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Abstract Twisted spectral triples are a twisting of the notion of spectral triples

aimed at dealing with some type III geometric situations. In the first part of the article,

we give a geometric construction of the indexmap of a twisted spectral triple in terms of

σ-connections on finitely generated projective modules. This clarifies the analogy with

the indices of Dirac operators with coefficients in vector bundles. In the second part, we

give a direct construction of the Connes–Chern character of a twisted spectral triple, in

both the invertible and the noninvertible cases. Combining these two parts we obtain an

analogue of the Atiyah–Singer index formula for twisted spectral triples.
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1. Introduction

Motivated by type III geometric situations, such as, the action of an arbitrary

group of diffeomorphisms on a manifold, Connes–Moscovici [CM4] introduced the

notion of a twisted spectral triple. This is a modification of the usual definition of

a spectral triple (A,H,D), where the boundedness of commutators [D,a], a ∈A,

is replaced by that of twisted commutators [D,a]σ =Da− σ(a)D, where σ is a

given automorphism of the algebra A. Examples include the following:
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• conformal deformations of ordinary spectral triples (see [CM4]);

• twistings of ordinary spectral triples by scaling automorphisms (see [Mo2]);

• conformal Dirac spectral triples (C∞(M)�G,L2
g(M, /S), /Dg)σ , where /Dg is

the Dirac operator acting on spinors and G is a group of conformal diffeomor-

phisms (see [CM4]);

• spectral triples over noncommutative tori associated with conformal weights

(see [CT], [CM5]);

• twisted spectral triples associated with various quantum statistical systems,

including Connes–Bost systems, graphs, and supersymmetric Riemann gas (see

[GMT]);

• twisted spectral triples associated with some continuous crossed-product

algebras (see [IM]).

We refer to Section 2 for a review of the first and the third examples. Connes–

Moscovici [CM4] showed that, as for ordinary spectral triples, the datum of a

twisted spectral (A,H,D)σ gives rise to a well-defined index map indD :K0(A)→
1
2Z. Moreover, in the p-summable case, this index map is computed by the pair-

ing of the K-theory K0(A) with a Connes–Chern character in ordinary cyclic

cohomology.

One goal of this article is to present a geometric interpretation of the index

map of a twisted spectral triple. First, instead of compressing idempotents by D

and its inverse as in [CM4] (see also [FK1]), we define the index map in terms of

Fredholm indices of the following operators:

σ(e)De : eHq → σ(e)Hq, e ∈Mq(A), e2 = e.

This definition is totally analogous to the definition of the index map of an

ordinary spectral triple mentioned in [Mo1].

In the case of an ordinary spectral triple, the index map is usually defined

in terms of self-adjoint idempotents, since any idempotent is equivalent to a self-

adjoint idempotent. For a twisted spectral triple (A,H,D)σ the relevant notion

of self-adjointness is meant with respect to the σ-involution a→ σ(a)∗. We shall

say that such an idempotent is σ-self-adjoint. In general, it is not clear that an

idempotent is equivalent to a σ-self-adjoint idempotent. For this reason, it is

important to define the index map for arbitrary idempotents. As a result, for a

twisted spectral triple the index map a priori takes values in 1
2Z. Nevertheless,

when the automorphism has a suitable square root, it can be shown that any

idempotent is equivalent to a σ-self-adjoint idempotent and the index map is

integer-valued (Lemma 4.7). The precise condition is called the ribbon condition

(see Definition 4.5) and is satisfied by all the main examples of twisted spectral

triples.

As it turns out, the aforementioned construction of the index map is only a

special case of a more geometric construction in terms of couplings of the operator

D with σ-connections on finitely generated projective modules. We refer the

reader to Section 5 for the precise definition of a σ-connection. This is the twisted

analogue of the usual notion of a connection. The two notions actually agree
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when σ = id. Given a σ-connection on a finitely generated projective module E ,
the definition of the coupled operator D∇E is similar to the coupling of a Dirac

operator with a connection on an auxiliary vector bundle (see Section 5 for the

precise definition). In the special case E = eAq we recover the operator σ(e)De by

using the so-called Grassmannian σ-connection, which is the twisted analogue of

the Grassmannian connection. We then show that the operator D∇E is Fredholm

and we have

(1.1) indD,σ[E ] = indD∇E .

This provides us with a geometric interpretation of the index map of a twisted

spectral triple. In the case of an ordinary spectral triple we recover the geometric

interpretation of the index map mentioned in [Mo1]. The above formula exhibits

a close analogy with the definition of the standard Fredholm index map of a

Dirac operator (the construction of which is recalled in Section 3). In particular,

we recover the latter in the special case of an ordinary Dirac spectral triple (see

the discussion on this point at the end of Section 5).

Another goal of this article is to give a direct construction of the Connes–

Chern character of a p-summable twisted spectral triple (A,H,D)σ . In [CM4] the

Connes–Chern character is defined as the difference of the Connes–Chern char-

acters of a pair of bounded Fredholm modules canonically associated with the

twisted spectral triple. This is the same passage as in [Co1] from the unbounded

Fredholm module picture to the bounded Fredholm module picture. One advan-

tage of our definition of the index map is the following index formula (Proposi-

tion 7.2):

(1.2) indσ(e)De=
1

2
Str

((
D−1[D,e]σ

)2k+1)
, e= e2 ∈Mq(A),

where k is any integer greater than or equal to 1
2 (p− 1) and D is assumed to be

invertible. It is immediate that the right-hand side is the pairing of e with the

cochain given by

τD2k(a
0, . . . , a2k) = ck Str

(
D−1[D,a0]σ · · ·D−1[D,a2k]σ

)
, aj ∈A,

where ck is a normalization constant. This is the same cochain used in [CM4]

to define the Connes–Chern character of a twisted spectral triple. We give a

direct proof that τD2k is a normalized cyclic cocycle whose class in periodic cyclic

cohomology is independent of k (Proposition 7.6). The Connes–Chern charac-

ter Ch(D)σ is then defined as the class in periodic cyclic cohomology of any

cocycles τD2k.

We also use some care to define the Connes–Chern character when D is

noninvertible by passing to the unital invertible double, which we define as a

twisted spectral triple over the augmented unital algebra Ã = A ⊕ C. In the

invertible case, we thus obtain two definitions of the Connes–Chern character,

but these two definitions agree (see Proposition 7.15). This uses the homotopy

invariance of the Connes–Chern character, a detailed proof of which is given in

Appendix C.
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With the use of the Connes–Chern character and the geometric interpretation

(1.1) of the index map we obtain the following index formula: for any finitely

generated projective module E and σ-connection ∇E on E ,

indD∇E =
〈
Ch(D)σ, [E ]

〉
.

This is the analogue for twisted spectral triples of the Atiyah–Singer index for-

mula.

We have attempted to give very detailed accounts of the constructions of

the index map and Connes–Chern character of twisted spectral triples. It is

hoped that the details of these constructions will also be helpful to readers who

are primarily interested in understanding these constructions in the setting of

ordinary spectral triples.

The article is organized as follows. In Section 2, we review some important

definitions and examples regarding twisted spectral triples. In Section 3, we recall

the construction of the Fredholm index map of a Dirac operator. In Section 4,

we present the construction of the index map of a twisted spectral triple and

single out a simple condition ensuring us that it is integer-valued. In Section 5,

we give a geometric description of the index map of a twisted spectral triple in

terms of σ-connections on finitely generated projective modules. In Section 6,

we review the main definitions and properties of cyclic cohomology and periodic

cyclic cohomology and their pairings with K-theory. In Section 7, we give a direct

construction of the Connes–Chern character of a twisted spectral triple for both

the invertible and noninvertible cases. In Appendices A and B, we present proofs

of two technical lemmas from Section 5. In Appendix C, we give a detailed proof

of the homotopy invariance of the Connes–Chern character of a twisted spectral

triple.

2. Twisted spectral triples

In this section, we review various definitions and examples regarding twisted

spectral triples.

2.1. Twisted spectral triples
We start by recalling the definition of an ordinary spectral triple.

DEFINITION 2.1

A spectral triple (A,H,D) consists of the following data:

(1) a Z2-graded Hilbert space H=H+ ⊕H−;

(2) an involutive unital algebra A represented by bounded operators on H
preserving its Z2-grading;

(3) a self-adjoint unbounded operator D on H such that, for all a ∈A,

(a) D maps dom(D)∩H± to H∓,

(b) the resolvent (D+ i)−1 is a compact operator,

(c) adom(D)⊂ dom(D) and [D,a] is bounded for all a ∈A.
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EXAMPLE 2.2

The paradigm of a spectral triple is given by a Dirac spectral triple,(
C∞(M),L2

g(M, /S), /Dg

)
,

where (Mn, g) is a compact spin Riemannian manifold (n even) and /Dg is its

Dirac operator acting on the spinor bundle /S. In this case the Z2-grading of

L2(M, /S) arises from the Z2-grading /S = /S+ ⊕ /S− of the spinor bundle in terms

of positive and negative spinors.

The definition of a twisted spectral triple is similar to that of an ordinary spectral

triple, except for some “twist” given by conditions (3) and (4.b) below.

DEFINITION 2.3 ([CM4])

A twisted spectral triple (A,H,D)σ consists of the following:

(1) a Z2-graded Hilbert space H=H+ ⊕H−;

(2) an involutive unital algebra A represented by even bounded operators

on H;

(3) an automorphism σ :A→A such that σ(a)∗ = σ−1(a∗) for all a ∈A;

(4) an odd self-adjoint unbounded operator D on H such that

(a) the resolvent (D+ i)−1 is compact,

(b) adom(D) ⊂ dom(D) and [D,a]σ :=Da− σ(a)D is bounded for all

a ∈A.

REMARK 2.4

The condition that σ(a)∗ = σ−1(a∗) for all a ∈ A exactly means that the map

a→ σ(a)∗ is an involutive antilinear antiautomorphism of A.

REMARK 2.5

Throughout the article we shall further assume that the algebra A is closed under

holomorphic functional calculus. This implies that an element a ∈A is invertible

if and only if it is invertible in L(H). This also implies that all the algebras

Mq(A), q ∈N, are closed under holomorphic functional calculus.

REMARK 2.6

The boundedness of twisted commutators naturally appears in the setting of

quantum groups, but in the attempts to construct twisted spectral triples over

quantum groups the compactness of the resolvent of D seems to fail (see [DA],

[KS], [KW]). We also refer to [KW] for relationships between twisted spectral

triples and Woronowicz’s covariant differential calculi.

2.2. Conformal deformations of ordinary spectral triples
An important class of examples of twisted spectral triples arises from conformal

deformations (i.e., inner twistings) of ordinary spectral triples.

Let us start with a Dirac spectral triple (C∞(M),L2
g(M, /S), /Dg) associated

with a compact Riemannian spin oriented manifold (Mn, g) of even dimension.
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Consider a conformal change of metric,

ĝ = k−2g, k ∈C∞(M), k > 0.

We then can form a new Dirac spectral triple (C∞(M),L2
ĝ(M, /S), /Dĝ). Bearing

this in mind, note that the inner product of L2
g(M, /S) is given by

〈ξ, η〉g :=
∫
M

(
ξ(x), η(x)

)√
g(x)dnx, ξ, η ∈ L2

g(M, /S),

where (·, ·) is the Hermitian metric of /S (and n = dimM ). Consider the linear

isomorphism U : L2
g(M, /S)→ L2

ĝ(M, /S) given by

Uξ = k
n
2 ξ ∀ξ ∈ L2

g(M, /S).

We observe that U is a unitary operator since, for all ξ ∈ L2
g(M, /S), we have

〈Uξ,Uξ〉ĝ =
∫
M

(
k(x)

n
2 ξ(x), k(x)

n
2 ξ(x)

)√
k(x)−2g(x)dnx= 〈ξ, ξ〉g.

Moreover, the conformal invariance of the Dirac operator (see, e.g., [Hit]) means

that

(2.1) /Dĝ = k
n+1
2 /Dgk

−n+1
2 .

Thus,

(2.2) U∗ /DĝU = k−
n
2 (k

n+1
2 /Dgk

−n+1
2 )k

n
2 =

√
k /Dg

√
k.

Therefore, we obtain the following result.

PROPOSITION 2.7

The spectral triples (C∞(M),L2
ĝ(M, /S), /Dĝ) and (C∞(M),L2

g(M, /S),
√
k /Dg

√
k)

are unitarily equivalent.

REMARK 2.8

Whereas the definition of (C∞(M),L2
ĝ(M, /S), /Dĝ) requires k to be smooth, in

the definition of (C∞(M),L2
g(M, /S),

√
k /Dg

√
k) it is enough to assume that k is

a positive Lipschitz function.

More generally, let (A,H,D) be an ordinary spectral triple, and let k be a positive

element of A. If we replace D by its conformal deformation kDk, then when A is

noncommutative, the triple (A,H, kDk) need not be an ordinary spectral triple.

However, as the following result shows, it always gives rise to a twisted spectral

triple.

PROPOSITION 2.9 ([CM4])

Consider the automorphism σ :A→A defined by

(2.3) σ(a) = k2ak−2 ∀a ∈A.

Then (A,H, kDk)σ is a twisted spectral triple.
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REMARK 2.10

The main property to check is the boundedness of twisted commutators [kDk,a]σ ,

a ∈A. This follows from the equalities

[kDk,a]σ = (kDk)a− (k2ak−2)(kDk) = k
(
D(kak−1)− (kak−1)D

)
k

= k[D,kak−1]k.

REMARK 2.11

We refer to [PW1] for a generalization of the above construction in terms of

“pseudo-inner twistings” of ordinary spectral triples. We note that this construc-

tion also encapsulates the construction of twisted spectral triples over noncom-

mutative tori associated with conformal weights of [CT].

2.3. Conformal Dirac spectral triple
The conformal Dirac spectral triple of [CM4] is a nice illustration of the geomet-

ric relevance of twisted spectral triples. Let Γ be the diffeomorphism group of

a compact manifold M . In order to study the action of Γ on M , noncommuta-

tive geometry suggests seeking a spectral triple over the crossed-product algebra

C∞(M) � Γ, that is, the algebra with generators f ∈ C∞(M) and uϕ, ϕ ∈ Γ,

with relations

u∗
ϕ = u−1

ϕ = uϕ−1 , uϕf = (f ◦ϕ)uϕ.

The first set of relations implies that any unitary representation of C∞(M)� Γ

induces a unitary representation of Γ.

The manifold structure is the only diffeomorphism-invariant differentiable

structure on M , so in particular M does not carry a diffeomorphism-invariant

metric. This prevents us from constructing a unitary representation of Γ in an

L2-space of tensors or differential forms or a first-order (pseudo-)differential oper-

ator D with a Γ-invariant principal symbol (so as to ensure the boundedness of

commutators [D,uϕ]). As observed by Connes [Co2] we can bypass this issue by

passing to the total space of the metric bundle P →M (seen as a ray subbundle

of the bundle T ∗M 
 T ∗M of symmetric 2-tensors). As it turns out, the met-

ric bundle P carries a wealth of diffeomorphism-invariant structures, including a

diffeomorphism-invariant Riemannian structure. The construction of a spectral

triple over C∞
c (P ) � Γ was carried out by Connes–Moscovici [CM1], who also

computed its Connes–Chern character (see [CM2], [CM3]). The passage from the

base manifold M to the metric bundle P is the geometric counterpart of the well-

known passage from type III factors to type II factors by taking crossed-products

with the action of R.

Even if there is a Thom isomorphism K∗(C
∞
c (P )� Γ) �K∗(C

∞(M)� Γ),

it would be desirable to work directly with the base manifold. As mentioned

above there are obstructions to doing so when dealing with the full group of

diffeomorphisms. However, as observed by Connes–Moscovici, if we restrict our

attention to a group of diffeomorphisms preserving a conformal structure, then
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we are able to construct a spectral triple provided we relax the definition of an

ordinary spectral triple to that of a twisted spectral triple. This construction can

be explained as follows.

Let Mn be a compact (closed) spin oriented manifold of even dimension n

equipped with a conformal structure C, that is, a conformal class of Riemannian

metrics. We denote by G (the identity component of) the group of (smooth)

orientation-preserving diffeomorphisms of M preserving the conformal and spin

structures. Let g be a metric in the conformal class C with associated Dirac

operator /Dg :C
∞(M, /S)→C∞(M, /S) acting on the sections of the spinor bundle

/S = /S+ ⊕ /S−. We also denote by L2
g(M, /S) the corresponding Hilbert space of

L2-spinors.

If φ : M → M is a diffeomorphism preserving the conformal class C, then
there is a unique function kφ ∈C∞(M), kφ > 0, such that

(2.4) φ∗g = k2φg.

