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Since the notion of abstract varieties was introduced by Weil
[31, it was asked whether every abstract variety can be imbedded
(biregularly) in a projective variety or not. Though the writer
hoped to solve the question affirmatively, he found unfortunately
a  counter example against th e  q u e s tio n . Indeed, there exists a
non-singular abstract variety V  (which is not complete) which has
two different points P  and P ' such that i f  a  function f  o n  V  is
well defined at both P  and P ',  then f  (P)=f (P') .

After some preliminaries in  § 1, we shall sh ow  the  example
in  § 2. In  § 3, we shall give a  condition  for an  abstract variety
to be imbedded in a projective variety and then we shall show in
§ 4 that even when a monoidal transform of a non-singular abstract
variety V  can be imbedded in a projective variety, V may not be
imbedded in  any projective variety. B y  the way, we shall give
some remarks in  § 5.

Term inology . Since the notion of abstract varieties corresponds
to the notion of models in the sense of Nagata 111 we shall explain
in  terminology on models as in  Nagata

R esults assum ed to be know n : Besides some basic results on
rings and models, we shall make use of the criterion of simplicity
by Jacobian matrix. Further, in  §§ 4-5, we shall make use of some
basic results on monoidal transformations and quadratic transfor-
mations (see [1, IV ]).

§  1 .  Some preliminary lemmas

L E M M A  1. Let M  and M ' be models of the same function field.
T hen M u M ' is again a model if and only if the join J(M , M ') of
M  and M ' is contained in Mn  M'.
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P ro o f  If Mu M ' is a model, then J(M , AT)—mn m i .  Con-
versely, if J(M , M ') is contained in M n M', then any spot P  in
M u M ' does not correspond to any other spot in M u M ' and we
see that M u M ' is a model.

COROLLARY. L et o and  o' be affine rings over the same ground
ring I  and  le t A  and  A ' be  af f ine m odels def ined by  o and  o' re-
spectively. I f  there are elements x& o and y& o' such that o[ol=o[l/x1
=o'[1/5 ,1, then  A u A ' is a model."

LEMMA 2. L et o be a  norm al ring and let x  be an  element of
the f ield of  quotients of  o. T hen all the relations of  x  over o are
generated by those of  degree 1, that is, let aG # be a set of  generators
o f  la; a& o, ax&o# and set 1)0 = aGx , then o [ x ] = o [ X ] / a  w ith the ideal
generated all a0 X—b0 .

P ro o f  Assume that coxn+c, xn- 1 + • • • +c„= 0 (c,(so). Let v  be
an arbitrary valuation whose valuation ring contains o. Then
v(cox)> O. For, if v (x )> 0, then there is nothing to prove. Assume
that v(x) < O. T h e n  v(c„x) =v(c, +c,x - - 1 + • • • Jr  c„x- 4 4 1 >  O. S ince u
is a normal ring, o is the intersection of valuation rings and we
see that co x& o. Now the assertion follows easily.

REMARK. I f  o is a  Noetherian norm al ring and if  x  is not in
o, th e n  ;a; a&o, ax&o# is an ideal of rank I ,  because o is the inter-
section of discrete valuation rings Op with prime ideals p of rank 1.

§ 2 .  The construction of an example

Let K  be a field and let x, y, z, w be algebraically independent
elements over K .  Set u =xy +zw, x' =y/u 2 , y' =u 2 x, z ' =w/u', w '=u 2 z.
Then

LEMMA A . T h e  operation '  defines an involution of the field
K(x, y, z , w) and u'=u.

P ro o f  u=x' y' w '  and x=y1/142, y  u 2 X 1 , z  w 7t12, w  u 2

and we see the assertion.
From now on, we shall use '  in the sense o f this involution.
Set o=lfrx , y, z, wl (o' =lax ' , y' , z,' wrI) and let A  and A ' be

the affine models defined by o  and o' respectively.
LEMMA B .  M = A u A ' is a non-singular model.

1 )  The converse of this corollary is not tru e . A U A ' is a  model if and only
if  there are ideals a and a' in o  and o ' respectively and a  natural number n  such
that o = o [ d - , ] =1/ [a' - "] =do [ol [ o l  by virtue o f a  result in  [21.
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Pro o f . Since xx '+zz '=1/u , 014 contains 1 /u  and we see that
o [e l=  o [1/u]=  oql/u]. Since u is in both o and o', M  is a model
by the corollary to Lemma 1. Since A  and A ' are models of the
affine 4-spaces, they are non-singular and M  is also non-singular.

This model M  is  the required example as will be proved.
Set a=xy (=x 'y ') (at— a), b=zw(=z'wt) (bt=b), c=yz(=x'w')

(ct=ytzt=xw). Then u=a +b and y, y', w, w', a, b, c, c' are in on o'.
Set o*—Kry, y', w, w ', a, b, c, cl. Then

LEMMA C .  0
* is contained in on  o ' and is closed under '.

