# On the imbedding problem of abstract varieties in projective varieties 

By<br>Masayoshi Nagata

(Received July 1, 1956)

Since the notion of abstract varieties was introduced by Weil [3], it was asked whether every abstract variety can be imbedded (biregularly) in a projective variety or not. Though the writer hoped to solve the question affirmatively, he found unfortunately a counter example against the question. Indeed, there exists a non-singular abstract variety $V$ (which is not complete) which has two different points $P$ and $P^{\prime}$ such that if a function $f$ on $V$ is well defined at both $P$ and $P^{\prime}$, then $f(P)=f\left(P^{\prime}\right)$.

After some preliminaries in $\S 1$, we shall show the example in $\S 2$. In $\S 3$, we shall give a condition for an abstract variety to be imbedded in a projective variety and then we shall show in $\S 4$ that even when a monoidal transform of a non-singular abstract variety $V$ can be imbedded in a projective variety, $V$ may not be imbedded in any projective variety. By the way, we shall give some remarks in $\S 5$.

Terminology. Since the notion of abstract varieties corresponds to the notion of models in the sense of Nagata [1], we shall explain in terminology on models as in Nagata [1].

Results assumed to be known: Besides some basic results on rings and models, we shall make use of the criterion of simplicity by Jacobian matrix. Further, in $\S \S 4-5$, we shall make use of some basic results on monoidal transformations and quadratic transformations (see [1, IV]).

## § 1. Some preliminary lemmas

Lemma 1. Let $M$ and $M^{\prime}$ be models of the same function field. Then $M \cup M^{\prime}$ is again a model if and only if the join $J\left(M, M^{\prime}\right)$ of $M$ and $M^{\prime}$ is contained in $M \cap M^{\prime}$.

Proof. If $M \cup M^{\prime}$ is a model, then $J\left(M, M^{\prime}\right)=M \cap M^{\prime}$. Conversely, if $J\left(M, M^{\prime}\right)$ is contained in $M \cap M^{\prime}$, then any spot $P$ in $M \cup M^{\prime}$ does not correspond to any other spot in $M \cup M^{\prime}$ and we see that $M \cup M^{\prime}$ is a model.

Corollary. Let $\mathfrak{v}$ and $\mathfrak{v}^{\prime}$ be affine rings over the same ground ring $I$ and let $A$ and $A^{\prime}$ be affine models defined by $\mathfrak{o}$ and $\mathfrak{o}^{\prime} r e$ spectively. If there are elements $x \varepsilon_{\mathfrak{v}}$ and $y \varepsilon_{\mathfrak{v}^{\prime}}$ such that $\mathfrak{v}\left[\mathfrak{v}^{\prime}\right]=\mathfrak{v}[1 / x]$ $=\mathrm{o}^{\prime}[1 / y]$, then $A \cup A^{\prime}$ is a model. ${ }^{1)}$

Lemma 2. Let $\mathfrak{o}$ be a normal ring and let $x$ be an element of the field of quotients of o . Then all the relations of $x$ over o are generated by those of degree 1, that is, let $\left\{a_{0}\right\}$ be a set of generators of $\left\{a ; a \varepsilon_{\mathfrak{v}}, a x \varepsilon_{\mathfrak{v}}\right\}$ and set $b_{o}=a_{0} x$, then $\mathfrak{v}[x]=\mathfrak{o}[X] / \mathfrak{a}$ with the ideal generated all $a_{\sigma} X-b_{a}$.

Proof. Assume that $c_{0} x^{n}+c_{1} x^{n-1}+\cdots+c_{n}=0\left(c_{i} \varepsilon_{\mathfrak{0}}\right)$. Let $v$ be an arbitrary valuation whose valuation ring contains $\mathfrak{o}$. Then $v\left(c_{0} x\right) \geq 0$. For, if $v(x) \geq 0$, then there is nothing to prove. Assume that $v(x)<0$. Then $v\left(c_{0} x\right)=v\left(c_{1}+c_{2} x^{-1}+\cdots+c_{n} x^{-n+1}\right) \geq 0$. Since $\mathfrak{o}$ is a normal ring, $\mathfrak{v}$ is the intersection of valuation rings and we see that $c_{0} x \varepsilon_{0}$. Now the assertion follows easily.

Remark. If $\mathfrak{o}$ is a Noetherian normal ring and if $x$ is not in $\mathfrak{v}$, then $\left\{a ; a \varepsilon_{\mathfrak{v}}, a x \varepsilon_{\mathfrak{0}}\right\}$ is an ideal of rank 1 , because $\mathfrak{o}$ is the intersection of discrete valuation rings $\mathfrak{o}_{\mathfrak{p}}$ with prime ideals $\mathfrak{p}$ of rank 1 .

## §2. The construction of an example

Let $K$ be a field and let $x, y, z, w$ be algebraically independent elements over $K$. Set $u=x y+z w, x^{\prime}=y / u^{2}, y^{\prime}=u^{2} x, z^{\prime}=w / u^{2}, w^{\prime}=u^{2} z$. Then

Lemma A. The operation ' defines an involution of the field $K(x, y, z, w)$ and $u^{\prime}=u$.

Proof. $u=x^{\prime} y^{\prime}+z^{\prime} w^{\prime}$ and $x=y^{\prime} / u^{2}, \quad y=u^{2} x^{\prime}, \quad z=w^{\prime} / u^{2}, \quad w=u^{2} z^{\prime}$ and we see the assertion.

From now on, we shall use ' in the sense of this involution.
Set $\mathfrak{v}=K\lceil x, y, z, w\rceil \quad\left(\mathfrak{o}^{\prime}=K\left\lceil x^{\prime}, y^{\prime}, z,^{\prime} w^{\prime}\right\rceil\right)$ and let $A$ and $A^{\prime}$ be the affine models defined by $\mathfrak{o}$ and $\mathfrak{o}^{\prime}$ respectively.

Lemma B. $\quad M=A \cup A^{\prime}$ is a non-singular model.

