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Abstract This paper is devoted to the study of the relation between Osserman alge-

braic curvature tensors and algebraic curvature tensors which satisfy the duality princi-

ple.We give a short overview of the duality principle in Ossermanmanifolds and extend

this notion to null vectors. Here, it is proved that a Lorentzian totally Jacobi-dual cur-

vature tensor is a real space form. Also, we find out that a Clifford curvature tensor is

Jacobi-dual.Weprovide a few examples ofOssermanmanifoldswhich are totally Jacobi-

dual and an example of an Osserman manifold which is not totally Jacobi-dual.

1. Introduction

Let (M,g) be a pseudo-Riemannian manifold of signature (ν,n−ν) assigned with

the Levi–Civita connection ∇. The curvature operator R of (M,g) is defined by

the equation R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. For a point p ∈M , on the tangent

vector space V = TpM , the equation R(X,Y,Z,W ) = g(R(X,Y )Z,W ) defines an

algebraic curvature tensor R ∈
⊗4 V∗, which satisfies the usual Z2-symmetries

and the first Bianchi identity.

Since V is equipped with an indefinite metric g of the signature (ν,n− ν)

there are various types of vectors depending on the norm εX = g(X,X). The

vector X ∈ V can be timelike (if εX < 0), spacelike (εX > 0), or null (εX = 0).

We can say that X ∈ V is nonnull (εX �= 0) or unit (εX ∈ {−1,1}).
The Jacobi operator JX : V → V is a natural operator associated to a cur-

vature operator by JX(Y ) = R(Y,X)(X). In the case of nonnull X ∈ V , JX

preserves the nondegenerate hyperplane {X}⊥ = {Y ∈ V : g(X,Y ) = 0}, and we

have a reduced Jacobi operator J̃X : {X}⊥ → {X}⊥, given as the restriction

of JX .

We say that a curvature tensor R is Osserman if the characteristic polyno-

mial of JX is constant on both pseudospheres S± = {X ∈ V | εX = ±1}. In a

pseudo-Riemannian setting, the Jordan normal form plays a crucial role, since

the characteristic polynomial does not determine the eigenstructure of a sym-

metric linear operator. We say that R is a Jordan Osserman curvature tensor if
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the Jordan normal form of JX is constant on S±. A curvature tensor is Jacobi-

diagonalizable if its Jacobi operator JX is diagonalizable for all nonnull X . In

this article we put things in a purely algebraic setting, while relations with the

global differential geometry can be found in [13].

Our paper is organized as follows. In Section 1 we give some basic notions

and notation that we use throughout the paper. Section 2 is devoted to the moti-

vation for our investigations, which has been building from studying Osserman-

type problems in the last two decades. As a result of those investigations, in

Section 3, we give the most general definition of the duality principle, and there-

fore we slightly modify terminology to make it more precise. Sections 4 and 5

consist of new results: in Section 4 we prove that only Lorentzian manifolds which

satisfy the totally Jacobi-dual condition are real space forms, and in Section 5

we show that the Clifford curvature tensor is Jacobi-dual. Also, we find neces-

sary conditions for when a Clifford curvature tensor is totally Jacobi-dual. In this

chapter we give a few important examples of Clifford curvature tensors which are

totally Jacobi-dual. Section 6 deals with a certain Walker (2,2)-manifold whose

curvature tensor is Osserman, but it is not totally Jacobi-dual. At the end of this

section we give a short conclusion to our investigations.

2. Motivation

In the Riemannian setting, it is known that a local 2-point homogeneous space

has a constant characteristic polynomial on the unit sphere bundle. Osserman

[19] wondered if the converse held, and this question has been called the Osser-

man conjecture. In the proofs of some particular cases of the conjecture, the

implication that

(2.1) JX(Y ) = λY =⇒JY (X) = λX

appeared naturally, and it can significantly simplify some calculations. The first

results in this topic were given by Chi [9], who proved the conjecture in all

dimensions, except the cases of dimensions n = 4k for k > 1. In his work he

used the statement that (2.1) holds if λ is an extremal (minimum or maximum)

eigenvalue of the Jacobi operator.