In addition, φ uniquely lifts to a unitary vector bundle isomorphism φ/S : /S →
φ∗ /S, that is, a unitary section of Hom(/S,φ∗ /S) (see [BG]). We then let Vφ :

L2
g(M, /S)→ L2

g(M, /S) be the bounded operator given by

(2.5) Vφu(x) = φ/S
(
u ◦ φ−1(x)

)
∀u ∈ L2

g(M, /S) ∀x ∈M.

The map φ→ Vφ is a representation of G in L2
g(M, /S), but this is not a unitary

representation. In order to get a unitary representation we need to take into

account the Jacobian |φ′(x)| = kφ(x)
n of φ ∈ G. This is achieved by using the

unitary operator Uφ : L2
g(M, /S)→ L2

g(M, /S) given by

(2.6) Uφ = k
n
2

φ Vφ, φ ∈G.

Then φ → Uφ is a unitary representation of G in L2
g(M, /S). This enables us

to represent the elements of the crossed-product algebra C∞(M)�G as linear

combinations of operators fUφ on L2
g(M, /S), where φ ∈G and f ∈C∞(M) acts

by scalar multiplication. These operators are subject to the relations

Uφ−1 = U−1
φ = U∗

φ and Uφf = (f ◦ φ−1)Uφ.

We then let σg be the automorphism of C∞(M)�G given by

(2.7) σg(fUφ) := kφfUφ ∀f ∈C∞(M) ∀φ ∈G.

PROPOSITION 2.12 (SEE [CM4], [Mo2])

The triple (C∞(M)�G,L2
g(M, /S), /Dg)σg is a twisted spectral triple.

REMARK 2.13

The bulk of the proof is showing the boundedness of the twisted commutators

[/Dg,Uφ]σg , φ ∈G. We remark that

Uφ /DgU
∗
φ = k

n
2

φ (Vφ /DgV
−1
φ )k

−n
2

φ = k
n
2

φ /Dφ∗gk
−n

2

φ = k
n
2

φ /Dk2
φg
k
−n

2

φ .
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Thus, using the conformal invariance law (2.1), we get

Uφ /DgU
∗
φ = k

n
2

φ (k
−(n+1

2 )

φ /Dgk
n−1
2

φ )k
−n

2

φ = k
− 1

2

φ /Dgk
− 1

2

φ .

Using this we see that the twisted commutator [/Dg,Uφ]σg = /DgUφ − kφUφ /Dg is

equal to

(
/Dgk

1
2

φ − kφ(Uφ /DgU
∗
φ)k

1
2

φ

)
k
− 1

2

φ Uφ = (/Dgk
1
2

φ − k
1
2

φ /Dg)k
− 1

2

φ Uφ = [/Dg, k
1
2

φ ]k
− 1

2

φ Uφ.

This shows that [/Dg,Uφ]σg is bounded.

3. The Fredholm index map of a Dirac operator

In this section, we recall how the datum of a Dirac operator gives rise to an

additive index map in K-theory. In the next two sections we shall generalize this

construction to arbitrary twisted spectral triples.

Let (Mn, g) be a compact spin oriented Riemannian manifold of even dimen-

sion n, and let /Dg : C∞(M, /S) → C∞(M, /S) be the associated Dirac operator

acting on sections of the spinor bundle. As n is even, the spinor bundle splits as

/S = /S+ ⊕ /S−, where /S+ (resp., /S−) is the bundle of positive (resp., negative)

spinors. The Dirac operator is odd with respect to this Z2-grading, and so it

takes the form

/Dg =

(
0 /D−

g

/D+
g 0

)
, /D±

g :C∞(M, /S±)→C∞(M, /S∓).

Let E be a Hermitian bundle over M , and let ∇E :C∞(M,E)→C∞(M,T ∗M ⊗
E) be a Hermitian connection on E. The operator /D∇E : C∞(M, /S ⊗ E) →
C∞(M, /S ⊗E) is defined by

/D∇E = /Dg ⊗ 1E + c(∇E),

where c(∇E) is given by the composition

C∞(M, /S ⊗E)
1/S⊗∇E

−−−−−→C∞(M, /S ⊗ T ∗M ⊗E)
c⊗1E−−−→C∞(M, /S ⊗E),

where c : /S ⊗ T ∗M → /S is the Clifford action of T ∗M on /S. With respect to the

splitting /S ⊗E = (/S+ ⊗E)⊕ (/S− ⊗E), the operator /D∇E takes the form

(3.1) /D∇E =

(
0 D−

∇E

D+
∇E 0

)
, /D±

∇E :C∞(M, /S± ⊗E)→C∞(M, /S∓ ⊗E).

As ∇E is a Hermitian connection, the operator /D∇E is formally self-adjoint, that

is, (/D+
∇E )

∗ = /D−
∇E . Moreover, /D∇E is an elliptic differential operator and, hence,

is Fredholm. We then define its Fredholm index by

ind /D∇E := ind /D+
∇E = dimker /D+

∇E − dimker /D−
∇E .

This index is computed by the local index formula of Atiyah–Singer [AS1], [AS2],

ind /D∇E = (2iπ)−
n
2

∫
M

Â(RM )∧Ch(FE),
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where Â(RM ) = det
1
2 ( RM/2

sinh(RM/2)
) is the (total) Â-form of the Riemann curvature

RM and Ch(FE) = Tr(e−FE

) is the (total) Chern form of the curvature FE of

the connection ∇E .

We observe that, even without using the Atiyah–Singer index formula, it is

not difficult to see that the value of ind /D∇E depends only on the class of E in the

K-theory group K0(M). First, it is immediate to see that its value is independent

of the choice of the Hermitian structure of E and the Hermitian connection ∇E ,

since the principal symbol of /D∇E does not depend on these data. Second, let

φ : E → E′ be a vector bundle isomorphism. We push forward the Hermitian

metric of E to a Hermitian metric on E′, so that pushing forward the connection

∇E we get a Hermitian connection on E′. Then /D∇E′ = (1/S ⊗ φ∗)/D∇E (1⊗ φ∗),

so that ker /D±
∇E � ker /D±

∇E′ , and hence ind /D∇E′ = ind /D∇E . In addition, let F

be another Hermitian vector bundle equipped with a Hermitian connection ∇F .

We equip E ⊕ F with the connection ∇E⊕F =∇E ⊕∇F . Then, with respect to

the splitting /S⊗ (E⊕F ) = (/S⊗E)⊕ (/S⊗F ), we have /D∇E⊕F = /D∇E ⊕ /D∇F , so

that ker /D±
∇E⊕F = ker /D±

∇E ⊕ ker /D±
∇F . Thus,

ind /D∇E⊕F = ind /D∇E + ind /D∇F .

It follows from all these that the index ind /D∇E depends only on the K-theory

class of E, and there actually is a well-defined additive map,

(3.2) ind/D :K0(M)→ Z,

such that, for any Hermitian vector bundle E equipped with a Hermitian con-

nection ∇E , we have

(3.3) ind/D[E] = ind /D∇E .

Let Hev(M,C) =
⊕

i≥0H2i(M,C) be the even de Rham homology of M , and

let Hev(M,C) =
⊕

i≥0H
2i(M,C) be its even de Rham cohomology. Composing

the natural duality pairing between Hev(M,C) and Hev(M,C) with the Chern

character map Ch :K0(M)→Hev(M,C), we obtain a bilinear pairing,

(3.4) 〈·, ·〉 :Hev(M,C)×K0(M)→C,

so that, for any closed even de Rham current C and any vector bundle E over M ,

we have 〈
[C], [E]

〉
=

〈
C,Ch(FE)

〉
,

where FE is the curvature of any connection on E. Then the Atiyah–Singer index

formula can be rewritten as

(3.5) indD∇E = (2iπ)−
n
2

〈
Â(RM )∧,Ch(FE)

〉
= (2iπ)−

n
2

〈[
Â(RM )∧

]
, [E]

〉
,

where [Â(RM )∧] is the homology class of the Poincaré dual of the Â-form Â(RM ).

Finally, we stress that the definition of /D∇E does not require the connection

∇E to be Hermitian, and so the construction of /D∇E holds for any connection

∇E on E. In this general case, the operator /D∇E need not be self-adjoint, but it

still is Fredholm and of the form (3.1). A priori we could consider the two Fred-
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holm indices ind /D+
∇E and ind /D−

∇E separately. When ∇E is Hermitian, we have

ind /D−
∇E = ind(/D+

∇E )
∗ =− ind /D+

∇E . The value of these indices is independent of

the choice of Hermitian connection, so we see that ind /D+
∇E = − ind /D−

∇E even

when ∇E is not Hermitian. In any case, we equivalently could define the index

of /D∇E by

(3.6) ind /D∇E =
1

2
(ind /D+

∇E − ind /D−
∇E ).

4. The index map of a twisted spectral triple

Let (A,H,D)σ be a twisted spectral triple. As observed by Connes–Moscovici

[CM4], the datum of (A,H,D)σ gives rise to a well-defined index map indD,σ :

K0(A)→ 1
2Z. The definition of the index map in [CM4] is based on the obser-

vation that the phase F = D|D|−1 defines an ordinary Fredholm module over

A (namely, the pair (H, F )). The index map is then defined in terms of com-

pressions of F by idempotents. As we shall now explain, we also can define the

index map by using twisted versions of the compression of the operator D by

idempotents. This construction is actually a special case of the coupling of D by

σ-connections which will be described in the next section. We still need to deal

with this special case in order to carry out the more general construction in the

next section.

Let e be an idempotent in Mq(A), q ∈N. We regard eHq as a closed subspace

of the Hilbert space Hq , so that eHq is a Hilbert space with the induced inner

product. As the action of A on H is by even operators on eHq ∩ (H±)q = e(H±)q ,

we have the orthogonal splitting eHq = e(H+)q ⊕ e(H−)q . In addition, the action

of A preserves the domain of D, so we see that e(dom(D))q = (dom(D))q ∩ eHq .

We then let De,σ be the unbounded operator from eHq to σ(e)Hq given by

(4.1) De,σ := σ(e)(D⊗ 1q), dom(De,σ) = e
(
dom(D)

)q
.

We note that, as D is an odd operator, with respect to the orthogonal splitting

H=H+ ⊕H− it takes the form

(4.2) D =

(
0 D−

D+ 0

)
, D± : dom(D)∩H± →H∓.

Incidentally, with respect to the orthogonal splittings eHq = e(H+)q ⊕ e(H−)q

and σ(e)Hq = σ(e)(H+)q ⊕ σ(e)(H−)q the operator De,σ takes the form

De,σ =

(
0 D−

e,σ

D+
e,σ 0

)
, D±

e,σ = σ(e)(D± ⊗ 1q).

In order to determine the adjoint of De,σ we make the following observation.

LEMMA 4.1

Let Se : eHq → e∗Hq be the restriction to eHq of e∗ (which we represent as an

operator on Hq). Then Se is a linear isomorphism from eHq onto e∗Hq such that

(4.3) 〈Seξ1, ξ2〉= 〈ξ1, ξ2〉 ∀ξj ∈ eHq.
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Proof

Let ξj ∈ eHq , j = 1,2. Then

〈Seξ1, ξ2〉= 〈e∗ξ1, ξ2〉= 〈ξ1, eξ2〉= 〈ξ1, ξ2〉.

In particular, when ξ2 = ξ1 we get 〈Seξ1, ξ1〉 = ‖ξ1‖2, which shows that Se is

one-to-one.

Let η ∈ e∗Hq . Then 〈η, ·〉|eHq is a continuous linear form on eHq , so there

exists η̃ ∈ eHq so that 〈η, ξ〉= 〈η̃, ξ〉 for all ξ ∈ eHq . Therefore, for all ξ ∈Hq ,

〈η, ξ〉= 〈e∗η, ξ〉= 〈η, eξ〉= 〈η̃, eξ〉= 〈e∗η̃, ξ〉.

Thus, η = e∗η̃ = Seη̃. This shows that Se is onto. As Se is one-to-one we then

deduce that Se is a linear isomorphism. The proof is complete. �

The above lemma holds for the idempotent σ(e) as well. In what follows, we

denote by Sσ(e) the linear isomorphism from σ(e)Hq to σ(e)∗Hq induced by σ(e)∗.

LEMMA 4.2

Let D∗
e,σ be the adjoint of De,σ. Then

(4.4) D∗
e,σ = S−1

e Dσ(e)∗,σSσ(e).

Proof

Let D†
e,σ be the operator given by the graph

G(D†
e,σ) =

{
(ξ, η) ∈ σ(e)∗Hq × e∗Hq; 〈ξ,De,σζ〉= 〈η, ζ〉 ∀ζ ∈ dom(De,σ)

}
.

We note that the graph of D∗
e,σ is

G(D∗
e,σ) =

{
(ξ, η) ∈ σ(e)Hq × eHq; 〈ξ,De,σζ〉= 〈η, ζ〉 ∀ζ ∈ dom(De,σ)

}
.

It then follows from (4.3) that a pair (ξ, η) ∈ σ(e)Hq×eHq is contained in G(D∗
e,σ)

if and only if (Sσ(e)ξ,Seη) lies in G(D†
e,σ). That is, SeD

∗
e,σ =D†

e,σSσ(e). Therefore,

showing that D∗
e,σ = S−1

e Dσ(e)∗,σSσ(e) is equivalent to showing that the operators

D†
e,σ and Dσ(e)∗,σ agree.

Let (ξ, η) ∈G(De∗). For all ζ ∈ dom(De), we have

〈Dσ(e)∗,σξ, ζ〉=
〈
σ(e)∗(D⊗ 1q)e

∗ξ, ζ
〉
=

〈
ξ, σ(e)(D⊗ 1q)eζ

〉
= 〈ξ,De,σζ〉.

Thus, (ξ,Dσ(e)∗,σξ) belongs to G(D†
e,σ). Then G(Dσ(e)∗,σ) is contained in G(D†

e),

that is, D†
e is an extension of Dσ(e)∗,σ .

Let (ξ, η) ∈G(D†
e), and set R := σ(e)(D⊗ 1q)(1− e). We note that

R = σ(e)(D⊗ 1q)(1− e)

= σ(e)
{(

1− σ(e)
)
(D⊗ 1q)− [D⊗ 1q, e]σ

}
= −σ(e)[D⊗ 1q, e]σ.

Thus, R is a bounded operator. Incidentally, its adjoint R∗ is a bounded operator

as well. Set η̃ = η + (1− e∗)R∗S−1
σ(e)ξ, and let ζ ∈ (domD)q . As eζ ∈ dom(De,σ)
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and the subspaces e∗Hq and (1− e)Hq are orthogonal to each other, we have

〈η̃, ζ〉 = 〈η, eζ〉+
〈
η, (1− e)ζ

〉
+

〈
(1− e∗)R∗S−1

σ(e)ξ, ζ
〉

=
〈
ξ,De,σ(eζ)

〉
+

〈
S−1
σ(e)ξ,R

(
(1− e)ζ

)〉
.

Moreover, as ξ ∈ σ(e)∗Hq and R((1 − e)ζ) ∈ σ(e)Hq , using (4.3) we see that

〈S−1
σ(e)ξ,R((1− e)ζ)〉 agrees with 〈ξ,R((1− e)ζ)〉. Therefore, 〈η̃, ζ〉 is equal to

〈
ξ,De,σ(eζ) +R

(
(1− e)ζ

)〉
=

〈
ξ, σ(e)(D⊗ 1q)ζ

〉
=

〈
σ(e)∗ξ, (D⊗ 1q)ζ

〉
=

〈
ξ, (D⊗ 1q)ζ

〉
.

This shows that (ξ, η̃) lies in the graph of the operator (D ⊗ 1q)
∗, which agrees

with D ⊗ 1q since D is self-adjoint. Thus, (ξ, η̃) lies in the graph of D ⊗ 1q .

Therefore, we see that ξ is contained in both (dom(D))q and σ(e)∗Hq , so it lies

in (dom(D))q ∩ σ(e)∗Hq = σ(e)∗(dom(D))q = dom(Dσ(e)∗,σ). This shows that

domD†
e,σ is contained in dom(Dσ(e)∗,σ). As D†

e,σ is an extension of Dσ(e)∗,σ we

then deduce that the two operators agree. As explained above, this proves that

D∗
e,σ = S−1

e Dσ(e)∗,σSσ(e). The proof is complete. �

LEMMA 4.3

The operator De,σ is closed and Fredholm, and we have

(4.5) indD±
e,σ = dimkerD±

e,σ − dimkerD∓
σ(e)∗,σ.

Proof

Substituting σ(e)∗ = σ−1(e∗) for e in (4.4) shows that D∗
σ(e)∗,σ = S−1

σ(e)∗De,σSe∗ ,

that is, De,σ = Sσ(e)∗D
∗
σ(e)∗,σS

−1
e∗ . As D∗

σ(e)∗,σ is a closed operator and the oper-

ators Sσ(e)∗ and S−1
e∗ are bounded, we see that De,σ is a closed operator.