1) The converse of this corollary is not true. $A \cup A^{\prime}$ is a model if and only if there are ideals $\mathfrak{a}$ and $\mathfrak{a}^{\prime}$ in $o$ and $\mathfrak{o}^{\prime}$ respectively and a natural number $n$ such that $\mathfrak{o}\left[\mathrm{o}^{\prime}\right]=\mathrm{o}\left[\tilde{\mathfrak{a}}^{-n}\right]=\mathrm{o}^{\prime}\left[\mathfrak{a}^{\prime-n}\right]=\tilde{\mathrm{a}} \boldsymbol{o}\left[\mathrm{o}^{\prime}\right]=\tilde{\mathbf{a}}^{\prime} \boldsymbol{v}\left[\mathrm{o}^{\prime}\right]$ by virtue of a result in [2].

Proof. Since $x x^{\prime}+z z^{\prime}=1 / u, \mathfrak{v}\left[\mathfrak{v}^{\prime}\right]$ contains $1 / u$ and we see that $\mathfrak{v}\left[\mathfrak{v}^{\prime}\right]=\mathfrak{v}[1 / u]=\mathfrak{v}^{\prime}[1 / u]$. Since $u$ is in both $\mathfrak{v}$ and $\mathfrak{v}^{\prime}, M$ is a model by the corollary to Lemma 1 . Since $A$ and $A^{\prime}$ are models of the affine 4 -spaces, they are non-singular and $M$ is also non-singular.

This model $M$ is the required example as will be proved.
Set $a=x y\left(=x^{\prime} y^{\prime}\right) \quad\left(a^{\prime}=a\right), b=z w\left(=z^{\prime} w^{\prime}\right) \quad\left(b^{\prime}=b\right), c=y z\left(=x^{\prime} w^{\prime}\right)$ $\left(c^{\prime}=y^{\prime} z^{\prime}=x w\right)$. Then $u=a+b$ and $y, y^{\prime}, w, w^{\prime}, a, b, c, c^{\prime}$ are in $\mathfrak{o} \cap \mathfrak{o}^{\prime}$. Set $\mathfrak{o}^{*}=K\left[y, y^{\prime}, w, w^{\prime}, a, b, c, c^{\prime}\right]$. Then

Lemma C. $\mathfrak{o}^{*}$ is contained in $\mathfrak{o} \cap \mathfrak{v}^{\prime}$ and is closed under ${ }^{\prime}$.
Among $y, y^{\prime}, w, w^{\prime}, a, b, c$ and $c^{\prime}$, there are relations as follows:

$$
\begin{aligned}
& (a+b)^{2} a=y y^{\prime}, \quad(a+b)^{2} b=w w^{\prime},(a+b)^{2} c=y w^{\prime}, \\
& (a+b)^{2} c^{\prime}=y^{\prime} w, a w=c^{\prime} y, a w^{\prime}=c y^{\prime}, c w=b y, \\
& c^{\prime} w^{\prime}=b y^{\prime}, c c^{\prime}=a b .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& x=a / y=c^{\prime} / w=y^{\prime} /(a+b)^{2}, z=c / y=b / w=w^{\prime} /(a+b)^{2} \\
& x^{\prime}=a / y^{\prime}=c / w^{\prime}=y /(a+b)^{2}, z^{\prime}=c^{\prime} / y^{\prime}=b / w^{\prime}=w /(a+b)^{2} .
\end{aligned}
$$

Lemma D. Set $p=y 0^{*}+w 0^{*}+(a+b) 0^{*}$. Then $p$ is a prime ideal of rank 1 and $\mathfrak{o}^{*} \mathfrak{p}$ is a discrete valuation ring.

Proof. Let $\mathfrak{p}^{*}$ be a minimal prime divisor of $(a+b) \mathfrak{o}^{*}$. Then $p^{*}$ contains $y y^{\prime}, w w^{\prime}, y w^{\prime}, y^{\prime} w$. Therefore $p^{*}$ contains either $y, w$ or $y^{\prime}, w^{\prime}$, which proves that $\mathfrak{p}$ or $\mathfrak{p}^{\prime}$ is of rank 1 , and we see that both $\mathfrak{p}$ and $\mathfrak{p}^{\prime}$ are of rank 1 . Since $p$ contains $a+b, y, w, \mathfrak{o}^{*} / \mathfrak{p}$ is a homomorphic image of the ring $K\left[Y, W, A, C, C^{\prime}\right] /(A W-$ $\left.C Y, C^{\prime} W+A Y, C C^{\prime}+A^{2}\right) \quad\left(Y, W, A, C, C^{\prime}\right.$ are indeterminates which correspond to $y^{\prime}, w^{\prime}, a$ (or $-b$ ), $c, c^{\prime}$ respectively. Obviously $K\left[Y, A, C, C^{\prime}\right] /\left(C C^{\prime}+A^{2}\right)$ is a normal ring and the element $C Y / A$ is not integral over this residue class ring. Since $C Y / A=-A Y / C^{\prime}$ and since $A, C^{\prime}$ generate a prime ideal, $A W-C Y$ and $C^{\prime} W+A Y$ generate all the relations of the element $W=C Y / A$ over $K[Y, A$, $\left.C, C^{\prime}\right] /\left(C C^{\prime}+A^{2}\right)$ and the ideal $\left(A W-C Y, C^{\prime} W+A Y, C C^{\prime}+A^{2}\right)$ is a prime ideal. Since $\mathfrak{p}$ is of rank 1 , we see that $\mathfrak{o}^{*} / \mathfrak{p}$ is isomorphic to $K\left[Y, W, A, C, C^{\prime}\right] /\left(A W-C Y, C^{\prime} W+A Y, C C^{\prime}+A^{2}\right)$ and $\mathfrak{p}$ is a prime ideal. In order to prove that $\mathfrak{o}^{*} \mathfrak{p}$ is a discrete valuation ring, we consider the Jacobian matrix derived from the relations among $y, y^{\prime}, w, w^{\prime}, a, b, c, c^{\prime}$ : The matrix modulo $p$ is expressed as follows:

$$
\left(\begin{array}{cccccccc}
y^{\prime} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & w^{\prime} & 0 & 0 & 0 & 0 & 0 \\
w^{\prime} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & y^{\prime} & 0 & 0 & 0 & 0 & 0 \\
c^{\prime} & 0 & -a & 0 & 0 & 0 & 0 & 0 \\
0 & c & 0 & -a & -w^{\prime} & 0 & y^{\prime} & 0 \\
b & 0 & -c & 0 & 0 & 0 & 0 & 0 \\
0 & b^{\prime} & 0 & -c^{\prime} & 0 & y^{\prime} & 0 & -w^{\prime} \\
0 & 0 & 0 & 0 & b & a & -c^{\prime} & -c
\end{array}\right)
$$

By this Jacobian matrix, we see that the spot $\mathfrak{o}^{*} \mathfrak{p}$ is simple, i.e., $\mathfrak{o}^{*} \mathfrak{p}$ is a discrete valuation ring (because $p$ is of rank 1 ). Thus Lemma D is proved completely.

