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Abstract Markovian semigroups onL2-space with suitable conditions can be regarded

asMarkovian semigroups onLp-spaces for p ∈ [1,∞).Whenwe additionally assume the

ergodicity of the Markovian semigroups, the rate of convergence on Lp-space for each p

is considerable. However, the rate of convergence depends on the norm of the space. The

purpose of this paper is to investigate the relation between the rates onLp-spaces for dif-

ferent p’s, to obtain some sufficient condition for the rates to be independent of p, and to

give an example for which the rates depend on p. We also consider spectra of Markovian

semigroups on Lp-spaces, because the rate of convergence is closely related to the spec-

tra.

1. Introduction

Let (M,B) be a measurable space, let m be a probability measure on (M,B),

and let Lp(m) be the Lp-space of C-valued functions with respect to m. We

denote the Lp-norm by ‖ · ‖p,
∫
f dm by 〈f〉 for f ∈ L1(m), and the constant

function which takes values 1 by 1. A semigroup {Tt} on L2(m) is called a

Markovian semigroup if 0≤ Ttf ≤ 1 m-almost everywhere whenever f ∈ L2(m)

and 0≤ f ≤ 1m-almost everywhere. In this paper, we always assume that Tt1= 1

for all t≥ 0. Let {Tt} be a strongly continuous Markovian semigroup. We assume

that T ∗
t 1= 1, where T ∗

t is the dual operator of Tt on L2(m). Then, as we will

see in Section 2, the semigroup {Tt} can be extended or restricted to semigroups

on Lp(m) for p ∈ [1,∞]. Moreover, {Tt} is strongly continuous for p ∈ [1,∞]. Let

(1.1) γp→q :=− limsup
t→∞

1

t
log ‖Tt −m‖p→q,

where m means the linear operator f 	→ 〈f〉1 and ‖ · ‖p→q is the operator norm

from Lp(m) to Lq(m) for p, q ∈ [1,∞]. Consider the case in which Ttf converges

to 〈f〉 for sufficiently many f . In this case γp→q means the exponential rate

of the convergence. Generally, γp→q depends on p, q ∈ [1,∞]. In this paper we

consider the properties of γp→q , the relations among {γp→q;p, q ∈ [1,∞]}, and
some sufficient conditions for γp→q to be independent of p and q, and we give

some examples in which they depend on p and q. We also consider spectra of
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Markovian semigroups with respect to Lp-spaces, because the rate of convergence

is closely related to the spectra.

The organization of this paper is as follows. In Section 2 we consider prop-

erties on γp→q which are obtained by general argument. We also discuss the

relation between the spectra of Markovian semigroups and γp→q . In Section 3

we consider properties of hyperbounded Markovian semigroups and the relations

between γp→q for different pairs (p, q). We also consider the cases of hypercon-

tractive Markovian semigroups and ultracontractive Markovian semigroups. In

Section 4 we consider a sufficient condition for γp→p to be independent of p.

Precisely speaking, we consider a hyperbounded Markovian semigroup whose

generator is a normal operator on L2-space, and we show the p-independence of

the spectra of the generator. In particular, this implies that γp→p is independent

of p. In Section 5 we give a sufficient condition for nonsymmetric Markovian

semigroups to be hyperbounded by using the logarithmic Sobolev inequality,

and we consider a diffusion process on a manifold as an example. Nonsymmet-

ric diffusion semigroups on manifolds are also considered in [7]. In the paper,

equivalent conditions to contractivity conditions are obtained. In Section 6 we

consider the relations between the spectra of linear operators which are consis-

tent on Lp-spaces for p. Markovian semigroups and their generators are examples

of consistent operators on Lp-spaces. We remark that the self-adjointness of the

operator on L2-space is additionally assumed in Section 6. In Section 7 we give an

example of a Markovian semigroup for which γp→p depends on p. More precisely,

we give a generator on the half-line, which is a second-order differential operator

with a boundary condition. By investigating the spectra of the generator, we

show that γp→p depends on p.

In the rest of this section, we give some notations used throughout this

paper. For z ∈C, we denote the complex conjugate of z by z̄, and for p ∈ [1,∞],

we denote by p∗ the conjugate exponent, that is, 1/p+ 1/p∗ = 1.

Let (M,m) be a measure space, and let Lp(m) be the Lp-space with respect

to m for p ∈ [1,∞]. For p ∈ [1,∞], f ∈ Lp(m), and g ∈ Lp∗
(m), define 〈f, g〉 by∫

f(x)g(x)m(dx). This notation is standard for p= 2, because 〈·, ·〉 is the inner

product on L2(m). On the other hand, the notation may not be standard for

p �= 2, because 〈·, ·〉 is not bilinear on Lp(m)×Lp∗
(m). In this paper, we consider

Lp-spaces and L2-space at the same time. So, we use the notation 〈·, ·〉 as defined
above. Let Ap be a linear operator on Lp(m), and let Dom(Ap) be the domain of

Ap. We define the dual operator (Ap)
∗ as follows. Let Dom((Ap)

∗) be the total

set of f ∈ Lp∗
(m) such that there exists h ∈ Lp∗

(m) satisfying

(1.2) 〈Apg, f〉= 〈g,h〉, g ∈Dom(Ap),

and for f ∈ Dom((Ap)
∗) define (Ap)

∗f := h where h is the element of Lp∗
(m)

appearing in (1.2).

We define the point spectra of Ap by the total set of λ ∈C such that λ−Ap

is not injective on Lp(m), and we denote the point spectra of Ap by σp(Ap). We

define the continuous spectra of Ap by the total set of λ ∈C such that λ−Ap is
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injective but is not onto, and the range of λ−Ap is dense in Lp(m). We denote

the continuous spectra of Ap by σc(Ap). We define the residual spectra of Ap

by the total set of λ ∈ C such that λ−Ap is injective but is not onto, and the

range of λ−Ap is not dense in Lp(m). We denote the residual spectra of Ap by

σr(Ap). Let σ(Ap) := σp(Ap)∪σc(Ap)∪σr(Ap). We define the resolvent set of Ap

by the total set of λ ∈C such that λ−Ap is bijective, and we denote it by ρ(Ap).

By the definition, σp(Ap), σc(Ap), σr(Ap), and ρ(Ap) are disjoint sets of C, and

their union is equal to C.

In this paper 1/0 and 1/∞ are often regarded as ∞ and 0, respectively.

2. Relation between spectra and the exponential rate of convergence for semi-
groups

In this section we consider immediate consequences on γp→q obtained by general

theories.

Let (M,m) be a probability space, and let {Tt} be a strongly continuous

Markovian semigroup on L2(m). We assume that T ∗
t 1= 1, where T ∗

t is the dual

operator of Tt on L2(m). Then, it is easy to see that m is an invariant measure

of both {Tt} and {T ∗
t }. By Jensen’s inequality, for p ∈ [1,∞) we have∫
|Ttf |p dm≤

∫
Tt

(
|f |p

)
dm=

∫
|f |p dm.

This implies that Tt is contractive on Lp(m) for p ∈ [1,∞). Since {Tt} is positivity
preserving on L2(m) (i.e., Ttf ≥ 0 if f ∈ L2(m) and f ≥ 0), it is easy to see that

Tt is also contractive on L∞(m). Hence, {Tt} can be extended or restricted to

a Markovian semigroup on Lp(m) for p ∈ [1,∞]. Let p ∈ (1,∞). For a given f ∈
Lp(m) and ε > 0, take a bounded measurable function g such that ‖f − g‖p < ε.

Then, by Hölder’s inequality

‖Ttf − f‖p ≤ ‖Ttf − Ttg‖p + ‖Ttg− g‖p + ‖g− f‖p

≤ 2‖f − g‖p +
(∫

|Ttg− g| · |Ttg− g|p−1 dm
)1/p

≤ 2ε+ ‖Ttg− g‖1/p2 ‖Ttg− g‖1−1/p
∞

≤ 2ε+ 2‖g‖1−1/p
∞ ‖Ttg− g‖1/p2 .

Hence, limsupt→0 ‖Ttf − f‖p ≤ 2ε. This implies that {Tt} is strongly continuous

on Lp(m) for p ∈ (1,∞). Trivially, {Tt} is strongly continuous on L1(m). There-

fore, {Tt} is strongly continuous for p ∈ [1,∞). Define Ap to be the generator of

{Tt} on Lp(m) for p ∈ [1,∞). We regard {Tt} as a semigroup on Lp(m) for all

p ∈ [1,∞]. Define γp→q by (1.1) for p, q ∈ [1,∞].

PROPOSITION 2.1

Let p1, p2, q1, q2 ∈ [1,∞]. Let r1 and r2 be real numbers in [1,∞] such that there
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exists θ ∈ [0,1] such that

1

r1
=

1− θ

p1
+

θ

q1
and

1

r2
=

1− θ

p2
+

θ

q2
.

Then,

(2.1) γr1→r2 ≥ (1− θ)γp1→p2 + θ

In particular, the function s 	→ γ1/s→1/s on [0,1] is concave.

Proof

By Riesz–Thorin’s interpolation theorem (see [2, Theorem 2.2.14]),

‖Tt −m‖r1→r2 ≤ ‖Tt −m‖1−θ
p1→p2

‖Tt −m‖θq1→q2 .

Hence, by the definition of γp→q we have the assertion. �

Proposition 2.1 gives us some nice properties on γp→p. We state the properties

in the theorems below.

THEOREM 2.2

The function p 	→ γp→p on [1,∞] is continuous on (1,∞). If γp→p > 0 for some

p ∈ [1,∞], then γp→p > 0 for all p ∈ (1,∞).

Proof

The equation (2.1) implies that s 	→ γ1/s→1/s on [0,1] is concave; hence, s 	→
γ1/s→1/s is continuous on (0,1). Hence, the first assertion holds. Since ‖Tt −
m‖p→p ≤ 2 for p ∈ [1,∞], γp→p ≥ 0 for p ∈ [1,∞]. This fact and the concavity

conclude the second assertion. �

REMARK 2.3

The function γp→p may not be continuous at p = 1,∞. Indeed, let m be the

probability measure with the standard normal distribution, and let {Tt} be

the Ornstein–Uhlenbeck semigroup. Then, γp→p = 1 for p ∈ (1,∞); however,

γp→p = 0 for p= 1,∞.

THEOREM 2.4

Assume that {Tt} is self-adjoint on L2(m). Then, γp→p = γp∗→p∗ for p ∈ [1,∞],

and the function p 	→ γp→p on [1,∞] is nondecreasing on [1,2] and nonincreasing

on [2,∞]. In particular, the maximum is attained at p= 2.