Let D−1 be the partial inverse of D, and let P0 be the orthogonal projection

onto kerD. Set Qe,σ := e(D−1⊗1q), which we regard as a bounded operator from

σ(e)Hq to eHq . Note that Qe,σ is a compact operator. Moreover, on σ(e)Hq we

have

De,σQe,σ = σ(e)(D⊗ 1q)e(D
−1 ⊗ 1q)

= σ(e) + σ(e)[D⊗ 1q, e]σ(D
−1 ⊗ 1q)− σ(e)(P0 ⊗ 1q)

= 1+ e[D⊗ 1q, e](D
−1 ⊗ 1q)− σ(e)(P0 ⊗ 1q).

Likewise, on e(dom(D))q we have

Qe,σDe,σ = e(D−1 ⊗ 1q)σ(e)(D⊗ 1q) = 1− eD−1[D⊗ 1q, e]σ − e(P0 ⊗ 1q)e.

As D−1, P0 are compact operators and [D⊗ 1q, e]σ is bounded, we see that Qe,σ

inverts De,σ modulo compact operators. It then follows that De,σ is a Fredholm

operator.

We note that Se and Sσ(e) are even operators, so (4.4) means that

(D±
e,σ)

∗ = S−1
e D∓

σ(e)∗,σS
−1
σ(e). Therefore, the operator Se induces an isomorphism
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kerD∓
σ(e)∗,σ � ker(D±

e,σ)
∗. Thus,

indD±
e,σ = dimkerD±

e,σ − dimker(D±
e,σ)

∗ = dimkerD±
e,σ − dimkerD∓

σ(e)∗,σ.

The proof is complete. �

We define the index of De,σ by

(4.6) indDe,σ :=
1

2
(indD+

e,σ − indD−
e,σ).

Thanks to (4.5) we have

indDe,σ =
1

2
(dimkerD+

e,σ +dimkerD+
σ(e)∗,σ

(4.7)
− dimkerD−

e,σ − dimkerD−
σ(e)∗,σ).

In particular, when σ(e)∗ = e we get

indDe,σ = dimkerD+
e,σ − dimkerD−

e,σ.

Let g ∈Glq(A), and set ê= g−1eg. On (dom(D))q the operator σ(ê)(D⊗1q)ê

agrees with

σ(g)−1σ(e)σ(g)(D⊗ 1q)g
−1eg

= σ(g)−1σ(e)σ(g)σ(g−1)(D⊗ 1q)eg+ σ(g)−1σ(e)σ(g)[D⊗ 1q, g
−1]σeg

= σ(g)−1De,σg+ σ(g)−1σ(e)σ(g)[D⊗ 1q, g
−1]σeg.

As [D ⊗ 1q, g
−1]σ is a bounded operator, we see that D±

ê,σ and σ(g)−1(D±
e,σ)g

agree up to a bounded operator. It then follows that D±
ê,σ and D±

e,σ have the

same Fredholm index. Thus,

(4.8) indDg−1eg,σ = indDe,σ ∀g ∈Glq(A).

Moreover, if e′ ∈Mq′(A) is another idempotent, then, with respect to the split-

tings (e ⊕ e′)(H±)q = e(H±)q ⊕ e′(H±)q
′
and σ(e ⊕ e′)(H±)q = σ(e)(H±)q ⊕

σ(e′)(H±)q
′
, we have D±

e⊕e′,σ = D±
e,σ ⊕ D±

e′,σ . We then see that indD±
e⊕e′,σ =

indD±
e,σ + indD±

e′,σ . Thus,

indDe⊕e′,σ = indDe,σ + indDe′,σ.

Therefore, we arrive at the following statement.

PROPOSITION 4.4 (SEE [CM4])

There is a unique additive map indD,σ :K0(A)→ 1
2Z such that

(4.9) indD,σ[e] = indDe,σ ∀e ∈Mq(A), e2 = e.

As pointed out in Remark 2.4 the fact that σ(a)∗ = σ−1(a∗) for all a ∈A means

that the map a→ σ(a)∗ is an involutive antilinear antiautomorphism of A, which

we shall call the σ-involution. An element a ∈ A is self-adjoint with respect to

this involution if and only if σ(a)∗ = a. As (4.7) shows, when σ(e)∗ = e the index
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of De,σ is an integer. While an idempotent in Mq(A) is always conjugate to a

self-adjoint idempotent, in general it need not be conjugate to an idempotent

which is self-adjoint with respect to the σ-involution. Nevertheless, this property

holds under a further assumption on the automorphism σ.

DEFINITION 4.5

The automorphism σ is called ribbon when it has a square root in the sense that

there is an automorphism τ :A→A such that

(4.10) σ(a) = τ
(
τ(a)

)
and τ(a)∗ = τ−1(a∗) for all a ∈A.

REMARK 4.6

The terminology ribbon is used in analogy to the theory of quantum groups,

where a quasitriangular Hopf algebra is called ribbon when a certain element

admits a square root compatible with the quasitriangular structure (see, e.g.,

[Ma]).

LEMMA 4.7

Assume that the automorphism σ is ribbon. Then

(i) Any idempotent e ∈Mq(A), q ∈N, is conjugate to an idempotent which

is self-adjoint with respect to the σ-involution.

(ii) The index map indD,σ is integer-valued.

Proof

The second part follows by combining the first part with (4.8) and (4.5). There-

fore, we only need to prove the first part. In addition, without any loss of gener-

ality, we may assume that q = 1 in the first part. Thus, let e be an idempotent

element of A.

Let us briefly recall how we construct a self-adjoint idempotent in A which

is conjugate to e (see, e.g., [Bl, Proposition 4.6.2] for more details). Set a =

e− e∗, and set b= 1+ aa∗. Observing that b is an invertible element of A which

commutes with e and e∗, define p= ee∗b−1. It can be checked that p2 = p∗ = p,

that is, p is a self-adjoint idempotent of A. Moreover, if we set g = 1−p+ e, then

g has inverse g−1 = 1+ p− e and g−1pg = e.

We remark that the above construction holds verbatim if we replace the

involution a → a∗ by any other involutive antilinear antiautomorphism of A,

provided that it can be shown that the corresponding operator b is invertible

(in A). Thus, if we substitute σ(e)∗ for e∗ and we assume that b := 1+ σ(a)∗a is

invertible, where a= e− σ(e)∗, then p := eσ(e)∗b−1 is such that p2 = σ(p)∗ = p

and g−1pg = e where g := 1− p+ e has inverse g−1 = 1 + p− e. Therefore, the

main question at stake is to show that b is invertible.

Let τ be a square root of σ in the sense of (4.10). Then τ(σ(a)∗) = τ ◦
σ−1(a∗) = τ−1(a∗) = τ(a)∗. Thus,

τ(b) = 1+ τ
(
σ(a)∗a

)
= 1+ τ

(
σ(a)∗

)
τ(a) = 1+ τ(a)∗τ(a).
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As τ(a)∗τ(a) is a positive element of A we see that τ(b) is invertible, and hence

b is invertible as well. The proof is complete. �

As we shall now see, the ribbon condition (4.10) is satisfied by the automorphisms

occurring in the main examples of twisted spectral triples.

EXAMPLE 4.8

Assume that σ(a) = kak−1 where k is a positive invertible element of A. Then σ

has the square root τ(a) = k
1
2 ak−

1
2 . We note that k

1
2 is an element of A since A

is closed under holomorphic functional calculus.

More generally, we have the following.

EXAMPLE 4.9

Suppose that σ agrees with the value at t = −i of the analytic extension of a

strongly continuous one-parameter group of isometric ∗-isomorphisms (σt)t∈R.

This condition is called (1PG) in [CM4]. In this case σ is ribbon with square

root τ := σ|t=−i/2.

REMARK 4.10

By a result of Bost [Bo] the analytic extension of a strongly continuous one-

parameter group of isometric isomorphisms on an involutive Banach algebra

always exists on a dense subalgebra which is closed under holomorphic func-

tional calculus.

REMARK 4.11

Connes–Moscovici [CM4] showed that, when the condition (1PG) holds, indD+
e,σ

is equal to − indD−
e,σ , so that in this case the index map indD,σ is integer-valued.

EXAMPLE 4.12

The ribbon condition is also satisfied by the automorphism σg appearing in the

construction of the conformal Dirac spectral triple. From the definition (2.7) of

σg we see that a square root satisfies the ribbon condition (4.10). Indeed, a square

root satisfying (4.10) is given by the automorphism τg defined by

τg(fUφ) :=
√

kφfUφ ∀f ∈C∞(M) ∀φ ∈G.

In fact, σg satisfies the (1PG) condition with respect to the one-parameter group

of isometric ∗-isomorphisms σt, t ∈R, given by σt(fUφ) = kitφ fUφ.

5. Index map and σ-connections

In this section, we present a geometric description of the index map of a twisted

spectral triple in terms of couplings by σ-connections on finitely generated pro-

jective modules (i.e., noncommutative vector bundles). As we shall explain in

the next section, this description makes much more transparent the analogy to
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the construction of the index map in the commutative case in terms of Dirac

operators coupled with connections (see, e.g, [BGV]). We refer to [Mo1] for a

similar description of the index map in the case of ordinary spectral triples.

Throughout this section we let (A,H,D)σ be a twisted spectral triple. In

addition, we let E be a finitely generated projective right module over A, that is,

E is the direct summand of a finite-rank free module E0 �Aq . In order to define

σ-connections we need to introduce the notion of σ-translation.

DEFINITION 5.1

A σ-translation of E is given by a pair (E , σE), where

(i) Eσ is a finitely generated projective right module over A, called the

σ-translate;

(ii) σE : E → Eσ is a C-linear isomorphism such that

(5.1) σE(ξa) = σE(ξ)σ(a) for all ξ ∈ E and a ∈A.

REMARK 5.2

The condition (5.1) means that σE is a right-module isomorphism from E onto

E(σ), where E(σ) is Eσ equipped with the action (ξ, a) → ξσ(a). In particular,

when σ = id a σ-translation of E is simply given by a right-module isomorphism

σE : E → Eσ . Therefore, a canonical choice of σ-translation is to take (E , id). This
will always be the choice we shall make when σ = id.

REMARK 5.3

Suppose that E = eAq , for some idempotent e ∈Mq(A), q ≥ 1. The automorphism

σ lifts to Aq by

σ(ξ) =
(
σ(ξj)

)
∀ξ = (ξj) ∈Aq.

Note that σ is a C-linear isomorphism of Aq onto itself and maps eAq onto

σ(e)Aq , and so it induces a C-linear isomorphism σe : eAq → σ(e)Aq . Moreover,

for all ξ = (ξj) ∈ eAq and a ∈A,

(5.2) σe(ξa) = σ
(
(ξja)

)
=

(
σ(ξja)

)
=

(
σ(ξj)

)
σ(a) = σe(ξ)σ(a).

That is, σe satisfies (5.1). Therefore, the pair (σ(e)Aq, σe) is a σ-translation

of eAq . This will be our canonical choice of σ-translation when E is of the form

eAq , with e2 = e ∈Mq(A), q ≥ 1.

REMARK 5.4

In general, a σ-translation is obtained as follows. By definition, E is a direct sum-

mand of a free module E0 �Aq . Let φ : E0 →Aq be a right-module isomorphism.

The image of E by φ is a right module of the form eAq for some idempotent

e ∈Mq(A). Set Eσ := φ−1(σ(e)Aq); this is a direct summand of E0. The isomor-

phism φ induces isomorphisms of right modules,

φe : E → eAq and φσ(e) : Eσ → σ(e)Aq.
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Set σE = (φσ(e))
−1 ◦ σe ◦ φe, where σe : eAq → σ(e)Aq is the σ-lift introduced in

Remark 5.3. Then σE is a C-linear isomorphism from E onto Eσ . Moreover, using

(5.1) we see that, for all ξ ∈ E and a ∈A, we have

σE(ξa) = (φσ(e))
−1 ◦ σe

(
φ(ξ)a

)
= (φσ(e))

−1
(
σe(ξ)σ(a)

)
= σE(ξ)σ(a).

This shows that σE satisfies (5.1), and so (Eσ, σE) is a σ-translation of E .
Conversely, given a σ-translation (E , σE) and a right-module isomorphism

φ : E → eAq , the map φσ = σe ◦ φ ◦ (σE)−1 is a C-linear isomorphism from Eσ

onto σ(e)Aq such that σE = (φσ)
−1 ◦ σe ◦ φ. We note that (5.1) implies that

(σE)−1(ξa) for all ξ ∈ E and a ∈A.

Combining this with (5.2) shows that, for all ξ and a ∈A, we have

φσ(ξa) = σe ◦ φ
(
(σE)−1(ξ)σ−1(a)

)
= σe

(
φ ◦ (σE)−1(ξ)σ−1(a)

)
= φσ(ξ)a.

Therefore, φσ is a right-module isomorphism from Eσ onto σ(e)Aq . In addition,

we note that when σ is ribbon Lemma 4.7 enables us to choose the idempotent

e so that σ(e) = e∗.

Following [CM4] we consider the space of twisted 1-forms

Ω1
D,σ(A) =

{
Σai[D,bi]σ;a

i, bi ∈A
}
.

We note that Ω1
D,σ(A) is a subspace of L(H). Moreover, it is naturally an (A,A)-

bimodule, since

a2
(
a1[D,b1]σ

)
b2 = a2a1[D,b1b2]σ − a2a1σ(b1)[D,b2]σ ∀aj , bj ∈A.

We also have a “twisted” differential dσ :A→Ω1
D,σ(A) defined by

(5.3) dσa := [D,a]σ ∀a ∈A.

This is a σ-derivation in the sense that

(5.4) dσ(ab) = (dσa)b+ σ(a)dσb ∀a, b ∈A.

In what follows we let (Eσ, σE) be a σ-translation of E .

DEFINITION 5.5

A σ-connection on E is a C-linear map ∇ : E → Eσ ⊗A Ω1
D,σ(A) such that

(5.5) ∇(ξa) = (∇ξ)a+ σE(ξ)⊗ dσa ∀ξ ∈ E ∀a ∈A.

EXAMPLE 5.6

Suppose that E = eAq with e= e2 ∈Mq(A). Then a natural σ-connection on E
is the Grassmannian σ-connection ∇E

0 defined by

(5.6) ∇E
0 ξ = σ(e)(dσξj) for all ξ = (ξj) in E .

LEMMA 5.7

The set of σ-connections on E is an affine space modeled on HomA(E ,Eσ ⊗
Ω1

D,σ(A)).
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Proof

It follows from (5.5) that two σ-connections on E differ by an element of

HomA(E ,Eσ ⊗Ω1
D,σ(A)). Therefore, the only issue at stake is to show that the

set of σ-connections is nonempty. This is a true fact when E = eAq with e= e2 ∈
Mq(A) since in this case there is always the Grassmannian σ-connection.

In general, as shown in Remark 5.4, we always can find an idempotent e ∈
Mq(A), q ≥ 1, and right-module isomorphisms φ : E → eAq and φσ : Eσ → σ(e)Aq

satisfying (5.1). We then can pull back to E any connection ∇ on Aq to a linear

map ∇E : E → Eσ ⊗A Ω1
D,σ(A) defined by

∇E =
(
(φσ)−1 ⊗ 1Ω1

D,σ(A)

)
◦∇ ◦ φ.

For ξ ∈ E and a ∈A we have

∇E(ξa) =
(
(φσ)−1 ⊗ 1Ω1

D,σ(A)

)
◦∇

(
φ(ξ)a

)
= (∇Eξ)a+

(
(φσ)−1 ◦ σ ◦ φ

)
(ξ)⊗ dσa

= (∇Eξ)a+ σE(ξ)⊗ dσa.

Thus, ∇E is a σ-connection on E . The proof is complete. �

In what follows we denote by E ′ the dual A-module HomA(E ,A). We also recall

that A is a ∗-algebra represented in L(H).

DEFINITION 5.8

A Hermitian metric on E is a map (·, ·) : E × E →A such that

(1) (·, ·) is A-sesquilinear, that is, it is A-antilinear with respect to the first

variable and A-linear with respect to the second variable;

(2) (·, ·) is positive, that is, (ξ, ξ)≥ 0 for all ξ ∈ E ;
(3) (·, ·) is nondegenerate, that is, ξ → (ξ, ·) is an A-antilinear isomorphism

from E onto E ′.

REMARK 5.9

By using (2) and a polarization argument it can be shown that (ξ1, ξ2) = (ξ2, ξ1)
∗

for all ξj ∈A.

EXAMPLE 5.10

The canonical Hermitian structure on the free module Aq is given by

(5.7) (ξ, η)0 = ξ∗1η1 + · · ·+ ξ∗qηq for all ξ = (ξj) and η = (ηj) in Aq .

LEMMA 5.11

Suppose that E = eAq with e= e2 ∈Mq(A). Then the canonical Hermitian metric

of Aq induces a Hermitian metric on E .