Remark. We have proved also that $\mathfrak{o}^{*} / \mathfrak{p}$ is represented by $K\left[y^{\prime}, w^{\prime}, a, c, c^{\prime}\right]$ and the relations modulo $\mathfrak{p}$ are generated by $a w^{\prime}-c y^{\prime}, c^{\prime} w^{\prime}+a y^{\prime}, c c^{\prime}+a^{2}$.

Let $v$ be the normalized valuation whose valuation ring is $\mathfrak{v}^{*}{ }_{p}$. Then

$$
v\left(y^{\prime}\right)=v\left(w^{\prime}\right)=v(a)=v(b)=v(c)=v\left(c^{\prime}\right)=0
$$

Since $(a+b)^{2} a=y y^{\prime}$, we have $v(y)=2 \cdot v(a+b)$. Similarly $v(w)=$ $2 \cdot v(a+b)$ and

$$
v(a+b)=1, v(y)=v(w)=2
$$

Therefore we have

$$
v(x)=v(z)=-2, \quad v\left(x^{\prime}\right)=v\left(z^{\prime}\right)=0
$$

Lemma E. If $f \varepsilon \mathfrak{v}^{\prime}$, then $v(f) \geq 0$.
Proof. $\mathfrak{o}^{\prime}=K\left[x^{\prime}, y, z^{\prime}, w^{\prime}\right]$ and $v\left(x^{\prime}\right), v\left(y^{\prime}\right), v\left(z^{\prime}\right), v\left(w^{\prime}\right)$ are non-negative, and we see the assertion.

Next we consider elements of $\mathfrak{v}$. Since $\mathfrak{v}=0^{*}[x, z]$, every element of $\mathfrak{v}$ is expressed in the form:

$$
\sum f_{i j} x^{i} z^{j}\left(f_{i j} \varepsilon \mathfrak{v}^{*}\right)
$$

We shall define a " reduced expression" so that the value by $v$ can be obtained by the formal caluculation:

First we observe the relations as follows:

$$
\begin{aligned}
& y z, w z,(a+b)^{2} z, y x, w x,(a+b)^{2} x \text { are in } \mathfrak{o}^{*}, \\
& a z=c x, c^{\prime} z=b x, y^{\prime} z=w^{\prime} x .
\end{aligned}
$$

Now, let $d$ be the degree (with respect to $x$ and 2 ) of an expression $\sum f_{i j} x^{i} z^{j}$ of an element $f$ of $\mathfrak{o}$. The following procedure is applied first to $f_{0 d}$, then to $f_{1, d-1}, f_{2, d-2}$ and so on :
$f_{i j}$ is first expressed as a polynomial in $y, y^{\prime}, w, w^{\prime}, a+b, a$, $c, c^{\prime}$. If there are terms which are divisible by $y$ or $w$ or $(a+b)^{2}$ and if $i+j>0$, then using the fact that $y x, w x,(a+b)^{2} x, y z, w x$, $(a+b)^{2} z$ are in $\mathfrak{o}^{*}$, the related terms (multiplied by $x^{i} z^{j}$ ) are changed to terms of lower degrees. Furthermore, for $j>0$, if there are terms which are divisible by $a$ or $c^{\prime}$ or $y^{\prime}$, then the related terms are changed to terms of lower degree with respect to $z$ (the total degree is not changed) making use of the relation $a z=c x, c^{\prime} z=b x, y^{\prime} z=w^{\prime} x$. Thus we may assume that
i) If $j>0$, then $f_{i j}=f_{i j 0}+f_{i j 1}(a+b)$ with $f_{i j k} \varepsilon K\left[w^{\prime}, c\right]$,
ii) If $i>0$, then $f_{i 0}=f_{i[00}+f_{i 01}(a+b)$ with $f_{i 10 k} \varepsilon K\left[y^{\prime}, w^{\prime}, a, c, c^{\prime}\right]$; here if $f_{i{ }_{i r k}}$ is in $\mathfrak{p}$, then $f_{i r_{k}}=0$. (For, if $f_{i 00_{k}} \varepsilon \mathfrak{p}$, then $f_{i^{i k} k}$ can be expressed as $\left(a w^{\prime}-c y^{\prime}\right) g_{0}+\left(c^{\prime} w^{\prime}+a y^{\prime}\right) g_{1}+\left(c c^{\prime}+a^{2}\right) g_{2}$ by the remark after Lemma D. But $a w^{\prime}=c y^{\prime}, c^{\prime} w^{\prime}=b y^{\prime}$ and $c c^{\prime}=a b$. Therefore $f_{i 0 k}=(a+b) y^{\prime} g_{1}+(a+b) a g_{2}$. Thus $f_{i 0 k}$ is divisible by $a+b$. Therefore if $k=0$, then $f_{i>0}$ can be writen in the form $f_{i 01}(a+b)$; if $k=1$, then $f_{i 01}(a+b)$ is divisible by $(a+b)^{2}$ and the term can be changed to a term of lower degree.)

An expression satisfying the above condition is called a reduced expression of the element $f$. Then

Lemma F . If $f \varepsilon_{\mathfrak{o}}$, then $v(f)$ is obtained by the formal calculation from a reduced expression of $f$. Namely, assume that $\sum f_{i j} x^{i} z^{j}$ is a reduced expression of $f$ and let $d$ be the degree of the expression with respect to $x$ and $z$. If $d=0$, then obviously $v(f)=v\left(f_{0_{0}}\right)$. If $d>0$, then $v(f)=-2 d+\sigma$ with $\sigma=0$ or 1 according to i) there exists at least one $f_{d-j, j}$ which is not divisible by $(a+b)$ or ii) all the $f_{l-j, 9}$ are divisible by $(a+b)$.