Proof

Let f(s) := γ1/s→1/s for s ∈ [0,1]. In view of Proposition 2.1 we already know that

f is concave on [0,1]. On the other hand, the symmetry of {Tt} on L2(m) implies

that ‖T ∗
t −m‖p→p = ‖Tt −m‖p→p. Since the operator norm of the dual operator

is equal to that of the original operator, we have ‖Tt −m‖p∗→p∗ = ‖Tt −m‖p→p.
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Hence, γp→p = γp∗→p∗ for p ∈ [1,∞]. This fact and the concavity conclude the

other assertions. �

REMARK 2.5

In Theorem 2.4 we obtain that p 	→ γp→p is nondecreasing on [1,2] and non-

increasing on [2,∞], and the maximum is attained by p= 2. This assertion also

follows from (2.2) and Remark 6.3 below.

Next we consider the relation between γp→p and the radius of spectra. When

we regard Tt as an operator on Lp(m), we denote Tt : L
p(m)→ Lp(m) by T

(p)
t .

For a bounded linear operator A on a Banach space, define the radius of spectra

Rad(A) by

Rad(A) := sup
{
|λ|;λ ∈ σ(A)

}
.

It is well known that the limit

lim
t→∞

1

t
log ‖Tt −m‖p→p

exists (see, e.g., [1, Chapter 1, Theorem 1.22]), and of course, the limit equals

−γp→p. Moreover, it holds that (see, e.g., [1, Chapter 1, Theorem 1.22] and [2,

Theorem 4.1.3])

(2.2) Rad(T
(p)
t −m) = e−γp→pt.

Hence, to see γp→p it is sufficient to see the spectra of T
(p)
t . There is also some

relation between the spectra of semigroups and those of their generators. Let Ap

be the generator of {T (p)
t } for [1,∞). Then, it is known that

(2.3) etσ(Ap)\{0} ⊂ σ(T
(p)
t −m) \ {0}

for t ∈ [0,∞) (see, e.g., [1, Chapter 2, Theorem 2.16]). In the general setting,

the inclusion cannot be replaced by equality (see [1, Chapter 2, Theorem 2.17]).

Sufficient conditions for the inclusion in (2.3) to be replaced by equality are

known (see [4, Chapter IV, Corollary 3.12]). For example, if {T (p)
t } is an analytic

semigroup, then

(2.4) etσ(Ap)\{0} = σ(T
(p)
t −m) \ {0}, t ∈ [0,∞).

On the other hand, in the general setting the two equalities

etσp(Ap)\{0} = σp(T
(p)
t −m) \ {0},

etσr(Ap)\{0} = σr(T
(p)
t −m) \ {0}

hold for t ∈ [0,∞) (see [4, Chapter IV, Theorem 3.7]). Note that the definition

of residual spectra in [4] is different from that in this paper. However, it is easy

to see that the equality above still holds.

Consider the case in which {Tt} is a Markovian semigroup on (M,m) such

that {T (2)
t } is symmetric on L2(m). By [10, Chapter III, Section 2, Theorem 1],

{T (p)
t } is an analytic semigroup on Lp(m) for p ∈ (1,∞). Hence, (2.4) holds.
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Moreover, by [4, Chapter IV, Corollary 3.12] we obtain

(2.5) sup
{
Reλ;λ ∈ σ(Ap) \ {0}

}
= lim

t→∞
1

t
log ‖Tt −m‖p→p

for p ∈ (1,∞). We use this equality in Section 7.

Now we introduce a property of spectra of real operators on a general Banach

space. Let B be a complex Banach space, and let A be a linear operator on B.

If there exists a bounded linear operator J on B satisfying that

J(αx+ βy) = ᾱJx+ β̄Jy, α,β ∈C, x, y ∈B,
(2.6)

J2 = I, ‖Jx‖= ‖x‖, x ∈B, AJ = JA,

then A is called a real operator. Denote the resolvent operator with respect to

λ ∈ ρ(A) by Rλ.

LEMMA 2.6

If A is a real operator, then σp(A) = σp(A), σc(A) = σc(A), σr(A) = σr(A),

and ρ(A) = ρ(A), where Λ := {λ̄;λ ∈ Λ} for Λ ⊂ C. Moreover, Rλ̄ = JRλJ for

λ ∈ ρ(A).

Proof

If λx = Ax holds for x ∈ Dom(A) \ {0}, then λ̄Jx = AJx and Jx �= 0. Hence,

σp(A) = σp(A). If there exists a sequence {xn} ⊂ B such that ‖xn‖ = 1 and

limn→∞ ‖λxn−Axn‖= 0, then ‖Jxn‖= 1 and limn→∞ ‖λ̄Jxn−AJxn‖= 0. This

implies that the conjugate of an approximate point spectrum is also an approx-

imate point spectrum. Hence, σp(A) ∪ σc(A) = σp(A) ∪ σc(A). Since σp(A) and

σc(A) are disjoint from each other and σp(A) = σp(A), we have σc(A) = σc(A).

For λ ∈ ρ(A),

JRλJ(λ̄−A) = I on Dom(A) and (λ̄−A)JRλJ = I on B.

This implies that λ̄ ∈ ρ(A) and Rλ̄ = JRλJ . Since σp(A) = σp(A), σc(A) = σc(A),

and ρ(A) = ρ(A), the disjointness of σp(A), σc(A), σr(A), and ρ(A) implies that

σr(A) = σr(A). �

Consider the following property for a linear operator A on a C-valued function

space B:

if f ∈Dom(A) and f is a real-valued function,
(2.7)

then Af is also a real-valued function.

It is easy to see that an operator A satisfying (2.7) is a real operator by let-

ting Jf := f̄ for B. Since Markovian semigroups are positivity preserving, they

satisfy (2.7). Hence, so are the generators of strong continuous Markovian semi-

groups. Consider {Tt} and Ap defined in the beginning of this section. Then,

{Tt} and Ap are real operators on Lp(m) for p ∈ [1,∞). Hence, by Lemma 2.6

we have that each kind of spectra of {Tt} on Lp(m) and Ap is symmetric with

respect to the real axis.
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3. Hyperboundedness and p-independence of γp→p

In this section we discuss the relation between hyperboundedness and γp→q .

Hyperboundedness enables us to compare the elements of {γp→q;p, q ∈ (1,∞)},
and hyperboundedness and {γp→q;p, q ∈ (1,∞)} characterize each other. In par-

ticular, we obtain the p-independence of γp→p for p ∈ (1,∞) from hyperbounded-

ness. Hence, the results in this section give some sufficient conditions for γp→p to

be p-independent. We also discuss the relation between hypercontractivity and

γp→p.

Let (M,m) and {Tt} be the same as in Section 2. However, the assumption

T ∗
t 1 = 1 is not needed on the results before Proposition 3.3. For p, q ∈ (1,∞)

such that p < q, {Tt} is called (p, q)-hyperbounded if there exist K ≥ 0 and C > 0

such that

(3.1) ‖TKf‖q ≤C‖f‖p, f ∈ Lp(m),

and {Tt} is called (p, q)-hypercontractive if there exists K ≥ 0 such that (3.1)

holds with C = 1.

First we prepare the following lemma.

LEMMA 3.1

Let p, q ∈ (1,∞) such that p < q. If there exist nonnegative constants K and

C such that ‖TKf‖q ≤ C‖f‖p for f ∈ Lp(m), then, for n1, n2 ∈ N such that

q−n1/p−n1−1 > 1,

‖T(n1+n2)Kf‖qn2/pn2−1 ≤Cα(n1,n2)‖f‖q−n1/p−n1−1 , f ∈ Lq−n1/p−n1−1

(m),

where α(n1, n2) =
∑n2−1

k=−n1
pk/qk.

Proof

Let f ∈ Lq−n1/p−n1−1

(m). By the positivity of {Tt}, Jensen’s inequality, and the

assumption, for n ∈N and m ∈ Z such that qm−1/pm−2 > 1 we have that

‖TnKf‖qm/pm−1 ≤
[∫ (

TK

(
|T(n−1)Kf |qm−1/pm−1))q

dm
]pm−1/qm

=
∥∥TK

(
|T(n−1)Kf |qm−1/pm−1)∥∥pm−1/qm−1

q

≤ Cpm−1/qm−1∥∥|T(n−1)Kf |qm−1/pm−1∥∥pm−1/qm−1

p

= Cpm−1/qm−1‖T(n−1)Kf‖qm−1/pm−2 .

Iterating this calculation, we have the conclusion. �

Next we give the following theorem on hyperboundedness and hypercontractivity.

THEOREM 3.2

If {Tt} is (p, q)-hyperbounded for some p, q ∈ (1,∞) such that p < q, then {Tt}
is (p, q)-hyperbounded for any p, q ∈ (1,∞) such that p < q. Moreover, if {Tt} is
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(p, q)-hypercontractive for some p, q ∈ (1,∞) such that p < q, then {Tt} is (p, q)-

hypercontractive for any p, q ∈ (1,∞) such that p < q.

Proof

Assume that {Tt} is (p1, q1)-hyperbounded for p1 < q1. It is easy to see that {Tt}
is (p2, q2)-hyperbounded for p1 ≤ p2 < q2 ≤ q1. Let p, q ∈ (1,∞) such that p < q.

Choose p2 and q2 so that p1 ≤ p2 < q2 ≤ q1 and so that 1 < p2
n1+1/q2

n1 < p

with some n1 ∈ N. Take n2 ∈ N such that q2
n2/p2

n2−1 > q. Then, by applying

Lemma 3.1 we have that {Tt} is (p2
n1+1/q2

n1 , q2
n2/p2

n2−1)-hyperbounded, and

therefore, {Tt} is (p, q)-hyperbounded. Similarly, we obtain the second assertion.

�

This theorem says that (p, q)-hyperboundedness for some p, q ∈ (1,∞) such that

p < q implies (p, q)-hyperboundedness for all p, q ∈ (1,∞) such that p < q, and

the same assertion holds for hypercontractivity. Hence, we simply say that {Tt} is

hyperbounded and hypercontractive instead of saying that {Tt} is (p, q)-

hyperbounded and (p, q)-hypercontractive, respectively.

In the rest of this section we consider the relation between hypercontractivity

(or hyperboundedness) and the exponential rate of convergence γp→p. Note that

the assumption T ∗
t 1 = 1 is needed from here on. First we show the following

proposition, which is an extension of the first assertion of [3, Lemma 6.1.5].