The second author [20] used implication (2.1) to formulate the duality princi-

ple for an Osserman curvature tensor (or Osserman manifolds), and he proved it

in the Riemannian setting. Moreover, the best results in this topic were given by

Nikolayevsky [15]–[17], who used the duality principle [16] to prove the Osserman

conjecture in all dimensions, except some possibilities in dimension n= 16.

It is interesting to investigate the connection between the Osserman condi-

tion and the duality principle. The natural question is whether being Osserman

and satisfying the duality principle are equivalent properties for an algebraic

curvature tensor. Recently, affirmative answers to the above question in the Rie-

mannian setting were obtained in the following cases: in dimension n = 3 (see

[1]), in dimension n= 4 (see [8]), and later for any dimension (see [18]).
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The generalization of the Osserman conjecture has appeared in a pseudo-

Riemannian setting. For example, in the Lorentzian setting, an Osserman mani-

fold necessarily has a constant sectional curvature (see [5]). The investigation of

the Osserman curvature tensor of signature (2,2) has become very popular, and

it is worth noting results from [6], which are based on the discussion of possible

Jordan normal forms of a Jacobi operator. Many authors have worked on this

topic, and a lot information about it could be found, for example, in monographs

by Gilkey [12], [13] and Garcia-Rio, Kupeli, and Vázquez-Lorenzo [11].

The previous facts provide us good motivation to examine the duality princi-

ple for Osserman manifolds in a pseudo-Riemannian setting and to examine the

relation between the duality principle and the Osserman condition of an algebraic

curvature tensor.

3. The duality principle extension

Since g(JY (X),X) = g(JX(Y ), Y ), the implication (2.1) in a pseudo-Riemannian

setting is inaccurate when X and Y belong to different unit pseudospheres. This

is why we corrected it with the following implication (see [4]):

(3.1) JX(Y ) = εXλY =⇒JY (X) = εY λX.

If we deal with the converse problem, then it is important to examine an optimal

extension for our (X,Y )-domain, starting with the original (see [20]) whereX and

Y are mutually orthogonal units. In the case in which R is Jacobi-diagonalizable

our domain can be equivalently extended to all X,Y ∈ V with εX �= 0 (see [4]).

The diagonalizability of a Jacobi operator is a natural Riemannian-like condi-

tion (a Jacobi operator, as a self-adjoint operator on a definite vector space, is

diagonalizable in the Riemannian setting); moreover, it is known that every Jor-

dan Osserman curvature tensor of nonneutral signature (n �= 2ν) is necessarily

Jacobi-diagonalizable (see [14]).

DEFINITION 3.1

We say that an algebraic curvature tensor R is Jacobi-dual (or that it satisfies

the duality principle) if (3.1) holds for all λ ∈R and X,Y ∈ V with εX �= 0.

The concept with no restrictions on X and Y can be reformulated with the

following definition.

DEFINITION 3.2

We say that an algebraic curvature tensor R is totally Jacobi-dual if the equiva-

lence

(Y belongs to an eigenspace of JX)⇐⇒ (X belongs to an eigenspace of JY )

holds for all X,Y ∈ V .
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This definition is a natural generalization of the notion of a Jacobi-dual algebraic

curvature tensor. Due to the property g(JY (X),X) = g(JX(Y ), Y ) we excluded

λ from the definition, and we allowed that the null vector X can be an eigenvector

for JY with nonnull Y .

4. Lorentzian totally Jacobi-dual curvature tensors

Since in the Riemannian case it was shown that the duality principle implies

the Osserman condition, the next natural step should be an investigation of the

same converse problem in the Lorentzian setting. We know that a Lorentzian

Osserman curvature tensor has a constant sectional curvature, so we need the

following theorem.

THEOREM 4.1

A Lorentzian totally Jacobi-dual curvature tensor is a real space form.

Proof

Let T ∈ V be a unit timelike vector (εT =−1). In the Lorentzian setting, V has

the signature (1, n− 1); hence, T⊥ has the signature (0, n− 1), and therefore the

restriction J̃T = JT |T⊥ is diagonalizable as a self-adjoint operator on a definite

space. Let S1, . . . , Sn−1 be orthonormal (εSi =−εT = 1) eigenvectors of J̃T . Then

JT (Si) = εTλiSi and Jacobi duality gives JSi(T ) = εSiλiT for all 1≤ i≤ n− 1.