Proof. Assume that $d>0$. Use the notation $f_{i j k}$ as before and set $g_{1}=\sum_{i+j<a} f_{i j} x^{i} z^{j}, \quad g_{2}=\sum_{j} f_{d-j, j, 0} x^{d-j} z^{j}, \quad g_{3}=\sum_{j} f_{d-j, j, 1} x^{i-j} z^{j}$. If $g_{2} \neq 0$, then since $v\left(g_{1}+(a+b) g_{n}\right)>-2 d$, we may assume that $f=g_{2}$; if $g_{2}=0$, then since $v\left(g_{1}\right)>-2 d+1$ and since $f=g_{1}+(a+b) g_{3}$ in this case, we may assume that $f=(a+b) g_{3}$. Then, in the last case we have only to prove that $v\left(g_{3}\right)=-2 d$. Thus we have only to prove the case where $f=g_{2}$; it is sufficient to show that $v\left(f / x^{d}\right)$ $=0$. It is obvious that $v(f) \geq-2 d$ and $v\left(f / x^{\prime l}\right) \geq 0$. Assume that $v\left(f / x^{d}\right)>0$. For a moment, we shall denote by ${ }^{-}$the residue class
in the field $\mathfrak{o}^{*}{ }_{\mathfrak{p}} / \mathfrak{p o}^{*}{ }_{\mathfrak{p}}$. Then that $v\left(f / x^{d}\right)>0$ means that $\sum_{j} \bar{f}_{d-j, j, 0}$ $\overline{(z / x)^{j}}=0$. Observe first that $\bar{a}, \overline{c^{\prime}}$ and $\overline{y^{\prime}}$ generate a prime ideal of rank 1 in $\mathfrak{o}^{*} / \mathfrak{p}$ (by the remark after Lemma D). Let $v^{*}$ be a valuation whose valuation ring dominates $\mathfrak{o}_{\left(p, a, c^{\prime}, y^{\prime}\right)}^{*} /(\mathfrak{p})$. Since $z / x=c / a=b / c^{\prime}=w^{\prime} / y^{\prime}, v^{*} \overline{(z / x)}$ is negative. Now let $e$ be the largest number such that $\bar{f}_{t-e, e, 0} \neq 0$. If $e=0$, then it is a contradiction. Assume that $e>0$. Then $v^{*}\left(\bar{f}_{l-e, e}\right)$ must be positive (see Lemma 3 ). But by the property of reduced expressions, $f_{d-e, e, 0} \varepsilon K\left[w^{\prime}, c\right]$ and $w^{\prime}$ and $c$ remains algebraically independent modulo ( $\mathfrak{p}, a, c^{\prime}$, $\left.y^{\prime}\right) \mathfrak{0}^{*}$, hence $v^{*}\left(\bar{f}_{l-\epsilon, \text { e. }}\right)$ cannot be positive. Thus we have a contradiction also in this case. Therefore $v(f)=-2 d+\sigma$.

Lemma G. An element $f$ of $\mathfrak{o}$ is in $\mathfrak{o}^{*}$ if and only if $v(f) \geq 0$.
Proof. The only if part is obvious. If $v(f) \geq 0$, then the degree of a reduced expression of $f$ must be zero and $f \varepsilon_{\mathfrak{0}}{ }^{*}$.

Corollary. $\mathfrak{o}^{*}=\mathfrak{o} \cap \mathfrak{o}^{\prime}$.
Proof. This follows from Lemmas $E$ and $G$.
Lemma H. If an element $f$ of $\mathfrak{o}$ is not in $\mathfrak{o}^{\prime}$, then for every integer $r$ such that $u^{r} f \varepsilon_{\mathfrak{o}^{\prime}}, u^{\prime} f$ is in the ideal $y^{\prime} \mathbf{v}^{\prime}+w^{\prime} \mathbf{v}^{\prime}$.

Proof. By Lemma E, $v\left(u^{r} f\right) \geq 0$ and $r \geq-v(f)$ and we have only to prove the case where $r=-v(f)$. Let $\sum f_{i j} x^{i} z^{j}$ be a reduced expression of $f$ and let $d$ be the degree of the expression. Since $f \notin \mathfrak{v}^{\prime}, d$ is positive and $-v(f)=2 d-\sigma$ with the same $\sigma$ as in Lemma F. Then obviously $u^{\prime}\left(\sum_{i+j<i, l} f_{i j} x^{i} z^{j}\right) \varepsilon u_{0^{\prime}}=(a+b) \mathrm{o}^{\prime}=\left(x^{\prime} y^{\prime}\right.$ $\left.+z^{\prime} w^{\prime}\right) \mathfrak{v}^{\prime} \subseteq y^{\prime} \mathfrak{v}^{\prime}+w^{\prime} v^{\prime}$. If $\sigma=1$, then every $f_{a-\rho, j}$ is divisible by $(a+b)$ $=u$. Therefore $u^{i}\left(\sum_{i+j=a} f_{i j} x^{i} z^{j}\right)=u^{v a}\left(\sum f_{j}^{*} x^{i-j} z^{i}\right)$ with $f^{*} \varepsilon_{\mathfrak{0}^{*}}$; this last holds also in the case where $\sigma=0 . \quad u^{2 d}\left(\sum f_{j}^{*} x^{d-j} z^{j}\right)=\sum f_{j}^{*}$ $\left(u^{2} x\right)^{d-j}\left(u^{2} z\right)^{j}=\sum f_{j}^{*} y^{\prime d-j} w^{j} \varepsilon y^{\prime} \mathrm{o}^{\prime}+w^{\prime} \mathrm{o}^{\prime}$. Thus Lemma H is proved.

