
Estimation of arithmetic linear series

Atsushi Moriwaki

Abstract In this article, we introduce arithmetic linear series and give a general way to
estimate them based on Yuan’s idea. As an application, we consider an arithmetic ana-
logue of the algebraic restricted volumes.

0. Introduction

In their article [5], Lazarsfeld and Mustaţă propose general and systematic usage
of Okounkov’s idea (see [9], [10]) to study asymptotic behavior of linear series on
an algebraic variety. It is a very simple way, but it yields many consequences,
such as Fujita’s approximation theorem. Yuan [11, Theorem C] generalized this
way to the arithmetic situation, and he established the arithmetic version of
Fujita’s approximation theorem, which was also proved independently by Chen
[1, Theorem 5.2]. In this article, we introduce arithmetic linear series and give
a general way to estimate them based on Yuan’s idea. As an application, we
consider an arithmetic analogue of the algebraic restricted volumes.

0.1. Arithmetic linear series
Let X be a d-dimensional projective arithmetic variety, and let L be a continuous
Hermitian invertible sheaf on X . Let K be a subset of H0(X,L). The convex
lattice hull CL(K) of K is defined to be

CL(K) :=
{
x ∈ 〈K〉Z

∣∣ ∃m ∈ Z>0 mx ∈ m ∗ K
}
,

where 〈K〉Z is the Z-submodule generated by K and

m ∗ K = {x1 + · · · + xm | x1, . . . , xm ∈ K}.

We call K an arithmetic linear series of L if
(1) K = CL(K),
(2) −x ∈ K for all x ∈ K, and
(3) K ⊆ Bsup(L) := {s ∈ H0(X,L)R | ‖s‖sup ≤ 1}.
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In the case where K = Bsup(L) ∩ H0(X,L), it is said to be complete. One of the
main results of this article is a uniform estimation of the number of points in the
arithmetic linear series in terms of the number of valuation vectors.

THEOREM A

Let ν be the valuation attached to a good flag over a prime p (see Section 0.3(9)
for the valuation attached to the flag, and see Section 1.4 for the definition of a
good flag over a prime). If K �= {0}, then we have∣∣#ν(K \ {0}) logp − log#(K)

∣∣
≤
(
log(4p rk〈K〉Z) +

σ(L) + log(2p rk〈K〉Z)
log p

log(4) rkH0(OX)
)

rk〈K〉Z,

where σ(L) is given by

σ(L) := inf
A : ample

d̂eg(ĉ1(A)d−1 · ĉ1(L))
deg(Ad−1

Q )
.

The idea for the proof of Theorem A is essentially the same as in Yuan [11], in
which he treated only the complete arithmetic linear series in my sense. A new
point is the usage of convex lattices, that is, a general observation for arithmetic
linear series. By this consideration, we obtain several advantages in applications.
For example, we have the following theorem, which is a stronger version of [11,
Theorem 3.3]. The arithmetic Fujita approximation theorem is an immediate
consequence of it.

THEOREM B

Let L be a big, continuous Hermitian invertible sheaf on X. For any positive ε,
there is a positive integer n0 = n0(ε) such that, for all n ≥ n0,

lim inf
k→∞

log#CL(Vk,n)
ndkd

≥ v̂ol(L)
d!

− ε,

where Vk,n = {s1 ⊗ · · · ⊗ sk ∈ H0(X,knL) | s1, . . . , sk ∈ Ĥ0(X,nL)} and CL(Vk,n)
is the convex lattice hull of Vk,n in H0(X,knL) (for details, see Section 1.2).

0.2. Arithmetic analogue of restricted volume
For further applications, let us consider an arithmetic analogue of the restricted
volume on algebraic varieties. Let Y be a d′-dimensional arithmetic subvariety
of X ; that is, Y is an integral closed subscheme of X such that Y is flat over
Spec(Z). Let L be a continuous Hermitian invertible sheaf on X . We denote

Image
(
H0(X,L) → H0(Y,L|Y )

)
by H0(X | Y,L). Let ‖ · ‖X|Y

sup,quot be the the quotient norm of H0(X | Y,L) ⊗Z R
induced by the surjective homomorphism

H0(X,L) ⊗Z R → H0(X | Y,L) ⊗Z R
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and the norm ‖ · ‖sup on H0(X,L) ⊗Z R. We define Ĥ0
quot(X | Y,L) and v̂olquot(X |

Y,L) to be

Ĥ0
quot(X | Y,L) :=

{
s ∈ H0(X | Y,L)

∣∣ ‖s‖X|Y
sup,quot ≤ 1

}
and

v̂olquot(X | Y,L) := limsup
m→∞

log#Ĥ0
quot(X | Y,mL)
md′ /d′!

.

Note that Ĥ0
quot(X | Y,L) is an arithmetic linear series of L|Y . A continuous

Hermitian invertible sheaf L is said to be Y -effective if there is s ∈ Ĥ0(X,L)
with s|Y �= 0. Moreover, L is said to be Y -big if there are n, A, and M such
that n is a positive integer, A is an ample C∞-Hermitian invertible sheaf, M is
a Y -effective continuous Hermitian invertible sheaf, and nL = A+M . The semi-
group consisting of isomorphism classes of Y -big continuous Hermitian invertible
sheaves is denoted by B̂ig(X;Y ). Then we have the following theorem, which is
a generalization of [2] and [11, Theorem 2.7, Theorem B].

THEOREM C

(1) If L is a Y -big continuous Hermitian invertible sheaf on X, then
v̂olquot(X | Y,L) > 0 and

v̂olquot(X | Y,L) = lim
m→∞

log#Ĥ0
quot(X | Y,mL)
md′ /d′!

.

In particular, v̂olquot(X | Y,nL) = nd′
v̂olquot(X | Y,L).

(2) The function v̂olquot(X | Y, −)1/d′
is concave on B̂ig(X;Y ); that is,

v̂olquot(X | Y,L + M)1/d′ ≥ v̂olquot(X | Y,L)1/d′
+ v̂olquot(X | Y,M)1/d′

holds for any Y -big continuous Hermitian invertible sheaves L and M on X.
(3) If L is a Y -big continuous Hermitian invertible sheaf on X, then, for

any positive number ε, there is a positive integer n0 = n0(ε) such that, for all
n ≥ n0,

lim inf
k→∞

log#CL({s1 ⊗ · · · ⊗ sk | s1, . . . , sk ∈ Ĥ0
quot(X | Y,nL)})

nd′ kd′

≥ v̂olquot(X | Y,L)
d′!

− ε,

where the convex lattice hull is considered in H0(X | Y,knL).
(4) If XQ is smooth over Q and A is an ample C∞-Hermitian invertible

sheaf on X, then

v̂olquot(X | Y,A) = v̂ol(Y,A|Y )

= lim
m→∞

log#Image(Ĥ0(X,mA) → H0(X | Y,mA))
md′ /d′!

.
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Let C0(X) be the set of real-valued continuous functions f on X(C) such that
f is invariant under the complex conjugation map on X(C). We denote the
group of isomorphism classes of continuous Hermitian invertible sheaves on X

by P̂ic(X;C0). Let O : C0(X) → P̂ic(X;C0) be the homomorphism given by

O(f) =
(

OX , exp(−f)| · |can
)
.

P̂icR(X;C0) is defined to be

P̂icR(X;C0) :=
P̂ic(X;C0) ⊗ R{∑

i O(fi) ⊗ xi | fi ∈ C0(X), xi ∈ R (∀i),
∑

i xifi = 0
} .

Let γ : P̂ic(X;C0) → P̂icR(X;C0) be the natural homomorphism given by the
composition of homomorphisms

P̂ic(X;C0) → P̂ic(X;C0) ⊗ R → P̂icR(X;C0).

Let B̂igR(X;Y ) be the cone in P̂icR(X;C0) generated by {γ(L) | L ∈ B̂ig(X;Y )}.
Note that B̂igR(X;Y ) is an open set in P̂icR(X;C0) in the strong topology; that
is, B̂igR(X;Y ) ∩ W is an open set in W in the usual topology for any finite-
dimensional vector subspace W of P̂icR(X;C0). The next theorem guarantees
that

v̂olquot(X | Y, −) : B̂ig(X;Y ) → R

extends to a continuous function v̂ol′ ′
quot(X | Y, −) : B̂igR(X;Y ) → R, which can

be considered as a partial generalization of [6] and [7].

THEOREM D

There is a unique, positive-valued continuous function

v̂ol′ ′
quot(X | Y, −) : B̂igR(X;Y ) → R

with the following properties.
(1) The following diagram is commutative:

B̂ig(X;Y )
v̂olquot(X | Y,−)

γ

R

B̂igR(X;Y )
v̂ol′ ′

quot(X | Y −)

(2) v̂ol′ ′
quot(X | Y, −)1/d′

is positively homogeneous and concave on B̂igR(X;
Y ); that is,{

v̂ol′ ′
quot(X | Y,λx)1/d′

= λv̂ol′ ′
quot(X | Y,x)1/d′

,

v̂ol′ ′
quot(X | Y,x + y)1/d′ ≥ v̂ol′ ′

quot(X | Y,x)1/d′
+ v̂ol′ ′

quot(X | Y, y)1/d′

hold for all λ ∈ R>0 and x, y ∈ B̂igR(X;Y ).
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0.3. Conventions and terminology
We fix several conventions and the terminology for this article.

(1) Let M be a Z-module, and let A be a subsemigroup of M ; that is,
x + y ∈ A holds for all x, y ∈ A. If 0 ∈ A, then A is called a submonoid of M .
The saturation Sat(A) of A in M is defined by

Sat(A) := {x ∈ M | nx ∈ A for some positive integer n}.

It is easy to see that Sat(A) is a subsemigroup of M . If A = Sat(A), then A is
said to be saturated.

(2) Let K be either Q or R, and let V be a vector space over K. A subset
C of V is called a convex set in V if tx + (1 − t)y ∈ C for all x, y ∈ C and t ∈ K
with 0 ≤ t ≤ 1. For a subset S of V , it is easy to see that the subset given by

{t1s1 + · · · + trsr | s1, . . . , sr ∈ S, t1, . . . , tr ∈ K≥0, t1 + · · · + tr = 1}

is a convex set. It is called the convex hull by S and is denoted by ConvK(S). Note
that ConvK(S) is the smallest convex set containing S. A function f : C → R on
a convex set C is said to be concave over K if f(tx+(1 − t)y) ≥ tf(x)+(1 − t)f(y)
holds for any x, y ∈ C and t ∈ K with 0 ≤ t ≤ 1.

(3) Let K and V be the same as in (2). A subset C of V is called a cone in
V if the following conditions are satisfied:

(a) x + y ∈ C for any x, y ∈ C,
(b) λx ∈ C for any x ∈ C and λ ∈ K>0.

Note that a cone is a subsemigroup of V . Let S be a subset of V . The smallest
cone containing S, that is,

{λ1a1 + · · · + λrar | a1, . . . , ar ∈ S, λ1, . . . , λr ∈ K>0},

is denoted by ConeK(S). It is called the cone generated by S.
(4) Let K and V be the same as in (2). The strong topology on V means

that a subset U of V is an open set in this topology if and only if, for any finite-
dimensional vector subspace W of V over K, U ∩ W is open in W in the usual
topology.

It is easy to see that a linear map of vector spaces over K is continuous in
the strong topology. Moreover, a surjective linear map of vector spaces over K
is an open map in the strong topology. In fact, let f : V → V ′ be a surjective
homomorphism of vector spaces over K, let U be an open set of V , and let W ′

be a finite-dimensional vector subspace of V ′ over K. Then we can find a vector
subspace W of V over K such that f induces the isomorphism f |W : W → W ′.
If we set Ũ =

⋃
t∈Ker(f)(U + t), then Ũ is open and f(W ∩ Ũ) = W ′ ∩ f(U), as

required.
Let V ′ be a vector subspace of V over K. Then the induced topology of V ′

from V coincides with the strong topology of V ′. Indeed, let U ′ be an open set
of V ′ in the strong topology. We can easily construct a linear map f : V → V ′

such that V ′ ↪→ V
f−→ V ′ is the identity map. Thus f −1(U ′) is an open set in V ,

and hence U ′ = f −1(U ′)|V ′ is an open set in the induced topology.
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(5) A closed integral subscheme of an arithmetic variety is called an arith-
metic subvariety if it is flat over Spec(Z).

(6) Let X be an arithmetic variety. We denote the group of isomorphism
classes of continuous Hermitian (resp., C∞-Hermitian) invertible sheaves by
P̂ic(X;C0) (resp., P̂ic(X;C∞)). P̂ic(X;C∞) is often denoted by P̂ic(X) for sim-
plicity. An element of P̂icQ(X;C0) := P̂ic(X;C0) ⊗Z Q (resp., P̂icQ(X;C∞) :=
P̂ic(X;C∞) ⊗Z Q) is called a continuous Hermitian (resp., C∞-Hermitian) Q-
invertible sheaf.

(7) A C∞-Hermitian invertible sheaf A on a projective arithmetic variety X

is said to be ample if A is ample on X , the first Chern form c1(A) is positive on
X(C), and, for a sufficiently large integer n, H0(X,nA) is generated by the set{

s ∈ H0(X,nA)
∣∣ ‖s‖sup < 1

}
as a Z-module. Note that, for A,L ∈ P̂ic(X;C∞), if A is ample, then there is a
positive integer m such that mA + L is ample.

(8) Let L be a continuous Hermitian invertible sheaf on a projective arith-
metic variety X . Then Bsup(L) is defined to be

Bsup(L) =
{
s ∈ H0(X,L)R

∣∣ ‖s‖sup ≤ 1
}
.