Proof

See Appendix A. �
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REMARK 5.12

Let φ : E → F be an isomorphism of finitely generated projective modules, and

assume that F carries a Hermitian metric (·, ·)F . Then using φ we can pull back

the Hermitian metric of F to the Hermitian metric on E given by

(ξ1, ξ2)E :=
(
φ(ξ1), φ(ξ2)

)
F ∀ξj ∈ E .

In particular, if we take F to be of the form eAq with e= e2 ∈Mq(A), then we

can pull back the canonical Hermitian metric (·, ·)0 to a Hermitian metric on E .

From now on we assume that E and its σ-translate carry Hermitian metrics. We

denote by H(E) the pre-Hilbert space consisting of E ⊗A H equipped with the

Hermitian inner product

(5.8) 〈ξ1 ⊗ ζ1, ξ2 ⊗ ζ2〉 :=
〈
ζ1, (ξ1, ξ2)ζ2

〉
, ξj ∈ E , ζj ∈H,

where (·, ·) is the Hermitian metric of E .

LEMMA 5.13

The pre-Hilbert space H(E) is a Hilbert space, and its topology is independent of

the choice of the Hermitian inner product of E .

Proof

See Appendix B. �

REMARK 5.14

In [Mo1] the Hilbert space H(E) is defined as the completion of E ⊗A H with

respect to the Hermitian inner product (5.8). As Lemma 5.13 shows, this pre-

Hilbert space is already complete.

We note there is a natural Z2-grading on H(E) given by

(5.9) H(E) =H+(E)⊕H−(E), H±(E) := E ⊗A H±.

We also form the Z2-graded Hilbert space H(Eσ) as above. In addition, we

let ∇E be a σ-connection on E . Regarding Ω1
D,σ(A) as a subalgebra of L(H) we

have a natural left-action c : Ω1
D,σ(A)⊗A H→H given by

c(ω⊗ ζ) = ω(ζ) for all ω ∈Ω1
D,σ(A) and ζ ∈H.

We denote by c(∇E) the composition (1Eσ ⊗ c) ◦ (∇E ⊗ 1H) : E ⊗ H→ Eσ ⊗H.

Thus, for ξ ∈ E and ζ ∈ H, upon writing ∇Eξ =
∑

ξα ⊗ ωα with ξα ∈ Eσ and

ωα ∈Ω1
D,σ(A), we have

(5.10) c(∇E)(ξ ⊗ ζ) =
∑

ξα ⊗ ωα(ζ).

In what follows we regard the domain of D as a left A-module, which is

possible since the action of A on H preserves dom(D).
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DEFINITION 5.15

The coupled operator D∇E : E ⊗A dom(D)→H(Eσ) is defined by

(5.11) D∇E (ξ ⊗ ζ) := σE(ξ)⊗Dζ + c(∇E)(ξ ⊗ ζ) for all ξ ∈ E and ζ ∈ dom(D).

REMARK 5.16

As the operators σE , D, and ∇E are not module maps, we need to check the

compatibility of (5.11) with the action of A. This is a consequence of (5.3).

Indeed, if ξ ∈ E and ζ ∈ dom(D), then for all a ∈A

c(∇E)(ξa⊗ ζ) = (1⊗ c)
(
∇E(ξa)⊗ ζ

)
= (1⊗ c)

(
(∇Eξ)a⊗ ζ + σE(ξ)⊗ dσ(a)⊗ ζ

)
= c(∇E)(ξ ⊗ aζ) + σE(ξ)⊗ dσ(a)ζ.

Thus,

D∇E (ξa⊗ ζ)−D∇E (ξ ⊗ aζ)

= σE(ξa)⊗Dζ + σE(ξ)⊗ dσ(a)ζ − σE(ξ)⊗D(aζ)

= σE(ξ)σ(a)⊗Dζ − σE(ξ)⊗ σ(a)Dζ,

which shows that D∇E (ξa⊗ ζ) =D∇E (ξ ⊗ aζ) in Eσ ⊗A H.

REMARK 5.17

With respect to the Z2-gradings (5.9) for H(E) and H(Eσ) the operator D∇E

takes the form

D∇E =

(
0 D−

∇E

D+
∇E 0

)
, D±

∇E : E ⊗A dom(D±)→H∓(Eσ).

That is, D∇E is an odd operator.

Suppose that E = eAq with e = e2 ∈Mq(A). Then there is a canonical isomor-

phism Ue from H(E) to eHq given by

Ue(ξ ⊗ ζ) = (ξjζ)1≤j≤q for all ξ = (ξj) ∈ E and ζ ∈H,

where E = eAq is regarded as a submodule of Aq . The inverse of Ue is given by

U−1
e

(
(ζj)

)
=

∑
ej ⊗ ζj for all (ζj) ∈ eHq ,

where eHq is regarded as a subspace of Hq and e1, . . . , eq are the column vectors

of e. We also note that Ue is a graded isomorphism.

LEMMA 5.18

Suppose that E = eAq as above, and let ∇E
0 be the Grassmannian σ-connection

of E . Then

Uσ(e)D∇E
0
U−1
e =De,σ,

where De,σ is defined in (4.1).
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Proof

The image of E ⊗A dom(D) under Ue is e(dom(D))q = dom(De,σ). Let ζ ∈
dom(D), and let ξ = (ξj) be in E ⊂Aq . Then

c(∇E
0 )(ξ ⊗ ζ) =

∑
σ(ej)⊗ (dσξj)ζ =

∑
σ(ej)⊗D(ξjζ)−

∑
σ(ej)⊗ σ(ξj)Dζ.

The fact that ξ ∈ E means that ξ = eξ =
∑

ejξj . Thus,∑
σ(ej)⊗ σ(ξj)Dζ =

∑
σ(ejξj)⊗Dζ = σE(ξ)⊗Dζ.

Therefore,

(5.12) D∇E
0
(ξ ⊗ η) = σE(ξ)⊗Dη+ c(∇E

0 )(ξ ⊗ ζ) =
∑

σ(ej)⊗D(ξjζ).

For j = 1, . . . , q set ζj = ξjζ , so that Ue(ξ⊗ζ) = (ξjζ)1≤j≤q = (ζj)1≤j≤q . From

(5.12) we get

Uσ(e)

(
D∇E

0
(ξ ⊗ η)

)
i
=

∑
j

σ(eij)D(ζj).

In view of the definition of the operator De,σ in (4.1) we see that

Uσ(e)D∇E
0
(ξ ⊗ η) = σ(e)(Dζj)1≤j≤q =De,σ

(
(ζj)1≤j≤q

)
=De,σUe(ξ ⊗ ζ).

This proves the lemma. �

REMARK 5.19

As Ue and Uσ(e) are graded isomorphisms, we further have

(5.13) U∓
σ(e)D

±
∇E

0
(U±

e )−1 =D±
e,σ.

LEMMA 5.20

For any σ-connection ∇E on E , the operator D∇E is closed and Fredholm.

Proof

Let us first assume that E = eAq and Eσ = σ(e)Aq with e= e2 ∈Mq(A). It follows

from Lemmas 4.3 and 5.18 that the operator D∇E
0
is closed and Fredholm. By

Lemma 5.7 the difference ∇E −∇E
0 lies in HomA(E ,E(σ) ⊗ Ω1

D,σ(A)). We then

deduce that the operator D∇E is closed and Fredholm.

In general, thanks to Remark 5.4 we always can find an idempotent e ∈
Mq(A), q ≥ 1, and right-module isomorphisms φ : E → eAq and φσ : Eσ → σ(e)Aq

satisfying (5.1). We equip eAq with the Hermitian metric (·, ·)φ := (φ−1(·),
φ−1(·))E , where (·, ·)E is the Hermitian metric of E . Likewise, we equip σ(e)Aq

with the Hermitian metric (·, ·)φσ := ((φσ)−1(·), (φσ)−1(·))Eσ , where (·, ·)Eσ is the

Hermitian metric of Eσ . We then have unitary operators Uφ :H(E)→H(eAq) and

Uφσ :H(Eσ)→ σ(e)Aq given by

(5.14) Uφ := φ⊗ 1H and Uφσ := φσ ⊗ 1H.

In addition, we denote by ∇φ∗E the σ-connection on eAq defined by

(5.15) ∇φ∗E := (φσ ⊗ 1Ω1
D,σ(A)) ◦∇E ◦ φ−1.
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Let ξ ∈ E , and let ζ ∈ dom(D). Set η = φ(ξ), and set ∇Eξ =
∑

ξα ⊗ ωα

with ξα ∈ Eσ and ωα ∈ Ω1
D,σ(A). Then ∇φ∗Eη = (φσ ⊗ 1Ω1

D,σ(A))(∇Eξ) =∑
φσ(ξα)⊗ ωα. Thus,

(5.16) c(∇φ∗E)(η⊗ ζ) =
∑

φσ(ξα)⊗ ωα(ζ) = Uφσ ◦ c(∇E)(ξ ⊗ ζ).

We also note that σ(η) = σ ◦ φ(ξ) = φσ ◦ σE(ξ), and hence

(5.17) σ(η)⊗Dζ = (φσ ⊗ 1H)
(
σE(ξ)⊗Dζ

)
= Uφσ

(
σE(ξ)⊗Dζ

)
.

Combining (5.16) and (5.17) we get

D∇φ∗EUφ(ξ ⊗ ζ) =D∇φ∗E (η⊗ ζ) = σ(η)⊗Dζ + c(∇φ∗E)(η⊗ ζ)

= UφσD∇E (ξ ⊗ ζ).

This shows that

(5.18) D∇E = U−1
φσ D∇φ∗EUφ.

By the first part of the proof we know that the operator D∇φ∗E is closed and

Fredholm. As Uφ and Uφσ are isomorphisms we then deduce that the operator

D∇E is closed and Fredholm. The proof is complete. �

In analogy with (3.6) and (4.6) we make the following definition.

DEFINITION 5.21

Given any σ-connection ∇E on E , the index of D∇E is defined by

(5.19) indD∇E :=
1

2
(indD+

∇E − indD−
∇E ).

We are now in a position to prove the main result of this section.

THEOREM 5.22

Let E be a finitely generated projective right A-module. Then, for any σ-connection

∇E on E , we have

(5.20) indD,σ[E ] = indD∇E .

Proof

Let us first assume that E = eAq with e = e2 ∈ Mq(A), and let ∇E
0 be the

σ-Grassmannian connection. As shown in the proof of Lemma 5.20, the Fredholm

operators D∇E and D∇E
0
differ by a bounded odd operator, and so indD±

∇E =

indD±
∇E

0
. Moreover, it follows from (5.13) that indD±

∇E
0
= indD±

e,σ . Thus,

(5.21) indD±
∇E = indD±

∇E
0
= indD±

e,σ = indD,σ[e].

In general, we can find an idempotent e ∈Mq(A) and right-module isomor-

phisms φ : E → eAq and φσ : Eσ → σ(e)Aq satisfying (5.1). We equip eAq and

σ(e)Aq with Hermitian metrics as in the proof of Lemma 5.20, and let ∇φ∗E be
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the σ-connection on eAq given by (5.15). Then from (5.18) we have

D∇E = U−1
φσ D∇φ∗EUφ,

where Uφ :H(E)→H(eAq) and Uφσ :H(Eσ)→H(σ(e)Aq) are the unitary opera-

tors given by (5.14). As Uφ and Uφσ are even isomorphisms we see that indD±
∇E =

indD±
∇φ∗E . Combining this with (5.21) we then get

indD∇E = indD∇φ∗E = indD,σ[e] = indD,σ[E ].

The proof is complete. �

We conclude this section by looking at the index formula (5.20) in the example

of a Dirac spectral triple (C∞(M),L2(M, /S), /Dg), where (Mn, g) is a compact

Riemannian spin oriented manifold of even dimension. Let E be a vector bundle

over M , and let ∇E be a connection on E. Then E := C∞(M,E) is a finitely

generated projective module over the algebra A := C∞(M). We observe that A
is a commutative algebra and that we can identify left and right modules over A.

It would be more convenient to work with left modules instead of right modules.

This provides us with a natural identification of A-modules E1 ⊗A E2 � E2 ⊗A E1
for the tensor products of two modules E1 and E2; the isomorphism is given by

the flip map ξ1 ⊗ ξ2 → ξ2 ⊗ ξ1.

Let c : Λ∗
C
T ∗M → End /S be the Clifford representation. Then, for all a and

b in A,

(5.22) a[/Dg, b] = ac(db) = c(adb).

Therefore, we see that

Ω1
/Dg
(A) = Span

{
c(ω);ω ∈C∞(M,T ∗

CM)
}
.

Note that ∇E is a linear map from E = C∞(M,E) to C∞(M,T ∗M ⊗ E) =

C∞(M,T ∗
C
M) ⊗A E . Consider the linear map ∇E from E to Ω1

/Dg
(A) ⊗A E �

E ⊗A Ω1
/Dg
(A) defined by

∇E := (c⊗ 1E) ◦∇E .

Let ξ ∈ E , and let a ∈A. Using (5.22) we get

∇E(aξ) = (c⊗ 1E)(da⊗ ξ + a∇Eξ) = c(da) + a∇Eξ = [/Dg, a]ξ + a∇Eξ.

Therefore, we see that ∇E is a connection on the finitely generated projective

module E .
As ∇E is a connection on E , we can form the operator /D∇E := (/Dg)∇E . Set

H= L2
g(M,E). In what follows we identify H(E) = E ⊗AH with H⊗A E � L2(M,

/S ⊗E), so that we can regard /D∇E as an unbounded operator of L2(M, /S ⊗E).

Let ζ ∈ C∞(M, /S), and let ξ ∈ E . Let us write ∇Eξ =
∑

ωα ⊗ ξα, where ωα ∈
C∞(M,T ∗

C
M) and ξα ∈ E . For each α let us also write ωα =

∑
aαβdbαβ , with

aαβ and bαβ in C∞(M). Then, using (5.10) and (5.22), we see that /D∇E (ζ ⊗ ξ)
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is equal to

/Dgζ ⊗ ξ +
∑
α,β

(
aαβ [/Dg, bαβ ]

)
ζ ⊗ ξα = /Dgζ ⊗ ξ +

∑
α

c(ωα)ζ ⊗ ξα

= /D∇E (ζ ⊗ ξ).

Thus, under the identification H(E)� L2(M, /S⊗E), the operators /D∇E and /D∇E

agree. Combining this with (3.3) and (5.20) we then deduce that, for σ = id,

(5.23) ind/Dg,σ[E ] = indD∇E = indD∇E = ind/Dg
[E],

where the second index map is the Fredholm index map (5.19). Thus, under the

Serre–Swan isomorphism K0(M)�K0(C
∞(M)) this Fredholm index map agrees

with the index map (3.2).

6. Cyclic cohomology and pairing with K-theory

In this section, we review the main definitions and properties regarding cyclic

cohomology and its pairing with K-theory. Cyclic cohomology was discovered by

Connes [Co1] and Tsygan [Ts] independently. For more details on cyclic coho-

mology we refer to [Co4] and [Lo]. Throughout this section we let A be a unital

algebra over C.

6.1. Cyclic cohomology
The Hochschild cochain complex of A is defined as follows. The space of m-

cochains Cm(A), m ∈ N0, consists of (m + 1)-linear maps ϕ : Am+1 → C. The

Hochschild coboundary b :Cm(A)→Cm+1(A), b2 = 0, is given by

bϕ(a0, . . . , am+1) =

m∑
j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . , am+1)(6.1)

+ (−1)m+1ϕ(am+1a0, . . . , am), aj ∈A.(6.2)

A cochain ϕ ∈ Cm(A) is called cyclic when Tϕ = ϕ, where the operator

T :Cm(A)→Cm(A) is defined by

(6.3) Tϕ(a0, . . . , am) = (−1)mϕ(am, a0, . . . , am−1), aj ∈A.

We denote by Cm
λ (A) the space of cyclic m-cochains. As b(C•

λ(A))⊂C•+1
λ (A), we

obtain a subcomplex (C•
λ(A), b), the cohomology of which is denoted by H•

λ(A)

and called the cyclic cohomology of A.

The operator B :Cm(A)→Cm−1(A) is given by

(6.4) B =AB0(1− T ), where A= 1+ T + · · ·+ Tm,

and the operator B0 :C
m(A)→Cm−1(A) is defined by

(6.5) B0ϕ(a
0, . . . , am−1) = ϕ(1, a0, . . . , am−1), aj ∈A.

Note that B is annihilated by cyclic cochains. Moreover, it can be checked that

B2 = 0 and bB + bB = 0.
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This enables us to define a further cochain complex (C•
� (A), b+B), where

Ci
�(A) =

∞⊕
k=0

C2k+i(A), i= 0,1,

and we regard b and B as operators between C0
� (A) and C1

� (A). The correspond-

ing cohomology is called the periodic cyclic cohomology of A and is denoted

by HP•(A). Note that a periodic cyclic cocycle is a finitely supported sequence

ϕ= (ϕ2k+i) with ϕ2k+i ∈C2k+i(A), k ≥ 0, such that

bϕ2k+i +Bϕ2k+2+i = 0 for all k ≥ 0.