Let us define subspaces Ui (1≤ i≤ n− 1) of V by

Ui = Span{T,Si}, U⊥
i = Span

(⋃
j �=i

{Sj}
)
,

and we shall show that subspaces Ui and U⊥
i are invariant for each operator JX

where X ∈ Ui.

We need the following lemma, which is a consequence of straightforward

calculations (see [1]), so we omit its proof.

LEMMA 4.1

If JX(Y ) = εXλY and JY (X) = εY λX hold with X ⊥ Y , then JαX+βY (εY βX−
εXαY ) = εαX+βY λ(εY βX − εXαY ) holds for all α,β ∈R.

In the case of nonnull αT+βSi, vectors αT+βSi and βT+αSi create an orthogo-

nal basis for Ui. According to Lemma 4.1, JαT+βSi(βT +αSi) = εαT+βSiλi(βT +

αSi), and with addition, JαT+βSi(αT + βSi) = 0, so we can conclude that

JX(Ui)⊆Ui holds for all nonnull X ∈ Ui. Since the Jacobi operator is self-adjoint

for all nonnullX ∈ Ui we have g(JX(U⊥
i ),Ui) = g(U⊥

i ,JX(Ui))⊆ g(U⊥
i ,Ui) = {0},

and therefore JX(U⊥
i )⊆U⊥

i holds. A direct calculation for JαT+βSi gives

(4.1) JαT+βSi = α2JT + β2JSi + αβK(T,Si),

where K(T,Si)(X) = R(X,T )Si +R(X,Si)T . If we choose α and β such that

αT + βSi is nonnull (α2 �= β2), then (4.1) implies that K(T,Si)(Ui) ⊆ Ui and
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K(T,Si)(U⊥
i )⊆U⊥

i . Let us get back to (4.1), and set α and β such that αT +βSi

is null (α2 = β2) to conclude that they have the same invariance. Thus, JX(Ui)⊆
Ui and JX(U⊥

i )⊆U⊥
i hold for all X ∈ Ui.

The space U⊥
i has the signature (0, n − 2), so the restriction JT±Si |U⊥

i
is

diagonalizable as a self-adjoint operator on a definite space. Since JNM = μM

imlies JMN − νM , we have μεM =R(M,N,N,M) = νεN , and therefore for null

N and nonull M mus be μ = 0 and thus JNM = 0. Since T ± Si is null and

JT±Si |U⊥
i

is diagonalizable we can conclude that JT±Si(U⊥
i ) = {0} and there-

fore

(4.2) JT±Si(Sj) = 0

holds for all 1≤ i �= j ≤ n− 1.

Then the relation JT+Si(Sj) = 0 and total Jacobi-duality implies that T +Si

is an eigenvector of JSj . Since T is an eigenvector of JSj and g(T,T +Si) =−1 �=
0, they have the same eigenvalue, and therefore Si is an eigenvector with the same

eigenvalue and R is a real space form.

Alternatively, we can express JT±Si = JT +JSi ±K(T,Si) and get JT+Si +

JT−Si = 2(JT + JSi). From (4.2) we have that JT±Si(Sj) = 0 and therefore

JSi(Sj) =−JT (Sj) =−εTλjSj = εSiλjSj . Finally

JSi(Sj) = εSiλjSj

holds for all 1 ≤ i �= j ≤ n − 1. Comparing this equation after (i, j)-symmetry

JSj (Si) = εSjλiSi and after the Jacobi-dual property JSj (Si) = εSjλjSi, we eas-

ily conclude that λi = λj for 1≤ i �= j ≤ n−1, which proves that R is a real space

form. �

5. Clifford curvature tensors and duality

Let us recall the very first example of an Osserman curvature tensor, a tensor of

constant sectional curvature 1, which has the expression

R0(X,Y )Z = g(Y,Z)X − g(X,Z)Y.