Note that Ĥ0(X,L) = H0(X,L) ∩ Bsup(L).
(9) Let A be a Noetherian integral domain, and let t /∈ A×. As

⋂
n≥0 tnA =

{0}, for a ∈ A \ {0} we can define ordtA(a) to be

ordtA(a) = max{n ∈ Z≥0 | a ∈ tnA}.

Let {0} = P0 � P1 � · · · � Pd be a chain of prime ideals of A. Let Ai = A/Pi for
i = 0, . . . , d, and let ρi : Ai−1 → Ai be natural homomorphisms, as follows:

A = A0
ρ1−→ A1

ρ2−→ · · · ρd−1−→ Ad−1
ρd−→ Ad.

We assume that Pd is a maximal ideal and that PiAi−1 = Ker(ρi) is a principal
ideal of Ai−1 for every i = 1, . . . , d; that is, there is ti ∈ Ai−1 with PiAi−1 =
tiAi−1. For a �= 0, the valuation vector (ν1(a), . . . , νd(a)) of a is defined in the
following way:

a1 := a and ν1(a) := ordt1A0(a1).

If a1 ∈ A0, a2 ∈ A1, . . . , ai ∈ Ai−1 and ν1(a), . . . , νi(a) ∈ Z≥0 are given, then

ai+1 := ρi(ait
−νi(a)
i ) and νi+1(a) := ordti+1Ai(ai+1).

Note that the valuation vector (ν1(a), . . . , νd(a)) does not depend on the choice
of t1, . . . , td.

Let X be a Noetherian integral scheme, and let

Y· : Y0 = X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd

be a chain of integral subschemes of X . We say that Y· is a flag if Yd consists of
a closed point y and Yi+1 is locally principal at y in Yi for all i = 0, . . . , d − 1. Let
A = OX,y , and let Pi be the defining prime ideal of Yi in A. Then we have a chain
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P0 � P1 � · · · � Pd of prime ideals as above, so that we obtain the valuation vector
(ν1(a), . . . , νd(a)) for each a ∈ A \ {0}. It is called the valuation vector attached
to the flag Y· and is denoted by νY· (a) or ν(a). Let L be an invertible sheaf on
X , and let ω be a local basis of L at y. For each s ∈ H0(X,L), we can find
as ∈ A with s = asω. Then νY· (as) is denoted by νY· (s). Note that νY· (s) does
not depend on the choice of ω.

1. Preliminaries

1.1. Open cones
Let K be either Q or R, and let V be a vector space over K. A cone in V is said
to be open if it is an open set in V in the strong topology (see Section 0.3(4)).

PROPOSITION 1.1.1

Let C be a cone in V . Then we have the following.
(1) C is open if and only if, for any a ∈ C and x ∈ V , there is δ0 ∈ K>0 such

that a + δ0x ∈ C.
(2) Let f : V → V ′ be a surjective homomorphism of vector spaces over K.

(2.1) If C is open in V , then f(C) is also open in V ′.
(2.2) If C + Ker(f) ⊆ C, then f −1(f(C)) = C.

Proof
(1) If C is open, then the condition in (1) is obviously satisfied. Conversely, we
assume that, for any a ∈ C and x ∈ V , there is δ0 ∈ K>0 such that a + δ0x ∈ C.
First, let us see the following claim.

CLAIM 1.1.1.1

For any a ∈ C and x ∈ V , there is δ0 ∈ K>0 such that a + δx ∈ C holds for all
δ ∈ K with |δ| ≤ δ0.

Proof
By our assumption, there are δ1, δ2 ∈ K>0 such that a+ δ1x,a+ δ2(−x) ∈ C. For
δ ∈ K with −δ2 ≤ δ ≤ δ1, if we set λ = (δ + δ1)/(δ1 + δ2), then 0 ≤ λ ≤ 1 and
δ = λδ1 + (1 − λ)(−δ2). Thus

λ(b + δ1x) + (1 − λ)
(
b + δ2(−x)

)
= b + δx ∈ C.

Therefore, if we put δ0 = min{δ1, δ2}, then the assertion of the claim follows. �

Let W be a finite-dimensional vector subspace of V over K, and let a ∈ W ∩ C.
Let e1, . . . , en be a basis of W . Then, by Claim 1.1.1.1, there is δ0 ∈ K>0 such
that a/n + δei ∈ C holds for all i and all δ ∈ K with |δ| ≤ δ0. We set

U =
{
x1e1 + · · · + xnen

∣∣ |x1| < δ0, . . . , |xn| < δ0

}
.
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It is sufficient to see that a + U ⊆ C. Indeed, if x = x1e1 + · · · + xnen ∈ U , then

a + x =
n∑

i=1

(a/n + xiei) ∈ C.

(2) The first assertion follows from the fact that f is an open map (cf.
Section 0.3(4)). Clearly f −1(f(C)) ⊇ C. Conversely, let x ∈ f −1(f(C)). Then
there are a ∈ C with f(x) = f(a). Thus we can find u ∈ Ker(f) such that x − a = u

because f(x − a) = 0. Hence

x = a + u ∈ C + Ker(f) ⊆ C.

�

To proceed with further arguments, we need the following two lemmas.

LEMMA 1.1.2

Let S and T be subsets of V . Then

ConeK(S + T ) ⊆ ConeK(S) + ConeK(T ),

where S +T = {s+ t | s ∈ S, t ∈ T }. Moreover, if a ∈ Z≥0, t ∈ T =⇒ at ∈ T holds,
then ConeK(S + T ) = ConeK(S) + ConeK(T ).

Proof
The first assertion is obvious. Let x ∈ ConeK(S) + ConeK(T ). Then there are
s1, . . . , sr ∈ S, t1, . . . , tr′ ∈ T , λ1, . . . , λr ∈ K>0, and μ1, . . . , μr′ ∈ K>0 such that
x = λ1s1 + · · · + λrsr + μ1t1 + · · · + μr′ tr′ . We choose a positive integer N with
Nλ1 > μ1 + · · · + μr′ . Then

x =
(
λ1 − μ1 + · · · + μr′

N

)
(s1 + 0) + λ2(s2 + 0) + · · · + λr(sr + 0)

+ (μ1/N)(s1 + Nt1) + · · · + (μr′ /N)(s1 + Ntr′ ) ∈ ConeK(S + T )

because 0,Nt1, . . . ,Ntr′ ∈ T . �

LEMMA 1.1.3

Let P be a vector space over Q, let x1, . . . , xr ∈ P , b1, . . . , bm ∈ Q, and let A be
a (r × m)-matrix whose entries belong to Q. Let λ1, . . . , λr ∈ R≥0 with (λ1, . . . ,

λr)A = (b1, . . . , bm). If x := λ1x1 + · · · +λrxr ∈ P , then there are λ′
1, . . . , λ

′
r ∈ Q≥0

such that x = λ′
1x1 + · · · +λ′

rxr and (λ′
1, . . . , λ

′
r)A = (b1, . . . , bm). Moreover, if the

λi’s are positive, then we can choose positive λ′
i’s.

Proof
If λi = 0, then

x =
∑
j �=i

λjxj and (λ1, . . . , λi−1, λi+1, . . . , λr)A′ = (b1, . . . , bm),

where A′ is the ((r − 1) × n)-matrix obtained by deleting the ith row from A. Thus
we may assume that λi > 0 for all i. Let e1, . . . , en be a basis of 〈x1, . . . , xr, x〉Q.
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We set xi =
∑

j cijej and x =
∑

j djej (cij ∈ Q, dj ∈ Q). Then dj =
∑

i λicij . Let
C = (cij). We consider linear maps fQ : Qr → Qm+n and fR : Rr → Rm+n given by

fQ(s1, . . . , sr) = (s1, . . . , sr)(A,C) and fR(t1, . . . , tr) = (t1, . . . , tr)(A,C).

Then fR(λ1, . . . , λr) = (b1, . . . , bm, d1, . . . , dn); that is,

(b1, . . . , bm, d1, . . . , dn) ∈ fR(Rr) ∩ Qm+n.

Note that fR(Rr) ∩ Qm+n = fQ(Qr) because

Qm+n/fQ(Qr) →
(
Qm+n/fQ(Qr)

)
⊗Q R

is injective and(
Qm+n/fQ(Qr)

)
⊗Q R = (Qm+n ⊗Q R)/

(
fQ(Qr) ⊗Q R

)
= Rm+n/fR(Rr).

Therefore there is (e1, . . . , er) ∈ Qr with fQ(e1, . . . , er) = (b1, . . . , bm, d1, . . . , dn),
and hence {

f −1
Q (b1, . . . , bm, d1, . . . , dn) = f −1

Q (0) + (e1, . . . , er),

f −1
R (b1, . . . , bm, d1, . . . , dn) = f −1

R (0) + (e1, . . . , er).

In particular, f −1
Q (b1, . . . , bm, d1, . . . , dn) is dense in f −1

R (b1, . . . , bm, d1, . . . , dn).
Thus as (λ1, . . . , λr) ∈ f −1

R (b1, . . . , bm, d1, . . . , dn) ∩ Rr
>0, we have

f −1
Q (b1, . . . , bm, d1, . . . , dn) ∩ Rr

>0 �= ∅;

that is, we can find (λ′
1, . . . , λ

′
r) ∈ Qr

>0 with fQ(λ′
1, . . . , λ

′
r) = (b1, . . . , bm, d1, . . . ,

dn). Hence

x = λ′
1x1 + · · · + λ′

rxr and (λ′
1, . . . , λ

′
r)A = (b1, . . . , bm).

�

Next, we consider the following proposition.

PROPOSITION 1.1.4

Let P be a vector space over Q, and let V = P ⊗Q R. Let C be a cone in P .
Then we have the following:

(1) ConeR(C) ∩ P = C;
(2) if C is open, then ConeR(C) is also open;
(3) if D is a cone in P with 0 ∈ D, then ConeR(C + D) = ConeR(C) +

ConeR(D).

Proof
(1) Clearly C ⊆ ConeR(C) ∩ P . We assume that x ∈ ConeR(C) ∩ P . Then, by
Lemma 1.1.3, there are ω1, . . . , ωr ∈ C and λ1, . . . , λr ∈ Q>0 with x = λ1ω1 + · · · +
λrωr, which means that x = λ1ω1 + · · · + λrωr ∈ C.

(2) First, let us see the following: for a ∈ C and x ∈ P , there is δ0 ∈ Q>0 such
that a + δx ∈ ConeR(C) for all δ ∈ R with |δ| ≤ δ0. Indeed, by our assumption,
there is δ0 ∈ Q>0 such that a ± δ0x ∈ C. For δ ∈ R with |δ| ≤ δ0, if we set
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λ = (δ + δ0)/2δ0, then 0 ≤ λ ≤ 1 and δ = λδ0 + (1 − λ)(−δ0). Thus b + δx =
λ(b + δ0x) + (1 − λ)(b − δ0x) ∈ ConeR(C).

By Proposition 1.1.1(1), it is sufficient to see that, for a′ ∈ ConeR(C) and
x′ ∈ V , there is a positive δ′ ∈ R>0 with a′ + δ′x′ ∈ ConeR(C). We set a′ =
λ1a1 + · · · + λrar (a1, . . . , ar ∈ C, λ1, . . . , λr ∈ R>0) and x′ = μ1x1 + · · · + μnxn

(x1, . . . , xn ∈ P , μ1, . . . , μn ∈ R). We choose λ ∈ Q such that 0 < λ < λ1. By the
above claim, there is δ0 ∈ Q>0 such that (λ/n)a1 + δxj ∈ ConeR(C) for all j and
all δ ∈ R with |δ| ≤ δ0. We choose δ′ ∈ R>0 such that |δ′μj | ≤ δ0 for all j. Then

a′ + δ′x = (λ1 − λ)a1 +
∑
i≥2

λiai +
n∑

j=1

(
(λ/n)a1 + δ′μjxj

)
∈ ConeR(C),

as required.
(3) This follows from Lemma 1.1.2. �

Let M be a Z-module, and let A be a subsemigroup of M . A is said to be open
if, for any a ∈ A and x ∈ M , there is a positive integer n such that na + x ∈
A. For example, let X be a projective arithmetic variety, and let Âmp(X) be
the subsemigroup of P̂ic(X;C∞) consisting of ample C∞-Hermitian invertible
sheaves on X . Then Âmp(X) is open as a subsemigroup of P̂ic(X;C∞) (cf.
Section 0.3(7)).

PROPOSITION 1.1.5

Let ι : M → M ⊗Z Q be the natural homomorphism, and let A be subsemigroups
of M . Then we have the following.

(1) The cone ConeQ(ι(A)) generated by ι(A) is given by {(1/n)ι(a) | n ∈
Z>0, a ∈ A}.

(2) The saturation Sat(A) of A is equal to ι−1(ConeQ(ι(A)) (see Sec-
tion 0.3(1) for the saturation Sat(A) of A in M).

(3) If A is open, then ConeQ(ι(A)) is an open set in M ⊗Z Q.
(4) If B is a submonoid of M , then

ConeQ

(
ι(A + B)

)
= ConeQ

(
ι(A)

)
+ ConeQ

(
ι(B)

)
.

(5) Let f : A → R be a function on A. If there is a positive real number
e such that f(na) = nef(a) for all n ∈ Z>0 and a ∈ A, then there is a unique
function f̃ : ConeQ(ι(A)) → R with the following properties:

(5.1) f̃ ◦ ι = f .
(5.2) f̃(λx) = λef(x) for all λ ∈ Q>0 and x ∈ ConeQ(ι(A)).