As the operator B is annihilated by cyclic cochains, any cyclic m-cocycle ϕ

is naturally identified with the periodic cyclic cocycle (0, . . . ,0, ϕ,0, . . .) ∈Ci
	(A),

where i is the parity of m. This gives rise to natural morphisms

H2k+•
λ (A)→HP•(A), k ≥ 0.

Connes’ periodicity operator S : Cm
λ (A) → Cm+2

λ (A) is obtained from the cup

product with the unique cyclic 2-cocycle on C taking the value 1 at (1,1,1) (see

[Co1], [Co4]). Equivalently,

S =
1

(m+ 1)(m+ 2)

m+1∑
j=1

(−1)jSj ,

where the operator Sj :C
m
λ (A)→Cm+2

λ (A) is given by

Sjϕ(a
0, . . . , am+2) =

∑
0≤l≤j−2

(−1)lϕ(a0, . . . , alal+1, . . . , ajaj+1, . . . , am+2)

(6.6)
+ (−1)j+1ϕ(a0, . . . , aj−1ajaj+1, . . . , am+2).

Here the operator S is normalized so that, for any cochain ϕ ∈ Cm+1(A), we

have

(6.7) bϕ is cyclic =⇒Bϕ is a cyclic cocycle and SBϕ=−bϕ in Hm+2
λ (A).

Incidentally, if ϕ is a cyclic cocycle, then Sϕ is a cyclic cocycle whose class in

HP•(A) agrees with that defined by ϕ (cf. [Co1], [Co4]). Furthermore, Connes

[Co1, Theorem II.40] proved that

(6.8) lim−→
(
H2k+•

λ (A), S
)
=HP•(A),

where the left-hand side is the direct limit of the directed system defined by the

maps S :H2k+•
λ (A)→H2k+2+•

λ (A), k ≥ 0.

It is sometimes convenient to normalize the cyclic mixed complex. More

precisely, we say that a cochain ϕ ∈Cm(A) is normalized when

(6.9) ϕ(a0, . . . , am) = 0 whenever aj = 1 for some j ≥ 1.

We denote by C
m
(A) the space of normalized m-cochains. The normalization

condition (6.9) is preserved by the operators b and B. Note also that B = AB0
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on normalized chains. We thus obtain a subcomplex (C
•
� (A), b+B) of the peri-

odic cyclic complex, where C
•
� (A) =

⊕
k≥0C

2k+•
(A). We denote by HP

•
(A)

the cohomology of the normalized periodic complex. Furthermore (see [Lo] and

Remark 6.1), the inclusion of C
•
0(A) in C•(A) gives rise to an isomorphism,

(6.10) HP
•
(A)�HP•(A).

REMARK 6.1

For m ∈ N0 let C
m

λ (A) be the space of normalized cyclic m-chains. We get a

subcomplex (C
•
λ(A), b) of the cyclic complex. We denote by H

•
λ(A) the coho-

mology of this complex. We observe that if ϕ ∈ C
m

λ (A), then the cyclicity and

normalization condition (6.9) imply that

(6.11) ϕ(1, a1, . . . , am) = (−1)mϕ(a1, . . . , am,1) = 0 ∀aj ∈A.

In fact (cf. [Lo, Section 2.2.13]), we have

(6.12) H•
λ(A)�H•

λ(C)⊕H
•
λ(A).

The cyclic cohomology of C has dimension 1 in even degree and is zero in odd

degree. Thus, given any 0-cochain ϕ0 ∈ C0
λ(A) such that ϕ0(1) = 1, the isomor-

phism (6.12) can be rewritten as

(6.13) H2k
λ (A)�C[Skϕ0]⊕H

2k

λ (A) and H2k+1
λ (A)�H

2k+1

λ (A).

Observe that S2kϕ0 is cohomologous in HP0(A) to ϕ0, which is a normalized

cocycle. Therefore, combining (6.8) and (6.11) gives the isomorphism (6.10).

EXAMPLE 6.2

LetA=C∞(M), whereM is a closed manifold. Form= 0,1, . . . , n, let Ωm(M) be

the space of m-dimensional currents. Any current C ∈Ωm(M) defines a cochain

ϕC ∈Cm(A) by

(6.14) ϕC(f
0, . . . , fm) =

1

m!
〈C,f0df1 ∧ · · · ∧ dfm〉, fj ∈C∞(M).

Note that ϕC is a normalized cochain. Moreover, it can be checked that bϕC = 0

and BϕC = ϕdtC , where dt is the de Rham boundary for currents. Therefore, we

obtain a morphism from the mixed complex (Ω•(M),0, dt) to the cyclic mixed

complex of A=C∞(M). In particular, we have a natural linear map

αM :Hev/odd(M,C)−→HP•(C∞(M)
)
,

where Hev/odd(M,C) is the even/odd de Rham homology of M .
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6.2. Pairing with K-theory
There are two equivalent ways to define the pairing between HP0(A) and K0(A)

(see [Co1], [GS]). Given any even normalized cochain ϕ= (ϕ2k) and an idempo-

tent e ∈Mq(A), define

(6.15) 〈ϕ, e〉 := tr#ϕ0(e) +
∑
k≥1

(−1)k
(2k)!

k!
tr#ϕ2k

(
e− 1

2
, e, . . . , e

)
,

where tr#ϕ2k is the 2k-cochain on Mq(A) = Mq(C) ⊗ A such that, for all

μ0, . . . , μ2k in Mq(C) and a0, . . . , a2k in A, we have

tr#ϕ2k(μ
0 ⊗ a0, . . . , μ2k ⊗ a2k) = tr[μ0 · · ·μk]ϕ2k(a

0, . . . , a2k).

It can be checked that, when ϕ is an even normalized periodic cocycle, the value

of 〈ϕ, e〉 depends only on the class of ϕ in HP
0
(A) and the class of e in K0(A).

Combining this with (6.10) we then obtain a bilinear pairing

(6.16) 〈·, ·〉 : HP0(A)×K0(A)→C.

In addition, given any cyclic 2k-cocycle ϕ it can be shown (see Remark 6.4

below) that

(6.17) 〈ϕ, e〉= (−1)k
(2k)!

k!
tr#ϕ(e, . . . , e) ∀e ∈Mq(A), e2 = e.

In fact, the right-hand side of (6.17) depends only on the class of ϕ in H2q
λ (A)

and is invariant under the periodicity operators S (see [Co1], [Co4]). Therefore,

under the inductive limit (6.8) this gives rise to a pairing between HP0(A) and

K0(A) which agrees with the pairing (6.15).

EXAMPLE 6.3

Suppose now that A = C∞(M), where M is a closed manifold, and let e ∈
Mq(C

∞(M)), where e2 = e. Consider the vector bundle E = rane, which we

regard as a subbundle of the trivial vector bundle E0 =M × C
q . We note that

by the Serre–Swan theorem any vector bundle over M is isomorphic to a vector

bundle of this form. We equip E with the Grassmannian connection ∇E defined

by e, so that

∇E
Xξ = e(Xξj) for all X ∈C∞(M,TM) and ξ = (ξj) ∈ Eq =C∞(M,E)q .

The curvature of ∇E is FE = e(de)2 = e(de)2e, and so its Chern form is given by

Ch(FE) =
∑

(−1)k
1

k!
tr

[
e(de)2k

]
∈Ωev(M).

Let C = (C2k) be a closed even de Rham current, and denote by ϕC the associated

cocycle defined by (6.14). Noting that all the cochains ϕC2k
satisfy (6.11), we

obtain 〈
C,Ch(FE)

〉
=

∑
(−1)k

1

k!

〈
C2k, tr

[
e(de)2k

]〉
(6.18)

=
∑

(−1)k
(2k)!

k!
tr#ϕC2k

(e, . . . , e) = 〈ϕC , e〉.
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Therefore, the pairing (6.17) between even periodic cyclic cohomology and

K-theory reduces to the classical pairing (3.4) between de Rham homology and

K-theory.

REMARK 6.4

The equality (6.17) is proved as follows. Thanks to (6.13) we know that

(6.19) ϕ= Skϕ0 +ψ mod b
(
C2k−1

λ (A)
)
,

where ϕ0 ∈C0
λ(A) is such that ϕ0(1) �= 0 and ψ is a normalized cyclic 2k-cocycle.

As ϕ0 and Skϕ0 are cohomologous in HP0(A), we see that ϕ is cohomologous in

HP0(A) to the normalized even cocycle ϕ0 +ψ. Thus,

(6.20) 〈ϕ, e〉= 〈ϕ0, e〉+ 〈ψ, e〉.

Set ck = (−1)k(k!)−1(2k)!. Using (6.6) we can check that

(6.21) 〈ϕ0, e〉= tr#ϕ0(e) = ck tr#(Skϕ0)(e, . . . , e).

Moreover, as the cocycle ψ is normalized and cyclic, it follows from (6.15) and

(6.11) that

〈ψ, e〉= ck tr#ψ
(
e− 1

2
, e, . . . , e

)
= ck tr#ψ(e, e, . . . , e).

Combining this with (6.19)–(6.21) then gives

〈ϕ, e〉= ck tr#(Skϕ0 +ψ)(e, . . . , e) = ck tr#ϕ(e, . . . , e),

which proves (6.17).

7. Connes–Chern character and index formula

In this section, we give a direct construction of the Connes–Chern character

of a twisted spectral triple. Combining this with the results of Section 5 we

shall obtain a reformulation of the Atiyah–Singer index formula (3.5) for twisted

spectral triples.

Throughout this section we let (A,H,D)σ be a twisted spectral triple. For

p ≥ 1 we denote by Lp(H) the Schatten ideal of operators T ∈ L(H) such that

Tr |T |p <∞. We recall that Lp(H) is a Banach ideal with respect to the p-norm

‖T‖p =
(
Tr |T |p

) 1
p , T ∈ Lp(H).

In what follows we assume that the twisted spectral triple (A,H,D)σ is p-

summable, that is,

D−1 ∈ Lp(H).

7.1. Invertible case
We start by assuming that D is invertible. We shall explain later how to remove

this assumption. We recall the following result.
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LEMMA 7.1 ([Hö, LEMMA 7.1]; SEE ALSO [Co1, P. 304])

Let H1 and H2 be Hilbert spaces, and let T ∈ L(H1,H2) be a Fredholm operator.

Let S ∈ L(H2,H1) be such that 1− ST ∈ Lp(H1) and 1− TS ∈ Lp(H2). Then

indT =Tr
(
(1− ST )q

)
−Tr

(
(1− TS)q

)
∀q ≥ p.

The main impetus for our construction of the Connes–Chern character is the

following index formula.

PROPOSITION 7.2

Let e ∈Mq(A), q ≥ 1, be an idempotent. Then, for any integer k ≥ 1
2p,

(7.1) indDe,σ =
1

2
Str

((
D−1[D,e]σ

)2k+1)
.

Proof

We defined De,σ as an unbounded operator from eHq to σ(e)Hq . Alternatively,

let H1 be the Hilbert space given by the vector space dom(D) equipped with the

Hermitian inner product

〈ξ, η〉1 := 〈ξ, η〉+ 〈Dξ,Dη〉, ξ, η ∈ dom(D).

We denote by ‖ · ‖1 the norm of H1. This norm is complete since D is a closed

operator. We then can regard D as an invertible bounded operator from H1 to

H. Let a ∈ A, and let ξ ∈ dom(D). Upon writing Daξ = aDξ + [D,a]ξ we see

that

‖aξ‖21 = ‖aξ‖2 + ‖Daξ‖2

≤ ‖aξ‖2 + 2
(
‖aDξ‖2 +

∥∥[D,a]ξ
∥∥2)

≤ 2
(
‖a‖2 +

∥∥[D,a]
∥∥2)‖ξ‖21.

Thus, a induces a bounded operator on H1. It then follows that e induces a

bounded operator on Hq
1, so that eHq

1 is a closed subspace of Hq
1. We regard De,σ

as a bounded operator from eHq
1 to σ(e)Hq . Set Q= eD−1σ(e) ∈ L(σ(e)Hq, eHq

1).

Then the product De,σQ is equal to

σ(e)DeD−1σ(e) = σ(e)
(
σ(e)D+ [D,e]σ

)
D−1σ(e)

(7.2)
= 1+ σ(e)[D,e]σD

−1σ(e),

where we have used the fact that e= 1 on eHq . Likewise, the operator QDe,σ is

equal to

(7.3) eD−1σ(e)De= eD−1
(
De− [D,e]σ

)
e= 1− eD−1[D,e]σe.

We observe that D−1[D,e]σD
−1[D,e]σe is equal to(

e−D−1σ(e)D
)(
e−D−1σ(e)D

)
e = e− eD−1σ(e)De

(7.4)
= eD−1[D,e]σe.
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Similarly, the operator σ(e)[D,e]σD
−1[D,e]σD

−1 is equal to

σ(e)
(
DeD−1 − σ(e)

)(
DeD−1 − σ(e)

)
= −σ(e)DeD−1σ(e) + σ(e)

(7.5)
= −σ(e)[D,e]σD

−1σ(e).

As D−1 ∈ Lp(H) and [D,e]σ is bounded, using (7.4) we see that eD−1[D,e]σe is

in the Schatten class L p
2 (eHq). Note also that D−1[D,e]σ =D−1([D,e]σD

−1)D.

As D is an isomorphism from H1 onto H, we then see that [D,e]σD
−1 induces

on Hq an operator in Lp(Hq). Combing this with (7.5) then shows that

σ(e)[D,e]σD
−1σ(e) induces on σ(e)Hq an operator in L p

2 (σ(e)Hq).

The Z2-grading H =H+ ⊕H− induces a Z2-grading H1 = H+
1 ⊕H−

1 with

H±
1 =H1∩H±. This gives rise to splittings eHq

1 = e(H+
1 )

q⊕e(H−
1 )

q and σ(e)Hq =

σ(e)(H+)q ⊕ σ(e)(H−)q . With respect to these splittings, the operator Q =

eDσ(e) takes the form,

Q=

(
0 Q−

Q+ 0

)
where Q± := e(D∓)−1σ(e).

Therefore, (7.2) and (7.3) can be rewritten as

D±
e,σQ

∓ = 1+ σ(e)[D±, e]σ(D
±)−1σ(e), Q∓D±

e,σ = 1− e[D∓, e]σ(D
∓)−1e,

where the first equality holds in L(σ(e)H±) and the second holds in L(eH±
1 ). As

shown above, the operators σ(e)[D±, e]σ(D
±)−1σ(e) and e[D∓, e]σ(D

∓)−1e are

in the Schatten classes L p
2 (σ(e)(H±)q) and L p

2 (e(H±
1 )

q), respectively. Therefore,

we may apply Lemma 7.1 to obtain that, for all k ≥ 1
2p,

indD±
e,σ =Tr

(
e(D∓)−1[D∓, e]σe

)k −Tr
(
−σ(e)[D±, e]σ(D

±)−1σ(e)
)k
.

Thus,

2 indDe,σ = Str
(
eD−1[D,e]σe

)k − Str
(
−σ(e)[D,e]σD

−1σ(e)
)k
.

Combining this with (7.4) and (7.5) we then get

2 indDe,σ = Str
((
D−1[D,e]σ

)2k
e
)
+Str

(
σ(e)

(
[D,e]σD

−1
)2k)

.

We observe that Str(σ(e)([D,e]σD
−1)2k) is equal to

Str
(
σ(e)D

(
D−1[D,e]σ

)2k
D−1

)
=−Str

(
D−1σ(e)D

(
D−1[D,e]σ

)2k)
.

Therefore, we obtain

indDe,σ =
1

2
Str

((
e−D−1σ(e)D

)(
D−1[D,e]σ

)2k)
=

1

2
Str

((
D−1[D,e]σ

)2k+1)
.

The lemma is thus proved. �

DEFINITION 7.3

For k ≥ 1
2 (p− 1) let τD2k be the 2k-cochain on A defined by

(7.6) τD2k(a
0, . . . , a2k) = ck Str

(
D−1[D,a0]σ · · ·D−1[D,a2k]σ

)
∀aj ∈A,

where we have set ck =
1
2 (−1)k k!

(2k)! .
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We note that τD2k is a normalized cyclic cochain. Moreover, using (6.17), for

k ≥ 1
2p, we can rewrite the index formula (7.1) in the form

(7.7) indDe,σ = 〈τD2k, e〉 ∀e ∈Mq(A), e2 = e.