Set $P=\mathfrak{v}_{(y, w)}, P^{\prime}=\mathfrak{v}^{\prime}{ }_{\left(y^{\prime}, w^{\prime}\right)}$ and $Q=\mathfrak{0}^{*}{ }_{\left(y, y^{\prime}, w, w^{\prime}, a, b^{\prime}, c, c^{\prime}\right)}$. Then
Lemma I. $P$ and $P^{\prime}$ dominate $Q$.
Proof. $y, y^{\prime}, w, w^{\prime}, a, b, c, c^{\prime}$ are in $y 0+w o$. Since $\left(y, y^{\prime}, w, w^{\prime}\right.$, $\left.a, b, c, c^{\prime}\right) \mathfrak{o}^{*}$ is a maximal ideal, we see that $(y \mathfrak{o}+w \mathfrak{o}) \cap \mathfrak{v}^{*}=\left(y, y^{\prime}\right.$, $\left.w, w^{\prime}, a, b, c, c^{\prime}\right) \mathfrak{o}^{*}$ and $Q$ is dominated by $P$ and therefore also by $P^{\prime}$ because $Q^{\prime}=Q$.

Lemma J. Let $D$ be a divisorial closed set of the model $M$ such that $D \cap A^{\prime}$ has no component defined by $u \mathfrak{v}^{\prime}$. Let $f$ be an element of $\mathfrak{o}$ such that $f_{0}$ defines $D \cap A$ and let $r$ be the smallest integer such that $u^{\prime} f \varepsilon \mathfrak{v}^{\prime}$ ( $r$ may be negative). Then $u^{r} f \mathfrak{v}^{\prime}$ defines $D \cap A^{\prime}$.

Proof. Since $\mathfrak{v}\left[\mathfrak{v}^{\prime}\right]=\mathfrak{v}[1 / u]=\mathfrak{v}^{\prime}[1 / u]$, it follows that the closed
set $D^{\prime}$ of $A^{\prime}$ defined by $u^{\prime}{f \mathfrak{v}^{\prime}}^{\prime}$ coincides with $D \cap A^{\prime}$ up to component defined by $u 0^{\prime}$. Since $u^{\prime} f \notin u 0^{\prime}$ by our assumption on $r, D^{\prime}$ has no component defined by ${u 0^{\prime}}^{\prime}$ (observe that ${u 0^{\prime}}^{\prime}$ is a prime ideal) and $D^{\prime}=D \cap A^{\prime}$.

Lemma K. If a divisorial closed set $D$ of $M$ does not contain any of the spots $P$ and $P^{\prime}$, then every eiement $f \varepsilon_{0}$ such that $f_{0}$ defines $D \cap A$ is in $\mathfrak{o}^{*}$ and $D \cap A^{\prime}$ is defines by ${f \mathfrak{o}^{\prime}}^{\prime}$.

Proof. Assume first that $f \notin \mathrm{o}^{*}$. Then $f \notin \mathrm{o}^{\prime}$ by the corollary to Lemma G. Let $r$ be the smallest integer such that $u^{r} f \varepsilon \mathfrak{v}^{\prime}$. Then $u^{\prime}{f \mathfrak{o}^{\prime}}^{\prime}$ defines $D \cap A^{\prime}$ by Lemma J. By Lemma H, $u^{\prime} f \varepsilon y v^{\prime}+w \mathfrak{o}^{\prime}$, which shows that $P^{\prime} \& D \cap A^{\prime}$ and this is a contradiction. Thus $f \varepsilon \mathfrak{v}^{*}$. Since $P \notin D, f(P) \neq 0$. Since $P$ dominate $Q$ and since $f \varepsilon \mathfrak{o}^{*}$, $f(Q)=f(P)$. Similarly, $f(Q)=f\left(P^{\prime}\right)$. Thus $f\left(P^{\prime}\right) \neq 0$. Therefore $f \notin u \mathrm{o}^{\prime}$ and ${f \mathfrak{0}^{\prime}}^{\prime}$ defines $D \cap A^{\prime}$ by Lemma J.

Now we prove.
Proposition 1. $Q=P \cap P^{\prime}$.
Proof. Since $Q$ is dominated by $P$ and $P^{\prime}$ by Lemma $\mathrm{I}, Q$ is contained in $P \cap P^{\prime}$. We prove the converse inclusion. Let $f$ be an element of $P \cap P^{\prime}$. Let $D$ be the divisorial closed set of $M$ which is defined as the pole of $f$. Then $P$ and $P^{\prime}$ are not in $D$. Therefore there exists an element $g \varepsilon_{0} *$ which defines $D$ by Lemma K. Then $g(P)=g(Q)=g\left(P^{\prime}\right) \neq 0$ and there exists a natural number $r$ such that $g^{r} f$ has no pole on $M$. Then $g{ }^{\prime \prime} f \varepsilon \mathfrak{v} \cap \mathfrak{v}^{\prime}=\mathfrak{o}^{*}$ and therefore $f=\left(g^{\prime} f\right) / g^{\prime}$ is in $Q$. Thus $Q=P \cap P^{\prime}$.

Corollary. Set $F=M(P)$ and $F^{\prime}=M\left(P^{\prime}\right)$ (that is, $F$ and $F^{\prime}$ are loci of the spots $P$ and $P^{\prime}$ in $M$ ). If $P^{*} \varepsilon F$ and $P^{* *} \varepsilon F^{\prime}$, then $P^{*} \cap P^{* *}=Q$. In particular, if a function $f$ on $M$ is well defined at $P^{*}$ and $P^{* *}$, then $f\left(P^{*}\right)=f\left(P^{* *}\right)$ and therefore $M$ is not a subset of any projective model.

Proof. $P^{*}$ and $P^{* *}$ contains $Q$. On the other hand, $P^{*} \subseteq P$, $P^{* *} \subseteq P^{\prime}$ and therefore $Q=P^{*} \cap P^{* *}$.

## § 3. A condition for a model to be a subset of projective model

Theorem 1.r) Let $M$ be a model over a ground ring $I$. Then $M$ is a subset of a projective model if and only if there exist affine models $A_{1}, \cdots, A_{n}$ which are defined by affine rings $\mathfrak{o}_{1}, \cdots, \mathfrak{o}_{n}$ re-

[^0]spectively and $a$ system of elements $a_{i j}(i, j=1, \cdots, n)$ such that 1) $M$ is the union of the $A_{i}$ 's, 2) $a_{i j} \varepsilon \mathfrak{o}_{j}$, 3) $\mathfrak{o}_{i}\left[\mathfrak{o}_{j}\right]=\mathfrak{o}\left[a_{i j}\right]$, 4) $a_{i i}=1$ and 5) $a_{i j} a_{j k}=a_{i k}$.