Proof
(1) Let x ∈ ConeQ(ι(A)). Then there are n,m1, . . . ,mr ∈ Z>0 and a1, . . . , ar ∈ A

such that x = (m1/n)ι(a1) + · · · + (mr/n)ι(ar). Thus if we set a = m1a1 + · · · +
mrar ∈ A, then x = (1/n)ι(a). The converse is obvious.
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(2) Clearly ι−1(ConeQ(ι(A)) is saturated, and hence

Sat(A) ⊆ ι−1(ConeQ

(
ι(A)

)
.

Conversely, we assume that x ∈ ι−1(ConeQ(ι(A)). Then by (1), there are n ∈ Z>0

and a ∈ A such that ι(x) = (1/n)ι(a). Thus as ι(nx − a) = 0, there is n′ ∈ Z>0

such that n′(nx − a) = 0, which means that n′nx ∈ A, as required.
(3) By Proposition 1.1.1(1), it is sufficient to show that, for any a′ ∈

ConeQ(ι(A)) and x′ ∈ M ⊗ Q, there is δ ∈ Q>0 such that a′ + δx′ ∈ ConeQ(ι(A)).
We can choose a ∈ A, x ∈ M , and positive integers n1 and n2 such that a′ =
(1/n1)ι(a) and x′ = (1/n2)ι(x). By our assumption, there is a positive integer n

such that na + x ∈ A. Thus

nn1a
′ + n2x

′ = ι(na + x) ∈ ι(A),

which yields a′ + (n2/nn1)x′ ∈ ConeQ(ι(A)).
(4) By virtue of Lemma 1.1.2,

ConeR

(
ι(A + B)

)
= ConeR

(
ι(A) + ι(B)

)
= ConeR

(
ι(A)

)
+ ConeR

(
ι(B)

)
.

(5) First, let us see the uniqueness of f̃ . Indeed, if it exists, then

f̃
(( 1

n

)
ι(a)

)
=
( 1

n

)e

f̃
(
ι(a)

)
=
( 1

n

)e

f(a).

By the above observation, in order to define f̃ : ConvQ(ι(A)) → R, it is suffi-
cient to show that if (1/n)ι(a) = (1/n′)ι(a′) (n,n′ ∈ Z>0 and a, a′ ∈ A), then
(1/n)ef(a) = (1/n′)ef(a′). As ι(n′a − na′) = 0, there is m ∈ Z>0 such that
mn′a = mna′. Thus

(mn′)ef(a) = f
(
(mn′)a

)
= f

(
(mn)a′)= (mn)ef(a),

which implies that (1/n)ef(a) = (1/n′)ef(a′). Finally, let us see (5.2). We choose
positive integers n,n1, n2, and a ∈ A such that λ = n1/n2 and x = (1/n)ι(a).
Then

f̃(λx) = f̃
(( 1

n2n

)
ι(n1a)

)
=
( 1

n2n

)e

f(n1a) =
( 1

n2n

)e

ne
1f(a)

= λe
( 1

n

)e

f(a) = λef̃(x).

�

1.2. Convex lattice
Let M be a finitely generated free Z-module. Let K be a subset of M . The
Z-submodule generated by K in M and the convex hull of K in MR := M ⊗Z R
are denoted by 〈K〉Z and ConvR(K), respectively. For a positive integer m, the
m-fold sum m ∗ K of elements in K is defined to be

m ∗ K = {x1 + · · · + xm | x1, . . . , xm ∈ K}.

We say that K is a convex lattice if

〈K〉Z ∩ 1
m

(m ∗ K) ⊆ K, that is, m〈K〉Z ∩ (m ∗ K) ⊆ mK
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holds for all m ≥ 1. Moreover, K is said to be symmetric if −x ∈ K for all x ∈ K.
Note that if K is symmetric, then ConvR(K) is also symmetric.

PROPOSITION 1.2.1

Let K be a subset of M . Then we have the following.
(1) An equation 〈K〉Z ∩

⋃∞
m=1(1/m)(m ∗ K) = 〈K〉Z ∩ ConvR(K) holds.

(2) The following are equivalent:
(2.1) K is a convex lattice;
(2.2) K = 〈K〉Z ∩ ConvR(K);
(2.3) there are a Z-submodule N of M and a convex set Δ in MR such

that K = N ∩ Δ.

Proof
(1) Obviously 〈K〉Z ∩

⋃∞
m=1(1/m)(m ∗ K) ⊆ 〈K〉Z ∩ ConvR(K). We assume that

x ∈ 〈K〉Z ∩ ConvR(K). Then there are a1, . . . , al ∈ K and μ1, . . . , μl ∈ R≥0 such
that x = μ1a1 + · · · + μlal and μ1 + · · · + μl = 1. As x ∈ 〈K〉Z ⊆ M , by using
Lemma 1.1.3 we can find λ1, . . . , λl ∈ Q≥0 such that λ1 + · · · + λl = 1 and x =
λ1a1 + · · · + λlal. We set λi = di/m for i = 1, . . . , l. Then, as d1 + · · · + dl = m,
we have

x =
d1x1 + · · · + dlxl

m
∈ 〈K〉Z ∩ 1

m
(m ∗ K).

(2) First let us see that (2.1) implies (2.2). Since K is a convex lattice, by
(1), K = 〈K〉Z ∩ ConvR(K).

It is obvious that (2.2) implies (2.3).
Finally we observe that (2.3) implies (2.1). First of all, note that 〈K〉Z ⊆ N

and ConvR(K) ⊆ Δ. Thus

〈K〉Z ∩ 1
m

(m ∗ K) ⊆ 〈K〉Z ∩ ConvR(K) ⊆ N ∩ Δ = K.

�

Let K be a subset of M . Then, by Proposition 1.2.1,

〈K〉Z ∩
∞⋃

m=1

1
m

(m ∗ K) =
{
x ∈ 〈K〉Z

∣∣ ∃m ∈ Z>0 mx ∈ m ∗ K
}

is a convex lattice, so that it is called the convex lattice hull of K and is denoted
by CL(K). Note that the convex lattice hull of K is the smallest convex lattice
containing K. Let f : M → M ′ be an injective homomorphism of finitely gener-
ated free Z-modules. Then it is easy to see that f(CL(K)) = CL(f(K)). Finally,
we consider the following lemma. Ideas for the proof of the lemma can be found
in Yuan’s article [11, Section 2.3].

LEMMA 1.2.2

Let M be a finitely generated free Z-module, and let r : M → N be a homomor-
phism of finitely generated Z-modules. For a symmetric finite subset K of M ,
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we have the following estimation:

log#r(K) ≥ log#(K) − log#
(
Ker(r) ∩ (2 ∗ K)

)
,(1.2.2.1)

log#r(K) ≤ log#(2 ∗ K) − log#
(
Ker(r) ∩ K

)
.(1.2.2.2)

Moreover, if Δ is a bounded and symmetric convex set in MR and a is a real
number with a ≥ 1, then

(1.2.2.3) 0 ≤ log#(M ∩ aΔ) − log#(M ∩ Δ) ≤ log(�2a�) rkM.

Proof
Let t ∈ r(K), and fix s0 ∈ K with r(s0) = t. Then for any s ∈ r−1(t) ∩ K,

s − s0 = s + (−s0) ∈ Ker(r) ∩ (2 ∗ K).

Thus

#
(
r−1(t) ∩ K

)
≤ #

(
Ker(r) ∩ (2 ∗ K)

)
.

Therefore

#(K) =
∑

t∈r(K)

#
(
r−1(t) ∩ K

)
≤ #

(
r(K)

)
#
(
Ker(r) ∩ (2 ∗ K)

)
,

as required.
We set S = K + Ker(r) ∩ K. Then r(S) = r(K) and S ⊆ 2 ∗ K. Moreover,

for all t ∈ r(S),

#
(
Ker(r) ∩ K

)
≤ #

(
S ∩ r−1(t)

)
.

Indeed, if we choose s0 ∈ K with r(s0) = t, then

s0 + Ker(r) ∩ K ⊆ S ∩ r−1(t).

Therefore

#(2 ∗ K) ≥ #(S) =
∑

t∈r(S)

#
(
r−1(t) ∩ S

)
≥ #

(
r(S)

)
#
(
Ker(r) ∩ K

)
= #

(
r(K)

)
#
(
Ker(r) ∩ K

)
,

as required.
We set n = �2a�. Applying (1.2.2.1) to the case where K = M ∩ (n/2)Δ and

r : M → M/nM , we have

log#
(

M ∩
(n

2

)
Δ
)

− log#
(

nM ∩ 2 ∗
((n

2

)
Δ ∩ M

))
≤ log#M/nM = log(n) rkM.

Note that a ≤ n/2 and

#
(

nM ∩ 2 ∗
((n

2

)
Δ ∩ M

))
≤ #

(
nM ∩ (nΔ ∩ M)

)
= #(nM ∩ nΔ) = #(M ∩ Δ).
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Hence we obtain

0 ≤ log#(M ∩ aΔ) − log#(M ∩ Δ)

≤ log#
(

M ∩
(n

2

)
Δ
)

− log#
(

nM ∩ 2 ∗
((n

2

)
Δ ∩ M

))
≤ log(n) rkM.

�

1.3. Concave function and its continuity
Let P be a vector space over Q, and let V = P ⊗ R. Let C be a nonempty
open convex set in V . Let f : C ∩ P → R be a concave function over Q (cf.
Section 0.3(2)).

We assume that P is finite-dimensional and d = dimQ P . Let h be an inner
product of V . For x ∈ V , we denote

√
h(x,x) by ‖x‖h. Moreover, for a positive

number r and x ∈ V , we set

U(x, r) =
{
y ∈ V

∣∣ ‖y − x‖h < r
}
.

PROPOSITION 1.3.1

For any x ∈ C, there are positive numbers ε and L such that U(x, ε) ⊆ C and
|f(y) − f(z)| ≤ L‖y − z‖h for all y, z ∈ U(x, ε) ∩ P . In particular, there is a
unique concave and continuous function f̃ : C → R such that f̃ |C∩P = f .

Proof
The proof of this proposition is almost the same as [4, Theorem 2.2], but we need
a slight modification because x is not necessarily a point of P . Let us begin with
the following claim.

CLAIM 1.3.1.1

An equality f(t1x1+ · · · +trxr) ≥ t1f(x1)+ · · · +trf(xr) holds for any x1, . . . , xr ∈
C ∩ P and t1, . . . , tr ∈ Q≥0 with t1 + · · · + tr = 1.

Proof
We prove it by induction on r. In the case where r = 1,2, the assertion is obvious.
We assume that r ≥ 3. If t1 = 1, then the assertion is also obvious, so that we
may assume that t1 < 1. Then by using the hypothesis of induction,

f(t1x1 + · · · + trxr) = f

(
t1x1 + (1 − t1)

( t2
1 − t1

x2 + · · · +
tr

1 − t1
xr

))
≥ t1f(x1) + (1 − t1)f

( t2
1 − t1

x2 + · · · +
tr

1 − t1
xr

)
≥ t1f(x1) + (1 − t1)

( t2
1 − t1

f(x2) + · · · +
tr

1 − t1
f(xr)

)
= t1f(x1) + · · · + trf(xr).

�
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CLAIM 1.3.1.2

There are x1, . . . , xd+1 ∈ C ∩ P such that x is an interior point of ConvR({x1, . . . ,

xd+1}).

Proof
Let us consider the function φ : Cd → R given by

φ(y1, . . . , yd) = det(y1 − x, . . . , yd − x).

Then (Cd)φ = {(y1, . . . , yd) ∈ Cd | φ(y1, . . . , yd) �= 0} is a nonempty open set, so
that we can find (x1, . . . , xd) ∈ (Cd)φ with x1, . . . , xd ∈ P . Next, we consider{

x − t1(x1 − x) − · · · − td(xd − x)
∣∣ t1, . . . , td ∈ R>0

}
∩ C.

This is also a nonempty open set in C. Thus there are xd+1 ∈ C ∩ P and
t1, . . . , td ∈ R>0 with xd+1 = x − t1(x1 − x) − · · · − td(xd − x), so that

x =
t1x1 + · · · + tdxd + xd+1

t1 + · · · + td + 1
.

Thus x is an interior point of ConvR({x1, . . . , xd+1}). �

CLAIM 1.3.1.3

There is a positive number c1 such that f(y) ≥ −c1 holds for all y ∈ ConvR({x1,

. . . , xd+1}) ∩ P .

Proof
As y ∈ ConvR({x1, . . . , xd+1}) ∩ P , by Lemma 1.1.3, there are t1, . . . , td+1 ∈ Q≥0

such that

t1 + · · · + td+1 = 1 and y = t1x1 + · · · + td+1xd+1.

Thus by Claim 1.3.1.1,

f(y) = f(t1x1 + · · · + td+1xd+1)

≥ t1f(x1) + · · · + td+1f(xd+1) ≥ −t1|f(x1)| − · · · − td+1|f(xd+1)|

≥ −
(

|f(x1)| + · · · + |f(xd+1)|
)
,

as required. �

Let us choose a positive number ε and choose x0 ∈ P such that

U(x,4ε) ⊆ ConvR({x1, . . . , xd+1}

and x0 ∈ U(x, ε) ∩ P . Then

U(x, ε) ⊆ U(x0,2ε) ⊆ U(x0,3ε) ⊆ U(x,4ε) ⊆ ConvR({x1, . . . , xd+1}).

CLAIM 1.3.1.4

There is a positive number c2 such that |f(y)| ≤ c2 holds for all y ∈ U(x0,3ε) ∩ P .