For m≥ p, we let ϕm and ψm be the normalized m-cochains on A defined

by

ϕm(a0, . . . , am) = Str
(
a0D−1[D,a1]σ · · ·D−1[D,am]σ

)
,(7.8)

ψm(a0, . . . , am) = Str
(
σ(a0)[D,a1]σD

−1 · · · [D,am]σD
−1

)
, aj ∈A.(7.9)

We observe that ψm(a0, . . . , am) is equal to

−Str
(
D−1σ(a0)DD−1[D,a1]σ · · ·D−1[D,am]σ

)
(7.10)

=−ϕm

(
D−1σ(a0)D,a1, . . . , am

)
.

Using the equality D−1[D,a0]σ = a0 −D−1σ(a0)D, we then see that, for k ≥ 1
2p,

c−1
k τD2k(a

0, . . . , a2k) = Str
{
a0D−1[D,a1]σ · · ·D−1[D,a2k]σ

}
− Str

{
D−1σ(a0)DD−1[D,a1]σ · · ·D−1[D,a2k]σ

}
(7.11)

= ϕ2k(a
0, . . . , a2k) +ψ2k(a

0, . . . , a2k).

LEMMA 7.4

Let k ≥ 1
2 (p− 1). Then

Bϕ2k+1 =−Bψ2k+1 = (2k+ 1)c−1
k τD2k.

Proof

As ϕ2k+1 and ψ2k+1 are normalized cochains, we know that Bϕ2k+1 =AB0ϕ2k+1

and Bψ2k+1 =AB0ψ2k+1. Moreover, it follows from (7.8) and (7.9) that

B0ϕ2k+1 =−B0ψ2k+1 = c−1
k τD2k.

As τD2k is a cyclic cochain, we then deduce that

Bϕ2k+1 =−Bψ2k+1 = c−1
k AτD2k = (2k+ 1)c−1

k τD2k.

This proves the lemma. �

LEMMA 7.5

Let k ≥ 1
2 (p+ 1). Then

(7.12) bϕ2k−1 = ϕ2k and bψ2k−1 =−ψ2k.

Proof

For j = 1, . . . ,2k let θ′j and θ′′j be the 2k-cochains on A defined by

θ′j(a
0, . . . , a2k) = Str

(
a0D−1[D,a1]σ · · ·aj · · ·D−1[D,a2k]σ

)
,

θ′′j (a
0, . . . , a2k) = Str

(
a0D−1[D,a1]σ · · ·D−1σ(aj)D−1 · · ·D−1[D,a2k]σ

)
, al ∈A.
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We note that

θ′j(a
0, . . . , a2k)− θ′′j (a

0, . . . , a2k)

= Str
(
a0D−1[D,a1]σ · · ·

(
aj −D−1σ(aj)D

)
· · ·D−1[D,a2k]σ

)
= ϕ2k(a

0, . . . , a2k).

Using the equality D−1[D,ajaj+1]σ = D−1[D,aj ]σa
j+1 + D−1σ(aj)D ·

D−1[D,aj+1]σ we also find that

bjϕ2k−1(a
0, . . . , a2k) = Str

(
a0D−1[D,a1]σ · · ·D−1[D,ajaj+1]σ · · ·D−1[D,a2k]σ

)
= θ′j+1(a

0, . . . , a2k) + θ′′j (a
0, . . . , a2k).

Thus,
∑2k−1

j=1 (−1)jbjϕ2k−1 is equal to

2k−1∑
j=1

(−1)j(θ′j+1 + θ′′j ) = −θ′′1 +

2k−1∑
j=2

(−1)j−1(θ′j−1 − θ′′j )− θ′2k

= −θ′′1 +

2k−1∑
j=2

(−1)j−1ϕ2k − θ′2k(7.13)

= −θ′′1 − θ′2k.

We also note that

b0ϕ2k−1(a
0, . . . , a2k) = Str

(
a0a1D−1[D,a2]σ · · ·D−1[D,a2k]σ

)
= θ′1(a

0, . . . , a2k).

Moreover, the cochain b2kϕ2k−1(a
0, . . . , a2k) is equal to

Str
(
a2ka1D−1[D,a1]σ · · ·D−1[D,a2k−1]σ

)
= Str

(
a0D−1[D,a1]σ · · ·D−1[D,a2k−1]σa

2k
)

= θ′2k(a
0, . . . , a2k).

Therefore, we find that

bϕ2k−1 =

2k∑
j=0

(−1)jbjϕ2k−1 = b0ϕ2k−1 − θ′′1 − θ′2k + b2kϕ2k−1 = θ′1 − θ′′1 = ϕ2k.

As ψ2k−1(a
0, . . . , a2k−1) = −ϕ2k−1(D

−1σ(a0)D,a1, . . . , a2k−1), using (7.13)

we get

2k−1∑
j=1

(−1)jbjψ2k−1

= θ′′1
(
D−1σ(a0)D,a1, . . . , a2k

)
+ θ′2k

(
D−1σ(a0)D,a1, . . . , a2k

)
.

We observe that b0ψ2k−1(a
0, . . . , a2k) is equal to

−Str
(
D−1a0a1D−1[D,a2]σ · · ·D−1[D,a2k]σ

)
=−θ′′1

(
D−1σ(a0)D,a1, . . . , a2k−1

)
.
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Moreover, we have

b2kψ2k−1(a
0, . . . , a2k)

=−Str
(
D−1σ(a2k)σ(a0)D ·D−1[D,a1]σ · · ·D−1[D,a2k−1]σ

)
=−Str

(
D−1a0D ·D−1[D,a1]σ · · ·D−1[D,a2k−1]σD

−1σ(a2k)D
)

=−θ′′2k
(
D−1σ(a0)D,a1, . . . , a2k

)
.

Therefore, we see that bψ2k−1(a
0, . . . , a2k) =

∑2k
j=0(−1)jbjψ2k−1(a

0, . . . , a2k) is

equal to

θ′2k
(
D−1σ(a0)D,a1, . . . , a2k

)
− θ′′2k

(
D−1σ(a0)D,a1, . . . , a2k

)
= ϕ2k

(
D−1σ(a0)D,a1, . . . , a2k

)
=−ψ2k(a

0, a1, . . . , a2k).

The proof is complete. �

PROPOSITION 7.6 ([CM4])

Let k ≥ 1
2 (p− 1).

(1) The cochain τD2k in (7.6) is a normalized cyclic cocycle.

(2) The class of τD2k in HP0(A) is independent of the value of k.

Proof

We already know that τD2k is a cyclic normalized cochain. We also note that

ck+1 =
1

2
(−1)k+1 (k+ 1)!

(2k+ 2)!
=− ck

2(2k+ 1)
.

Combining this with Lemma 7.4 we get

(7.14) τD2k =
ck

2(2k+ 1)
B(ϕ2k+1 −ψ2k+1) =−ck+1B(ϕ2k+1 −ψ2k+1).

Using (7.14) and the fact that bB =−Bb we then see that

bτD2k =−ck+1bB(ϕ2k+1 −ψ2k+1) = ck+1Bb(ϕ2k+1 −ψ2k+1).

Moreover, using (7.11) and Lemma 7.5 we get

(7.15) τD2k+2 = ck+1(ϕ2k+2 +ψ2k+2) = ck+1b(ϕ2k+1 −ψ2k+1).

As B is annihilated by cyclic cochains we then deduce that

bτD2k =B
(
ck+1b(ϕ2k+1 −ψ2k+1)

)
=BτD2k+2 = 0.

That is, τD2k is a cocycle. We also see that

τD2k+2 − τD2k = ck+1b(ϕ2k+1 −ψ2k+1) + ck+1B(ϕ2k+1 −ψ2k+1).

This shows that τD2k+2 and τD2k define the same class in HP0(A). It then follows

that the class of τD2k in HP0(A) is independent of the value of k. The proof is

complete. �
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REMARK 7.7

The proof of Lemma 7.4 uses the fact that the unit of A is represented by

the identity of H. Otherwise, the equalities B0ϕ2k+1 =−B0ψ2k+1 = c−1
k τD2k need

not hold. Therefore, the unitality of A is a crucial ingredient of the proof of

Proposition 7.6.

REMARK 7.8

As in [Co1], we can get a more precise relationship between the cocycles τD2k and

τD2k+2 by using the S-operator. Indeed, using (6.7) and (7.12) we get

SB(ϕ2k+1 −ψ2k+1) =−b(ϕ2k+1 −ψ2k+1) =−(ϕ2k+2 +ψ2k+2) in H2k
λ (A).

Combining this with (7.14) and (7.15) we then deduce that

SτD2k =−ck+1SB(ϕ2k+1 −ψ2k+1) = ck+1(ϕ2k+2 +ψ2k+2) = τD2k+2 in H2k
λ (A).

As τD2k and SτD2k are cohomologous in HP0(A), this provides us with an alternative

argument showing that τD2k and τD2k+2 define the same class in HP0(A).

DEFINITION 7.9 ([CM4])

Let (A,H,D)σ be a p-summable twisted spectral triple with D invertible. Then

its Connes–Chern character, denoted by Ch(D)σ , is the class in HP0(A) of any

of the cocycles τD2k, k ≥ 1
2 (p− 1).

We are now in a position to reformulate the Atiyah–Singer index formula (3.5)

for twisted spectral triples in the invertible case.

THEOREM 7.10

Let (A,H,D)σ be a p-summable twisted spectral triple with D invertible. Then,

for any finitely generated projective right A-module E and any σ-connection on E ,
we have

indD∇E =
〈
Ch(D)σ, [E ]

〉
.

Proof

Thanks to Theorem 5.22 we know that indD∇E = indD,σ[E ]. Let e be an idem-

potent in some matrix algebra Mq(A) such that E � eAq . Then (7.7) shows that,

for k ≥ 1
2p,

indD,σ[e] = indDe,σ = 〈τD2k, e〉=
〈
Ch(D)σ, [e]

〉
.

As E and e define the same class in K0(A) we then deduce that

indD∇E = indD,σ[e] =
〈
Ch(D)σ, [E ]

〉
.

The proof is complete. �

7.2. General case
The assumption on the invertibility of D can be removed by passing to the unital

invertible double as follows. Consider the Hilbert space H̃ =H ⊕H, which we
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equip with the Z2-grading given by

γ̃ =

(
γ 0

0 −γ

)
,

where γ is the grading operator of H. On H̃ consider the self-adjoint operators,

D̃0 =

(
D 0

0 −D

)
, J =

(
0 1

1 0

)
, D̃ = D̃0 + J =

(
D 1

1 −D

)
,

where the domain of D̃0 and D̃ is dom(D)⊕ dom(D). As D̃0J + JD̃0 = 0 and

J2 = 1 we get

(7.16) D̃2 = D̃2
0 + 1=

(
D2 + 1 0

0 D2 + 1

)
.

It then follows that D̃ is invertible. Moreover,

(7.17) Tr |D̃|−p =Tr(D̃2)−
p
2 = 2Tr(D2 + 1)−

p
2 ≤ 2Tr |D|−p <∞.

That is, D̃−1 ∈ Lp(H̃).

Let π :A→L(H̃) be the linear map given by

π(a) =

(
a 0

0 0

)
∀a ∈A.

We note that π is multiplicative, but as π(1) �= 0 this is not a representation

of the unital algebra A. As mentioned in Remark 7.7 the representation of the

unit 1 by the identity of H is essential to the construction of the Connes–Chern

character in the invertible case. To remedy the lack of unitality of π we pass to

the ∗-algebra Ã=A⊕C with product and involution given by

(a,λ)(b,μ) = (ab+ λb+ μa,λμ), (a,λ)∗ = (a∗, λ), a, b ∈A, λ,μ ∈C.

The unit of Ã is 1Ã = (0,1). Thus, by identifying any element a ∈A with (a,0),

any element ã= (a,λ) ∈ Ã can be uniquely written as (a,λ) = a+λ1Ã. We extend

π into the (unital) representation π̃ : Ã→ L(H̃) given by

π̃(a+ λ1Ã) = π(a) + λ ∀(a,λ) ∈A×C.

We also extend the automorphism σ into the automorphism σ̃ : Ã→ Ã given by

σ̃(a+ λ1Ã) = σ(a) + λ1Ã ∀(a,λ) ∈A×C.

For a ∈A and λ ∈C, the twisted commutator [D̃, π̃(a+ λ1Ã)]σ̃ is equal to(
D 1

1 −D

)(
a+ λ 0

0 λ

)
−

(
σ(a) + λ 0

0 λ

)(
D 1

1 −D

)

=

(
[D,a]σ −σ(a)

a 0

)
∈ L(H̃).

Combining all these we obtain the following statement.

PROPOSITION 7.11

The triple (Ã, H̃, D̃)σ̃ is a p-summable twisted spectral triple.
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As D̃ is invertible, we can form the normalized cyclic cocycles τ D̃2k, k ≥ 1
2 (p−1), as

in Definition 7.3. We note that if ϕ is a cyclic m-cochain on Ã, then its restriction

ϕ to Am+1 is a cyclic cochain on A. Moreover, by using (6.1) and (6.6) we see

that

(7.18) bϕ= bϕ and Sϕ= Sϕ.

If in addition ϕ is normalized, then the normalization condition and (6.11) imply

that

(7.19) ϕ̃(a0 + λ01Ã, . . . , a
m + λm1Ã) = ϕ(a0, . . . , am) ∀aj ∈A ∀λj ∈C.

Thus, ϕ is uniquely determined by its restriction ϕ to Am+1. Conversely, any

cyclic m-cochain ϕ on A uniquely extends to a normalized cyclic m-cochain ϕ̃

on Ã satisfying (7.19).

DEFINITION 7.12

Let k ≥ 1
2 (p− 1). Then τD2k is the cyclic 2k-cochain on A given by the restriction

of τ D̃2k to A2k+1.

PROPOSITION 7.13

Let k ≥ 1
2 (p− 1).

(1) The 2k-cochain τD2k is a cyclic cocycle whose class in HP0(A) is inde-

pendent of k.

(2) For any idempotent e ∈Mq(A), we have

indDσ,e = 〈τD2k, e〉.

Proof

It follows from (7.18) that bτD2k = bτ D̃2k = 0, so τD2k is a cyclic cocycle. By

Remark 7.8 the cocycles Sτ D̃2k and τ D̃2k+2 are cohomologous in H2k+2
λ (Ã). There-

fore, by (7.18) their respective restrictions to A, namely, SτD2k and τD2k+2, are

cohomologous in H2k+2
λ (A). As SτD2k and τD2k define the same class in HP0(A),

we deduce that the classes of τD2k and τD2k+2 in HP0(A) agree. It then follows

that the class of τD2k in HP0(A) is independent of k.

Let e ∈Mq(A), e2 = e. Regarding e as an idempotent in Mq(Ã), we have

π̃(e)H̃q =

(
e 0

0 0

)
(Hq ⊕Hq) = e(Hq)⊕ {0} � eHq.

Likewise, π̃(σ(e))H̃q = σ(e)(Hq)⊕ {0} � σ(e)Hq . Moreover,

σ(e)D̃e=

(
σ(e) 0

0 0

)(
D 1

1 −D

)(
e 0

0 0

)
=

(
σ(e)De 0

0 0

)
.

Thus, under the identifications π̃(e)H̃q � eHq and π̃(σ(e))H̃q � σ(e)Hq above,

the operators D̃e,σ and De,σ agree. Therefore, using (7.7) we get indDe,σ =



384 Raphaël Ponge and Hang Wang

ind D̃e,σ = 〈τ D̃2k, e〉. As (7.19) implies that 〈τ D̃2k, e〉= 〈τD2k, e〉, we then deduce that

indDe,σ = 〈τD2k, e〉. The proof is complete. �

DEFINITION 7.14

Let (A,H,D)σ be a p-summable twisted spectral triple. Then its Connes–Chern

character, denoted by Ch(D)σ , is the class in HP0(A) of any of the cocycles τD2k,

k ≥ 1
2 (p− 1).

Assume now that D is invertible. We then have two definitions of the Connes–

Chern character: one in terms of the cocycles τD2k and the other in terms of the

cocycles τD2k. We shall now show that these definitions are equivalent.

Consider the homotopy of operators

D̃t = D̃0 + tJ, 0≤ t≤ 1.

In the same way as in (7.16) we have

D̃2
t = D̃2

0 + t2 =

(
D2 + t2 0

0 D2 + t2

)
,

which shows that D̃t is invertible for all t ∈ [0,1]. Moreover, as in (7.17) we have

Tr |D̃t|−p = 2Tr(D2 + t2)−
p
2 ≤ 2Tr |D|−p.

Thus, (D̃−1
t )0≤t≤1 is a bounded family in Lp(H̃). Therefore, the family (D̃t)0≤t≤1

satisfies the assumption of Proposition C.1 in Appendix C on the homotopy

invariance of the Connes–Chern character. We then deduce that (Ã, H̃, D̃t)σ̃ is

a p-summable twisted spectral triple for all t ∈ [0,1] and, for k ≥ 1
2 (p+ 1), the

cocycles τ D̃0

2k and τ D̃1

2k = τ D̃2k are cohomologous in H2k
λ (Ã). Denote by τD0

2k the

restriction to A2k+1 of τ D̃0

2k . Then (7.18) shows that τD0

2k and τD2k are cohomolo-

gous in H2k
λ (A).

