAMPLE 2. Let g be a foliation of codimension one on an ^-dimensional
affine space Rn (n > 2) whose leaves are

n-\

and

n-\

/ ^
2 _ 7 2 « I

^ — AC , Xn E / i

J
Let Z) be the orthogonal complementary distribution of g with respect to the
Euclidean metric g of Rn defined by g(d/dxt,d/dxj) =3$, where we regard
(*i,... ,xn) as a coordinate of Rn and ^ is the Kronecker's delta. Let α be a
vertical curve defined by φ). = ((1 - j )/2,0,. . . , 0, it - ^/(P-^ί^*))) for j e [0,1]
and β be a horizontal curve defined by β{t) = ((1 + r)/2,0,. . . , 0,
(1/32) J^(((ί + 3)2(/ - l ) 2 )/(ί + l))^ 4/"^ 3)^- 1)) Λ + ifc - β4/3) for ί e [ 0 , l ] . It is
clear that there is a rectangle δ without terminal vertex satisfying δ$. — α and
δ.Q = β but it is non-extendable and non-singular (see Figure 3.2).
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Next we shall give examples of a foliated Riemannian manifold which
satisfies the assumption of Theorem 2 but does not satisfy the condition (IV) in
Introduction.

EXAMPLE 3. Let M be a hypersurface of an (n + 1)-dimensional Euclidean

space Rn+ι (n > 2) defined by the equation jcf H h x2

+ 1 - JC2

+2 x 2

+ 1 =
1 ( l < r < w - l ) and give M the Riemannian metric g induced from the
Euclidean metric of Rn+\ where (*i,... ,xπ +i) is a Euclidean coordinate
system of ΛΛ + 1. It is clear that (M,g) is complete. Let g be a foliation on
(M,g) whose leaves are the intersections of M and (n — r + 1)-dimensional
halfplanes

\ V ί6l 5 5 iCr+b-*/-+2> > */H-UlvXr+2> 5 ̂ «+lJ e ^ 5 * ^ ^J

Then the orthogonal complementary distribution FL of g is an integrable
distribution whose maximal integral manifolds are the intersections of M and
(r + 1)-dimensional planes

,Xr+U Cr+1,

It is shown that G^ Ξ ^ α ^ l ) 2 + + α r+i(l)2/v/αi(0)2 + • + α r + i(0) 2 holds

for each vertical curve α (see Figure 3.3), where α = (αi , . . . ,α n + i ) .
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length

Xr+2 ' * *

Figure 3.3.

Thus g satisfies the assumption of Theorem 2. Let αp be a vertical curve without
terminal point defined by α0(s) := (1/(1 -j),0,...,0, V2s-s2/(l-s)) for s e [0,1).
From G^ή=y/((xoh(s)2 + •' + (αoUiW 2/V(«o)i(O)2 + •' + (αo)r+i(O)2 = 1/
(1 — s), we have lim.y^i-oSupG-1, = oo and hence supcpro nSupG-1, < oo does
not hold. Thus g does not satisfy the condition (IV).

In this example, the base manifold M is not compact. Next we shall give an
example such that the base manifold is compact.

EXAMPLE 4.

whose leaves are
Let § be a foliation on a 2-dimensional Euclidean space R2

{x\, tan x\ + c)
(2k-l)π

< x\ <
(2Jfc+l)πl

(ceR,kGN)

and

{(- x2eR} {keN).

Let φγ be a translation of R2 defined by φι(x\,X2) = {x\ + π,x2) for (x\,X2) e R2

and 2̂ a translation of /?2 defined by φ2{x\,X2) = (̂ 1,̂ 2 + 1) for (xi,X2) e/?2.
Denote by G the transformation group of R2 generated by φx and φ2. Denote
by M the orbit space R2/G of G. Since G is an isometry group of R2, the
Euclidean metric g of i?2 induces a Riemannian metric on M, which we denote
by g. Also, since G preserves g, 5 induces a foliation on M, which we denote
by g. Denote by F 1 (resp. FL) the orthogonal complementary distribution of g
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~ _L
(resp. g) a n d δ (resp. g"1) the foliation whose leaves are the maximal integral
manifolds of FL (resp. FL). Denote by Γ( ] the space of all cross sections of a
vector bundle . We define h e Γ((FX)* ® {FLf ® F) by h(X, Y) := (Vx Y)P for
X,Y e Γ(F±), where V is the Levi-Civita connection of g and (VχY)p is the F-
component of V^ Y. LetβFL (resp. SF) be a sphere bundle consisting of all
unit vectors belonging to FL (resp. the tangent bundle F of g). Then, it is easy
to show that \\h(X,X)\\ < 1 holds for every X e SF±, where ||A(X,X)|| is the
norm of h(X,X) (see Fig. 3.4). Also, it is shown that | |P j ϊΊ | < V2 holds for
every horizontal curve β in R2 and every Y e SFz,0,, where P? is the parallel
translation along β with respect to the Bott connection on the orthogonal
complementary distribution F of g (see Figure 3.4).

unit circle

max \\h{X0lX0)\\ < 1

Figure 3.4.

Therefore, we can obtain

sup
: hoπzontal curve X e SFjr ̂  , Y e 5^(0)

sup \g{P?Y,h(X,X))\<V2<π.