700 Atsushi Moriwaki

Proof
As (2x0 − y) − x0 = x0 − y, we have 2x0 − y ∈ U(x0,3ε) ∩ P , and hence

f(x0) = f
(y

2
+

(2x0 − y)
2

)
≥ f(y)

2
+

f(2x0 − y)
2

.

Therefore

−c1 ≤ f(y) ≤ 2f(x0) − f(2x0 − y) ≤ 2f(x0) + c1,

as required. �

Let y, z ∈ U(x, ε) ∩ P with y �= z. We choose a ∈ Q with

ε/2
‖z − y‖h

+ 1 ≤ a ≤ ε

‖z − y‖h
+ 1,

and we set w = a(z − y) + y. Then ε/2 ≤ ‖w − z‖h ≤ ε. Thus w ∈ U(x0,3ε) ∩ P .
Moreover, if we put t0 = 1/a, then

z = (1 − t0)y + t0w, z − y = t0(w − y) and w − z = (1 − t0)(w − y).

As ‖z − y‖h/‖w − z‖h = t0/(1 − t0), we have

f(z) − f(y)
‖z − y‖h

=
f((1 − t0)y + t0w) − f(y)

‖z − y‖h
≥ (1 − t0)f(y) + t0f(w) − f(y)

‖z − y‖h

= t0
f(w) − f(y)

‖z − y‖h
= (1 − t0)

f(w) − f(y)
‖w − z‖h

=
f(w) − ((1 − t0)f(y) + t0f(w))

‖w − z‖h
≥ f(w) − f(z)

‖w − z‖h

≥ −2c2

‖w − z‖h
≥ −2c2

ε/2
=

−4c2

ε
.

Exchanging y and z, we obtain the same inequality, that is,

f(y) − f(z)
‖y − z‖h

≥ −4c2

ε
.

Therefore |f(z) − f(y)| ≤ (4c2/ε)‖y − z‖h for all y, z ∈ U(x, ε) ∩ P .
For the last assertion, note the following: Let {an} ∞

n=1 be a Cauchy sequence
on C ∩ P such that x = limn→∞ an ∈ C. Then, by the first assertion of Proposi-
tion 1.3.1, {f(an)} ∞

n=1 is also a Cauchy sequence in R, and hence f̃(x) is defined
by limn→∞ f(an).

This concludes the proof of Proposition 1.3.1. �

Next, we do not assume that P is finite-dimensional. Then we have the following
corollary.

COROLLARY 1.3.2

There is a unique concave and continuous function f̃ : C → R such that f̃ |C∩P = f .
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Proof
It follows from Proposition 1.3.1 and the following facts: If x ∈ V , then there is
a finite-dimensional vector subspace Q of P over Q with x ∈ Q ⊗ R. �

1.4. Good flag over a prime
In this subsection, we observe the existence of good flags over infinitely many
prime numbers.

Let X be a d-dimensional projective arithmetic variety. Let π : X → Spec(R)
be the Stein factorization of X → Spec(Z), where R is an order of some number
field F . A chain

Y· : Y0 = X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd

of subschemes of X is called a good flag of X over a prime p if the following
conditions are satisfied.

(a) Yi’s are integral and codim(Yi) = i for i = 0, . . . , d.
(b) There is P ∈ Spec(R) such that RP is normal, π−1(P ) = Y1, and the

residue field κ(P ) at P is isomorphic to Fp. In particular, Y1 is a Cartier divisor
on X .

(c) Yd consists of a rational point y over Fp.
(d) Yi’s are regular at y for i = 0, . . . , d.
(e) There is a birational morphism μ : X ′ → X of projective arithmetic vari-

eties with the following properties:
(e.1) μ is an isomorphism over y;
(e.2) if Y ′

i is the strict transform of Yi, then Y ′
i is a Cartier divisor in

Y ′
i−1 for i = 1, . . . , d.

PROPOSITION 1.4.1

There are good flags of X over infinitely many prime numbers. More precisely,
if we set SF/Q = {p ∈ Spec(Z) | p splits completely in F over Q}, then there is a
finite subset Σ of SF/Q such that we have a good flag over any prime in SF/Q \ Σ.

Proof
Let μ : Y → X be a generic resolution of singularities of X such that Y is normal.
Let π : X → Spec(R) and π̃ : Y → Spec(OF ) be the Stein factorizations of X →
Spec(Z) and Y → Spec(Z), respectively. Then we have the commutative diagram

X
μ←−−−− Y

π

⏐⏐� ⏐⏐�π̃

Spec(R)
ρ←−−−− Spec(OF ).

Let us choose a proper closed subset Z of X such that μ : Y \ μ−1(Z) → X \ Z

is an isomorphism. We set E = μ−1(Z). Let us choose a chain

Y ′
1 = Y ×Spec(OF ) Spec(F ) ⊃ Y ′

2 ⊃ · · · ⊃ Y ′
d−1
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of smooth subvarieties of Y ×Spec(OF ) Spec(F ) such that codim(Y ′
i ) = i − 1 for

i = 1, . . . , d − 1 and dim
(
Y ′

d−1 ∩ (E ×Spec(OF ) Spec(F ))
)

≤ 0. Let Yi be the Zariski
closure of Y ′

i in Y . Then there is a nonempty open set U of Spec(OF ) such that ρ

is an isomorphism over U , Y1 = Y,Y2, . . . , Yd−1 are smooth over U , and Yd−1 ∩ E

is either finite or empty over U . Let e be the degree of Yd−1 ∩ E over U . Note
that e might be zero. If we put

Σ1 =
{
p ∈ Spec(Z)

∣∣ there is P ∈ Spec(OF ) \ U with pZ = P ∩ Z
}
,

then Σ1 is a finite set. Let p ∈ SF/Q \ Σ1 and P ∈ Spec(OK) with pZ = P ∩ Z.
Then P ∈ U and the residue field at P is isomorphic to Fp. By Weil’s conjecture
for curves,

p + 1 − 2g
√

p ≤ #
(
Yd−1 ⊗ κ(P )

)
(Fp),

where g is the genus of Y ′
d−1. Thus there is a finite set Σ2 such that, if p ∈ SF/Q \

(Σ1 ∪ Σ2), then p+1 − 2g
√

p > e, which means that there is x ∈ (Yd−1 ⊗ κ(P ))(Fp)
with x /∈ E. Since, for p ∈ SF/Q \ (Σ1 ∪ Σ2),

Y ⊃ Y1 ⊗ κ(P ) ⊃ · · · ⊃ Yd−1 ⊗ κ(P ) ⊃ {x}

is a good flag over p,

X ⊃ μ
(
Y1 ⊗ κ(P )

)
⊃ · · · ⊃ μ

(
Yd−1 ⊗ κ(P )

)
⊃
{
μ(x)

}
is also a good flag over p. �

2. Estimation of linear series in terms of valuation vectors

In this section, we consider a generalization of Yuan’s article [11]. Let us begin
with the following proposition, which is a key to Theorem 2.2.

PROPOSITION 2.1

Let X be a d-dimensional projective arithmetic variety, and fix a good flag Y· : X ⊃
Y1 ⊃ Y2 ⊃ · · · ⊃ Yd over a prime p. Let L be an invertible sheaf on X, let M

be a Z-submodule of H0(X,L), and let Δ be a bounded symmetric convex set
in H0(X,L)R. Let r : H0(X,L) → H0(Y1,L|Y1) be the natural homomorphism,
M ′ = M ∩ H0(X,L − Y1), and β = p rkM . Then we have the following:

(2.1.1) #νY1

(
r(M ∩ Δ) \ {0}

)
log p ≤ log#(M ∩ 2βΔ) − log#(M ′ ∩ βΔ)

and

(2.1.2) #νY1

(
r(M ∩ Δ) \ {0}

)
log p ≥ log#

(
M ∩ (1/β)Δ

)
− log#

(
M ′ ∩ (2/β)Δ

)
,

where νY1 is the valuation on Y1 attached to a flag Y1 ⊃ Y2 ⊃ · · · ⊃ Yd.

Proof
Let V be a vector space generated by r(M ∩ Δ) in H0(Y1,L|Y1) over Fp. Note
that [5, Lemma 1.3] holds if Yd consists of a rational point over a base field. Thus
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#νY1

(
r(Δ ∩ M) \ {0}

)
log p ≤ #νY1(V \ {0}) logp

= dimFp(V ) log p (∵ [5, Lemma 1.3])

= log#V.

Let us choose s1, . . . , sl ∈ M ∩ Δ such that r(s1), . . . , r(sl) forms a basis of V .
Let n be the rank of M , and let ω1, . . . , ωn be a free basis of M . Then V ⊆∑n

i=1 Fpr(ωi) in H0(Y1,L|Y1), which implies l ≤ n. We set

S =
{∑

aisi

∣∣∣ ai = 0,1, . . . , p − 1 (∀i)
}

.

Then S maps surjectively to V . Moreover, S ⊆ M ∩ βΔ because l ≤ n. Thus
we get #V ≤ #(r(M ∩ βΔ)). Note that Ker(r|M : M → H0(Y1,L|Y1)) = M ′.
Therefore as 2 ∗ (M ∩ βΔ) ⊆ M ∩ 2βΔ, by (1.2.2.2),

log#r(M ∩ βΔ) ≤ log#(M ∩ 2βΔ) − log#(M ′ ∩ βΔ),

which shows (2.1.1).
Let W be a vector space generated by r(M ∩ (1/β)Δ) in H0(Y1,L|Y1) over

Fp. Let us choose t1, . . . , tl′ ∈ M ∩ (1/β)Δ such that r(t1), . . . , r(tl′ ) forms a basis
of W . In the same way as before, we have l′ ≤ n. We set

T =
{∑

biti

∣∣∣ bi = 0,1, . . . , p − 1 (∀i)
}

.

Then T ⊆ M ∩ Δ and W = r(T ) ⊆ r(M ∩ Δ). Thus

#νY1

(
r(M ∩ Δ) \ {0}

)
log p ≥ #νY1(W \ {0}) logp

= dimFp(W ) log p

= log#W

≥ log#r
(
M ∩ (1/β)Δ

)
.

On the other hand, as 2 ∗ (M ∩ (1/β)Δ) ⊆ M ∩ (2/β)Δ, by (1.2.2.1),

log#r
(
M ∩ (1/β)Δ

)
≥ log#

(
M ∩ (1/β)Δ

)
− log#

(
M ′ ∩ (2/β)Δ

)
,

as required for (2.1.2). �

Let X be a d-dimensional projective arithmetic variety, and let L be a continuous
Hermitian invertible sheaf on X . A subset K of H0(X,L) is called an arithmetic
linear series of L if K is a symmetric convex lattice in H0(X,L) with

K ⊆ Bsup(L) :=
{
s ∈ H0(XR,LR)

∣∣ ‖s‖sup ≤ 1
}
.

If K = Ĥ0(X,L) (= H0(X,L) ∩ Bsup(L)), then K is said to be complete. Then
we have the following theorem.

THEOREM 2.2

Let ν be the valuation attached to a good flag Y· : X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd over
a prime p. If K is an arithmetic linear series of L with K �= {0}, then the



704 Atsushi Moriwaki

estimation∣∣#ν(K \ {0}) log p − log#(K)
∣∣

≤
(
log(4p rk〈K〉Z) +

σ(L) + log(2p rk〈K〉Z)
logp

log(4) rkH0(OX)
)

rk〈K〉Z

holds, where σ(L) is given by

σ(L) := inf
A : ample

d̂eg(ĉ1(A)d−1 · ĉ1(L))
deg(Ad−1

Q )
.

Proof
We set β = p rk〈K〉Z, Δ = ConvR(K), and Mk = 〈K〉Z ∩ H0(X,L − kY1) for k ≥ 0.
Then M0 = 〈K〉Z, K = M0 ∩ Δ, rkMk = rkM0, and

Mk+1 = Mk ∩ H0
(
Y, (L − kY1) − Y1

)
.

Let rk : H0(X,L − kY1) → H0(Y1,L − kY1|Y1) be the natural homomorphism for
each k ≥ 0. Note that

#ν(K \ {0}) =
∑
k≥0

#νY1

(
rk(Mk ∩ Δ) \ {0}

)
.

Thus, by applying Proposition 2.1 to L − kY1, we obtain∑
k≥0

(
log#(Mk ∩ (1/β)Δ) − log#(Mk+1 ∩ (2/β)Δ)

)
≤ #ν(K \ {0}) log p

≤
∑
k≥0

(
log#(Mk ∩ 2βΔ) − log#(Mk+1 ∩ βΔ)

)
,

which implies

#ν(K \ {0}) logp ≤ log#(M0 ∩ 2βΔ)

+
∑
k≥1

(
log#(Mk ∩ 2βΔ) − log#(Mk ∩ βΔ)

)
and

#ν(K \ {0}) logp ≥ log#
(
M0 ∩ (1/β)Δ

)
−
∑
k≥1

(
log#(Mk ∩ (2/β)Δ) − log#(Mk ∩ (1/β)Δ)

)
.

By (1.2.2.3),

log#(M0 ∩ 2βΔ) ≤ log#(K) + log(4β) rkM0

and

log#(Mk ∩ 2βΔ) − log#(Mk ∩ βΔ) ≤ log(4) rkMk = log(4) rkM0.
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Note that 2βΔ ∩ Mk ⊆ Ĥ0
(
L − kY1 + O(log(2β))

)
. (For the definition of O(−),

see Section 4.) Thus if we set

S =
{
k ≥ 1

∣∣ Ĥ0
(
L − kY1 + O(log(2β))

)
�= {0}

}
,

then

#ν(K \ {0}) logp ≤ log#(K) +
(
log(4β) + #S log(4)

)
rkM0.