Bearing this in mind, we note that, for a ∈A, we have

[
D̃0, π̃(a)

]
σ̃
=

(
D 0

0 −D

)(
a 0

0 0

)
−

(
σ(a) 0

0 0

)(
D 0

0 −D

)
=

(
[D,a]σ 0

0 0

)
.

Thus,

D̃−1
0

[
D̃0, π̃(a)

]
σ̃
=

(
D−1[D,a]σ 0

0 0

)
and

γ̃D̃−1
0

[
D̃0, π̃(a)

]
σ̃
=

(
γD−1[D,a]σ 0

0 0

)
.

It then follows that, for a0, . . . , a2k in A, we have

τ D̃0

2k (a0, . . . , a2k) = Tr
(
γD−1[D,a0]σ · · ·D−1[D,a2k]σ

)
= τD2k(a

0, . . . , a2k).

That is, the restriction of τ D̃0

2k to A2k+1 is precisely the cocycle τD2k. Therefore,

we arrive at the following statement.
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PROPOSITION 7.15

If D is invertible, then for any k ≥ 1
2 (p+ 1) the cyclic cocycles τD2k and τD2k are

cohomologous in H2k
λ (A) and, hence, define the same class in HP0(A).

It follows from this that, when D is invertible, Definitions 7.9 and 7.14 provide

us with equivalent definitions of the Connes–Chern character of (A,H,D)σ .

Finally, using Proposition 7.13 and arguing as in the proof of Theorem 7.10

enable us to remove the invertibility assumption in Theorem 7.10. We thus obtain

the following index formula.

THEOREM 7.16

Let (A,H,D)σ be a p-summable twisted spectral triple. Then, for any finitely

generated projective right A-module E and any σ-connection on E , we have

indD∇E =
〈
Ch(D)σ, [E ]

〉
.

REMARK 7.17

The cocycles τD2k and τD2k may be difficult to compute in practice, even in the

case of a Dirac spectral triple (see [Co1, Part I, Theorem 6.5] and [BF]). In

the ordinary case, a representation of the Connes–Chern character in entire

cyclic cohomology is given by JLO cocycle of Jaffe–Lesniewski–Osterwalder

(see [JLO], [Co3]), the existence of which only requires θ-summability. We refer

to the paper of Quillen [Qu] for interpretations of the Connes–Chern charac-

ter and the JLO cocycle in terms of Chern characters of superconnections on

cochains.

REMARK 7.18

Under further assumptions, a representative in periodic cyclic cohomology is

given by the CM cocycle of Connes–Moscovici ([CM1]; see also [Hi]). The com-

ponents of the CM cocycle are given by formulas that are local in the sense that

they involve universal linear combinations of functionals of the form

−
∫

a0[D,a1][α1] · · · [D,a2k][α2k]D−2(|α|+k), aj ∈A,

where T [j] is the jth iterated commutator of T with D2 and −
∫

is an analogue

of the noncommutative residue trace of Guillemin [Gu] and Wodzicki [Wo1].

This thus expresses the index pairing as a linear combination of residues of var-

ious zeta functions, in the spirit of the index formula of Atiyah–Bott [At]. We

refer to [Wo2], [Ka], [MN], and [MoN] for other types of residue index formu-

las.

REMARK 7.19

Let (Mn, g) be a compact Riemannian manifold. The Connes–Chern character

of the Dirac spectral triple (C∞(M),L2(M, /S), /Dg) is represented by the CM
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cocycle. This CM cocycle can be computed by heat kernel techniques (see [CM1],

[Po]). We obtain the even cocycle ϕ= (ϕ2k) given by

ϕ2k(f
0, . . . , f2k) =

(2iπ)−
n
2

(2k)!

∫
M

Â(RM )∧ f0 df1 ∧ · · · ∧ dfk.

In other words ϕ = (2iπ)−
n
2 ϕÂ(RM )∧ in the sense of (6.14), where Â(RM )∧ is

the Poincaré dual current of the Â-form Â(RM ). Let us explain how this enables

us to recover the Atiyah–Singer index formula. Let e ∈ Mq(C
∞(M)), e2 = e,

and form the vector bundle E = rane, which we equip with its Grassmannian

connection ∇E . Then by (5.23) we have

ind /D∇E = ind/Dg,σ[e].

As (2iπ)−
n
2 ϕÂ(RM )∧ represents the Connes–Chern character, by Theorem 7.16

we have

ind/Dg,σ[e] = (2iπ)−
n
2 〈ϕÂ(RM )∧ , e〉.

Moreover, using (6.18) we have

〈ϕÂ(RM )∧ , e〉=
〈
Â(RM )∧,Ch(FE)

〉
=

∫
M

Â(RM )∧Ch(FE),

where FE is the curvature of ∇E . Therefore, we obtain

ind /D∇E = (2iπ)−
n
2

∫
M

Â(RM )∧Ch(FE),

which is the Atiyah–Singer index formula.

REMARK 7.20

It remains an open question to construct a version of the CM cocycle for twisted

spectral triples. Moscovici [Mo2] devised an ansatz for such a cocycle and verified

it in the case of twistings of ordinary spectral triples by scaling automorphisms.

To date, this seems to be the only known example of twisted spectral triples

satisfying Moscovici’s ansatz. It would be interesting to have a version of Connes’s

[Co4] Hochschild character formula. We refer to [FK1] for a Hochschild character

formula in the special case of twistings of ordinary spectral triples by scaling

automorphisms.

REMARK 7.21

We refer to [PW2] and [PW3] for the computation of the Connes–Chern character

of the conformal Dirac spectral triple of [CM4] (the construction of which is

recalled in Section 2).

Appendix A: Proof of Lemma 5.11

It is immediate that the restriction of (·, ·)0 is A-sesquilinear and positive. The

only issue at stake is nondegeneracy.
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LEMMA A.1

Set E∗ = e∗Aq. Then the restriction of (·, ·) to E∗ ×E is nondegenerate.

Proof of Lemma A.1

We need to show that Φ : E∗ � ξ → (ξ, ·)0|E ∈ E ′ is an A-antilinear isomorphism.

Let ξ = (ξj) ∈ E∗. Then

(ξ, eξ)0 = (e∗ξ, ξ)0 = (ξ, ξ)0 =
∑

ξ∗j ξj .

It then follows that if (ξ, ·)0 vanishes on E , then all the positive operators ξ∗j ξj
vanish on H and hence ξ = 0. This shows that Φ is injective.

Let ϕ ∈ E ′, and let ϕ̃ ∈ (Aq)′ be defined by ϕ̃(ξ) = ϕ(eξ) for all ξ ∈Aq . The

nondegeneracy of (·, ·)0 implies that there is η̃ ∈ Aq such that ϕ̃(ξ) = (η̃, ξ)0 for

all ξ ∈Aq . Set η = e∗η ∈ E∗. Then, for all ξ ∈ E ,

ϕ(ξ) = ϕ̃(eξ) = (η̃, eξ)0 = (e∗η̃, ξ)0 = (η, ξ)0.

Thus, ϕ=Φ(η). This shows that Φ is surjective. Therefore, Φ is an A-antilinear

isomorphism. Likewise, Ψ : E � η→ (·, η)0|E∗ ∈ (E∗)′ is an A-linear isomorphism.

This completes the proof of the lemma. �

LEMMA A.2

Denote by t : E → E∗ the A-linear map defined by

tξ = e∗ξ ∀ξ ∈ E .

Then t is an A-linear isomorphism from E onto E∗.

Proof of Lemma A.2

If F is a right submodule of Aq , then we shall denote by F⊥ its orthogonal

complement with respect to the canonical Hermitian metric of Aq . For a ∈Mq(A)

we shall identify a with the associated A-linear map Aq →Aq . We observe that

with this convention a∗ is identified with the adjoint of a with respect to (·, ·)0,
that is,

(a∗ξ, η)0 = (ξ, aη)0 ∀ξ, η ∈Aq.

We deduce from this that, for any idempotent f ∈Mq(A),

(A.1) (fAq)⊥ = (ranf)⊥ = kerf∗ = ran(1− f∗) = (1− f∗)Aq.

We note this implies that ((fAq)⊥)⊥ = fAq .

Using (A.1) we get

ker t= ker e∗ ∩ rane= (rane)⊥ ∩ rane= {0},

which shows that t is one-to-one. Moreover, as A is closed under holomorphic

functional calculus, there is g ∈ GLq(A) such that f := e∗eg is a self-adjoint

idempotent which is similar to e∗ (cf. [Bl]). Thus,

rane∗e= ranf =
(
(fAq)⊥

)⊥
=

(
(ranee∗)⊥

)⊥
= (ker e∗e)⊥.
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Obviously ker e ⊂ ker e∗e. As (eξ, eξ)0 = (e∗eξ, ξ)0 for all ξ ∈ Aq , we see that

kere∗e is contained in kere, and so the two submodules agree. Thus,

rane∗e= (kere∗e)⊥ = (ker e)⊥ = rane∗.

This shows that t(E) = e∗(rane∗) = rane∗e= rane∗ = E∗, that is, t is onto. There-

fore, the A-linear map t is an isomorphism. �

Let us go back to the proof of Lemma 5.11. For all ξ1 and ξ2 in E , we have

(ξ1, ξ2)0 = (ξ1, eξ2)0 = (e∗ξ1, ξ2)0 = (tξ1, ξ2)0.

As (·, ·)0 is nondegenerate on E∗ ×E by Lemma A.1 and t is an A-linear isomor-

phism by Lemma A.2, we then deduce that (·, ·)0 is nondegenerate on E ×E . This
completes the proof of Lemma 5.11.

Appendix B: Proof of Lemma 5.13

Let us first assume that E =Aq for some q ∈ N0. Let us denote by H(Aq)0 the

pre-Hilbert space associated with the canonical Hermitian metric (·, ·)0 on Aq .

There is a canonical isomorphism U0 :Aq ⊗A H→Hq given by

U0(ξ ⊗ ζ) = (ξ1ζ, . . . , ξqζ) for all ξ = (ξj) ∈Aq and ζ ∈H.

The inverse of U0 is given by

U∗(ζ1, . . . , ζq) = ε1 ⊗ ζ1 + · · ·+ εq ⊗ ζq, ζj ∈H,

where ε1, . . . , εq form the canonical basis of Aq . We also observe that, for ξ ∈Aq

and ζ ∈H,∥∥U0(ξ ⊗ ζ)
∥∥2

=
∑
i

〈ξjζ, ξjζ〉=
∑
i

〈ζ, ξ∗j ξjζ〉=
〈
ζ, (ξ, ξ)0ζ

〉
= ‖ξ ⊗ ζ‖20,

where ‖ · ‖0 is the norm of H(Aq)0. This shows that U0 is an isometric isomor-

phism from H(Aq)0 onto Hq . As Hq is complete, we then deduce that H(Aq)0
is a Hilbert space.

Let (·, ·) be a Hermitian metric on Aq . We denote by H(E) the associated

pre-Hilbert space and by 〈·, ·〉 its inner product. The nondegeneracy of (·, ·) and
(·, ·)0 implies there is a self-adjoint element g ∈GLq(A) such that

(ξ, η) = (gξ, η)0 ∀ξ, η ∈Aq.

We also denote by g the representation of g as a self-adjoint bounded operator

of Hq . Let ξ = (ξj) and ξ′ = (ξ′j) be in Aq , and let ζ and ζ ′ be in H. Then

〈ξ ⊗ ζ, ξ′ ⊗ ζ ′〉 =
〈
ζ, (ξ, ξ′)ζ ′

〉
=

〈
ζ, (gξ, ξ′)0ζ

′〉 = ∑
i,j

〈
ζ, (ξ∗j g

∗
ijξ

′
i)ζ

′〉

=
∑
i,j

〈
gij(ξjζ), ξ

′
iζ

′〉= 〈
gU0(ξ ⊗ ζ),U0(ξ

′ ⊗ ζ ′)
〉
.
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By bilinearity it then follows that 〈η, η′〉= 〈gU0η,U0η〉 for all η and η′ in H(Aq).

Thus, for all η ∈H(Aq) and ζ ∈Hq ,

(B.1) ‖η‖2 = 〈gU0η,U0η〉 and 〈gζ, ζ〉= ‖U−1
0 ζ‖2.

The second equality in (B.1) shows that g is a positive operator of Hq . As g

is invertible, we see that its spectrum is contained in an interval [c−1, c] for some

c > 1, and so, for all ζ ∈Hq ,

(B.2) c−1‖ζ‖2 ≤ 〈gζ, ζ〉 ≤ c‖ζ‖2.

Combining (B.1) and the fact that U0 is an isometry from H(Aq)0 onto Hq we

deduce that, for all η ∈Aq ⊗A H, we have

‖η‖2 = 〈gU0η,U0η〉 ∈
[
c−1‖U0η‖2, c‖U0η‖2

]
=

[
c−1‖η‖20, c‖η‖20

]
.

This shows that the norms ‖ · ‖ and ‖ · ‖0 are equivalent on Aq ⊗A H. Therefore,

H(Aq) has the same topology as H(Aq)0. In particular, H(Aq) is complete and,

hence, is a Hilbert space. This proves Lemma 5.13 in the special case E =Aq .

Let us now assume that E = eAq with e= e2 ∈Mq(A). By Lemma 5.11 the

canonical Hermitian metric of Aq induces a Hermitian metric on E . We denote

by 〈·, ·〉 and H(E)0 the associated inner product and pre-Hilbert space. We also

denote by e the representation of e as a bounded operator on Hq . We note that

as e is idempotent, eHq is a closed subspace of Hq .

Let ξ = (ξj) ∈Aq , and let ζ ∈H. For i= 1, . . . , q, we have

U0

(
(eξ)⊗ ζ

)
i
= (eξ)iζ =

∑
j

eijξjζ =
∑
j

eijU0(ξ ⊗ ζ)j =
(
eU0(ξ ⊗ ζ)

)
i
.

That is,

U0

(
(eξ)⊗ ζ

)
= eU0(ξ ⊗ ζ).

As U0 is an isometric isomorphism from H(Aq)0 onto Hq we see that U0 induces

an isometric isomorphism from H(E)0 onto eHq . As eHq is complete (since this

is a closed subspace of Hq) we deduce that H(E)0 is a Hilbert space.

Let (·, ·) be a Hermitian metric on E . Thanks to the nondegeneracy of (·, ·)0
and (·, ·) there is a unique A-linear isomorphism a : E → E such that

(ξ, η) = (aξ, η)0 for all ξ and η in E .

We then extend (·, ·) into the A-sesquilinear form on Aq defined by

(B.3) (ξ, η) := (aeξ, η)0 +
(
(1− e)ξ, (1− e)η

)
0

for all ξ and η in Aq .

We note that (·, ·) is positive on Aq , and

(ξ, η) = (gξ, η)0 for all ξ and η in Aq ,

where we have set g = e∗ae+ (1− e)∗(1− e).

By Lemma A.2 we know that e∗ induces an A-linear isomorphism from eAq

onto e∗Aq and (1− e∗) induces an isomorphism from (1− e)Aq onto (1− e∗)Aq .

As a is an isomorphism from E = eAq onto itself, we deduce that g is a right-
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module isomorphism from Aq onto itself. Combining this with (B.3) we then see

that (·, ·) is nondegenerate on Aq ×Aq . Thus, (·, ·) is a Hermitian metric on Aq .

Therefore, by the first part of the proof, the associated norm on Aq ⊗A H is

equivalent to the norm of H(Aq). As these norms restrict to the norms of H(E)
and H(E)0 on E = eAq , we then deduce that the norms of H(E) and H(E)0 are

equivalent. This proves Lemma 5.13 in the special case E = eAq , e= e2 ∈Mq(A).

Let us now prove Lemma 5.13 when E is an arbitrary finitely generated

projective module, that is, it is the direct summand of a free module E0. Let
φ : E0 →Aq be an A-linear isomorphism. Then φ(E) = eAq for some idempotent

e ∈Mq(A). If (·, ·) is a Hermitian metric on E , then we define a Hermitian metric

(·, ·)φ on eAq by

(ξ, η)φ =
(
φ−1(ξ), φ−1(η)

)
for all ξ and η in eAq .

We denote by 〈·, ·〉φ and H(eAq)φ the associated inner product and Hilbert space,

respectively.

Set Uφ := φ ⊗ 1H. This a vector bundle isomorphism from E ⊗A H onto

(eAq)⊗A H. Let ξ and ξ′ be in E , and let ζ and ζ ′ be in H. Then〈
Uφ(ξ ⊗ ζ),Uφ(ξ

′ ⊗ ζ ′)
〉
φ
=

〈
ζ,

(
φ(ξ), φ(ξ′)

)
φ
ζ ′

〉
=

〈
ζ, (ξ, ξ′)ζ ′

〉
= 〈ξ ⊗ ζ, ξ′ ⊗ ζ ′〉.