Any skew-adjoint endomorphism J on V with J2 =±Id generates another basic

example of an Osserman curvature operator via

RJ(X,Y )Z = g(JX,Z)JY − g(JY,Z)JX + 2g(JX,Y )JZ.

The Clifford family of rank k is a set {J1, J2, . . . , Jk} of skew-adjoint endomor-

phisms on V with the properties

(5.1) JiJj + JjJi = 2εiδijId,

for εi ∈ {−1,1} and 1≤ i, j ≤ k.

If a curvature operator R can be represented as a linear combination of such

operators RJi (for Ji from the Clifford family, 1≤ i≤ k) including R0, then we

say that R (or assigned curvature tensor R) is Clifford (or has a Clifford struc-

ture). Any Clifford curvature tensor is Osserman, and according to Nikolayevsky
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[15], [16], any Riemannian Osserman curvature tensor with dimension n �= 16

is Clifford. Since Osserman and Clifford algebraic curvature tensors are closely

related we shall investigate Jacobi-dual and totally Jacobi-dual properties for

Clifford curvature tensors.

If a curvature operator R is Clifford, then it can be written as

R= α0R0 +
k∑

i=1

αiRJi ,

with αj ∈ R for 0 ≤ j ≤ k. Skew-adjoint endomorphisms Ji have the property

that g(JiX,X) = 0, which simplifies our calculation of the Jacobi operator

JX(Y ) =R(Y,X)X = α0

(
g(X,X)Y − g(Y,X)X

)
+

k∑
i=1

3αig(JiY,X)JiX,

and therefore

(5.2) JX(Y ) = α0

(
εXY − g(Y,X)X

)
− 3

k∑
i=1

αig(Y,JiX)JiX.

Interchanging the roles of X and Y in the previous relation immediately gives

(5.3) JY (X) = α0

(
εY X − g(X,Y )Y

)
− 3

k∑
i=1

αig(X,JiY )JiY.

Let us suppose that Y belongs to an eigenspace of JX . Thus JX(Y ) = εXλY ,

and from (5.2) we have that

(5.4) εX(λ− α0)Y =−α0g(Y,X)X − 3

k∑
i=1

αig(Y,JiX)JiX.

The right-hand side of (5.4) belongs to Span{X,J1X, . . . , JkX}. Using (5.1) for

i �= j we have g(JiX,JjX) = 0, and thus the set {X,J1X, . . . , JkX} is orthogonal.

Let us suppose that X is nonnull. Since

εJiX = g(JiX,JiX) =−g(X,JiJiX) =−g(X,εiX) =−εiεX ,

the vector JiX is nonnull. Moreover, for unit X we have unit JiX , so the set

{X,J1X, . . . , JkX} is orthonormal and, consequently, linearly independent.

Unless λ−α0 = 0, (5.4) allows us to express Y . In the case in which λ= α0,

the left-hand side of (5.4) is equal to zero, so the linearly independent set

{X,J1X, . . . , JkX} gives α0g(Y,X) = 0 and −αig(JiY,X) = αig(Y,JiX) = 0;

thus, by (5.3) we have JY (X) = εY α0X = εY λX , and therefore X belongs to

an eigenspace of JY .

Otherwise from (5.4) we have that

(5.5) Y =
−α0g(Y,X)

εX(λ− α0)
X − 3

k∑
i=1

αig(Y,JiX)

εX(λ− α0)
JiX,
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and after a substitution in (5.3),

JY (X) = α0

(
εY X − g(X,Y )

(−α0g(Y,X)

εX(λ− α0)
X − 3

k∑
j=1

αjg(Y,JjX)

εX(λ− α0)
JjX

))

− 3

k∑
i=1

αig(X,JiY )Ji

(−α0g(Y,X)

εX(λ− α0)
X − 3

k∑
j=1

αjg(Y,JjX)

εX(λ− α0)
JjX

)
.

It gives

JY (X) = α0

(
εY +

α0(g(X,Y ))2

εX(λ− α0)

)
X

+
3α0g(X,Y )

εX(λ− α0)

k∑
i=1

αi

(
g(Y,JiX) + g(X,JiY )

)
JiX

+
9

εX(λ− α0)

k∑
i=1

k∑
j=1

αiαjg(X,JiY )g(Y,JjX)JiJjX.