Set

sup
β. hoπzontal curve

sup

Then we can show that supG-1 < exp(̂ 4 I (a)) holds for every vertical curve ά in
R2, where /(α) is the length of α with respect to <? (see the proof of Corollary 3.10
in [11]). Take an arbitrary vertical curve α in M and an arbitrary rectangle δ
with δo. = <*. Let αL be one of lifts of α to I?2 and δL the lift of δ to # 2 with

= α

L Clearly we have G^(δ) - ), which implies supG^ < supGji by
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the arbitrariness of δ. Therefore, we can obtain

sup Gj- < sup G^L < exp(Λ /(αL)) = exp(A /(α)),

where /(α) is the length of α with respect to g. Thus g satisfies the assumption
of Theorem 2. Define a vertical curve αo in R2 without terminal point by
oco(s) := (—π/2,1/(1 — s)) for s e [0,1) and let β0 be the horizontal curve in R2

s a t i s f y i n g ^ ) = άo(O) and (f l,)^) = / - (π/2)(te [0,1]), where^0 = ((A,)i, (A))2)
Take a sequence {^}£=i m (0,1] satisfying Z(y?ol[o,̂ ]) < V ^ (^ ^ 1) F ° r e a c n

tk, there is ^ e [0,1) satisfying l((δ&, s. ) f l ) > π/2 (see Figure 3.5), where

<S~ i n i is the rectangle with

A>l[o,/,]• τ h e n w e h a v e

«o||o,Jt]A)l[o.,t]^

[O.sk]βθ\[O.tk]
)0. = a n d ,) o =

π/2

αo(s*)

A>(o) - ^

A(**) - ^

Ίί.
2

Figure 3.5.

Set αo := π o α0 and β0 := πo β0, where π is the projection of R2 onto M. From

= lim^^oo kπ/2 = oo and hence sup
does not satisfy the condition (IV).

j e[0 > 1) supG^| < oo does not hold.

) [°'s]
Thus

From these examples, it is guessed that there are a lots of examples of a
foliated Riemannian manifold which satisfies the assumption of Theorem 2 but
does not satisfy the condition (IV). Thus we can recognize the essential gap
between the assumption of Theorem 2 and the condition (IV).

Next we shall give examples showing the topological gap between
Riemannian foliations (i.e., foliations admitting a bundlelike metric) and folia-
tions admitting a Riemannian metric satisfying the assumption of Theorem 2.

EXAMPLE 5. Let (Λf, g) be a foliated manifold in Example 4. The above
Riemannian metric g satisfies the assumption of Theorem 2. However, g is not
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a Riemannian foliation. In fact, for an arbitrary Riemannian metric on M,
G^(δo) > 1 holds, where α0 and δ0 are as in Figure 3.6.

This edge vaπates by the choice

of a Riemannian metric on M'.

MM)

Figure 3.6.

EXAMPLE 6. Let p0 be a point of the ^-dimensional unit sphere Sn(l) and
qo the antipodal point of p0, where we give Sn(l) the standard Riemannian
metric. Denote by g\ the standard Riemannian metric. Define a map φ of
Sn(l) into itself by

I #o (p = go)

for p e Sn(l), where exp^ is the exponential map of Sn(l) at p0, || || is the norm
of with respect to g\, X is the tangent vector of Sn(l) at p0 satisfying exp^ X =
p and \\X\\ <π and / is a C00-function over [0,π) satisfying 1 < / < 4/3 over
[0,π), /~1(4/3) = [0,π/4], f~\l) = [3π/4,π) and / ; > -1/π over [0,π). Then,
( / ( O O ' = / ( O + / ' ( O ' ^ 1 - ( 0 O > O holds over [0,π), that is, f(t)t is an
increasing function over [0,π). Also, we have limr_>π_o/(0'= π These facts
imply that φ is a diffeomorphism. Let Mφ be the mapping torus of φ and g a

foliation on M^ induced naturally from the foliation g on Sn{\) x [0,1] whose
leaves are the fibres of the projection of Sn(l) x [0,1] onto Sn(l). Denote by π
the quotient map of Sn(l) x [0,1] onto Mφ and P (resp. Q) the projection of
S"(l) x [0,1] onto Sn(l) (resp. [0,1]). Also, denote by g2 the standard Rie-
mannian metric of [0,1]. Define a Riemannian metric go on Mφ by

go(X, Y) •= ug\(P*X,P* Ϋ) + (1 — u)(φ*g\)(P*X,P* Ϋ) + #2(β*^, β* ?)

for X, 7 e Tπ(PjU)Mφ, where ί (resp. 7) is the tangent vector of S"(l) x [0,1] at

(p,u) with π*X = ^ (resp. π*7 = 7) and φ*g\ is the Riemannian metric induced
from g\ by φ. It is clear that go is well-defined. Take an arbitrary vertical
curve α in Afy. Since gx(φ^X;φ^X) < (4/3)2^i(^,Z) for every X e TSn(l), we

see that G£(δ) < (4/3)ι/(α)J+1 for every δ e Rec(α, •), that is, sup Gα

x < (4/3)[/(α)J+1 <
oo, where /(α) is the length of α with respect to go and [•] is the Gauss's symbol
of (see Figure 3.7).
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[0,1]

Figure 3.7.

Thus g satisfies the assumption of Theorem 2 with respect to g0.
Take an arbitrary Riemannian metric g on Afy. Let αo be a vertical

curve defined by αo(ί) = π(p0,1 - s) and β0 be a horizontal curve (with respect
to g) satisfying /?0(0) = αo(O), βo(l) e π(p-ι(cxppo(π/4)Xo)) and βo([O,l}) ^

α(0) = a

(rotation 1)

Figure 3.8.
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π(P~ι({exppo((πt/4)Xo)\t e [0,1]})), where Xo is some unit tangent vector of
Sn(l) at p0. Let δ be the rectangle with δo. = αo and δ.o = β0. Then we have
G^(δ) > 1 (see Figure 3.8). Thus any Riemannian metric g on Mφ is not
bundle-like for g, that is, 5 is n o t a Riemannian foliation.

Similarly, we can give examples showing the topological gap between totally
geodesicable foliations and foliations admitting a Riemannian metric satisfying
the condition (V) in Introduction.
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