PROPOSITION 3.3

Assume that

(3.2) ‖TKf‖r ≤ ‖f‖2, f ∈ L2(m),

for some K > 0 and r > 2. Then, we have that

(3.3)
∥∥TKf − 〈f〉

∥∥
2
≤ (r− 1)−1/2‖f‖2, f ∈ L2(m),

and

(3.4)
∥∥Ttf −〈f〉

∥∥
2
≤
√
r− 1exp

{
− t

K
log

√
r− 1

}
‖f‖2, f ∈ L2(m), t ∈ [0,∞).

Proof

Let f ∈ L∞(m) such that 〈f〉 = 0 and ‖f‖∞ ≤ a0 with a nonnegative constant

a0, and let a be a positive constant such that a > a0. From (3.2) we have

(3.5)
(
a2 + ‖f‖22

)r/2
= ‖a+ f‖r2 ≥

∥∥TK(a+ f)
∥∥r
r
=

∫ ∣∣a+ TKf(x)
∣∣rm(dx).

By the Taylor theorem there exists θ ∈ [0,1] such that

(3.6)
(
a2 + ‖f‖22

)r/2
= ar +

r

2
ar−2‖f‖22 +

1

2

r(r− 2)

4

(
a2 + θ‖f‖22

)r/2−2‖f‖42.

Since {Tt} is a Markovian semigroup, ‖TKf‖∞ ≤ a0. Hence, by the Taylor theo-

rem again, for each x there exists ηx ∈ [0,1] such that
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(a+ TKf)r(x) = ar + rar−1TKf(x) +
r(r− 1)

2
ar−2(TKf)2(x)

+
r(r− 1)(r− 2)

6
(a+ ηxTKf)r−3(x)(TKf)3(x).

By integrating both sides we have∫
(a+ TKf)r dm = ar +

r(r− 1)

2
ar−2‖TKf‖22

+
r(r− 1)(r− 2)

6

∫
(a+ ηxTKf)r−3(TKf)3 dm.(3.7)

From (3.5), (3.6), and (3.7),

r

2
ar−2‖f‖22 +

1

2

r(r− 2)

4

(
a2 + θ‖f‖22

)r/2−2‖f‖42

≥ r(r− 1)

2
ar−2‖TKf‖22

+
r(r− 1)(r− 2)

6

∫
(a+ ηxTKf)r−3(x)(TKf)3(x)m(dx).

Dividing both sides by ar−2 and taking the limit as a→∞, we have

r

2
‖f‖22 ≥

r(r− 1)

2
‖TKf‖22.

Hence, (3.3) follows.

To show (3.4), for a given t ≥ 0 take n ∈ N ∪ {0} and ρ ∈ [0,K) such that

t= nK + ρ. Then, by (3.3)∥∥Ttf − 〈f〉
∥∥
2
=

∥∥TnKTρf − 〈Tρf〉
∥∥
2
≤ (r− 1)−n/2‖Tρf‖2

≤ (r− 1)−(1/2)(t/K−1)‖f‖2 ≤
√
r− 1exp

{
− t

K
log

√
r− 1

}
‖f‖2.

Hence, we have (3.4). �

Next we show the following theorem, which tells us the relation between hyper-

boundedness and γp→q .

THEOREM 3.4

The following conditions are equivalent:

(i) {Tt} is hyperbounded.

(ii) γp→q ≥ 0 for some 1< p< q <∞.

(iii) γp→q = γ2→2 for all p, q ∈ (1,∞).

Proof

First we show that (ii) implies (i). By the definition of γp→q there exists K > 0

such that ‖TK −m‖p→q <∞. Hence, ‖TK‖p→q <∞. Therefore, we obtain (i) by

Theorem 3.2. Immediately (ii) follows from (iii), since γ2→2 ≥ 0.
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Finally we show that (i) implies (iii). For given p, q, r, s ∈ (1,∞) take K > 0

and C > 0 such that ‖TK‖p→r ≤ C and ‖TK‖s→q ≤ C. Then, it is easy to see

that

(3.8) ‖TK −m‖p→r ≤C + 1 and ‖TK −m‖s→q ≤C + 1.

Since

‖Tt+2K −m‖p→q ≤ ‖TK −m‖p→r‖Tt −m‖r→s‖TK −m‖s→q,

we have that

−1

t
log ‖Tt+2K −m‖p→q

≥−1

t
log ‖TK −m‖p→r −

1

t
log ‖Tt −m‖r→s −

1

t
log ‖TK −m‖s→q.

In view of (3.8), letting t→∞, we obtain γp→q ≥ γr→s. Since p, q, r, s ∈ (1,∞)

are arbitrary, (iii) follows. �

Finally, we show the following theorem, which tells us the relation between hyper-

contractivity and γp→q and also gives some criteria for {Tt} to be hypercontrac-

tive.

THEOREM 3.5

The following conditions are equivalent:

(i) {Tt} is hypercontractive.

(ii) γp→q > 0 for some 1< p< q <∞.

(iii) γp→q = γ2→2 for all p, q ∈ (1,∞) and γ2→2 > 0.

(iv) There exist K > 0 and r > 0 such that

‖TK‖2→r <∞ and ‖TK −m‖2→2 < 1.

Proof

By Theorem 3.4 we have that (ii) implies (iii). Trivially, (ii) follows from (iii).

By Theorem 3.4, (i) implies that γp→q = γ2→2 for all p, q ∈ (1,∞). On the

other hand, by Proposition 3.3 we obtain from (i) that γ2→2 > 0. Hence, (i)

implies (iii). Theorem 3.2 and [3, Lemma 6.1.5] give that (iv) implies (i).

To finish the proof, it is sufficient to prove that (iii) implies (iv). Assume

(iii). As we have seen in Theorem 3.4, there exist K > 0 and r > 0 such that

‖TK‖2→r < ∞. Since γ2→2 > 0, by the definition of γp→q it holds that there

exists K > 0 such that ‖TK −m‖2→2 < 1. Thus, we obtain (iv). �

REMARK 3.6

We introduce the defective logarithmic Sobolev inequality and the logarithmic

Sobolev inequality in Section 5 below. It is known that hyperboundedness and

hypercontractivity are equivalent to the defective logarithmic Sobolev inequality

and the logarithmic Sobolev inequality, respectively (see [3, Theorem 6.1.14]).
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4. Sufficient conditions for spectra to be p-independent

In Section 3 we showed that when hyperboundedness holds, the exponential rates

of convergence {γp→p;p ∈ (1,∞)} are independent of p. However, hyperbound-

edness gives us the further information that the spectra of {−Ap;p ∈ (1,∞)} are

independent of p. Recall that −Ap and γp→p are closely related to each other

(see Section 2). In this section we show the assertion.

Let (M,m) and {Tt} be the same as in Section 2. Let p ∈ (2,∞), and fix p.

Assume that there exist positive constants K and C such that

(4.1) ‖TKf‖p ≤C‖f‖2, f ∈ L2(m).

By Theorem 3.2 this assumption is equivalent to hyperboundedness on {Tt}.
Hence, by taking another pair (K,C), both (4.1) and

(4.2) ‖TKf‖2 ≤C‖f‖p∗ , f ∈ Lp∗
(m),

hold. We choose a pair (K,C) such that both (4.1) and (4.2) hold and fix it. Let

Ap be the generator of {Tt} on Lp(m) for p ∈ [1,∞), and assume that A2 is a

normal operator, that is, (A2)
∗A2 =A2(A2)

∗. Then, we can consider the spectral

decomposition of −A2 (see [8]) as follows:

−A2 =

∫
C

λdEλ.

For a bounded C-valued measurable function φ on C, define an operator φ(−A2)

on L2(m) by

φ(−A2) =

∫
C

φ(λ)dEλ.

Note that it is sufficient that φ is defined only on σ(−A2). Since Lp(m)⊂ L2(m)

and L2(m) is dense in Lp∗
(m) in our setting, φ(−A2) can be regarded as a linear

operator on Lp(m) and on Lp∗
(m). So, we denote φ(−A2) by φ(−A) simply and

regard φ(−A) as a linear operator on L2(m), on Lp(m), and on Lp∗
(m).

It is easy to see that φ(−A) is a bounded operator on L2(m) if and only if

φ is bounded on σ(−A2). However, it is not easy to obtain sufficient conditions

for φ(−A) to be a bounded operator on Lp(m) and on Lp∗
(m). Now we consider

a sufficient condition for the boundedness of φ(−A) on Lp(m) and on Lp∗
(m)

under the assumption (4.1). Define a function χ on C by

χ(λ) :=

{
0 Reλ < 0,

1 Reλ≥ 0,

and let χn(λ) := χ(λ− n).

PROPOSITION 4.1

The following hold.

(i) If φ is bounded and the real part of the support of φ is bounded, then

φ(−A) is a bounded operator on Lp(m) and also on Lp∗
(m).
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(ii) There exists a positive constant c= c(p,n) satisfying∥∥Ttχn(−A)
∥∥
p→p

≤ ce−nt,(4.3) ∥∥Ttχn(−A)
∥∥
p∗→p∗ ≤ ce−nt,(4.4)

for t ∈ [0,∞).

Proof

To show (i), let ψ(λ) := φ(λ)eKλ, where K is the constant which appeared in

(4.1). Since the real part of the support of φ is bounded, ψ(−A) is a bounded oper-

ator on L2(m). By using the fact that φ(−A) = TKψ(−A) and (4.1), we have that∥∥φ(−A)
∥∥
2→p

≤ ‖TK‖2→p

∥∥ψ(−A)
∥∥
2→2

≤C
∥∥ψ(−A)

∥∥
2→2

.

Hence, by the continuity of the embedding Lp(m) ↪→ L2(m) we have that φ(−A)

is a bounded operator on Lp(m). A similar argument is available to estimate

‖φ(−A)‖p∗→2, and we have that φ(−A) is a bounded operator on Lp∗
(m). Thus,

we obtain (i).

Next we show (ii). Since supReλ≥0 |e−tλ|χn(λ)≤ e−nt, we have that∥∥Ttχn(−A)
∥∥
2→2

≤ e−nt.

Hence, by (4.1), for t≥ 0∥∥Tt+Kχn(−A)
∥∥
2→p

≤ ‖TK‖2→p

∥∥Ttχn(−A)
∥∥
2→2

≤Ce−nt ≤CenKe−n(t+K).

Therefore, choosing c≥CenK , (4.3) holds for t≥K.

Since I{Reλ≥0} −χn is bounded and the real part of its support is bounded,

(i) implies that I − χn(−A) is a bounded operator on Lp(m). Here, note that

σ(−A2)⊂ {z ∈C;Rez ≥ 0}. Thus, for t ∈ [0,K]∥∥Ttχn(−A)
∥∥
p→p

=
∥∥Tt

(
I − I + χn(−A)

)∥∥
p→p

≤ ‖Tt‖p→p +
∥∥Tt

(
I − χn(−A)

)∥∥
p→p

≤ 1 +
∥∥(I − χn(−A)

)∥∥
p→p

≤
(
1 +

∥∥(I − χn(−A)
)∥∥

p→p

)
enKe−nt.