Proof. Assume first there are affine models and elements as above. Let $x_{i j}$ 's be elements of $\mathrm{o}_{j}$ such that $\mathrm{o}_{j}=I\left[x_{1 j}, \cdots, x_{m j}\right]$. Since $a_{i j} \varepsilon \mathfrak{o}_{j}$ and $\mathfrak{o}_{j}\left[\mathfrak{o}_{i}\right]=\mathfrak{o}_{j}\left[a_{j i}\right]=\mathfrak{o}_{j}\left[1 / a_{i j}\right], \quad x_{k i} a_{i j}{ }^{\prime} \varepsilon_{\mathfrak{o}_{j}}$ for sufficiently large $r$ 's (for every $k$ ) and there exists such an $r$ independently on $i$ and $j$. Then considering $a_{i j}{ }^{r}$ instead of $a_{i j}$, we may asuume that $x_{k i} a_{i j} \varepsilon_{\mathfrak{o}_{j}}$ for every ( $i, j, k$ ). Let $V$ be the projective model defined by the homogeneous coordinates ( $a_{11}, a_{21}, \cdots, a_{n}, x_{11} a_{11}, \cdots, x_{m 1} a_{11}$, $x_{12} a_{21}, \cdots, x_{m_{2}} a_{21}, \cdots, x_{1 n} a_{n 1}, \cdots, x_{m n} a_{n:}$ ). Then the affine representative of $V$ defined by the $i$-th coordinate $\neq 0(i=1, \cdots, n)$ coincides with $A_{i}$ and $M$ is a subset of $V$. Conversely, assume that $M$ is a subset of a projective model $V$. Since $M$ is a model, $M$ is an open set of $V$ and $F=V-M$ is a closed set of $V$. Therefore there exists a homogeneous coordinates $\left(t_{0}, \cdots, t_{n}\right)$ which defines $V$ such that $F$ is defined by $t_{0}=t_{1}=\cdots=t_{r}=0$. Then $M$ is the union of affine models $A_{0}, \cdots, A_{r}$ defined by the affine rings $\mathfrak{v}_{0}=I\left[t_{0} / t_{0}, t_{1} / t_{0}\right.$, $\left.\cdots, t_{n} / t_{0}\right], \cdots, \mathfrak{o}_{r}=l\left[t_{0} / t_{r}, t_{1} / t_{r}, \cdots, t_{n} / t_{r}\right]$ respectively. With these affine models and elements $a_{i j}=t_{i} / t_{j}$, the condition in Theorem 2 is satisfied.

## §4. A monoidal transform of the example

We recall the model $M$ defined in $\S 3: M$ is the union of the following affine models $A$ and $A^{\prime}$.

A is defined by $\mathfrak{v}=K[x, y, z, w]$ and $A^{\prime}$ is defined by $\mathfrak{v}^{\prime}=K\left[x^{\prime}\right.$, $\left.y^{\prime}, z^{\prime}, w^{\prime}\right]$, where $x, y, z, w$ are algebraically independent elements and setting $u=x y+z w, x^{\prime}=y / u^{2}, y^{\prime}=u^{2} x, z^{\prime}=w / u^{2}, w^{\prime}=u^{2} z$.

We set again $P^{\prime}=\mathfrak{0}^{\prime}{ }_{\left(y^{\prime}, w^{\prime}\right)}$. Then
Proposition 2. The monoidal transform $M^{*}$ of $M$ with the center $P^{\prime}$ is a subset of a projective model.

Proof. Since $M\left(P^{\prime}\right) \cap A$ is empty, $M^{*}$ is the union of the affine model A and the following affine models $A_{1}$ and $A_{2}$ :
$A_{1}$ is defined by the affine ring $\mathfrak{o}_{1}=K\left[x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime} / y^{\prime}\right]$,
$A_{2}$ is defined by the affine ring $\mathfrak{o}_{2}=K\left\lfloor x^{\prime}, z^{\prime}, w^{\prime}, y^{\prime} / w^{\prime}\right\rfloor$.
Obviously

$$
\begin{aligned}
& u^{2} x^{3}=y^{\prime 3} / u^{4}=y^{\prime 3} /\left(x^{\prime} y^{\prime}+z^{\prime} w^{\prime}\right)^{4}=1 /\left(x^{\prime}+z^{\prime}\left(w^{\prime} / y^{\prime}\right)\right)^{4} y^{\prime} \\
& u^{2} z^{3}=w^{\prime 3} / u^{4}=1 /\left(x^{\prime}\left(y^{\prime} / w^{\prime}\right)+z^{\prime}\right)^{4} w^{\prime}
\end{aligned}
$$