Because g(X,JiY ) =−g(Y,JiX), the middle term on the right-hand side is can-

celled out. The last term contains
∑k

i,j=1αiαjg(Y,JiX)g(Y,JjX)JiJjX , so we

split it into three sums (i < j, i > j, and i = j) and then use symmetries and

(5.1) to get that

k∑
i,j=1

αiαjg(Y,JiX)g(Y,JjX)JiJjX

=
∑

1≤i<j≤k

αiαjg(Y,JiX)g(Y,JjX)(JiJj + JjJi)X +

k∑
i=1

α2
i

(
g(Y,JiX)

)2
J2
i X

=

k∑
i=1

α2
i

(
g(Y,JiX)

)2
εiX.

Finally, we have that

JY (X) =
(
α0εY +

α2
0(g(X,Y ))2

εX(λ− α0)
− 9

εX(λ− α0)

k∑
i=1

α2
i

(
g(Y,JiX)

)2
εi

)
X

and therefore X belongs to an eigenspace of JY , which proves the following

theorem.

THEOREM 5.1

A Clifford curvature tensor is Jacobi-dual.

To examine if a Clifford curvature tensor is totally Jacobi-dual we check the case

in which εX = 0 in duality equation (3.1). Everything works fine for X = 0, so

let us start with null X �= 0. If we suppose that Y belongs to an eigenspace of
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JX , by (5.4) with εX = 0 we have

(5.6) α0g(Y,X)X + 3

k∑
i=1

αig(Y,JiX)JiX = 0.

If the set {X,J1X, . . . , JkX} is linearly independent, then we have α0g(Y,X) = 0

and αig(Y,JiX) = 0; thus, α0g(X,Y ) = 0 and αig(X,JiY ) = 0, so by (5.3) we

get JY (X) = εY α0X , just like in the case λ = α0. So, we proved the following

proposition.

PROPOSITION 5.2

Let R be a Clifford algebraic curvature tensor. If the set {X,J1X, . . . , JkX} is

linearly independent for any null vector X �= 0, then R is totally Jacobi-dual.

REMARK 1

Let us notice that, for 0 �=X a null vector, all vectors from Span{X,J1X, . . . ,

JkX} are null because εJiX =−εiεX = 0. Since g(JiX,X) = 0 and g(JiX,JjX) =

0, for all i, j = 1, . . . , k, i �= j, because of (5.2) we have KerJX ⊇ Span{X,J1X,

. . . , JkX} ⊇ ImJX . Then it follows that J 2
X = 0, that is, JX is two-step nilpotent.

EXAMPLE 5.1 (REAL SPACE FORM)

The curvature operator of a pseudo-Riemannian manifold of constant sectional

curvature c (real space form) is given by R= cR0. By Theorem 5.1 it is Jacobi-

dual; moreover, {X} is linearly independent for any nonzero null X , so R is

totally Jacobi-dual.

EXAMPLE 5.2 (COMPLEX SPACE FORM)

The curvature operator of a Kähler manifold of constant holomorphic sectional

curvature c (complex space form) is given by R= (c/4)R0− (c/4)RJ , where J is

a skew-adjoint endomorphism with J2 =−Id. Since 1 and −1 are not square roots

of −1, they are not eigenvalues of J ; thus X and JX are linearly independent,

and therefore R is totally Jacobi-dual.

EXAMPLE 5.3 (PARACOMPLEX SPACE FORM)

The curvature operator of a para-Kähler manifold of constant paraholomor-

phic sectional curvature c (paracomplex space form) is given by R= (c/4)R0 +

(c/4)RJ (see [10]), where J is a skew-adjoint endomorphism with J2 = Id. It is

possible here to have linearly dependent X and JX . In this case JX = θX , and

therefore our equation (5.6) (c/4)g(Y,X)X + 3(c/4)g(Y,JX)JX = 0 becomes

(1 + 3θ2)(c/4)g(Y,X)X = 0. Because of X = J2X = θ2X we have θ ∈ {−1,1};
thus 1 + 3θ2 = 4 �= 0, and therefore g(Y,X) = 0. Hence g(Y,JX) = θg(Y,X) = 0,

so coefficients from (5.6) are zero, and finally (5.3) implies that R is totally

Jacobi-dual.
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EXAMPLE 5.4 (QUATERNIONIC SPACE FORM)

The curvature operator of a quaternionic Kähler manifold of constant quater-

nionic sectional curvature c (quaternionic space form) is given by R= (c/4)R0−
(c/4)

∑3
i=1RJi , where {J1, J2, J3} is a canonical local basis, which means skew-

adjoint endomorphisms Ji with J2
i =−Id for all 1≤ i≤ 3, where J1J2 = J3 holds.