Therefore, by taking c≥ (1 + ‖(I − χn(−A))‖p→p)e
nK , (4.3) holds for t ∈ [0,K].

Consequently, if we let c=max{CenK , (1+‖(I−χn(−A))‖p→p)e
nK}, then (4.3)

holds for t ∈ [0,∞).

We are able to prove (4.4) in a similar way. Hence, we omit the proof. �

By using Proposition 4.1 we can show a sufficient condition for φ(−A) to be a

bounded linear operator on Lp(m) and on Lp∗
(m). The following theorem is an

extension of the result by Meyer [5, Chapter IV, Section 3].

THEOREM 4.2

Assume (4.1). Let h be a C-valued bounded measurable function on C which is
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analytic on the neighborhood around 0, and define a C-valued bounded function

φ on C by φ(λ) = h(1/λ). Then, φ(−A) is a bounded operator on Lp(m) and also

on Lp∗
(m).

Proof

The proofs for the boundedness of φ(−A) on Lp(m) and for that on Lp∗
(m) are

the same. So, we only prove that φ(−A) is a bounded operator on Lp(m). Choose

n ∈N such that h is analytic on {z ∈C; |z| ≤ 1/n}, and let

φ(1) := φ(1− χn) and φ(2) := φχn.

Then, φ is decomposed as

φ= φ(1) + φ(2).

Since σ(−A2)⊂ {z ∈ C;Rez ≥ 0}, Proposition 4.1(i) implies that φ(1)(−A) is a

bounded operator on Lp(m). Hence, it is sufficient to show that φ(2)(−A) is a

bounded operator on Lp(m).

Let

R :=

∫ ∞

0

Ttχn(−A)dt.

Since for k ∈N∪ {0}

Rk =

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

Tt1χn(−A)Tt2χn(−A) · · ·Ttkχn(−A)dt1 dt2 · · · dtk

=

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

Tt1+t2+···+tkχn(−A)dt1 dt2 · · · dtk,

by Proposition 4.1(ii) we have

(4.5) ‖Rk‖p→p ≤ cn−k, k ∈N∪ {0}.

By using the spectral argument on L2-space,

R=

∫ ∞

0

∫
{Reλ≥n}

e−λt dEλ dt=

∫
{Reλ≥n}

λ−1 dEλ,

and hence

(4.6) Rk =

∫
{Reλ≥n}

λ−k dEλ.

On the other hand, since h is analytic on {z ∈ C; |z| ≤ 1/n}, by using Taylor

expansion we have that

h(z) =

∞∑
k=0

akz
k, |z| ≤ 1

n
.

Note that
∑∞

k=0 |ak|n−k <∞. Hence, by (4.6) we obtain that

φ(2)(−A) =

∫
{Reλ≥n}

h(λ−1)dEλ =

∞∑
k=0

ak

∫
{Reλ≥n}

λ−k dEλ =

∞∑
k=0

akR
k.

Therefore, (4.5) implies that φ(2)(−A) is a bounded operator on Lp(m). �
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Theorem 4.2 enables us to show that the spectra of Ap are independent of p

under the condition (4.1) as follows.

THEOREM 4.3

Assume that (4.1) holds for some p ∈ (2,∞) and positive numbers K and C.

Then, σ(−Aq) = σ(−A2) for q ∈ (1,∞).

Proof

As mentioned in the beginning of this section, in view of Theorem 3.2 the assump-

tion that (4.1) holds for some p ∈ (2,∞), K > 0, and C > 0 implies that for any

p ∈ (2,∞) there exist K > 0 and C > 0 such that (4.1) and (4.2) hold.

First we show that σ(−Aq) ⊃ σ(−A2) for q ∈ (1,∞). For given p ∈ (2,∞),

take positive numbers K and C such that (4.1) and (4.2) hold and fix them.

Let α ∈ σ(−A2). For n ∈N, define Un := {z ∈C; |z−α| ≤ 1/n}, and define Sn :=

{
∫
Un

dEλf ;f ∈ L2(m)}. Then, Sn is a closed linear subspace of L2(m) and Sn �=
{0} for n ∈ N. Take fn ∈ Sn such that ‖fn‖2 = 1. Then, it is easy to see that

limn→∞ ‖Afn + αfn‖2 = 0. Since

Afn + αfn = −
∫
Un

λdEλfn + αfn

= −
∫
Un

e−KλeKλλdEλfn +

∫
Un

e−KλeKλαdEλfn

=
(∫

Un

e−Kλ dEλ

)(∫
Un

eKλ(α− λ)dEλfn

)

= TK

∫
Un

eKλ(α− λ)dEλfn,

by (4.1) we have that

‖Afn + αfn‖p ≤ C
∥∥∥∫

Un

eKλ(α− λ)dEλfn

∥∥∥
2
≤ C

n
eK(Reα+1/n)‖fn‖2.

Hence, limn→∞ ‖Afn +αfn‖p = 0. On the other hand, ‖fn‖p ≥ ‖fn‖2 = 1. These

yield that α ∈ σ(−Ap). Similar to the argument above,

Afn + αfn = −
∫
Un

eKλe−KλλdEλfn +

∫
Un

eKλe−KλαdEλfn

=
(∫

Un

eKλ(α− λ)dEλ

)(∫
Un

e−Kλ dEλfn

)

=

∫
Un

eKλ(α− λ)dEλ(TKfn).

Hence, by (4.2) we have

‖Afn + αfn‖p∗ ≤
∥∥∥∫

Un

eKλ(α− λ)dEλ(TKfn)
∥∥∥
2

≤ 1

n
eK(Reα+1/n)‖TKfn‖2 ≤

C

n
eK(Reα+1/n)‖fn‖p∗ .
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Letting f̃n := fn/‖fn‖p∗ , we have ‖f̃n‖p∗ = 1 for n ∈ N and limn→∞ ‖Af̃n +

αf̃n‖p∗ = 0. This yields that α ∈ σ(−Ap∗). Thus, we have σ(−A2) ⊂ σ(−Aq)

for q ∈ (1,∞).

Next we show that σ(−Aq)⊂ σ(−A2) for q ∈ (1,∞). It is sufficient to show

that ρ(−Aq)⊃ ρ(−A2) for q ∈ (1,∞). For given p ∈ (2,∞), take positive numbers

K and C such that (4.1) and (4.2) hold and fix them. Let α ∈ ρ(−A2), and let

φ(z) := 1/(α+ z). Then,

(α−A)−1 =

∫
C

φ(λ)dEλ,(4.7)

φ
(1
z

)
=

z

αz + 1
.(4.8)

The equality (4.8) implies that φ(1/z) is analytic on a neighborhood around z = 0.

Since α ∈ ρ(−A2), the integral on the right-hand side of (4.7) is not changed by

replacing φ(λ) by 0 on a neighborhood around λ = −α. This implies that we

can regard φ as a bounded function. Hence, applying Theorem 4.2, we have

that (α − A)−1 is a bounded operator on Lp(m). Therefore, α ∈ ρ(−Ap). We

also have α ∈ ρ(−Ap∗) in the same manner. Thus, we have ρ(−A2)⊂ ρ(−Aq) for

q ∈ (1,∞). �

By using Theorem 4.3, we are able to know a little more information on the

spectra of {Tt} satisfying hyperboundedness.

THEOREM 4.4

If {Tt} is hyperbounded, then σp(−A2) = σp(−Ap), σc(−A2) = σc(−Ap), and

σr(−Ap) = ∅ for p ∈ (1,∞).

Proof

Let p, q ∈ (1,∞). Let α ∈ σp(−Ap). Then, there exists f ∈ Dom(−Ap) \ {0}
such that αf + Af = 0. Hence, αTtf + ATtf = 0 for t ∈ [0,∞). Since {Tt} is

hyperbounded, there exists a sufficiently large t ∈ [0,∞) such that Ttf ∈
Dom(−Aq) \ {0}. This implies that α ∈ σp(−Aq) and Ttf is an eigenfunction

with respect to α. Hence, σp(−Ap) ⊂ σp(−Aq). Since this holds for arbitrary

p, q ∈ (1,∞), we have σp(−A2) = σp(−Ap) for p ∈ (1,∞).

Let p, q ∈ (1,∞) such that p < q. By using a dual argument we have that

‖Tt‖p→q = ‖T ∗
t ‖q∗→p∗ , t ∈ [0,∞).

Note that T ∗
t is also a normal operator, the generator of T ∗

t on Lp∗
(m) is (Ap)

∗,

and q∗ < p∗. In view of Theorem 3.2, the hyperboundedness of {Tt} implies that

of {T ∗
t }. Applying the argument above to {T ∗

t }, we have that

(4.9) σp

(
−(A2)

∗)= σp

(
−(Ap)

∗), p ∈ (1,∞).

Now assume that α ∈ σr(−Ap) for some p ∈ (1,∞), and we make contradiction.

Since there exists f ∈ Lp∗
(m) such that 〈(α + Ap)g, f〉 = 0 for g ∈ Dom(Ap),

f ∈Dom((Ap)
∗) and −(Ap)

∗f = ᾱf . Hence, α ∈ σp(−(Ap)∗). Since A2 is a normal



382 Seiichiro Kusuoka and Ichiro Shigekawa

operator, it is easy to see that ‖(z +A2)f‖2 = ‖(z̄ + (A2)
∗)f‖2 for f ∈Dom(A2)

and z ∈C. In particular, σp(−(A2)∗) = σp(−A2). Hence, by (4.9) we have that

σp

(
−(Ap)∗

)
= σp

(
−(A2)∗

)
= σp(−A2).

Since σp(−A2) = σp(−Ap), we have that α ∈ σp(−Ap). However, this conflicts

with the disjointness of σr(−Ap) and σp(−Ap). Hence, σr(−Ap) = ∅.
By Theorem 4.3 and the disjointness of σc(−Ap) and σp(−Ap), we have

σc(−A2) = σc(−Ap) for p ∈ (1,∞). �

In Section 5 we consider a sufficient condition for hyperboundedness via loga-

rithmic Sobolev inequalities. It is to be obtained that spectra are the same for

p ∈ (1,∞) if generators are normal (not necessarily symmetric) and the assump-

tions hold in Theorem 5.1.