Let A be an ample C∞-Hermitian invertible sheaf on X . If k ∈ S, then

0 ≤ d̂eg
(
ĉ1(A)d−1 · ĉ1(L − kY1 + O(log(2β)))

)
= d̂eg

(
ĉ1(A)d−1 · ĉ1(L)

)
+ log(2β)deg(Ad−1

Q ) − k
deg(Ad−1

Q ) log p

rkH0(OX)
,

which implies that

k ≤ (σ(L) + log(2β)) rkH0(OX)
log p

,

and hence

#S ≤ (σ(L) + log(2β)) rkH0(OX)
log p

.

Further, by using (1.2.2.3), we can see that

log#
(
M0 ∩ (1/β)Δ

)
≥ log#(K) − log(2β) rkM0

and

log#
(
Mk ∩ (2/β)Δ

)
− log#

(
Mk ∩ (1/β)Δ

)
≤ log(4) rkMk = log(4) rkM0.

Hence, as before, we obtain

#ν(K \ {0}) logp ≥ log#(K) −
(
log(2β) + #S log(4)

)
rkM0,

as required. �

COROLLARY 2.3

There is a positive constant c = c(X,L) depending only on X and L with the
following property. For a good flag

Y· : X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd

over a prime p, there is a positive constant m0 = m0(p,XQ,LQ) depending only
on p, XQ and LQ such that, if m ≥ m0, then∣∣#νY· (K \ {0}) logp − log#(K)

∣∣ ≤ cmd

log p

holds for any arithmetic linear series K of mL, where νY· is the valuation
attached to the flag Y· : X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd.
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Proof
The problem is an estimation of Cm given by(

log
(
4p rkH0(mL)

)
+

σ(mL) + log(2p rkH0(mL))
log p

log(4) rkH0(OX)
)

× rkH0(mL).

First of all, there is a constant c1 depending only on XQ and LQ such that

rkH0(mL) ≤ c1m
d−1

for all m ≥ 0. Thus

Cm ≤ 1
m

(
log(4pc1m

d−1) log(p) + log(2pc1m
d−1) log(4) rkH0(OX)

)c1m
d

log p

+ σ(L) log(4) rkH0(OX)
c1m

d

log p
.

We can find a positive integer m0 depending only on p and c1 such that if m ≥ m0,
then

1
m

(
log(4pc1m

d−1) log(p) + log(2pc1m
d−1) log(4) rkH0(OX)

)
≤ 1 + rkH0(OX).

Therefore

Cm ≤
(
1 + (1 + σ(L) log(4)) rkH0(OX)

)
c1

md

log p

for m ≥ m0, as required. �

As an application of Corollary 2.3, we have the following theorem. The arithmetic
Fujita approximation theorem is a straightforward consequence of this result.

THEOREM 2.4

Let L be a big, continuous Hermitian invertible sheaf on a projective arithmetic
variety X. For any positive ε, there is a positive integer n0 = n0(ε) such that,
for all n ≥ n0,

lim inf
k→∞

log#(Kk,n)
ndkd

≥ v̂ol(L)
d!

− ε,

where Kk,n is the convex lattice hull of

Vk,n =
{
s1 ⊗ · · · ⊗ sk

∣∣ s1, . . . , sk ∈ Ĥ0(X,nL)
}

in H0(X,knL).

Proof
A generalization of this theorem is proved in Theorem 6.2. �
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3. Base locus of continuous Hermitian invertible sheaf

Let X be a projective arithmetic variety, and let L be a continuous Hermitian
invertible sheaf on X . We define the base locus Bs(L) of L to be

Bs(L) = Supp
(
Coker

(
〈Ĥ0(X,L)〉Z ⊗ OX → L

))
,

that is,

Bs(L) =
{
x ∈ X

∣∣ s(x) = 0 for all s ∈ Ĥ0(X,L)
}
.

Moreover, the stable base locus SBs(L) is defined to be

SBs(L) =
⋂

m≥1

Bs(mL).

The following proposition is the basic properties of Bs(L) and SBs(L).

PROPOSITION 3.1

(1) Bs(L + M) is contained in Bs(L) ∪ Bs(M) for any L,M ∈ P̂ic(X;C0).
(2) There is a positive integer m0 such that SBs(L) = Bs(mm0L) for all

m ≥ 1.
(3) SBs(L+M) is contained in SBs(L) ∪ SBs(M) for any L,M ∈ P̂ic(X;C0).
(4) SBs(L) is equal to SBs(mL) for all m ≥ 1.

Proof
(1) This is obvious by its definition.

(2) By using (1), it is sufficient to find a positive integer m0 with SBs(L) =
Bs(m0L). Thus it is enough to see that if SBs(L) � Bs(aL), then there is b with
Bs(abL) � Bs(aL). Indeed, choose x ∈ Bs(aL) \ SBs(L). Then there is b with
x /∈ Bs(bL), so that x /∈ Bs(abL) by (1).

(3) This is a consequence of (1) and (2).
(4) Clearly SBs(L) ⊆ SBs(mL). We choose m0 with SBs(L) = Bs(m0L).

Then SBs(mL) ⊆ Bs(m0mL) = SBs(L). �

Let ι : P̂ic(X;C0) → P̂icQ(X;C0) (:= P̂ic(X;C0) ⊗ Q) be the natural homomor-
phism. For L ∈ P̂icQ(X;C0), there are a positive integer n and M ∈ P̂ic(X;C0)
such that L = (1/n)ι(M). Then, by Proposition 3.1(4), we can see that SBs(M)
does not depend on the choice of n and M , so that SBs(L) is defined by SBs(M).
The augmented base locus SBs+(L) of L is defined to be

SBs+(L) =
⋂

A∈P̂icQ(X;C∞)

A : ample

SBs(L − A).

PROPOSITION 3.2

Let B1, . . . ,Br be ample C∞-Hermitian Q-invertible sheaves on X. Then there
is a positive number ε0 such that

SBs+(L) = SBs(L − ε1B1 − · · · − εrBr)
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for all rational numbers ε1, . . . , εr with 0 < ε1 ≤ ε0, . . . ,0 < εr ≤ ε0.

Proof
Since X is a Noetherian space, there are ample C∞-Hermitian Q-invertible
sheaves A1, . . . ,Al on X such that SBs+(L) =

⋂l
i=1 SBs(L − Ai). We choose

a positive number ε0 such that, for all rational numbers ε1, . . . , εr with 0 < ε1 ≤
ε0, . . . ,0 < εr ≤ ε0,

Ai − ε1B1 − · · · − εrBr

is ample for every i = 1, . . . , l. Then by Proposition 3.1(2),

SBs(L − ε1B1 − · · · − εrBr) = SBs
(
L − Ai + (Ai − ε1B1 − · · · − εrBr)

)
⊆ SBs(L − Ai) ∪ SBs(Ai − ε1B1 − · · · − εrBr)

= SBs(L − Ai),

which implies

SBs+(L) ⊆ SBs(L − ε1B1 − · · · − εrBr)

⊆
l⋂

i=1

SBs(L − Ai) = SBs+(L).

�

4. Arithmetic Picard group and cones

Similarly to [7], we fix several notations. Let X be a projective arithmetic vari-
ety. Let C0(X) be the set of real-valued continuous functions f on X(C) with
F ∗

∞(f) = f , where F∞ : X(C) → X(C) is the complex conjugation map on X(C).
Let O : C0(X) → P̂ic(X;C0) be the homomorphism given by

O(f) =
(

OX , exp(−f)| · |can
)
.

We define P̂icQ(X;C0) and P̂ic⊗R(X;C0) to be

P̂icQ(X;C0) := P̂ic(X;C0) ⊗ Q and P̂ic⊗R(X;C0) := P̂ic(X;C0) ⊗ R.

We denote the natural homomorphism P̂ic(X;C0) → P̂icQ(X;C0) by ι. Let
N(X) be the subgroup of P̂ic⊗R(X;C0) consisting of elements

O(f1) ⊗ x1 + · · · + O(fr) ⊗ xr

(
f1, . . . , fr ∈ C0(X), x1, . . . , xr ∈ R

)
with x1f1 + · · · + xrfr = 0. We define P̂icR(X;C0) to be

P̂icR(X;C0) := P̂ic⊗R(X;C0)/N(X).

Let π : P̂ic⊗R(X;C0) → P̂icR(X;C0) be the natural homomorphism. Here we
give the strong topology to P̂icQ(X;C0), P̂ic⊗R(X;C0), and P̂icR(X;C0). Then
the homomorphisms

P̂icQ(X;C0) ↪→ P̂ic⊗R(X;C0) and π : P̂ic⊗R(X;C0) → P̂icR(X;C0)
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are continuous. Moreover, π : P̂ic⊗R(X;C0) → P̂icR(X;C0) is an open map (cf.
Section 0.3(4)). We denote the composition of homomorphisms

P̂icQ(X;C0) ↪→ P̂ic⊗R(X;C0) π−→ P̂icR(X;C0)

by ρ. Then ρ is also continuous. Note that ρ is not necessarily injective (cf. [7,
Example 4.5]).

Let Âmp(X) be the subsemigroup of P̂ic(X;C0) consisting of all ample C∞-
Hermitian invertible sheaves on X . Let us observe the following lemma.

LEMMA 4.1

Let A be an ample invertible sheaf on X. For any L ∈ P̂ic(X;C0), there are a
positive integer n0 and f ∈ C0(X) such that f ≥ 0 and

L + nA − O(f) ∈ Âmp(X)

for all n ≥ n0.

Proof
Let | · | be the Hermitian metric of L, and let | · |0 be a C∞-Hermitian metric
of L. We set | · | = exp(−f0)| · |0 for some f0 ∈ C0(X). We can take a constant
c with f0 + c ≥ 0 and put f = f0 + c. Then f ≥ 0 and exp(f)| · | is C∞, which
means that L − O(f) is C∞. Thus there is a positive integer n0 such that(

L − O(f)
)
+ nA ∈ Âmp(X)

for all n ≥ n0. �

PROPOSITION 4.2

Let Ĉ be a submonoid of P̂ic(X;C0) such that{
O(f)

∣∣ f ∈ C0(X), f ≥ 0
}

⊆ Ĉ.

We set B̂ = Sat(Âmp(X) + Ĉ) (see Section 0.3(1) for the saturation). Then we
have the following.

(1) B̂ is open; that is, for any L ∈ B̂ and M ∈ P̂ic(X;C0), there is a positive
integer n such that nL + M ∈ B̂.

(2) If we set ⎧⎪⎪⎨⎪⎪⎩
B̂Q := ConeQ(ι(B̂)) in P̂icQ(X;C0),

B̂⊗R := ConeR(B̂Q) in P̂ic⊗R(X;C0),

B̂R := ConeR(ρ(B̂Q)) in P̂icR(X;C0),

then B̂Q, B̂⊗R, and B̂R are open in P̂icQ(X;C0), P̂ic⊗R(X;C0), and P̂icR(X;C0),
respectively.

(3) We have{
ι−1(B̂Q) = B̂, B̂⊗R ∩ P̂icQ(X;C0) = B̂Q,

π−1(B̂R) = B̂⊗R, ρ−1(B̂R) = B̂Q.
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Proof
(1) Let L ∈ B̂ and M ∈ P̂ic(X;C0). Then there is a positive integer n0 such
that n0L = A + E for some A ∈ Âmp(X) and E ∈ Ĉ. By Lemma 4.1, there are
a positive integer n1 and f ∈ C0(X) such that f ≥ 0 and M + n1A − O(f) = A

′

for some A
′ ∈ Âmp(X). Then

n1n0L + M = n1(A + E) + M = A
′
+
(
n1E + O(f)

)
∈ B̂.

(2) This follows from Proposition 1.1.5(3), Proposition 1.1.4(2), and Propo-
sition 1.1.1(2.1).

(3) Let us consider the following claim.

CLAIM 4.2.1

B̂⊗R + N(X) is contained in B̂⊗R.

Proof
First of all, let us see the following formula:

(4.2.2) B̂⊗R + ι(Ĉ) ⊆ B̂⊗R.

Indeed, as B̂ + Ĉ ⊆ B̂, we have ι(B̂ + Ĉ) ⊆ ι(B̂). Thus by Proposition 1.1.4(3),

B̂⊗R + ι(Ĉ) ⊆ ConeR

(
ι(B̂)

)
+ ConeR

(
ι(Ĉ)

)
= ConeR

(
ι(B̂ + Ĉ)

)
⊆ B̂⊗R.

Let a ∈ B̂⊗R and x ∈ N(X). We set x = O(f1) ⊗ a1 + · · · + O(fr) ⊗ ar with
a1f1 + · · · + arfr = 0, where f1, . . . , fr ∈ C0(X) and a1, . . . , ar ∈ R. Let us take a
sequence {ain} ∞

n=1 in Q such that ai = limn→∞ ain. We set φn = a1nf1 + · · · +
arnfr. Then

‖φn‖sup = ‖(a1n − a1)f1 + · · · + (arn − ar)fr ‖sup

≤ |a1n − a1| ‖f1‖sup + · · · + |arn − ar | ‖fr ‖sup.