Thus, Uφ is an isometric isomorphism from H(E) and H(eAq)φ. As H(eAq)φ is

a Hilbert space, we then deduce that H(E) is a Hilbert space as well.

Finally, we observe that pushing forward norms by Uφ gives rise to a one-

to-one correspondence between norms on E ⊗A H and (eA)q ⊗H arising from

Hermitian metrics on E and eAq . As all those norms on eAq are equivalent

to each other, we then deduce that the same result holds on E . That is, the

topology of H(E) is independent of the choice of the Hermitian metric. The

proof of Lemma 5.13 is complete.

Appendix C: Homotopy invariance of the Connes–Chern character

In this appendix, we give a proof of the homotopy invariance of the Connes–Chern

character in the following form.

PROPOSITION C.1

Let (A,H,D)σ be a p-summable twisted spectral triple. Consider an operator

homotopy of the form

Dt =D+ Vt, 0≤ t≤ 1,

where (Vt)0≤t≤1 is a C1 self-adjoint family in L(H) such that Dt is invertible for

all t ∈ [0,1] and (D−1
t )0≤t≤1 is a bounded family in Lp(H).

(1) (A,H,Dt)σ is a p-summable twisted spectral triple for all t ∈ [0,1].

(2) For any k ≥ 1
2 (p − 1), the cocycles τD0

2k and τD1

2k are cohomologous in

H2k
λ (A).
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(3) The twisted spectral triples (A,H,D0)σ and (A,H,D1)σ have the same

Connes–Chern character in HP0(A).

By assumption the resolvent D−1
t lies in Lp(H). Moreover, for all a ∈A,

(C.1) [Dt, a]σ = [D,a]σ +
(
Vta− σ(a)Vt

)
∈ L(H).

Therefore, (A,H,Dt)σ is a p-summable twisted spectral triple, and so, for any

integer k ≥ 1
2 (p− 1), we can form the cyclic 2k-cocycle

τDt

2k (a0, . . . , a2k) = ck Str
(
D−1

t [Dt, a
0]σ · · ·D−1

t [Dt, a
2k]σ

)
, aj ∈A.

The rest of the proof is devoted to comparing the cocycles τD1

2k and τD0

2k .

In what follows, we set V̇t =
d
dtVt, and for a ∈A, we define

δt(a) =D−1
t

[
V̇tD

−1
t , σ(a)

]
Dt.

We note that

δt(a) =
[
D−1

t V̇t,D
−1
t σ(a)Dt

]
= [D−1

t V̇t, a]−
[
D−1

t V̇t, [Dt, a]σ
]
.

As (C.1) shows that ([Dt, a]σ)0≤t≤1 is a continuous family in L(H) and

(D−1
t V̇t)0≤t≤1 is a continuous family in Lp(H), we then see that (δt(a))0≤t≤1

is a continuous family in Lp(H). For j = 1, . . . ,2k+1, we let ηtj be the (2k+1)-

cochain on A defined by

ηtj(a
0, . . . , a2k+1) = Str

(
αj(a

0)D−1
t [Dt, a

1]σ · · · δt(aj) · · ·D−1
t [Dt, a

2k+1]σ
)
,

al ∈A,

where αj(a) = a if j is even and αj(a) =D−1
t σ(a)Dt if j is odd. Note that ηtj is

a normalized cochain.

In what follows we shall say that a family (ϕt)0≤t≤1 ⊂Cm(A) is Cα, α≥ 0,

when, for all a0, . . . , am, the function t→ ϕt(a0, . . . , am) is Cα on [0,1]. Given a

C1-family (ϕt)0≤t≤1 of m-cochains, we define m-cochains d
dtϕ

t, t ∈ [0,1], by

( d

dt
ϕt

)
(a0, . . . , am) :=

d

dt
(ϕt)(a0, . . . , am), aj ∈A.

Given a C0-family (ψt)0≤t≤1 of m-cochains we define the integral
∫
ψt as the

m-cochain given by

(∫ 1

0

ψt dt
)
(a0, . . . , am) :=

∫ 1

0

ψt(a0, . . . , am)dt, aj ∈A.

If F is any of the operators b, A, B0, or B, then

(C.2) F
( d

dt
ϕt

)
=

d

dt
(Fϕt) and F

(∫ 1

0

ψt dt
)
=

∫ 1

0

Fψt dt.

Moreover, we have

(C.3)

∫ 1

0

( d

dt
ϕt

)
dt= ϕ1 −ϕ0.
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LEMMA C.2

The family (τDt

2k )0≤t≤1 is a C1-family of 2k-cochains and we have

d

dt
τDt

2k =
ck

2k+ 1

2k+1∑
j=1

Bηtj .

Proof

It follows from (C.1) that ([Dt, a]σ)0≤t≤1 is a C1-family in L(H) and we have

(C.4)
d

dt
[Dt, a]σ = V̇ta− V̇tσ(a).

By assumption the family (D−1
t )0≤t≤1 is bounded in Lp(H). Moreover,

D−1
t+s −D−1

t =−D−1
t+s(Dt+s −Dt)D

−1
t =−D−1

t+s(Vt+s − Vt)D
−1
t .

We then deduce that (D−1
t )0≤t≤1 is a continuous family in Lp(H). Combining

this with the above equality then shows that (D−1
t )0≤t≤1 is a differentiable family

in Lp(H) with

(C.5)
d

dt
D−1

t =−D−1
t V̇tD

−1
t .

As the above right-hand side is a continuous family in Lp(H) we eventually

see that (D−1
t )0≤t≤1 is a C1-family in Lp(H). The product in L(H) induces a

continuous bilinear map from Lp(H) × L(H) to Lp(H). Therefore, we deduce

that (D−1
t [Dt, a]σ)0≤t≤1 is a C1-family in Lp(H), and using (C.4) and (C.5) we

obtain

d

dt
D−1

t [Dt, a]σ = −D−1
t V̇tD

−1
t [Dt, a]σ +D−1

t

(
V̇ta− σ(a)V̇t

)

=D−1
t

(
−V̇ta+ V̇tD

−1
t σ(a) + V̇ta− σ(a)V̇t

)
(C.6)

= δt(a).

Let a0, . . . , a2k be in A. As 2k + 1 ≥ p the product of L(H) induces a con-

tinuous (2k + 1)-linear map from Lp(H)2k+1 to L1(H). Therefore, the map

t → D−1
t [Dt, a

0]σ · · ·D−1
t [Dt, a

2k+1]σ is a C1-map from [0,1] to L1(H). Com-

posing it with the supertrace on L1(H) we then deduce that the function t→
τDt

2k (a0, . . . , a2k) is C1 on [0,1]. Moreover, using (C.2) we get

d

dt
τDt

2k (a0, . . . , a2k)

= ck

2k∑
j=0

Str
(
D−1

t [Dt, a
0]σ · · · δt(aj) · · ·D−1

t [Dt, a
2k]σ

)
.

Noting that αj(1) = 1 we see that

Str
(
D−1

t [Dt, a
0]σ · · · δt(aj) · · ·D−1

t [Dt, a
2k]σ

)
=B0ηj+1(a

0, . . . , a2k).
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Therefore, we see that (τDt

2k )0≤t≤1 is a C1-family of cochains and d
dtτ

Dt

2k =

ck
∑2k+1

j=1 B0η
t
j . As the ηtj ’s are normalized cochains and τDt

2k is a cyclic cocy-

cle, using (C.2) we get

d

dt
τDt

2k =
1

2k+ 1

d

dt
AτDt

2k =
1

2k+ 1
A

( d

dt
τDt

2k

)
=

ck
2k+ 1

2k+1∑
j=1

AB0η
t
j

=
ck

2k+ 1

2k+1∑
j=1

Bηtj .

The proof is complete. �

LEMMA C.3

For t ∈ [0,1] and j = 1, . . . ,2k+1 the cochain ηtj is a Hochschild cocycle, that is,

bηtj = 0.

Proof

Let β and γ be the (2k+ 2)-cochains on A given by

β(a0, . . . , a2k+2) = Str
(
αj(a

0)D−1[D,a1]σ · · · δt(aj+1) · · ·D−1[D,a2k+2]σ
)
,

γ(a0, . . . , a2k+2) = Str
(
αj(a

0)D−1[D,a1]σ · · · δt(aj) · · ·D−1[D,a2k+2]σ
)
,

aj ∈A.

For l= 1, . . . , j we let β′
l and β′′

l be the (2k+ 2)-cochains defined by

β′
l(a

0, . . . , a2k+2)

= Str
(
αj(a

0)D−1[D,a1]σ · · ·al · · · δt(aj+1) · · ·D−1[D,a2k+2]σ
)
,

β′′
l (a

0, . . . , a2k+2)

= Str
(
αj(a

0)D−1[D,a1]σ · · ·D−1σ(al)D · · · δt(aj+1) · · ·D−1[D,a2k+2]σ
)
.

We note that β′
l(a

0, . . . , a2k+2)− β′′
l (a

0, . . . , a2k+2) is equal to

Str
(
αj(a

0)D−1[D,a1]σ · · ·
(
al −D−1σ(al)D

)
· · ·

× δt(a
j+1) · · ·D−1[D,a2k+2]σ

)
(C.7)

= β(a0, . . . , a2k+2).

Moreover, from the equality D−1[D,alal+1]σ = D−1[D,al]σa
l+1 +D−1σ(al)D ·

D−1[D,al+1]σ we deduce that

(C.8) blη
t
j = β′

l+1 + β′′
l .

For l = j + 1, . . . ,2k + 1 we let γ′
l and γ′′

l be the (2k + 2)-cochains on A defined

by

γ′
l(a

0, . . . , a2k+2)
(C.9)

= Str
(
αj(a

0)D−1[D,a1]σ · · · δt(aj) · · ·al · · ·D−1[D,a2k+2]σ
)
,
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γ′′
l (a

0, . . . , a2k+2)
(C.10)

= Str
(
αj(a

0)D−1[D,a1]σ · · · δt(aj) · · ·D−1σ(al)D · · ·D−1[D,a2k+2]σ
)
.

As in (C.7) and (C.8) we have

(C.11) γ′
l − γ′′

l = γ and blη = γ′
l+1 + γl.

In addition, using the equality δt(a
jaj+1) = δt(a

j)D−1σ(aj)D+D−1ajDδt(a
j+1)

we find that

bjη
t
j(a

0, . . . , a2k+2)

= Str
(
αj(a

0)D−1[D,a1]σ · · · δt(ajaj+1) · · ·D−1[D,a2k+1]σ
)

(C.12)

= γ′′
j+1(a

0, . . . , a2k+2) + β′′
j (a

0, . . . , a2k+2).

Using (C.7)–(C.12) we obtain

2k+1∑
l=1

bηtj =

j−1∑
l=1

(−1)l(β′
l+1 + β′′

l ) + (−1)j(β′′
j+1 + β′′

j ) +

2k+1∑
l=j+1

(−1)l(β′
l+1 + β′′

l )

= −β′′
1 +

j∑
l=2

(−1)l(β′′
l − β′

l) +

2k+1∑
l=j+2

(−1)l(γ′′
l − γ′

l)− γ′
2k+1

= −β′′
1 +

j∑
l=2

(−1)l−1β +

2k+1∑
l=j+2

(−1)l−1γ − γ′
2k+1.

Noting that
∑j

l=2(−1)l−1 =−1
2 (1 + (−1)j) and

∑2k+1
l=j+2(−1)l−1 = 1

2 (1− (−1)j)

we see that

bηtj =

2k+2∑
l=0

bηtj

(C.13)

= b0η− β′′
1 − 1

2

(
1 + (−1)j

)
β +

1

2

(
1− (−1)j

)
γ + b2k2η− γ′

2k+1.

We note that b0η
t
j(a

0, . . . , a2k+2)− β′′
1 (a

0, . . . , a2k+2) is equal to

Str
(
αj(a

0)
(
αj(a

1)−D−1σ(a1)D
)

(C.14)
×D−1[D,a2]σ · · · δt(aj+1) · · ·D−1[D,a2k+2]σ

)
.

We also observe that

b2k+2η
t
j(a

0, . . . , a2k+2)

= Str
(
αj(a

2k+2)αj(a
0)D−1[D,a1]σ · · · δt(aj) · · ·D−1[D,a2k+2]σ

)
= Str

(
αj(a

0)D−1[D,a1]σ · · · δt(aj) · · ·D−1[D,a2k+2]σαj(a
2k+2)

)
.

Thus, b2k+2η
t
j(a

0, . . . , a2k+2)− β2k+1(a
0, . . . , a2k+2) is equal to

(C.15) Str
(
αj(a

0)D−1[D,a1]σ · · · δt(aj) · · ·D−1[D,a2k+2]σ
(
αj(a

2k+2)− a2k+2
))
.
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Suppose that j is even, so that αj(a) = a. Then (C.15) shows that b2k+2η−
β2k+1 = 0. Moreover, αj(a)−D−1σ(a)D =D−1[D,a]σ , and so using (C.14) we

see that b0η− β′′
1 = β. Therefore, in this case (C.13) gives

bηtj = β − 1

2
(1 + 1)β +

1

2
(1− 1)γ + 0= 0.

When j is odd, αj(a) =D−1σ(a)D, and we similarly find that b0η− β′′
1 = 0 and

b2k+2η− β2k+1 =−γ. Thus, in this case (C.13) gives

bηtj = 0+−1

2
(1− 1)β +

1

2
(1 + 1)γ − γ = 0.

In any case, ηtj is a Hochschild cocycle. The proof is complete. �

Let us go back to the proof of Proposition C.1. In the same way as in the proof

of Lemma C.2 it can be shown that each family (ηtj)0≤t≤1 is a continuous family

of cochains. Note also that these cochains are normalized. Let η be the (2k+1)-

cochain defined by

η =

2k+1∑
j=1

∫ 1

0

ηtj dt.

It follows from (C.2)–(C.3) and Lemma C.2 that

Bη =

∫ 1

0

(2k+1∑
j=1

Bηtj

)
dt= (2k+ 1)c−1

k

∫ 1

0

( d

dt
τDt

2k

)
dt

(C.16)
= (2k+ 1)c−1

k (τD1

2k − τD0

2k ).

Moreover, using (C.2) and Lemma C.3 we get

bη =

2k+1∑
j=1

∫ 1

0

bηtj dt= 0.

In particular, as η is a normalized cochain and bη is cyclic, we may apply (6.7)

to get

(2k+ 1)c−1
k (SτD1

2k − SτD0

2k ) = SBη =−bη = 0 in H2k+2
λ (A).

As by Remark 7.8 we know that τ
Dj

2k+2 and Sτ
Dj

2k are cohomologous in H2k+2
λ (A),

and we then deduce that τD0

2k+2 and τD1

2k+2 define the same class in H2k+2
λ (A). This

proves the second part of Proposition C.1. This also implies that τD0

k and τD1

k

define the same class in HP0(A), and so the twisted spectral triples (A,H,D0)σ
and (A,H,D1)σ have the same Connes–Chern character in HP0(A). This com-

pletes the proof of Proposition C.1.

REMARK C.4

By using the bounded Fredholm module pairs associated with a twisted spectral

triple in [CM4], we also can deduce Proposition C.1 from the homotopy invariance
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of the Connes–Chern character of a bounded Fredholm module in [Co1, Part I,

Section 5].
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177–178 (1989), 199–229, Séminaire Bourbaki 1988/1989, no. 708.

MR 1040574.

[KW] U. Krähmer and E. Wagner, “Twisted spectral triples and covariant

differential calculi” in Algebra, Geometry and Mathematical Physics, Banach

Center Publ. 93, Polish Acad. Sci. Inst. Math., Warsaw, 2011, 177–188.

MR 2884432. DOI 10.4064/bc93-0-14.

[Lo] J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss. 301, Springer,

Berlin, 1992. MR 1217970. DOI 10.1007/978-3-662-21739-9.

[Ma] S. Majid, A Quantum Groups Primer, London Math. Soc. Lecture Note Ser.

292, Cambridge Univ. Press, Cambridge, 2002. MR 1904789.

DOI 10.1017/CBO9780511549892.

[MN] R. Melrose and V. Nistor, Homology of pseudodifferential operators, I:

Manifolds with boundary, preprint, arXiv:funct-an/9606005v2.

[MoN] S. Moroianu and V. Nistor, “Index and homology of pseudodifferential

operators on manifolds with boundary” in Perspectives in Operator Algebras

and Mathematical Physics, Theta Ser. Adv. Math. 8, Theta, Bucharest,

2008, 123–148. MR 2433031.

[Mo1] H. Moscovici, Eigenvalue inequalities and Poincaré duality in
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