Now we consider the relation between ultracontractivity and {γp→p;p ∈
[1,∞]}. If there exist positive constants K and C such that

‖TKf‖∞ ≤C‖f‖1, f ∈ L1(m),

then {Tt} is called ultracontractive. In the case in which {Tt} is symmetric, we

have the following proposition.

PROPOSITION 4.5

If {Tt} is symmetric on L2(m), then {Tt} is ultracontractive if and only if there

exists q ∈ [1,∞) such that

(4.10) ‖TKf‖∞ ≤C‖f‖q, f ∈ Lq(m)

with some positive constants K and C.

Proof

It is sufficient to show that ultracontractivity holds if (4.10) holds for some q,

K, and C. It is immediately obtained that {Tt} is (p, q)-hyperbounded for any

p ∈ (1,∞). Hence, by Theorem 3.2 there exists K ′ > 0 such that ‖TK′‖q∗→q <∞.

The symmetry of {Tt} on L2(m) implies that ‖Tt‖1→q∗ = ‖T ∗
t ‖1→q∗ . On the other

hand, by the duality we have that ‖T ∗
t ‖1→q∗ = ‖Tt‖q→∞. Hence, (4.10) implies

that ‖TK‖1→q∗ = ‖TK‖q→∞ <∞. Thus, we have that

‖T2K+K′‖1→∞ ≤ ‖TK‖1→q∗‖TK′‖q∗→q‖TK‖q→∞ <∞. �

When {Tt} is ultracontractive, we can discuss the p-independence of the spec-

tra of the generator of {Tt} for p ∈ [1,∞) in the same way as in the case of

hyperbounded Markovian semigroups.

THEOREM 4.6

Assume that {Tt} is ultracontractive, and assume that A2 is a normal oper-

ator. Then, σ(−Ap) = σ(−A2) for p ∈ [1,∞). Moreover, σp(−A2) = σp(−Ap),

σc(−A2) = σc(−Ap), and σr(−Ap) = ∅ for p ∈ [1,∞).
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Note that {Tt} is not necessarily symmetric (or, equivalently, A2 is not) in The-

orem 4.6.

REMARK 4.7

If {Tt} is symmetric on L2(m) and ultracontractive, the compactness of Tt on

Lp(m) for p ∈ (1,∞) and t≥K is to be obtained (see [2, Theorem 13.4.2]).

REMARK 4.8

When Ttf(x) =
∫
f(y)pt(x, y)m(dy) and∫ ∫ ∣∣pK(x, y)

∣∣2m(dy)m(dx)<∞

holds for some K > 0, we have the compactness of TK on L2(m) by [2, Theo-

rem 4.2.16]. Therefore, the p-independence of spectra is obtained (see Re-

mark 6.8).

5. Nonsymmetric Markovian semigroups and logarithmic Sobolev inequality

In Section 4 we obtain some sufficient conditions for the spectra of a Markovian

semigroup {Tt} on Lp(m) to be independent of p ∈ (1,∞). In this section we

consider a sufficient condition for nonsymmetric Markovian semigroups to satisfy

hyperboundedness.

Let (M,m) and {Tt} be the same as in Section 2. However, in this section,

the finiteness of m is not needed. Let Ap be the generator of {Tt} on Lp(m).

We often denote Ap by A simply. Let {Rα} be the resolvent operator of {Tt} on

L2(m), and define

D :=R1

(
L1(m)∩L∞(m)

)
.

Then, D ⊂Dom(Ap) for p ∈ [1,∞] and D ⊂ L1(m)∩L∞(m).

We prepare another supplementary symmetric semigroup {St} on L2(m).

Let E be the Dirichlet form associated with {St}. Let α ∈ (0,∞), let β ∈ [0,∞),

and assume that

(5.1)

∫ ∣∣f(x)∣∣2 log(∣∣f(x)∣∣2/‖f‖22)m(dx)≤ αE (f, f) + β‖f‖22, f ∈ L2(m).

This inequality is called a defective logarithmic Sobolev inequality. In the case in

which α > 0 and β = 0, (5.1) is called a logarithmic Sobolev inequality. Addition-

ally assume the following.

For p > 1 and f ∈ D , |f |p/2 ∈Dom(E ) and
(5.2)

4(p− 1)

p2
E
(
|f |p/2, |f |p/2

)
≤−

(
Af, |f |p−1 sgn(f)

)
.

When Tt is symmetric on L2(m), by letting St := Tt we have (5.2) (see [3, proof

of Theorem 6.1.14]).



384 Seiichiro Kusuoka and Ichiro Shigekawa

THEOREM 5.1

Assume (5.1) and (5.2). Then, we have that

‖Tt‖p→q ≤ exp
{
β
(1
p
− 1

q

)}
for t > 0 and 1 < p ≤ q < ∞ such that e4t/α ≥ (q − 1)/(p − 1). Hence, {Tt} is

hyperbounded. Moreover, {Tt} is hypercontractive if β = 0.

Proof

The proof is just the same as [3, proof of Theorem 6.1.14]. Let f ∈ D , and denote

Ttf by ft. Let q(t) := 1+ (p− 1)e4t/α. By following [3, proof of Theorem 6.1.14]

we have that

‖ft‖q(t)−1
q(t)

d

dt
‖ft‖q(t)

=

∫
|ft|q(t)−1 sgn(ft)Aft dm+

q′(t)

q(t)2

∫
|ft|q(t) log

(
|ft|q(t)/‖ft‖q(t)q(t)

)
dm.

By (5.2) we obtain that

‖ft‖q(t)−1
q(t)

d

dt
‖ft‖q(t)

≤−4(q(t)− 1)

q(t)2
E
(
|ft|q(t)/2, |ft|q(t)/2

)
+

q′(t)

q(t)2

∫
|ft|q(t) log

(
|ft|q(t)/‖ft‖q(t)q(t)

)
dm.

Hence, we can continue our proof in the same way as [3, proof of Theorem 6.1.14]

and obtain the conclusion. �

In Theorem 5.1 we assumed (5.1) and (5.2). Now, we give an example of a non-

symmetric Markovian semigroup {Tt} satisfying (5.1) and (5.2).

LetM be a complete Riemannian manifold, and letm be the volume measure

on M . Denote the total set of vector fields on M by D. We define the basis

measure ν on M by ν := e−Um where U is a C∞-function on M such that∫
M

e−U dm= 1. Let ∇ be an affine connection. Then, the dual ∇∗
ν of ∇ on L2(ν)

is characterized by ∇∗
νθ =∇∗θ+(∇U,θ) for θ ∈D, where ∇∗ is the dual of ∇ on

L2(m).

Let b ∈D, and consider the generator A defined by

(5.3) A=−1

2
∇∗

ν∇+ b.

Then, the dual A∗
ν of A on L2(ν) satisfies

A∗
ν =−1

2
∇∗

ν∇− b− divν b,

where divν is the divergence on L2(ν), that is, divν is the linear operator on D

which is characterized by∫
Xf dν =−

∫
f divν X dν, f ∈C1

0 (M).
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Let B :=−1
2∇∗

ν∇, and let E be the Dirichlet form associated with B. Then,

E (f, g) =−1

2

∫
(gradf,gradg)dν, f, g ∈C∞

0 (M),

where gradf is the gradient of f ∈ C∞(M). For B to be a generator of a Mar-

kovian semigroup, we assume that the closure of B defined on C∞
0 (M) is m-

dissipative on Lp(m) for p ∈ [0,∞]. Sufficient conditions for the assumption are

found in [9]. Additionally, we assume that

(5.4) divν b≥ 0.

Under these assumptions we show (5.2). Since B is symmetric on L2(ν), (5.2)

holds for B and E (see the remark just after (5.2)). Hence, letting {Gα} be the

resolvent associated with B, we have for f ∈G1(L
1 ∩L∞) that

(5.5)
4(p− 1)

p2
E
(
|f |p/2, |f |p/2

)
≤ 1

2

(
∇∗

ν∇f, |f |p−1 sgn(f)
)
.

In particular, since C∞
0 (M) ⊂ G1(L

1 ∩ L∞), (5.5) holds for f ∈ C∞
0 (M). For

f ∈C∞
0 (M) we have that

−
(
Af, |f |p−1 sgn(f)

)
=

∫ (1
2
∇∗

ν∇f − bf
)
|f |p−1 sgn(f)dν

=
1

2

∫
(∇∗

ν∇f)|f |p−1 sgn(f)dν −
∫
(bf)|f |p−1 sgn(f)dν.

By using (5.4),

−
∫

(bf)|f |p−1 sgn(f)dν =−1

p

∫
b
(
|f |p

)
dν =

1

p

∫
(divν b)|f |p dν ≥ 0.

Hence, by (5.5) we obtain that

(5.6) −
(
Af, |f |p−1 sgn(f)

)
≥ 4(p− 1)

p2
E
(
|f |p/2, |f |p/2

)
, f ∈C∞

0 (M).

Since each function f which belongs to Dom(Ap) can be approximated by a

sequence {fn} in C∞
0 (M) with respect to the graph norm of Ap, (5.6) implies that

supn E (|fn|p/2, |fn|p/2) < ∞. Hence, there exists a subsequence of {fn} which

converges weakly with respect to the norm given by the inner product E1(·, ·) :=
(·, ·) + E (·, ·). Denote the subsequence by {fn} again. Clearly, the limit of {fn}
is f . By (5.6) we have that

4(p− 1)

p2
E
(
|f |p/2, |f |p/2

)
≤ lim inf

n→∞

4(p− 1)

p2
E
(
|fn|p/2, |fn|p/2

)
≤ − limsup

n→∞

(
Afn, |fn|p−1 sgn(fn)

)
≤ −

(
Af, |f |p−1 sgn(f)

)
.

Therefore, (5.2) holds.

For (5.1) we additionally assume that

Ric+HessU ≥ εI
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for some ε > 0. Then it is known that the logarithmic Sobolev inequality holds

for B (see [3, Theorem 6.2.42]). Hence, (5.1) holds.

By Theorem 5.1, the hyperboundedness holds. Furthermore, when we apply

the results in Section 4, we need the conditions that ν is the invariant measure

with respect to the semigroup generated by A and that A is normal on L2(ν).

EXAMPLE 5.2

Let M :=R
2, let ν(dx) := (1/2π)e−|x|2/2 dx, and let

b= b1(x)
∂

∂x1
+ b2(x)

∂

∂x2
:=−cx2

∂

∂x1
+ cx1

∂

∂x2
,

where c is a positive constant. Then,

A=−1

2
∇∗

ν∇+ b=
1

2

( ∂2

∂x2
1

+
∂2

∂x2
2

)
− x1

∂

∂x1
− x2

∂

∂x2
+ b.