Let us start with β0X + β1J1X + β2J2X + β3J3X = 0 to check the linear

independence of a set {X,J1X,J2X,J3X} for nonzero null X . We can act with

J1, J2, and J3 on our equation to get the following matrix equation:
⎛
⎜⎜⎝

β0 β1 β2 β3

−β1 β0 −β3 β2

−β2 β3 β0 −β1

−β3 −β2 β1 β0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

X

J1X

J2X

J3X

⎞
⎟⎟⎠= 0.

A computation of the matrix determinant gives Δ = (β2
0 + β2

1 + β2
2 + β2

3)
2. It

is impossible to have βi �= 0 for some i, because in that case Δ > 0 and our

homogeneous matrix equation has a unique solution with X = 0. Hence βi = 0

for all 0≤ i≤ 3, and therefore {X,J1X,J2X,J3X} is linearly independent for all

nonzero X . Consequently, R is totally Jacobi-dual.

6. A counterexample and conclusion

Let us consider the following example of a pseudo-Riemannian manifold (R4, g)

with metric given in [11]:

g = x2x3 dx1 ⊗ dx1 − x1x4 dx2 ⊗ dx2 + dx1 ⊗ dx2 + dx2 ⊗ dx1

+ dx1 ⊗ dx3 + dx3 ⊗ dx1 + dx2 ⊗ dx4 + dx4 ⊗ dx2.

Metrics of this type are well known as Walker metrics (for more details on Walker

metrics, see [7]). Since the characteristic and minimal polynomials of JX (for

a unit vector X) are λ4 and λ3, it is a globally Jordan Osserman manifold.

A straightforward calculation for this manifold gives

J ∂
∂x3

( ∂

∂x1

)
= 0 and J ∂

∂x1

( ∂

∂x3

)
=−1

2

∂

∂x4
.

If we substitute X = ∂
∂x3

and Y = ∂
∂x1

, then we can see that Y is an eigenvector

of JX (for the eigenvalue 0), but the null vector X is not an eigenvector of JY .

Consequently, our pseudo-Riemannian manifold (R4, g) is Osserman but is not

totally Jacobi-dual.

Conclusions

In this paper we study the relation between Osserman algebraic curvature ten-

sors and Jacobi-dual algebraic curvature tensors. Every known example of an

Osserman curvature tensor is Jacobi-dual; however, we failed to prove it in gen-

eral. In our previous work, we gave affirmative answers only for the conditions of

small index (ν ≤ 1), low dimension (n≤ 4), or some specific examples with small

numbers of eigenvalues of a reduced Jacobi operator.
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The Riemannian case works after the original proof (see [20]) and our exten-

sions in [4] and [2]. The Lorentzian Osserman curvature tensor has a constant

sectional curvature (see [5]), so it is totally Jacobi-dual (see Example 5.1). In the

dimension n= 4 the problem is solved in [2], and some results have been given for

the case when a reduced Jacobi operator has exactly two eigenvalues (see [3]). Let

us recount our main result from [4]: a Jacobi-diagonalizable Osserman curvature

tensor such that JX has no null eigenvectors for all nonnull X is Jacobi-dual.

According to our counterexample (Osserman but not totally Jacobi-dual),

the main converse question should be whether being Jacobi-dual necessarily

implies being Osserman. In [1] this is proved for dimension n = 3 (any signa-

ture). In Riemannian settings this equivalence is proved in dimension 4 in [8]

and is given an affirmative answer for any dimension in [18]. Also, the authors

announced the extension to any Jacobi-diagonalizable case.
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