Set $a_{01}=\left(x^{\prime}+\left(z^{\prime} w^{\prime} / y^{\prime}\right)\right)^{4} y^{\prime}, \quad a_{02}=\left(\left(x^{\prime} y^{\prime} / w^{\prime}\right)+z^{\prime}\right)^{4} w^{\prime}, \quad a_{00}=a_{11}=a_{22}$ $=1, \quad a_{10}=1 / a_{01}, \quad a_{20}=1 / a_{02}, \quad a_{12}=a_{10} a_{02}, \quad a_{21}=1 / a_{12}$. Then $a_{10}=u^{2} x^{3}$, $a_{20}=u^{2} z^{3}, a_{12}=u^{2} x^{3} / u^{2} z^{3}=y^{\prime 3} / w^{\prime 3}, a_{21}=w^{\prime 3} / y^{\prime 3}$. Denoting $\mathfrak{o}$ by $\mathfrak{o}_{0}$, we see that $a_{i j} \varepsilon \mathfrak{o}_{j}$ and $a_{i i}=1, a_{i j} a_{j k}=a_{i k}$ for every $i, j, k=0,1,2$. In order to prove that $M^{*}$ is a subset of a projective model, it is sufficient to prove that $\mathfrak{o}_{i}\left[\mathfrak{v}_{j}\right]=\mathfrak{v}_{i}\left[a_{i j}\right]$ for every $(i, j)$. For $i=j$, the assertion is obvious and we prove the case where $i \neq j$. Since $a_{i j}$ $\varepsilon_{\mathfrak{0}_{j}}$ we have only to prove that $\mathfrak{v}_{i}\left[\mathfrak{0}_{j}\right] \subseteq \mathfrak{v}_{i}\left[a_{i j}\right]$.
i) When $i=0, j=1$ : Since $a_{01}=1 / u^{2} x^{3}, \quad \mathfrak{o}_{0}\left[a_{01}\right]=o_{0}[1 / u, 1 / x]$, which contains $\mathfrak{o}_{1}$ because $x^{\prime}=y / u^{2}, y^{\prime}=u^{\circ} x, z^{\prime}=w / u^{2}, w^{\prime} / y^{\prime}=z / x$.
ii) The case where $i=0, j=2$ can be proved similarly.
iii) When $i=1, j=2$ : Since $a_{12}=1 /\left(w^{\prime} / y^{\prime}\right)^{3}, \quad \mathfrak{o}_{1}\left[a_{12}\right]=\mathfrak{o}_{1}[1 /$ $\left.\left(w^{\prime} / y^{\prime}\right)\right]=\mathfrak{o}_{1}\left[y^{\prime} / w^{\prime}\right]$, which contains $\mathfrak{o}_{2}$ obviously.
iv) The case where $i=2, j=1$ can be proved similarly.
v) When $i=1, j=0$ : Since $a_{10}=1 /\left(x^{\prime}+\left(z^{\prime} w^{\prime} / y^{\prime}\right)\right)^{4} y^{\prime}, \mathfrak{o}_{1}\left[a_{10}\right]=$ $\mathfrak{o}_{1}\left[1 / y^{\prime}, 1 /\left(x^{\prime}+\left(z^{\prime} w^{\prime} / y^{\prime}\right)\right)\right]=\mathfrak{o}_{1}\left[1 / y^{\prime}, 1 / u\right]$. Since $\mathfrak{v}_{1}[1 / u]$ contains $\mathfrak{o}_{0}$, $\mathfrak{0}_{1}\left[a_{10}\right]$ contains $\mathfrak{o}_{0}$.
vi) The case where $i=2, j=0$ can be proved similarly.

Thus we see that $M^{*}$ is a subset of a projective model.

## § 5. Some remarks and a related question

I) Affine models containing given spots.

Theorem 2. Let $P_{1}, \cdots, P_{n}$ be spots of a function field. Then there exists an affine model which contains $P_{i}$ 's if and only if every $P_{i}$ is a ring of quotients of the intersection of the spots $P_{i}^{\prime}$ s.

Proof. The only if part is obvious. Assume that every $P_{i}$ is a ring of quotients of $\mathfrak{d}$. Let $\mathfrak{o}_{i}$ be an affine ring which has a prime ideal $\mathfrak{p}_{i}$ such that $P_{i}=\left(\mathfrak{v}_{i}\right)_{p_{i}}$ ane let $x_{1 i}, \cdots, x_{m i}$ be elements of $\mathfrak{o}_{i}$ which generate $\mathfrak{o}_{i}$. Let $S_{i}$ be the set of elements of $\mathfrak{D}$ which are units in $P_{i}$. Since $P_{i}=\mathfrak{D}_{S_{i}}, \mathfrak{0}_{i} \subseteq \mathfrak{D}_{S_{i}}$ and there exists an element $s_{i} \varepsilon S_{i}$ such that $x_{j i} s_{i} \varepsilon \mathfrak{D}$. Let $\mathfrak{v}^{*}$ be the affine ring generated by all the $s_{i}$ 's and all the $x_{j i} s_{i}$ 's. Then the affine model $A^{*}$ defined by $\mathrm{o}^{*}$ contains the spots $P_{i}$.

Remark. If spots $P_{1}, \cdots, P_{n}$ are in a model $M$ and if there exists an affine model $A$ which contains $P_{1}, \cdots, P_{n}$, then there exists an affine model $A^{*}$ which contains the $P_{i}$ 's and is contained in $M$.

Proof. $M \cap A$ is a model containing the spots $P_{i}$ and $F=A-$ ( $M \cap A$ ) is a closed set of the affine model $A$ which does not contain any of the $P_{i}^{\prime}$ 's. Therefore there exists a hypersurface $H$
of $A$ which contains $F$ and which does not contain any of the $P_{i}$ 's. Then $A-H$ is an affine model contained in $M$ and $A-H$ contains all the $P_{i}$ 's.
II) Two existence theorems of models.

Theorem 3. Let $M$ be a model and let $P$ be a spot. Then there exists a model $M^{\prime}$ which contains $M$ and $P$ if and only if the following condition is satisfied: If $P$ is a specialization of a spot $Q$ and if $Q$ corresponds to a spot $Q^{\prime}$ in $M$, then $Q=Q^{\prime}$.

Proof. The only if part is obvious because if $P$ is a specialization of a spot $Q$, then $Q$ is in every model which contains $P$. Assume that the condition is satisfied. Let $A$ be an affine model which contains $P$. Let $C$ be the set of spots $P^{\prime} \varepsilon A$ such that $P^{\prime}$ correspond to some spots in $M$ which is different from $P^{\prime}$. Then $C$ is a constructive set. By our assumption, the closure $\bar{C}$ of $C$ does not contain $P$. Then $A-\bar{C}$ is a model and $M \cup(A-\bar{C})$ is a model which contains $M$ and $P$.

Theorem 4. Let $P$ and $Q$ be spots. Then the following threee conditions are equivalent to each other :

1) There exists a model which contains $P$ and $Q$.
2) If $P$ and $Q$ are specializations of spots $P^{\prime}$ and $Q^{\prime}$ respectively and if $P^{\prime}$ corresponds to $Q^{\prime}$, then $P^{\prime}=Q^{\prime}$.
3) $P[Q]$ is a ring of quotients of both $P$ and $Q$.