Hence, the diffusion associated with A is the Ornstein–Uhlenbeck diffusion with

rotation. In this case, by explicit calculation we have that ν is the invariant

measure and that A is normal on L2(ν).

6. Properties on spectra of operators on Lp-spaces

In this section we consider consistent linear operators on Lp-spaces and discuss

their spectra with respect to Lp-spaces. Let (M,m) be a probability space, and

let Lp(m) be the Lp-space of C-valued functions with respect to m. For p ∈ [1,∞)

let Ap be a densely defined closed linear operator on Lp(m), and assume that

{Ap;p ∈ [1,∞)} are consistent; that is, if p > q, then Dom(Ap)⊂Dom(Aq) and

Apf = Aqf for f ∈ Dom(Ap). Moreover, assume that Ap is a real operator for

some p ∈ [1,∞). Note that Ap is a real operator for all p ∈ [1,∞) by this assump-

tion. A Markovian semigroup {Tt} and its generators {Ap;p ∈ [1,∞)} defined in

Section 2 satisfy the assumption on {Ap;p ∈ [1,∞)}. Since the argument below

is applicable to both {Tt} and {Ap;p ∈ [1,∞)}, we prepare {Ap;p ∈ [1,∞)} as a

unified notation. Also note that, when we consider a Markovian semigroup {Tt}
as {Ap}, the results below include the case in which p=∞.

In this section, we additionally assume that A2 is self-adjoint on L2(m), that

is, that A2 = A∗
2. By using consistency it is easy to see that (Ap)

∗ = Ap∗ for

p ∈ [1,∞). We denote Ap by simply A when confusion does not occur.

LEMMA 6.1

We have that σr(Ap) = ∅ for p≤ 2.

Proof

Assuming that there exists λ ∈ σr(Ap), we will make a contradiction. Then, there

exists f ∈ Lp∗
(m) \ {0} such that 〈(λ−A)g, f〉= 0 for g ∈Dom(Ap). Since g 	→

〈Ag, f〉= 〈g, λ̄f〉 is a bounded linear functional on Dom(Ap), f ∈Dom((Ap)
∗) =

Dom(Ap∗) and Af = λ̄f . On the other hand, f ∈Dom(Ap∗) \ {0} ⊂ Dom(Ap) \
{0}. This implies that f is an eigenfunction of Ap with respect to the eigenvalue λ̄.
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By Lemma 2.6 we have that λ ∈ σp(Ap). This conflicts with the disjointness of

σp(Ap) and σr(Ap). �

PROPOSITION 6.2

We have the following.

(i) σp(Ap)⊂ σp(Aq) for q ≤ p.

(ii) σr(Aq)⊂ σr(Ap) for q ≤ p.

(iii) σc(Ap)⊂ σc(Aq)∪ σp(Aq) for q ≤ p≤ 2.

(iv) ρ(Aq)⊂ ρ(Ap) for q ≤ p≤ 2.

Proof

Let λ ∈ σp(Ap). Then there exists f ∈ Dom(Ap) \ {0} such that λf = Af . This

implies that λ ∈ σp(Aq), because f ∈Dom(Ap)\{0} ⊂Dom(Aq)\{0}. Therefore,
we have (i).

Next we prove (ii). Let λ ∈ σr(Aq). If λ ∈ σp(Ap), by (i) we have that λ ∈
σp(Aq). This conflicts with the fact that σp(Aq) and σr(Aq) are disjoint from

each other. Thus, λ /∈ σp(Ap). Since λ ∈ σr(Aq), there exists f ∈ Lq∗(m) \ {0}
and 〈(λ− A)g, f〉 = 0 for g ∈ Dom(Aq). Noting that q∗ ≥ p∗, we have that f ∈
Lp∗

(m) \ {0} and that 〈(λ − A)g, f〉 = 0 for g ∈ Dom(Ap). Hence, λ ∈ σr(Ap).

Thus, (ii) follows.

Now we show (iv). Let q ≤ p≤ 2. Let λ ∈ ρ(Aq). Note that ρ(Aq) = ρ(Aq∗).

Let (λ−Aq)
−1 and (λ−Aq∗)

−1 be the resolvent operators of Aq and Aq∗ with

respect to λ, respectively. Define a linear operator R
(p)
λ on Lp(m) by R

(p)
λ f :=

(λ−Aq)
−1f for f ∈Dom(R

(p)
λ ), where Dom(R

(p)
λ ) := {f ∈ Lp(m); (λ−Aq)

−1f ∈
Lp(m)}. Then, R(p)

λ , (λ−Aq)
−1, and (λ−Aq∗)

−1 are consistent. Hence, Lq∗(m)⊂
Dom(R

(p)
λ ), and Dom(R

(p)
λ ) is dense in Lp(m). By the Riesz–Thorin theorem we

have that

‖R(p)
λ ‖p→p ≤

∥∥(λ−Aq)
−1

∥∥1−θ

q→q

∥∥(λ−Aq∗)
−1

∥∥θ
q∗→q∗

,

where θ ∈ [0,1] satisfies 1/p= (1−θ)/q+θ/q∗. This implies that ‖R(p)
λ ‖p→p <∞.

By the definition of R
(p)
λ we have that

(λ−Ap)R
(p)
λ = I, on Dom(R

(p)
λ ),

R
(p)
λ (λ−Ap) = I, on Dom(Ap),

and therefore the closure of R
(p)
λ is the resolvent operator of Ap with respect

to λ. Hence, λ ∈ ρ(Ap) and we have (iv).

We obtain (iii) by (iv) and Lemma 6.1. �

REMARK 6.3

By Proposition 6.2(iv) we have that σ(Ap) is decreasing for p ∈ [1,2] and increas-

ing for p ∈ [2,∞).



388 Seiichiro Kusuoka and Ichiro Shigekawa

COROLLARY 6.4

Let p ∈ [2,∞). Then the following hold.

(i) σp(Ap)∪ σr(Ap) = σp(Ap∗).

(ii) σc(Ap) = σc(Ap∗).

Proof

By Proposition 6.2(i), we have that σp(Ap)⊂ σp(Ap∗). By an argument similar

to that in the proof of Lemma 6.1, it holds that σr(Ap) ⊂ σp(Ap∗). Hence, we

have that

(6.1) σp(Ap)∪ σr(Ap)⊂ σp(Ap∗).

Let λ ∈ σp(Ap∗), and let S be the total set of f ∈Dom(Ap∗) such that λf =Af .

Since λ ∈ σp(Ap∗), S �= {0}. If Lp(m) ∩ S �= {0}, then λ ∈ σp(Ap). Consider the

case in which Lp(m) ∩ S = {0}. Then, λ /∈ σp(Ap). Take f ∈ S \ {0}. Then, it
holds that 〈λf, g〉 = 〈Af, g〉 for g ∈ Lp(m). Hence, by the symmetry of A we

have that 〈f, λ̄g〉 = 〈f,Ag〉 for g ∈ Dom(Ap). Here, note the definition of 〈·, ·〉
in Section 1. On the other hand, since λ /∈ σp(Ap), we have that λ̄ /∈ σp(Ap) by

Lemma 2.6. These facts imply that λ̄ ∈ σr(Ap). By Lemma 2.6 again, we have

that λ ∈ σr(Ap). Thus,

(6.2) σp(Ap∗)⊂ σp(Ap)∪ σr(Ap).

By (6.1) and (6.2) we have (i).

Since σ(Ap) = σ(Ap∗), we have (ii). �

COROLLARY 6.5

We have that σp(Ap)⊂R for p ∈ [2,∞).

Proof

The assertion immediately follows by Proposition 6.2(i) and σ(A2)⊂R. �

REMARK 6.6

Since A2 is a self-adjoint operator, by using the general theory of self-adjoint

operators on Hilbert spaces it is obtained that σ(A2)⊂R. However, when p �= 2,

it does not always hold. An example that σ(Ap) �⊂ R when p �= 2 is given in

Section 7.

Let λmin
p := min{|λ|;λ ∈ σ(Ap)}, and let λmax

p := max{|λ|;λ ∈ σ(Ap)} for p ∈
[1,∞). Note that the minimum and the maximum above exist in [0,∞], because

σ(Ap) is closed set in C. The following corollary follows immediately from Propo-

sition 6.2(iv).

COROLLARY 6.7

We have that λmin
q ≥ λmin

p and λmax
q ≥ λmax

p for q ∈ [1,min{p, p∗}]∪ [max{p, p∗},
∞).
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This corollary gives the relation of the exponential rate of convergence for Mar-

kovian semigroups. For example, let Ap = Ap, where Ap is the generator of the

Markovian semigroup on Lp(m) defined in Section 2. Then, λmin
p is the distance

between 0 and σ(Ap). For another example, let Ap be T
(p)
t −m for some t > 0,

where T
(p)
t is the Markovian semigroup on Lp(m) defined in Section 2. Then,

λmax
p =Rad(T

(p)
t −m). As mentioned in Section 2, these are related to the rate

of convergence of the Markovian semigroups.

REMARK 6.8

In [2, Chapter 4] spectra of consistent bounded operators are considered. When

we additionally assume that Ap is bounded for any p ∈ [1,∞) and that Ap is

compact for some p ∈ [1,∞), then the p-independence of spectra of Ap is obtained

by using Schauder’s theorem (see [2, Theorem 4.2.13]) and [2, Theorem 4.2.14].

7. Example in which γp→p depends on p

In Section 4 we give a sufficient condition for the spectra of a Markovian semi-

group as an operator on Lp(m) to be independent of p. However, generally the

spectra depend on p. We give an example so that the spectra depend on p in this

section.

Let p ∈ [1,∞). Define a measure ν on [0,∞) by ν(dx) := e−x dx, and define

a differential operator A◦
p with its domain Dom(A◦

p) by

Dom(A◦
p) :=

{
f ∈C2

0

(
[0,∞);C

)
;f ′(0) = 0

}
,

A◦
p :=

d2

dx2
− d

dx
.

Consider a generator Ap by the closed extension of A◦
p on Lp(ν). Note that

A2 is a self-adjoint operator on L2(ν). This is an example that the spectra σ(Ap)

depend on p and γq→q < γp→p for q < p≤ 2. Now, we show them by investigating

σ(Ap) explicitly.

Let p ∈ [1,2]. Consider the linear transformation I defined by

(7.1) (If)(x) := e−x/2f(x).

Then, we have that∫ ∞

0

∣∣If(x)∣∣pe(p/2−1)x dx=

∫ ∞

0

∣∣f(x)∣∣pν(dx),
and f ′(0) = 0 if and only if 1

2 (If)(0) + (If)′(0) = 0 for f ∈C1([0,∞);C). Hence,

I is an isometric transformation from Lp(ν) to Lp(ν̃p), where ν̃p := e(p/2−1)x dx.