Thus limn→∞ ‖φn‖sup = 0. We choose a sequence {bn} in Q such that bn ≥
‖φn‖sup and limn→∞ bn = 0. Then φn + bn ≥ 0. If we put

xn = O(f1) ⊗ a1n + · · · + O(fr) ⊗ arn + O(1) ⊗ bn,

then limn→∞ xn = x. On the other hand, as xn = O(φn + bn) in P̂icQ(X;C0),
xn ∈ ι(Ĉ). By Proposition 4.2(2), B̂⊗R is an open set in P̂ic⊗R(X;C0). Thus if
n � 1, then (x − xn) + a ∈ B̂⊗R. Hence the claim follows because

x + a =
(
(x − xn) + a

)
+ xn ∈ B̂⊗R + ι(Ĉ) ⊆ B̂⊗R.

�

The first formula follows from Proposition 1.1.5(2). The second is derived from
Proposition 1.1.4(1). We can see the third by using Proposition 1.1.1(2.2) and
Claim 4.2.1. The last formula follows from the second and the third.
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5. Big Hermitian invertible sheaves with respect to an arithmetic subvariety

Let X be a projective arithmetic variety, and let Y be an arithmetic subvariety
of X ; that is, Y is an integral subscheme of X such that Y is flat over Spec(Z).
A continuous Hermitian invertible sheaf L is said to be Y -effective (or effective
with respect to Y ) if there is s ∈ Ĥ0(X,L) with s|Y �= 0. For L1,L2 ∈ P̂ic(X), if
L1 − L2 is Y -effective, then we denote it by L1 ≥Y L2. We define Êff(X;Y ) to be

Êff(X;Y ) :=
{
L ∈ P̂ic(X;C0)

∣∣ L is Y -effective
}
.

Then it is easy to see the following (cf. Proposition 4.2):

(a) Êff(X;Y ) is a submonoid of P̂ic(X;C0);
(b) {O(f) | f ∈ C0(X), f ≥ 0} ⊆ Êff(X;Y ).

Here we define B̂ig(X;Y ), B̂igQ(X;Y ), B̂ig⊗R(X;Y ), and B̂igR(X;Y ) to be⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B̂ig(X;Y ) := Sat(Âmp(X) + Êff(X;Y )),

B̂igQ(X;Y ) := ConeQ

(
ι(B̂ig(X;Y ))

)
,

B̂ig⊗R(X;Y ) := ConeR(B̂igQ(X;Y )),

B̂igR(X;Y ) := ConeR

(
ρ(B̂igQ(X;Y ))

)
,

where ι, π, and ρ are the natural homomorphisms as follows:

P̂ic(X;C0)
ι

γ

P̂icQ(X;C0)
ρ

P̂ic⊗R(X;C0)

π

P̂icR(X;C0)

For the definition of the saturation, see Section 0.3(1). By Proposition 4.2,
B̂igQ(X;Y ), B̂ig⊗R(X;Y ), and B̂igR(X;Y ) are open in P̂icQ(X;C0), P̂ic⊗R(X;
C0), and P̂icR(X;C0), respectively. Moreover,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ι−1(B̂igQ(X;Y )) = B̂ig(X;Y ),

B̂ig⊗R(X;Y ) ∩ P̂icQ(X;C0) = B̂igQ(X;Y ),

π−1(B̂igR(X;Y )) = B̂ig⊗R(X;Y ),

ρ−1(B̂igR(X;Y )) = B̂igQ(X;Y ).

A continuous Hermitian invertible sheaf L on X is said to be Y -big (or big with
respect to Y ) if L ∈ B̂ig(X;Y ). In the remainder of this section, we observe
several basic properties of Y -big, continuous Hermitian invertible sheaves. Let
us begin with the following proposition.

PROPOSITION 5.1

(1) Let L be a continuous Hermitian invertible sheaf on X. Then the fol-
lowing are equivalent:

(1.1) L is Y -big;
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(1.2) For any A ∈ Âmp(X), there is a positive integer n with nL ≥Y A;
(1.3) Y �⊆ SBs+(L);

(2) If L is Y -big, then there is a positive integer m0 such that mL is Y -
effective for all m ≥ m0.

Proof
(1) Let us see that (1.1) implies (1.2): There is a positive integer n such that
nL = B + M for some B ∈ Âmp(X) and M ∈ Êff(X;Y ). Let A be an ample
C∞-Hermitian invertible sheaf on X . We choose a positive number n1 such that
n1B − A is Y -effective. Then

n1nL − A = (n1B − A) + n1M

is Y -effective.
Next let us check that (1.2) implies (1.3): For an ample C∞-Hermitian

invertible A-sheaf, there is a positive integer n such that nL ≥Y A. Thus there is
s ∈ Ĥ0(X,nL − A) with s|Y �= 0, which means that Y �⊆ Bs(nL − A). Note that

Bs(nL − A) ⊇ SBs(nL − A) = SBs
(
L − (1/n)A

)
⊇ SBs+(L).

Hence Y �⊆ SBs+(L).
Finally let us observe that (1.3) implies (1.1): Let A be an ample C∞-

Hermitian invertible sheaf. Then by Proposition 3.2, there is a positive number
n such that

SBs+(L) = SBs
(
L − (1/n)A

)
= SBs(nL − A).

Thus, by Proposition 3.1(2), we can find a positive integer m such that

SBs+(L) = Bs
(
m(nL − A)

)
,

so that there is s ∈ Ĥ0(X,m(nL − A)) with s|Y �= 0 because Y �⊆ SBs+(L). This
means that mnL ≥Y mA, as required.

(2) We choose an ample C∞-Hermitian invertible sheaf A such that A and
L+A is Y -effective. Moreover, we can take a positive integer a such that aL − A

is Y -effective because L is Y -big. Note that aL = (aL − A) + A and (a + 1)L =
(aL − A) + (L + A). Thus aL and (a + 1)L are Y -effective. Let m be an integer
with m ≥ a2 + a. We set m = aq + r (0 ≤ r < a). Then q ≥ a, so that there
is an integer b with q = b + r and b > 0. Therefore mL is Y -effective because
mL = b(aL) + r((a + 1)L). �

PROPOSITION 5.2

Let X be a projective arithmetic variety, let Y be a d′-dimensional arithmetic
subvariety of X, and let L be a continuous Hermitian invertible sheaf on X. Let
Z· : Z0 = Y ⊃ Z1 ⊃ Z2 ⊃ · · · ⊃ Zd′ be a good flag over a prime p on Y . If L is
Y -big, then {(

νZ· (s|Y ),m
) ∣∣ s ∈ Ĥ0(X,mL) and s|Y �= 0

}
generates Zd′+1 as a Z-module.
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To prove Proposition 5.2, we need the following two lemmas.

LEMMA 5.3

Let X be either a projective arithmetic variety or a projective variety over a field.
Let Z be a reduced and irreducible subvariety of codimension 1, and let x be a
closed point of Z. Let I be the defining ideal sheaf of Z. We assume that I is
principal at x. (It holds if X is regular at x.) Let H be an ample invertible sheaf
on X. Then there is a positive integer n0 with the following property: for all
n ≥ n0, we can find s ∈ H0(X,nH ⊗ I) such that s �= 0 in nH ⊗ I ⊗ κ(x), where
κ(x) is the residue field at x.

Proof
Let mx be the maximal ideal at x. Since I is invertible around x, we have the
exact sequence

0 → nH ⊗ I ⊗ mx → nH ⊗ I → nH ⊗ I ⊗ κ(x) → 0.

As H is ample, there is a positive integer n0 such that

H1(X,nH ⊗ I ⊗ mx) = 0

for all n ≥ n0, which means that H0(X,nH ⊗ I) → nH ⊗ I ⊗ κ(x) is surjective,
as required. �

LEMMA 5.4

Let X be a projective arithmetic variety, and let Y be a d′-dimensional arithmetic
subvariety of X. Let Z· : Z0 = Y ⊃ Z1 ⊃ Z2 ⊃ · · · ⊃ Zd′ be a good flag over a
prime p on Y . Let H be an ample invertible sheaf on X. Let e1, . . . , ed′ be the
standard basis of Zd′

. Then there is a positive integer n0 such that, for all n ≥ n0,
we can find s1, . . . , sd′ ∈ H0(X,nH) with νZ· (s1|Y ) = e1, . . . , νZ· (sd′ |Y ) = ed′ .

Proof
First of all, we can find n′

0 such that, for all n ≥ n′
0,

H0(X,nH) → H0(Zi, nH|Zi)

are surjective for all i. We set Zd′ = {z}. For i = 1, . . . , d′, let Ii be the defining
ideal sheaf of Zi in Zi−1. Then, by Lemma 5.3, there is a positive integer n′

i

such that, for all n ≥ n′
i, we can find s′

i ∈ H0(Zi, nH|Zi−1 ⊗ Ii) such that s′
i �= 0 in

nH|Zi−1 ⊗ Ii ⊗ κ(z). Thus if n ≥ max{n′
0, n

′
1, . . . , n

′
d′ }, then there are s1, . . . , sd′ ∈

H0(X,nH) such that si|Yi−1 = s′
i for i = 1, . . . , d′. By our construction, it is easy

to see that νZ· (si|Y ) = ei. �

Proof of Proposition 5.2
Let us begin with the following claim.

CLAIM 5.5.1

There are an ample C∞-Hermitian invertible sheaf A and s0, s1, . . . , sd′ ∈ Ĥ0(X,
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A) \ {0} and t ∈ Ĥ0(X,A + L) \ {0} such that

s0|Y �= 0, s1|Y �= 0, . . . , sd′ |Y �= 0, t|Y �= 0

and

νZ· (s0|Y ) = 0, νZ· (s1|Y ) = e1, . . . , νZ· (sd′ |Y ) = ed′ , and νZ· (t|Y ) = 0.

Proof
Let B be an ample invertible sheaf on X . By Lemma 5.4, there are positive
integers n, s0, s1, . . . , sd ∈ H0(X,nB) \ {0}, and t ∈ H0(X,nB + L) \ {0} such
that

νZ· (s0|Y ) = 0, νZ· (s1|Y ) = e1, . . . , νZ· (sd|Y ) = ed, and νZ· (t|Y ) = 0.

We choose a C∞-Hermitian metric of B such that B is ample, s0, s1, . . . , sd ∈
Ĥ0(X,nB), and t ∈ Ĥ0(X,nB + L). �

Let M be the Z-submodule generated by{(
νZ· (s|Y ),m

) ∣∣ s ∈ Ĥ0(X,mL) and s|Y �= 0
}
.

Since L is Y -big, there is a positive integer a with aL ≥Y A; that is, there is
e ∈ Ĥ0(X,aL − A) with e|Y �= 0. Note that

t ⊗ e ∈ Ĥ0
(
X, (a + 1)L

)
and s0 ⊗ e ∈ Ĥ0(X,aL).

Moreover, νZ· (t ⊗ e|Y ) = νZ· (e|Y ) and νZ· (s0 ⊗ e|Y ) = νZ· (e|Y ). Thus(
νZ· (t ⊗ e|Y ), a + 1

)
−
(
νZ· (s0 ⊗ e|Y ), a

)
= (0, . . . ,0,1) ∈ M.

Further, as si ⊗ e, s0 ⊗ e ∈ Ĥ0(X,aL), we obtain(
νZ· (si ⊗ e|Y ),m

)
−
(
νZ· (s0 ⊗ e|Y ),m

)
=
(
ei + νZ· (e|Y ),m

)
−
(
νZ· (e|Y ),m

)
= (ei,0) ∈ M.

Hence M = Zd+1. �

6. Arithmetic restricted volume

Let X be a projective arithmetic variety, and let Y be a d′-dimensional arithmetic
subvariety of X . For an invertible sheaf L on X , Image(H0(X,L) → H0(Y,L|Y ))
is denoted by H0(X | Y,L). We assign an arithmetic linear series Ĥ0

• (X | Y,L)
of L|Y to each continuous Hermitian invertible sheaf L on X with the following
properties:

(1) Image(Ĥ0(X,L) → H0(X | Y,L)) ⊆ Ĥ0
• (X | Y,L);

(2) s ⊗ s′ ∈ Ĥ0
• (X | Y,L+M) for all s ∈ Ĥ0

• (X | Y,L) and s′ ∈ Ĥ0
• (X | Y,M).

This correspondence L �→ Ĥ0
• (X | Y,L) is called an assignment of arithmetic

restricted linear series from X to Y . As examples, we have the following.
• Ĥ0

CL(X | Y,L): Ĥ0
CL(X | Y,L) is the convex lattice hull of

Image
(
Ĥ0(X,L) → H0(X | Y,L)

)
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in H0(X | Y,L). This is actually an assignment of arithmetic restricted linear
series from X to Y . The above property (1) is obvious. For (2), let s1, . . . , sr ∈
Image(Ĥ0(X,L) → H0(X | Y,L)) and s′

1, . . . , s
′
r′ ∈ Image(Ĥ0(X,M) → H0(X |

Y,M)), and let

λ1, . . . , λr and λ′
1, . . . , λ

′
r′

be nonnegative real numbers with λ1 + · · · + λr = 1 and λ′
1 + · · · + λ′

r′ = 1. Then

(λ1s1 + · · · + λrsr) ⊗ (λ′
1s

′
1 + · · · + λ′

r′ s′
r′ ) =

∑
i,j

λiλ
′
j(si ⊗ sj)

and ∑
i,j

λiλ
′
j = (λ1 + · · · + λr)(λ′

1 + · · · + λ′
r′ ) = 1,

as required.
• Ĥ0

quot(X | Y,L): Let ‖ · ‖X|Y
sup,quot be the quotient norm of H0(X | Y,L)

induced by the norm ‖ · ‖sup on H0(X,L) and the natural surjective homomor-
phism H0(X,L) → H0(X | Y,L). Then Ĥ0

quot(X | Y,L) is defined to be

Ĥ0
quot(X | Y,L) =

{
s ∈ H0(X | Y,L)

∣∣ ‖s‖X|Y
sup,quot ≤ 1

}
.