Proof. It is obvious that 2) follows from 1). Assume that 2) holds. Let $A$ and $A^{\prime}$ be affine models which contain $P$ and $Q$ respectively. Since the function fields of $P$ and $Q$ correspond to each other, $P$ and $Q$ are spots of the same function field. Therefore $A \cap A^{\prime}$ is a model. Let $D$ be the union of irreducible components of $A-\left(A \cap A^{\prime}\right)$ which do not contain $P$ and set $M^{\prime}$ $=A-D$. Then $M^{\prime}$ is a model which contains P. Further, if $P^{\prime}$ is a specialization of a spot $Q^{\prime}$ and if $Q^{\prime}$ corresponds to a spot $Q \varepsilon M^{\prime}$, then $Q=Q^{\prime}$ and therefore there exists a model $M$ which contains $P$ and $Q$ by theorem 3. Thus 1) and 2) are equivalent to each other. Next, we assume again 2) holds. Let $\mathfrak{P}$ be the set of prime ideals $\mathfrak{p}$ of $P$ such that $Q$ is a specialization of $P_{p}$ and let $S$ be the intersection of the complements of $\mathfrak{p} \varepsilon \mathfrak{p}$ in $P$. If an element $s \varepsilon S$ is a non-unit in $P[Q]$, then there exists a place $\mathfrak{v}$ which dominates $P[Q]$ such that $s$ is a non-unit in $\mathfrak{v}$. Let $॥$ be the maximal ideal of $\mathfrak{v}$ and set $P^{\prime}=P_{(\mathfrak{n} \cap P)}, Q^{\prime}=Q_{(\mathfrak{n} \cap P)}$. Then by our assumption $P^{\prime}=Q^{\prime}$, but $s \varepsilon_{\Perp} \cap P$, which is a contradiction.

Thus every element of $S$ is a unit in $P[Q]$ and $P[Q]=P_{s}$. Similarly, $P[Q]$ is a ring of quotients of $Q$ and 3 ) holds. Conversely, assume that 3 ) holds, then obviously 2) holds and therefore 2) and 3) are equivalent to each other. Thus 1), 2) and 3) are equivalent to each other.

REMARK. There exists a model which contains given spots $P_{1}$, $\cdots, P_{n}$ if (and only if) there exists a model $M_{i j}$ which contains $P_{i}$ and $P_{j}$ for every pair ( $i, j$ ).

Proof. We prove the assertion by induction on $n$. When $n=2$, the assertion is obvious. Assume that the assertion is true for $n-1$ spots. Then there exists a model $M$ which contains $P_{1}$, $\cdots, P_{n-1}$. Let $A$ be an affine model which contains $P_{n}$ and set $D=M-(A \cap M) . \quad D$ is a closed set of $M$. Let $D^{\prime}$ be the union of irreducible components of $D$ which do not contain any of $P_{1}, \cdots$, $P_{n-1}$. Then $M^{\prime \prime}=M-D^{\prime}$ is a model which contains $P_{1}, \cdots, P_{n-1}$. If $P_{n}$ is a specialization of a spot $Q$ and if $Q$ corresponds to a spot $Q^{\prime}$ in $M^{\prime \prime}$, then $Q=Q^{\prime}$ and therefore there exists a model $M^{*}$ which contains $M^{\prime \prime}$ and $P_{n}$ by Theorem 3.
III) A remark on imbedding in a complete model.

Theorem 5. Let $P$ be a spot in a model $M$. If the induced model $\phi_{r}(M)$ of $M$ defined by the spot $P$ is a complete model and if the monoidal transform $M^{*}$ of $M$ with the center $P$ is a subset of a complete model, then $M$ is a subset of a complete model.

Proof. Let $D^{*}$ be the set of spots in $M^{*}$ which correspond to spots in the locus $M(P)$ of $P$ in $M$. We shall prove that ( $M^{*}$ $\left.-D^{*}\right) \cup M$ is a complete model. Since $M^{*}-D^{*}$ is a model, ( $M^{*}$ $\left.-D^{*}\right) \cup M$ is the union of a finite number of affine models. Let $\mathfrak{v}$ be a place of the function field of $M$. Since $M^{*}$ is a complete model, $\mathfrak{v}$ has a unique center $P^{*}$ in $M^{*}$. If $P^{*} \varepsilon D^{*}$, then the projection $P^{\prime}$ of $P^{*}$ in $M$ is the only one spot in $\left(M^{*}-D^{*}\right) \cup M$ which is dominated by $\mathfrak{v}$; if $P^{*} £ D^{*}$, then $P^{*}$ is the only one spot in $\left(M^{*}-D^{*}\right) \cup M$ which is dominated by $\mathfrak{b}$. By the uniqueness of spots dominated by places, we see first that $\left(M^{*}-D^{*}\right) \cup M$ is a model and by the existence of such spots, we see that ( $M^{*}$ $\left.D^{*}\right) \cup M$ is a complete model.

Corollary. Let $P$ be a spot of dimension zero in a model $M$. Let $M^{*}$ be the quadratic transform of $M$ with the center $P$. Then $M$ is a subset of a complete model if and only if so is $M^{*}$. When $M$ is a normal model, $M$ is a subset of a complete model if and
only if the derived normal model of $M^{*}$ is a subset of a complete model.

Proof. The first half is an immediate consequence of theorem 5. The last half can be proved by the same way as in the proof of theorem 5 .

We want to ask the following question:
Problem. Is every normal complete model a projective model?
If the answer of this question is affirmative, then 1) our example in $\S 2$ is a model which is not a subset of any complete model and 2) it holds that if a quadratic transform of a normal model is a subset of a projective model, then so is the original model (by the corollary to Theoren 5).

Observe that "quadratic transform" in the corollary to Theorem 5 cannot be replaced by " monoidal transform" without any additional condition (by our example) and the same to 2 ) just above.

Mathematical Institute, Kyoto University

## BIBLIOGRAPHY

[1, I ] M. Nagata, A general theory of algebraic geometry over Dedekind domains, I, Amer. J. of Math., vol. 78 (1956), pp. 78-116.
[1, IV] —, IV, forthcoming.
[2] -, A treatise on the 14 -th problem of Hilbert, Memoirs Kyoto Univ., vol. 30, No. 4 (1956), pp. 57-70.
[3] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Coll. Publ., (1946).


[^0]:    2) The present theorem was established under co-operation with Mr. Y. Nakai.