Define a linear operator Ãp on Lp(ν̃p) by

Dom(Ãp) :=
{
f̃ ∈W 2,p(ν̃p);

1

2
f̃(0) + f̃ ′(0) = 0

}
,

(7.2)

Ãpf̃ :=
d2

dx2
f̃ − 1

4
f̃ .
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Then, we have for f̃ ∈C∞
0 ([0,∞);C)

(I ◦Ap ◦ I−1)f̃(x) = e−x/2
( d2

dx2
− d

dx

)
ex/2f̃(x)

= f̃ ′′(x) + f̃ ′(x) +
1

4
f̃(x)− f̃ ′(x)− 1

2
f̃(x)

= f̃ ′′(x)− 1

4
f̃(x).

Thus, we have the following commutative diagram:

Lp(ν)
Ap−→ Lp(ν)

I ↓ ↓ I

Lp(ν̃p)
Ãp−→ Lp(ν̃p)

By this diagram we have

(7.3) σp(Ap) = σp(Ãp), σc(Ap) = σc(Ãp), and σr(Ap) = σr(Ãp).

Hence, to see the spectra of Ap, it is sufficient to see the spectra of Ãp.

From here on we cannot discuss the cases in which 1 ≤ p < 2 and p = 2 in

the same way. First we consider the case in which 1≤ p < 2. Let
√
z :=

√
reiθ/2

for z ∈C where z = reiθ such that r ≥ 0 and θ ∈ (−π,π].

LEMMA 7.1

If 1≤ p < 2, then

σp(−Ãp) = {0} ∪
{
x+ iy;x, y ∈R, x >

p− 1

p2
, |y|<

(2
p
− 1

)√
x− p− 1

p2

}
.

Proof

Let u(x) = x− 2 for x ∈ [0,∞). Then, u ∈ Lp(ν̃p),

− d2

dx2
u+

1

4
u=

1

4
u, and

1

2
u(0) + u′(0) = 0.

Hence,

(7.4)
1

4
∈ σp(−Ãp).

Let λ ∈C \ { 1
4}. Consider the differential equation

(7.5) − d2

dx2
u+

1

4
u= λu,

where u : [0,∞)→C. Then, u is the solution of (7.5) if and only if

u(x) =C1e
x
√

−λ+1/4 +C2e
−x

√
−λ+1/4,

where C1,C2 are constants in C. Note that 1
2u(0) + u′(0) = 0 if and only if

C1(1/2 +
√
−λ+ 1/4) + C2(1/2−

√
−λ+ 1/4) = 0. Hence, u is the solution of
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the following boundary value problem on [0,∞):{
− d2

dx2u+ 1
4u= λu,

1
2u(0) + u′(0) = 0,

if and only if

(7.6)

⎧⎨
⎩u(x) =C1e

x
√

−λ+1/4 +C2e
−x

√
−λ+1/4,

C1(
1
2 +

√
−λ+ 1

4 ) +C2(
1
2 −

√
−λ+ 1

4 ) = 0.

When u satisfies (7.6),

1

2
|C1|p

∫ ∞

0

e(Re
√

−λ+1/4)pxe(p/2−1)x dx− |C2|p
∫ ∞

0

e−(Re
√

−λ+1/4)pxe(p/2−1)x dx

≤
∫ ∞

0

∣∣u(x)∣∣pe(p/2−1)x dx

≤ 2|C1|p
∫ ∞

0

e(Re
√

−λ+1/4)pxe(p/2−1)x dx

+ 2|C2|p
∫ ∞

0

e−(Re
√

−λ+1/4)pxe(p/2−1)x dx.

This implies that

(7.7) u ∈ Lp(ν̃p) if and only if pRe
√

−λ+ 1/4 +
p

2
− 1< 0 or C1 = 0.

By (7.6), if C1 = 0, then λ= 0 or C2 = 0. Therefore, (7.4) and (7.7) imply that

σp(−Ãp) = {0} ∪ {λ ∈C;Re
√
−λ+ 1/4< 1

p − 1
2}. �

LEMMA 7.2

If 1≤ p < 2, then

ρ(−Ãp)⊃
{
x+ iy;x, y ∈R, y2 >

(2
p
− 1

)2(
x− p− 1

p2

)}
\ {0}.

Proof

It is sufficient to show that {z ∈ C \ {0};Re
√
−z + 1/4> 1

p − 1
2} ⊂ ρ(−Ãp). For

λ ∈ {z ∈C \ {0};Re
√

−z + 1/4> 1
p − 1

2} let

φλ(x) :=
(1
2
−
√
−λ+

1

4

)
ex
√

−λ+1/4

−
(1
2
+

√
−λ+

1

4

)
e−x

√
−λ+1/4, x ∈ [0,∞);

ψλ(x) := e−x
√

−λ+1/4, x ∈ [0,∞);

Wλ := −2

√
−λ+

1

4

(1
2
−
√

−λ+
1

4

)
,
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and define a C-valued function gλ on [0,∞)× [0,∞) by

gλ(x, y) :=

{
1

Wλ
φλ(x)ψλ(y), x≤ y,

1
Wλ

φλ(y)ψλ(x), y ≤ x.

Let Gλf(x) :=
∫∞
0

gλ(x, y)f(y)dy for f ∈ C0([0,∞);C). Then, by explicit calcu-

lation, we have for f ∈C0([0,∞);C){
λ− (−Ãp)

}
Gλf = f, and

1

2
Gλf(0) + (Gλf)

′(0) = 0.

In view of Lemmas 6.1 and 7.1, to show that λ ∈ ρ(−Ãp), it is sufficient to prove

the boundedness of the operator Gλ on Lp(ν̃p). Let

Cλ(ε) := sup
y∈[0,∞)

e(1−p/2)y
(∫ ∞

0

∣∣gλ(x, y)∣∣(1−ε)p
e(p/2−1)x dx

)
,

C ′
λ(ε) := sup

x∈[0,∞)

(∫ ∞

0

∣∣gλ(x, y)∣∣εp∗
dy

)p/p∗

for ε ∈ (0,1). By explicit calculation, we have Cλ(ε)<∞ when Re
√

−λ+ 1/4>

[1/(1− ε)]( 1p − 1
2 ), and C ′

λ(ε)<∞. By Hölder’s inequality we have that

‖Gλf‖pLp(ν̃p)

=

∫ ∞

0

∣∣∣∫ ∞

0

gλ(x, y)f(y)dy
∣∣∣pe(p/2−1)x dx

≤
∫ ∞

0

[∫ ∞

0

∣∣gλ(x, y)∣∣1−ε∣∣f(y)∣∣ · ∣∣gλ(x, y)∣∣ε dy]pe(p/2−1)x dx

≤
∫ ∞

0

(∫ ∞

0

∣∣gλ(x, y)∣∣(1−ε)p∣∣f(y)∣∣p dy)(∫ ∞

0

∣∣gλ(x, y)∣∣εp∗
dy

)p/p∗

e(p/2−1)x dx

≤C ′
λ(ε)

∫ ∞

0

(∫ ∞

0

∣∣gλ(x, y)∣∣(1−ε)p
e(p/2−1)x dx

)∣∣f(y)∣∣p dy
≤C ′

λ(ε)Cλ(ε)‖f‖pLp(ν̃p)
.

Since this estimate holds for all ε ∈ (0,1), {z ∈C\{0};Re
√
−z + 1/4> 1

p −
1
2} ⊂

ρ(Ãp). �

By the lemmas above, the spectra of −Ãp are determined exactly.

THEOREM 7.3

The following hold for 1≤ p < 2.

(i) σp(−Ãp) = {0} ∪ {x + iy;x, y ∈ R, x > (p− 1)/p2, and |y| < ( 2p − 1)×√
x− (p− 1)/p2},
(ii) σc(−Ãp) = {x + iy;x, y ∈ R, x ≥ (p− 1)/p2, and |y| = ( 2p − 1) ×√

x− (p− 1)/p2} \ {0},
(iii) ρ(−Ãp) = {x+ iy;x, y ∈R and y2 > ( 2p − 1)2(x− (p− 1)/p2)} \ {0}.
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Figure 1. p= 1.

Figure 2. 1< p< 2.

Proof

The assertion (i) is obtained in Lemma 7.1. Since any limit point of point spectra

is either a point spectrum or a continuous spectrum, by (i) and Lemma 7.2, we

have (ii). By (i), (ii), and Lemma 6.1, we obtain (iii). �

By (7.3) we have the following theorem.

THEOREM 7.4

The following hold for 1≤ p < 2.

(i) σp(−Ap) = {0} ∪ {x + iy;x, y ∈ R, x > (p− 1)/p2, and |y| < ( 2p − 1)×√
x− (p− 1)/p2},
(ii) σc(−Ap) = {x + iy;x, y ∈ R, x ≥ (p− 1)/p2, and |y| = ( 2p − 1) ×√

x− (p− 1)/p2} \ {0},
(iii) ρ(−Ap) = {x+ iy;x, y ∈R and y2 > ( 2p − 1)2(x− (p− 1)/p2)} \ {0}.

The pictures of σp(−Ap), σc(−Ap), and ρ(−Ap) for p= 1 and for 1< p < 2 are

described in Figures 1 and 2.
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Next we check σ(−Ã2). Note that ν̃p is equal to the Lebesgue measure dx

when p = 2. Since −Ã2 is self-adjoint and nonnegative definite on L2(dx), we

know that σ(−Ã2) ⊂ [0,∞) and σr(−Ã2) = ∅ (see Lemma 6.1). The purpose of

the argument below is to investigate both σp(−Ã2) and σc(−Ã2) explicitly.

LEMMA 7.5

We have that

σp(−Ã2) = {0}.

Proof

The assertion follows in almost the same way as the proof of Lemma 7.5 except

the part of checking whether 1
4 is a point spectrum or not. Let u be the unique

solution of the differential equation

− d2

dx2
u+

1

4
u=

1

4
u and

1

2
u(0) + u′(0) = 0.

Then u(x) = x− 2. Since u /∈ L2(dx), 1
4 /∈ σp(−Ã2). The rest of the proof is the

same as that of Lemma 7.5. �

We have already obtained σp(−Ã2) and σr(−Ã2) explicitly in Lemmas 6.1 and

7.5. Now we investigate σc(−Ã2). Since any limit point of point spectra is either

a point spectrum or a continuous spectrum, it was easy to see σc(−Ãp) for 1≤
p < 2. However, it is impossible to discuss continuous spectra in a similar way

for the cases in which p= 2 and 1≤ p < 2. Recall that by (7.3) it is sufficient to

check the spectra of Ã2 on L2(dx) defined on (7.2).