This is obviously an assignment of arithmetic restricted linear series from X to Y .
• Ĥ0

sub(X | Y,L): Let ‖ · ‖Y,sup be the norm on H0(Y,L|Y ) given by ‖s‖Y,sup =
supy∈Y (C) |s|(y). Let ‖ · ‖X|Y

sup,sub be the subnorm of H0(X | Y,L) induced by
‖ · ‖Y,sup on H0(Y,L|Y ) and the natural injective homomorphism H0(X | Y,L) ↪→
H0(Y,L|Y ). Then Ĥ0

sub(X | Y,L) is defined to be

Ĥ0
sub(X | Y,L) =

{
s ∈ H0(X | Y,L)

∣∣ ‖s‖X|Y
sup,sub ≤ 1

}
.

This is obviously an assignment of arithmetic restricted linear series from X to Y .
Note that

Ĥ0
CL(X | Y,L) ⊆ Ĥ0

quot(X | Y,L) ⊆ Ĥ0
sub(X | Y,L)

for any continuous Hermitian invertible sheaf L. An assignment L �→ Ĥ0
• (X |

Y,L) of arithmetic restricted linear series from X to Y is said to be proper if, for
each L ∈ P̂ic(X,C0), there is a symmetric and bounded convex set Δ in H0(X |
Y,L) ⊗ R such that Ĥ0

• (X | Y,L + O(λ)) = H0(X | Y,L) ∩ exp(λ)Δ for all λ ∈ R.
For example, the assignments L �→ Ĥ0

quot(X | Y,L) and L �→ Ĥ0
sub(X | Y,L) are

proper.
Let us fix an assignment L �→ Ĥ0

• (X | Y,L) of arithmetic restricted linear
series from X to Y . Then we define the restricted arithmetic volume with respect
to the assignment to be

v̂ol•(X | Y,L) := limsup
m→∞

log#Ĥ0
• (X | Y,mL)

md′ /d′!
.

Let us begin with the following proposition.
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PROPOSITION 6.1

(1) If L ≤Y M , then #Ĥ0
• (X | Y,L) ≤ #Ĥ0

• (X | Y,M). In particular,
v̂ol•(X | Y,L) ≤ v̂ol•(X | Y,M).

(2) We assume that the assignment L �→ Ĥ0
• (X | Y,L) is proper. Then, for

any L ∈ P̂ic(X;C0) and f ∈ C0(X),∣∣v̂ol•
(
X

∣∣ Y,L + O(f)
)

− v̂ol•(X | Y,L)
∣∣ ≤ d′ vol(XQ | YQ,LQ)‖f ‖sup,

where vol(XQ | YQ,LQ) is the algebraic restricted volume (see [3]).

Proof
(1) Let us choose t ∈ Ĥ0(X,M − L) with t|Y �= 0. Then t|Y ∈ Ĥ0

• (X | Y,M − L)
and

s ⊗ (t|Y ) ∈ Ĥ0
• (X | Y,M)

for any s ∈ Ĥ0
• (X | Y,L), which means that we have the injective map

Ĥ0
• (X | Y,L) → Ĥ0

• (X | Y,M)

given by s �→ s ⊗ (t|Y ). Thus (1) follows.
(2) First, let us see that

(6.1.1)
∣∣v̂ol•

(
X

∣∣ Y,L + O(λ)
)

− v̂ol•(X | Y,L)
∣∣ ≤ d′ vol(XQ | YQ,LQ)|λ|

for any L ∈ P̂ic(X;C0) and λ ∈ R. Without loss of generality, we may assume
that λ ≥ 0. As the assignment is proper, for each m ≥ 1 there is a symmetric
and bounded convex set Δm such that

Ĥ0
•
(
X

∣∣ Y,mL + O(μ)
)

= H0(X | Y,mL) ∩ exp(μ)Δm

for all μ ∈ R. Thus, by using Lemma 1.2.2,

0 ≤ log#Ĥ0
•
(
X

∣∣ Y,m(L + O(λ))
)

− log#Ĥ0
• (X | Y,mL)

= log#
(
H0(X | Y,mL) ∩ exp(mλ)Δm

)
− log#

(
H0(X | Y,L) ∩ Δm

)
≤ log

(
�2exp(mλ)�

)
dimQ H0(XQ | YQ,mLQ),

which implies (6.1.1).
For f ∈ C0(X), if we set λ = ‖f ‖sup, then −λ ≤ f ≤ λ. Thus the proposition

follows from (6.1.1). �

The following theorem is the main result of this section.

THEOREM 6.2

(1) If L is Y -big, then

v̂ol•(X | Y,L) = lim
m→∞

log#Ĥ0
• (X | Y,mL)

md′ /d′!
.

In particular, if L is Y -big, then v̂ol•(X | Y,nL) = nd′
v̂ol•(X | Y,L) for all non-

negative integers n.
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(2) If L and M are Y -big, continuous Hermitian invertible sheaves on X,
then

v̂ol•(X | Y,L + M)1/d′ ≥ v̂ol•(X | Y,L)1/d′
+ v̂ol•(X | Y,M)1/d′

.

(3) If L is Y -big, then for any positive ε, there is a positive integer n0 = n0(ε)
such that, for all n ≥ n0,

lim inf
k→∞

log#(Kk,n)
nd′ kd′ ≥ v̂ol•(X | Y,L)

d′!
− ε,

where Kk,n is the convex lattice hull of

Vk,n =
{
s1 ⊗ · · · ⊗ sk

∣∣ s1, . . . , sk ∈ Ĥ0
• (X | Y,nL)

}
in H0(X | Y,knL).

Proof
Let Z· : Z0 = Y ⊃ Z1 ⊃ Z2 ⊃ · · · ⊃ Zd′ be a good flag over a prime p on Y .

(1) Let Δ be the closure of
∞⋃

m=1

1
m

νZ·

(
Ĥ0

• (X | Y,mL) \ {0}
)

in Rd′
. Then, by Proposition 5.2, [11, Lemma 2.4], and [5, Proposition 2.1],

vol(Δ) = lim
m→∞

#νZ· (Ĥ
0

• (X | Y,mL) \ {0})
md′ .

By Corollary 2.3, there is a constant c depending only on L such that

νZ·

(
Ĥ0

• (X | Y,mL) \ {0}
)
logp − cmd′

logp
≤ log#Ĥ0

• (X | Y,mL)

≤ νZ·

(
Ĥ0

• (X | Y,mL) \ {0}
)
log p +

cmd′

log p
,

which implies that

vol(Δ) log p − c

log p
≤ lim inf

m→∞
log#Ĥ0

• (X | Y,mL)
md′

≤ limsup
m→∞

log#Ĥ0
• (X | Y,mL)
md′ ≤ vol(Δ) log p +

c

log p
.

Hence

limsup
m→∞

log#Ĥ0
• (X | Y,mL)
md′ − lim inf

m→∞

log#Ĥ0
• (X | Y,mL)
md′ ≤ 2c

log p
.

Thus as p goes to ∞, we have

limsup
m→∞

log#Ĥ0
• (X | Y,mL)
md′ = lim inf

m→∞
log#Ĥ0

• (X | Y,mL)
md′ .
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Moreover, we can see that

(6.2.1) |v̂ol•(X | Y,L) − vol(Δ)d′! logp| ≤ cd′!
log p

.

(2) Let Δ′ and Δ′ ′ be the closure of
∞⋃

m=1

1
m

νZ·

(
Ĥ0

• (X | Y,mM) \ {0}
)

and

∞⋃
m=1

1
m

νZ·

(
Ĥ0

• (X | Y,m(L + M)) \ {0}
)

in Rd′
. Since

νZ·

(
Ĥ0

• (X | Y,mL) \ {0}
)
+ νZ·

(
Ĥ0

• (X | Y,mM) \ {0}
)

=
{
νZ· (s ⊗ s′)

∣∣ s ∈ Ĥ0
• (X | Y,mL) \ {0}, s′ ∈ Ĥ0

• (X | Y,mM) \ {0}
}

⊆ νZ·

(
Ĥ0

• (X | Y,m(L + M)) \ {0}
)
,

we have Δ + Δ′ ⊆ Δ′ ′. Thus by Brunn-Minkowski’s theorem,

vol(Δ′ ′)1/d′ ≥ vol(Δ + Δ′)1/d′ ≥ vol(Δ)1/d′
+ vol(Δ′)1/d′

.

Note that (6.2.1) also holds for L and L + M with other constants c′ and c′ ′.
Hence for a small positive number ε, if p is a sufficiently large prime number,
then

|v̂ol•(X | Y,L) − vol(Δ)d′! logp| ≤ ε,

|v̂ol•(X | Y,M) − vol(Δ′)d′! logp| ≤ ε,

and

|v̂ol•(X | Y,L + M) − vol(Δ′ ′)d′! logp| ≤ ε

hold. Therefore(
v̂ol•(X | Y,L + M) + ε

)1/d′
≥
(
v̂ol•(X | Y,L) − ε

)1/d′
+
(
v̂ol•(X | Y,M) − ε

)1/d′
,

as required.
(3) Let c be a constant for Y , and let L|Y be as in Corollary 2.3. We choose

a good flag Z· : Z0 = Y ⊃ Z1 ⊃ Z2 ⊃ · · · ⊃ Zd′ over a prime p with c/(log p) ≤ ε/3.
Let ε′ be a positive number with ε′ log p ≤ ε/3. By [5, Proposition 3.1], there is
a positive integer n0 such that

lim
k→∞

#
(
k ∗ ν(Ĥ0

• (X | Y,nL) \ {0})
)

kd′ nd′ ≥ vol(Δ) − ε′

for all n ≥ n0. Note that

ν(Kk,n \ {0}) ⊇ k ∗ ν
(
Ĥ0

• (X | Y,nL) \ {0}
)
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and

log#(Kk,n) ≥ #ν(Kk,n \ {0}) logp − (ε/3)kd′
nd′

by Corollary 2.3 for k � 1. Thus

log#(Kk,n)
kd′ nd′ ≥

#
(
k ∗ ν(Ĥ0

• (X | Y,nL) \ {0})
)
log p

kd′ nd′ − ε/3,

which implies that

lim inf
k→∞

log#(Kk,n)
kd′ nd′ ≥ lim

k→∞

#
(
k ∗ ν(Ĥ0

• (X | Y,nL) \ {0})
)
log p

kd′ nd′ − ε/3

≥
(
vol(Δ) − ε′) log p − ε/3 ≥ vol(Δ) log p − 2ε/3.

Moreover, by (6.2.1),

vol(Δ) log p ≥ v̂ol•(X | Y,L)
d′!

− ε/3.

Thus we obtain (3). �

In the remainder of this section, let us consider consequences of Theorem 6.2.

COROLLARY 6.3

There is a unique continuous function

v̂ol′
•(X | Y, −) : B̂ig⊗R(X;Y ) → R

with the following properties:
(1) v̂ol′

•(X | Y, ι(L)) = v̂ol•(X | Y,L) holds for all L ∈ B̂ig(X;Y );
(2) v̂ol′

•(X | Y,λx) = λd′
v̂ol′

•(X | Y,x) holds for all λ ∈ R>0 and x ∈
B̂ig⊗R(X;Y );

(3) v̂ol′
•(X | Y,x + y)1/d′ ≥ v̂ol′

•(X | Y,x)1/d′
+ v̂ol′

•(X | Y, y)1/d′
holds for all

x, y ∈ B̂ig⊗R(X;Y ).

Proof
It follows from Theorem 6.2, Proposition 1.1.5, and Corollary 1.3.2. �

COROLLARY 6.4

If the assignment L �→ Ĥ0
• (X | Y,L) is proper, then there is a unique continuous

function

v̂ol′ ′
• (X | Y, −) : B̂igR(X;Y ) → R

with the following properties:
(1) v̂ol′ ′

• (X | Y,π(x′)) = v̂ol′
•(X | Y,x′) holds for all x′ ∈ B̂ig⊗R(X;Y );

(2) v̂ol′ ′
• (X | Y,λx) = λd′

v̂ol′ ′
• (X | Y,x) holds for all λ ∈ R>0 and x ∈

B̂igR(X;Y );
(3) v̂ol′ ′

• (X | Y,x+y)1/d′ ≥ v̂ol′ ′
• (X | Y,x)1/d′

+v̂ol′ ′
• (X | Y, y)1/d′

holds for all
x, y ∈ B̂igR(X;Y ).
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Proof
Let us begin with the following estimation:

(6.4.1)
∣∣v̂ol′

•
(
X

∣∣ Y,L + O(f)
)

− v̂ol′
•(X | Y,L)

∣∣ ≤ d′ vol(XQ | YQ,LQ)‖f ‖sup

for any L ∈ B̂ig⊗R(X;Y ) and f ∈ C0(X) with L+ O(f) ∈ B̂ig⊗R(X;Y ). By using
the openness of B̂ig⊗R(X;Y ) and the continuity of v̂ol′

•(X | Y, −) on B̂ig⊗R(X;Y ),
it is sufficient to see (6.4.1) for L ∈ B̂igQ(X;Y ). Thus L = (1/n)ι(M) for some
M ∈ B̂ig(X;Y ) and n ∈ Z>0, and hence, by Proposition 6.1,∣∣v̂ol′

•
(
X

∣∣ Y,L + O(f)
)

− v̂ol′
•(X | Y,L)

∣∣
=
∣∣v̂ol′

•
(
X

∣∣ Y, (1/n)ι(M + O(nf))
)

− v̂ol′
•
(
X

∣∣ Y, (1/n)ι(M)
)∣∣

= (1/n)d′ ∣∣v̂ol•
(
X

∣∣ Y,M + O(nf)
)

− v̂ol•(X | Y,M)
∣∣

= (1/n)d′
d′ vol(XQ | YQ,MQ)‖nf ‖sup = d′ vol(XQ | YQ,LQ)‖f ‖sup.