Let E and Ẽ be the bilinear forms associated with A2 and Ã2, respectively.

Then, for f, g ∈C2
b ([0,∞)) such that f(x) = g(x) = 0 for x >M with someM > 0,

we have

Ẽ (f, g) = E (I−1f, I−1g)

=

∫ ∞

0

(
ex/2f(x)

)′(
ex/2g(x)

)′
e−x dx

=

∫ ∞

0

(
f ′(x)g′(x) +

1

2
f ′(x)g(x) +

1

2
f(x)g′(x) +

1

4
f(x)g(x)

)
dx(7.8)

=

∫ ∞

0

f ′(x)g′(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx+
1

2

∫ ∞

0

(
f(x)g(x)

)′
dx

=

∫ ∞

0

f ′(x)g′(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx− 1

2
f(0)g(0).

Denote the Sobolev space on [0,∞) with measure dx and indices k, p byW k,p(dx),

where k is the index for differentiability and p is the index for integrability. Let

Dom(Ã
(0)
2 ) :=

{
f ∈W 2,2(dx);f ′(0) = 0

}
,

Ã
(0)
2 :=

d2

dx2
− 1

4
,
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and let Ẽ (0) be the bilinear form associated with Ã
(0)
2 . Then, by using inte-

gration by parts, we have for f, g ∈ W 2,2(dx) ∩ {f ∈ C2
b ([0,∞));f ′(0) = 0 and

limx→∞ f(x) = 0}

Ẽ (0)(f, g) = −
∫ ∞

0

(Ã
(0)
2 f)(x)g(x)dx

= −
∫ ∞

0

f ′′(x)g(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx(7.9)

=

∫ ∞

0

f ′(x)g′(x)dx+
1

4

∫ ∞

0

f(x)g(x)dx.

Define a norm ‖ · ‖
Ẽ

(0)
1

by

‖f‖2
Ẽ

(0)
1

= Ẽ (0)(f, f) +

∫ ∞

0

∣∣f(x)∣∣2 dx.
Then, by standard calculation we have that the closure of Dom(Ã

(0)
2 ) with respect

to ‖ · ‖
Ẽ

(0)
1

is equal to W 1,2(dx). Hence, Dom(Ẽ (0)) =W 1,2(dx). Now we have the

following proposition.

PROPOSITION 7.6

We have that Dom(Ẽ (0)) = Dom(Ẽ ).

Proof

Since Ẽ (f, f) ≤ E (0)(f, f) for f ∈ C∞
0 ([0,∞)), Dom(Ẽ (0)) ⊂ Dom(Ẽ ). To show

that Dom(Ẽ (0)) ⊃ Dom(Ẽ ), it is sufficient to show that f 	→ f(0) is a contin-

uous linear functional on W 1,2(dx). Let f ∈ C∞
0 ([0,∞)). Since f(x) = f(0) +∫ x

0
f ′(y)dy, we have that

∣∣f(0)∣∣2 = ∫ 1

0

∣∣∣f(x)− ∫ x

0

f ′(y)dy
∣∣∣2 dx

≤ 2

∫ 1

0

∣∣f(x)∣∣2 dx+ 2

∫ 1

0

∣∣∣∫ x

0

f ′(y)dy
∣∣∣2 dx

≤ 2

∫ ∞

0

∣∣f(x)∣∣2 dx+ 2

∫ 1

0

√
x
(∫ x

0

∣∣f ′(y)
∣∣2 dy)dx

≤ 2

∫ ∞

0

∣∣f(x)∣∣2 dx+ 2

∫ ∞

0

∣∣f ′(y)
∣∣2 dy.

Hence, f 	→ f(0) is a continuous linear functional W 1,2(dx). �

Now we extend the operators Ã2 and Ã
(0)
2 in the same way as in the argument

written in [11, Section 2.2]. Let H := L2(dx), let V := Dom(Ẽ (0)) = Dom(Ẽ ),

and let V ∗ be the dual space of V . By the Riesz theorem, the dual of H can

be identified with H∗. By this identification, we can regard V ⊂H =H∗ ⊂ V ∗.

Noting that V and H are dense subsets of H and V ∗, respectively, the operator

Ã2 can be extended to an operator from V to V ∗. Denote the extension of
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Ã2 by B. For λ ∈ (0,∞), λ −B is a bijection from V to V ∗, and the inverse

(λ−B)−1 : V ∗ → V is an extension of the resolvent (λ− Ã2)
−1 :H →Dom(Ã2).

We also define B(0) from Ã
(0)
2 similarly. Note that B(0) has the same properties

as B.

Denote the essential spectra of a linear operator A by σess(A). The definition

of essential spectra is in [6, Chapter XII, Section 2]. Then, we have the following

proposition.

PROPOSITION 7.7

We have that σess(−Ã2) = σess(−Ã
(0)
2 ) = [ 14 ,∞).

Proof

It is well known that σp(−Ã
(0)
2 ) = ∅ and σc(−Ã

(0)
2 ) = [ 14 ,∞). Since −Ã2 and

−Ã
(0)
2 are nonnegative definite, −1 ∈ ρ(−Ã2)∩ ρ(−Ã

(0)
2 ). Once we have the com-

pactness of the bounded linear operator (1 − Ã2)
−1 − (1 − Ã

(0)
2 )−1 on H , we

obtain the conclusion by Weyl’s theorem (see [6, Theorem XIII.14]):

(1− Ã2)
−1 − (1− Ã

(0)
2 )−1

= (1− Ã2)
−1(1− Ã

(0)
2 )(1− Ã

(0)
2 )−1 − (1− Ã2)

−1(1− Ã2)(1− Ã
(0)
2 )−1

= (1−B)−1(1−B(0))(1− Ã
(0)
2 )−1 − (1−B)−1(1−B)(1− Ã

(0)
2 )−1

= (1−B)−1(B−B(0))(1− Ã
(0)
2 )−1.

The linear operator (1−B)−1(B−B(0))(1− Ã
(0)
2 )−1 is the following mapping:

H
(1−Ã

(0)
2 )−1

−−−−−→ Dom(Ã
(0)
2 ) ↪→ V

B−B
(0)

−−−−−→ V ∗ (1−B)−1

−−−−−→ V ↪→H.

Since (1 − Ã
(0)
2 )−1 and (1 − B)−1 are continuous, it is sufficient to show the

compactness of the operator B−B(0) from V to V ∗. By (7.8) and (7.9) we have

for f, g ∈ V that

V ∗
〈
(B−B(0))f, g

〉
V
=

1

2
f(0)g(0).

This implies that B−B(0) is a mapping f 	→ f(0)δ, where δ ∈ V ∗ is a bounded

linear operator on V defined by δ(g) = g(0) for V . Hence, the range of B−B(0)

is one-dimensional. This concludes the compactness of B−B(0). �

By Lemma 7.5 and Proposition 7.7 we obtain explicit information on the spectra

of Ã2 as follows.

THEOREM 7.8

It holds that

σp(−Ã2) = {0}, σc(−Ã2) =
[1
4
,∞

)
.
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Figure 3. p= 2.

Proof

We have already obtained that σp(−Ã2) = {0} in Lemma 7.5. Noting that

σp(−Ã2) ∩ σess(−Ã2) = ∅, by the definition of essential spectra we have that

σc(−Ã2) = σess(−Ã2) = [ 14 ,∞). �

By (7.3) we have the following theorem.

THEOREM 7.9

It holds that

σp(−A2) = {0}, σc(−A2) =
[1
4
,∞

)
.

The picture of σp(−A2), σc(−A2), and ρ(−A2) is described in Figure 3.

By Theorems 7.4 and 7.9 we obtain the spectra of −Ap exactly for p ∈ [1,2]

as described in Figures 1, 2, and 3.

We have considered only the case in which 1≤ p≤ 2. We also obtain σp(−Ap),

σc(−Ap), and σr(−Ap) explicitly for p ∈ (2,∞) by using Proposition 6.2, Corol-

lary 6.4, and Theorems 7.4 and 7.9.

THEOREM 7.10

For p ∈ (2,∞), we have the following:

(i) σp(−Ap) = {0},
(ii) σc(−Ap) = {x + iy;x, y ∈ R, x ≥ (p∗ − 1)/p∗2, and |y| = ( 2

p∗ − 1) ×√
x− (p∗ − 1)/p∗2} \ {0},
(iii) σr(−Ap) = {x + iy;x, y ∈ R, x > (p∗ − 1)/p∗2, and |y| < ( 2

p∗ − 1) ×√
x− (p∗ − 1)/p∗2},
(iv) ρ(−Ap) = {x+ iy;x, y ∈R, y2 > ( 2

p∗ − 1)2(x− (p∗ − 1)/p∗2)} \ {0}.

Proof

Let p ∈ (2,∞). Since σ(−Ap) = σ(−Ap∗), we have (iv). By Theorem 7.4 and



398 Seiichiro Kusuoka and Ichiro Shigekawa

Corollary 6.4 we obtain (ii). By Corollary 6.4 again, we have that

(7.10) σp(−Ap)∪ σr(−Ap) = σp(−Ap∗).

On the other hand, applying Proposition 6.2 for q = 2, we have that σp(−Ap)⊂
σp(−A2). Hence, Theorem 7.9 implies that σp(−Ap)⊂ {0}. Since σp(−Ap)⊃ {0},
we obtain (i). By (7.10), (i), and Theorem 7.4, we have (iii). �

This operator −Ap is an example in which the spectra depend on p, the spectra

are not included by R for p �= 2, and σc(−Aq)⊂ σp(−Ap) for some p < q ≤ 2 even

if −Ap is a diffusion operator, consistent on Lp(ν) for p ∈ [1,∞), self-adjoint

when p= 2, and ergodic.

In view of the argument in Section 2, the exact information on the spectra

of −Ap gives the explicit value of γp→p as follows.

COROLLARY 7.11

We have that

γp→p =
p− 1

p2
, p ∈ [1,∞].

Proof

Since −A2 is self-adjoint on L2(ν), the argument in Section 2 is available and

(2.5) holds. By (2.5) we have that γp→p = (p− 1)/p2 for p ∈ (1,2]. By Theorem 2.4

we have 0 ≤ γ1→1 ≤ inf{γp→p;p ∈ [1,2]}= 0. Hence, γ1→1 = 0. By Theorem 2.4

again γp→p = γp∗→p∗ for p ∈ [1,∞]. Therefore, the assertion holds. �

Thus, we obtain an example for which the exponential rate of convergence

{γp→p;p ∈ [1,∞]} depends on p.
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