Let us observe that there is a function

v̂ol′ ′
• (X | Y, −) : B̂igR(X;Y ) → R

such that the following diagram is commutative:

B̂ig⊗R(X;Y )
v̂ol′

•(X | Y,−)

π

R

B̂igR(X;Y )
v̂ol′ ′

• (X | Y −)

Namely, we need to show that if π(x′) = π(y′) for x′, y′ ∈ B̂ig⊗R(X;Y ), then

v̂ol′
•(X | Y,x′) = v̂ol′

•(X | Y, y′).

As π(x′) = π(y′), there is z ∈ N(X) such that y′ = x′ + z. We set z = O(f1) ⊗
a1 + · · · + O(fr) ⊗ ar with a1f1 + · · · + arfr = 0, where f1, . . . , fr ∈ C0(X) and
a1, . . . , ar ∈ R. Let us take a sequence {ain} ∞

n=1 in Q such that ai = limn→∞ ain.
We set φn = a1nf1 + · · · + arnfr. Then

‖φn‖sup = ‖(a1n − a1)f1 + · · · + (arn − ar)fr ‖sup

≤ |a1n − a1| ‖f1‖sup + · · · + |arn − ar | ‖fr ‖sup.

Thus limn→∞ ‖φn‖sup = 0. If we put zn = O(f1) ⊗ a1n + · · · + O(fr) ⊗ arn, then
limn→∞ zn = z in P̂ic⊗R(X;C0) and zn = O(φn) in P̂icQ(X;C0). Thus by (6.4.1),

|v̂ol′
•(X | Y,x′ + zn) − v̂ol′

•(X | Y,x′)|

=
∣∣v̂ol′

•
(
X

∣∣ Y,x′ + O(φn)
)

− v̂ol′
•(X | Y,x′)

∣∣
≤ d′ vol(XQ | YQ, x′

Q)‖φn‖sup

for n � 1. Therefore as n goes to ∞, v̂ol′
•(X | Y, y′) = v̂ol′

•(X | Y,x′).
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Properties (2) and (3) are obvious. The continuity of v̂ol′ ′
• (X | Y, −) follows

from the fact that π is an open map. �

7. Restricted volume for ample C∞ -Hermitian invertible sheaf

In this section, let us consider the restricted volume for an ample C∞-Hermitian
invertible sheaf and observe several consequences.

THEOREM 7.1

Let X be a projective arithmetic variety, and let Y be a d′-dimensional arithmetic
subvariety of X. Let A be a Y -big continuous Hermitian invertible sheaf on X.
Then we have the following.

(1) We assume that there are a positive integer a and strictly small sections
s1, . . . , sl of aA with {x ∈ XQ | s1(x) = · · · = sl(x) = 0} = ∅. Then

v̂olquot(X | Y,A) = lim
m→∞

log#Image(Ĥ0(X,mA) → H0(X | Y,mA))
md′ /d′!

.

Moreover, if AQ is ample on XQ, then

lim
m→∞

log#Image(Ĥ0(X,mA) → H0(X | Y,mA))
md′ /d′!

> 0.

(2) We assume that X is generically smooth, AQ is ample on XQ, the metric
of A is C∞, and c1(A) is semipositive on X(C). Then

v̂olquot(X | Y,A) = v̂ol(Y,A|Y ).

Proof
(1) Let I be the defining ideal sheaf of Y . Let us begin with the following claim.

CLAIM 7.1.1

We can find a positive integer m0 and a positive number ε0 with the following
property: for all m ≥ m0, there is a free basis e1, . . . , eN of H0(X,mA ⊗ I)
as a Z-module such that ‖ei‖sup ≤ e−mε0 for all i, where the norm ‖ · ‖sup of
H0(X,mA ⊗ I) is the subnorm induced by the inclusion map H0(X,mA ⊗ I) ↪→
H0(X,mA) and the sup norm of H0(X,mA).

Proof
By [8, Corollary 3.3], there are positive constants B and c such that

λQ

(
H0(X,mA), ‖ · ‖sup

)
≤ B(m + 1)dimX(dimX−1) exp(−cm)

for all m ≥ 0 (for the definition of λQ, see [8]). We set R =
⊕

m≥0 H0(X,mA)
and I =

⊕
m≥0 H0(X,mA ⊗ I). Note that RQ is Noetherian by [8, Lemma 3.4].

Thus as I is a homogeneous ideal of R, IQ is finitely generated as a RQ-module.
Therefore by [8, Lemma 2.2], there is a positive constant B′ such that

λQ

(
H0(X,mA ⊗ I), ‖ · ‖sup

)
≤ B′(m + 1)dimX(dimX−1) exp(−cm)



722 Atsushi Moriwaki

for all m ≥ 0. Hence the claim follows by [8, Lemma 1.2]. �

Let ε be an arbitrary positive number. Next, let us see the following claim.

CLAIM 7.1.2

Ĥ0
quot

(
X | Y,m(A − O(ε))

)
is contained in Image(Ĥ0(X,mA) → H0(X | Y,mA))

for m � 1.

By Claim 7.1.1, if m � 1, then we can find a free basis e1, . . . , eN of H0(X,mA ⊗
I) such that ‖ei‖sup ≤ e−ε0m for all i. We choose eN+1, . . . , eM ∈ H0(X,mA)
such that eN+1|Y , . . . , eM |Y form a free basis of H0(X | Y,mA). Then e1, . . . , eM

form a free basis of H0(X,mA). Let s ∈ Ĥ0
quot

(
X | Y,m(A − O(ε))

)
. Then there

is s′ ∈ H0(X,mA) ⊗ R such that s′ |Y = s and ‖s′ ‖sup = ‖s‖X|Y
sup,quot ≤ e−εm. We

set s′ =
∑M

i=1 ciei (ci ∈ R). Since

s′ |Y =
M∑

i=N+1

ciei|Y = s ∈ H0(X | Y,mA),

we have ci ∈ Z for all i = N + 1, . . . ,M . Here we put

s̃ =
N∑

i=1

�ci�ei +
M∑

i=N+1

ciei.

Then s̃|Y = s and

‖s̃‖sup =
∥∥∥s′ +

N∑
i=1

(�ci� − ci)ei

∥∥∥
sup

≤ e−εm + e−ε0m rkH0(X,mA),

which means that s̃ ∈ Ĥ0(X,mA) for m � 1. Therefore

s ∈ Image
(
Ĥ0(X,mA) → H0(X | Y,mA)

)
.

�

By the above claim, if we choose ε > 0 such that A − O(ε) is Y -big, then

v̂olquot

(
X

∣∣ Y,A − O(ε)
)

≤ lim inf
m→∞

log#Image(Ĥ0(X,mA) → H0(X | Y,mA))
md′ /d′!

≤ limsup
m→∞

log#Image(Ĥ0(X,mA) → H0(X | Y,mA))
md′ /d′!

≤ v̂olquot(X | Y,A).

Hence the first assertion follows because, by Proposition 6.1,

v̂olquot

(
X

∣∣ Y,A − O(ε)
)

≥ v̂olquot(X | Y,A) − d′εvol(XQ | YQ,AQ)

and ε can be taken as an arbitrary small number.
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We further assume that AQ is ample on XQ. Let us observe that

lim
m→∞

log#Image(Ĥ0(X,mA) → H0(X | Y,mA))
md′ /d′!

> 0.

Let us choose a sufficiently large integer n0 with the following properties.
(a) H0(X,n0A) has a free basis Σ consisting of strictly small sections, which

is possible by [8, Corollary 3.3, Lemma 1.2].
(b) Symm(H0(X,n0A) ⊗ Q) → H0(X,mn0A) ⊗ Q is surjective for all m ≥ 1.
(c) H0(X,mn0A) ⊗ Q → H0(Y,mn0A|Y ) ⊗ Q is surjective for all m ≥ 1.

We set e−c = max{ ‖s‖sup | s ∈ Σ}. Then c > 0. Moreover, we put

Σm = {s1 ⊗ · · · ⊗ sm | s1, . . . , sm ∈ Σ}.

Note that Σm generates H0(X,mn0A) ⊗ Q as a Q-vector space and that ‖s‖sup ≤
e−mc for all s ∈ Σm. Let rm be the rank of H0(Y,mn0A|Y ). Since {s|Y | s ∈ Σm}
gives rise to a generator of H0(Y,mn0A|Y ) ⊗ Q, we can find s1, . . . , srm ∈ Σm

such that {s1|Y , . . . , srm |Y } forms a basis of H0(Y,mn0A|Y ) ⊗ Q. We put

Sm =
{
(a1, . . . , arm) ∈ Zrm

∣∣ 0 ≤ ai ≤ ecm/rm

}
.

Then the map Sm → H0(Y,mn0A|Y ) given by

(a1, . . . , arm) �→ a1s1|Y + · · · + armsrm |Y
is injective. Moreover, for (a1, . . . , arm) ∈ Sm,∥∥∥ rm∑

i=1

aisi

∥∥∥
sup

≤
rm∑
i=1

ai‖si‖sup ≤
rm∑
i=1

(ecm/rm)e−cm = 1.

Hence

#Image
(
Ĥ0(X,mn0A) → H0(X | Y,mn0A)

)
≥ #(Sm) ≥ (ecm/rm)rm .

Thus the second assertion follows.
(2) Note that v̂olquot(X | Y,A) ≤ v̂ol(Y,A|Y ). Thus if v̂ol(Y,A|Y ) = 0, then

the assertion is obvious, so that we may assume that v̂ol(Y,A|Y ) > 0. Let ε be
an arbitrary positive number such that (A − O(ε))|Y is big. By Theorem 6.2(3),
there is an integer n1 ≥ 2 such that if we set Ĥ0

(
Y,n1(A − O(ε))

)
= {s1, . . . , sl},

then

lim inf
m→∞

log#CL({sa1
1 ⊗ · · · ⊗ sal

l | (a1, . . . , al) ∈ Γm})
md′ nd′

1 /d′!
≥ v̂ol

(
Y,A − O(ε)|Y

)
− ε,

where Γm = {(a1, . . . , al) ∈ (Z≥0)l | a1 + · · · + al = m}. Note that ‖si‖Y,sup ≤
e−n1ε for all i. By [12, Theorems 3.3, 3.5], if m � 1, then for any (a1, . . . , al) ∈ Γm,
there is s(a1, . . . , al) ∈ H0(X,mn1A) ⊗ R such that s(a1, . . . , al)|Y = sa1

1 ⊗ · · · ⊗ sal

l

and

‖s(a1, . . . , al)‖X,sup ≤ emε‖s1‖a1
Y,sup · · · ‖sl‖al

Y,sup ≤ e−εm(n1−1) < 1,

which means that sa1
1 ⊗ · · · ⊗ sal

l ∈ Ĥ0
quot(X | Y,mn1A). Therefore

CL
({

sa1
1 ⊗ · · · ⊗ sal

l

∣∣ (a1, . . . , al) ∈ Γm

})
⊆ Ĥ0

quot(X | Y,mn1A).
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Hence

v̂ol(Y,A|Y ) ≥ v̂olquot(X | Y,A)

= lim
m→∞

log#Ĥ0
quot(X | Y,mn1A)
(mn1)d′ /d′!

≥ lim inf
m→∞

log#CL({sa1
1 ⊗ · · · ⊗ sal

l | (a1, . . . , al) ∈ Γm})
md′ nd′

1 /d′!

≥ v̂ol
(
Y,A − O(ε)|Y

)
− ε ≥ v̂ol(Y,A|Y ) − ε

(
d′ vol(YQ,AQ) + 1

)
,

as required. �

COROLLARY 7.2

Let L �→ Ĥ0
• (X | Y,L) be an assignment of arithmetic restricted linear series from

X to Y . Then we have the following.
(1) If X is generically smooth and A is an ample C∞-Hermitian invertible

sheaf on X, then

v̂ol•(X | Y,A) = v̂ol(Y,A|Y ).

(2) If L is a Y -big continuous Hermitian invertible sheaf on X, then

v̂ol•(X | Y,L) > 0.

(3) If x ∈ B̂ig⊗R(X;Y ), then v̂ol•(X | Y,x) > 0.

Proof
(1) This is a consequence of Theorem 7.1.

(2) As L is Y -big, there are a positive integer n and an ample C∞-Hermitian
invertible sheaf A on X such that nL ≥Y A, so that, by Proposition 6.1(1) and
Theorem 7.1(1),

nd′
v̂ol•(X | Y,L) = v̂ol•(X | Y,nL) ≥ v̂ol•(X | Y,A) > 0.

(3) If x ∈ B̂ig⊗R(X;Y ), there are positive numbers a1, . . . , ar and L1, . . . ,Lr ∈
B̂ig(X;Y ) such that x = L1 ⊗ a1 + · · · +Lr ⊗ ar. Hence, by (2) and Corollary 6.3,

v̂ol•(X | Y,x)1/d′

≥ v̂ol•(X | Y,L1 ⊗ a1)1/d′
+ · · · + v̂ol•(X | Y,Lr ⊗ ar)1/d′

= a1v̂ol•(X | Y,L1)1/d′
+ · · · + arv̂ol•(X | Y,Lr)1/d′

> 0.

�
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