Among y, y', w, w', a, b, c and c', there are relations as follows :

(a+b) 2 a=yyt, (a+b) 2 b=wwt, (a+b)'-'c=ywt,

(a+b) 2 c' =ytw, aw=cty, aw'=-cy', cw=by,

c'w' =by ', cc'=ah.

Therefore

x=a/y=c7w.---y7(a+b) 2 , z=c/y=b/w=wt/(a+b) 2 ,

xt=a/yt=c/wt=y/(a+b) 2 , zt=ct/yt=b/wt=w/(a+b)=.

LEM M A  D . Set p=yo*+wo*+ (a + b )o * . Then p  is a prime
ideal of rank 1 and 0 * p  is a discrete valuation ring.

P ro o f  Let p* be a minimal prime divisor o f (a + b )o * . Then
p* contains yy', ww', yw', y'w. Therefore 0  contains either y, w
or y', w', which proves that p or p ' is of rank 1, and we see that
both p and p ' are of rank 1. Since p  contains a+b, y, w, o*/p
is a homomorphic image of the ring K[Y, W , A , C , C l/(AW

C'W +A Y , C C t+4 2 ) ( Y , W , A , C , C ' are indeterminates
which correspond to y', w', a (6r —b), c, c' respectively. Obviously
KEY , A, C, (C C ' +A ') is a normal ring and the element CY /A
is not integral over this residue class ring. Since CY/A=—AY/C'
and since A , C ' generate a prime ideal, AW —CY  and C'W + A Y
generate all the relations of the element W= CY /A  over K[Y , A,
C, Cl/(CCt+A. 2 )  and the ideal (A W — CY , C'T/V +A Y , CC' +A ')
is a prime ideal. Since p  is of rank 1 , we see that 0*/p  is iso-
morphic to K [Y , W , A, C, ( A W  — CY , C'W +A Y , CC' + A ')
and p is a prime ideal. In order to prove that 0 * p  is a discrete
valuation ring, we consider the Jacobian matrix derived from the
relations among y, y', w, w ', a, b, c, c': The matrix modulo p  is
expressed as follows :
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y' 0 0 0 0 0 0 1:1
0 0 w' 0 0 0 0 0
w' 0 0 0 0 0 0 0
0 0 y' 0 0 0 0 0
C' 0 —a 0 0 0 0 0
0 c 0 —a —w' 0 y' 0
b 0 — c 0 0 0 0 0
0 b' 0 —c' 0 y' 0 —w'
0 0 0 0 b a —c' —c /

By this Jacobian matrix, we see that the spot 0*
p  is simple, i.e.,

0
*

p  is a discrete valuation ring (because p  is o f rank 1) . Thus
Lemma D is proved completely.

REMARK. We have proved also that o*/p  is represented by
K [y ', w ', a , c, cri and the relations modulo p are generated by
aw'— cy', c'w ' +ay', cc'+a'.

Let v be the normalized valuation whose valuation ring is 0*
p.

Then

v (y ')=v (w ')=v (a)=v (b)=v (c)=v (c')=0 .
Since (a + b) 2 a= yy' , we have v (y) = 2 v (a ±b) . Similarly v (w)

v (a +b) and

v (a +b) =1, v (y) = v(w) = 2 .
Therefore we have

v(x) = v(z) = —2 , v (x') = v(z') =0 .
LEMMA E. If f 6  o', then v ( f )>0 .
Proo f . o '=K [x ', y ,  z ', w '] and v (x ') , v (y /) , v (z ') , v (w ') are

non-negative, and we see the assertion.
Next we consider elements o f  o. Since o = o z l ,  every

element of o is expressed in the form :

E f ,,x 'z ) (f ,, 6 o*).

We shall define a "reduced expression" so that the value by
v can be obtained by the formal caluculation :

First we observe the relations as follows :

y z , w z , (a+b)"z , y x , w x , (a+b)'x  are in 0*,
az=cx, c'z=bx, y '2=w 'x .
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Now, let d  be the degree (with respect to x  and 2) of an expres-
sion E f i i x 'z i of an element f  of o. T h e  following procedure is
applied first to f oi ,  then to f  f d _ , and so on :

f i  is first expressed as a polynomial in y, y', w, w', a+b , a,
c, c'. If there are terms which are divisible by y or w or (a+b) 2

and if i+j> 0 , then using the fact that yx, w x , (a+b) 2 x, yz, wx,
(a+b) 2 z  are in  0 * , the related terms (multiplied by xiz 5 ) are
changed to terms o f lower degrees. Furthermore, for j > 0, i f
there are terms which are divisible by a  or c ' or y ', then the
related terms are changed to terms o f lower degree with respect
to z  (the total degree is not changed) making use of the relation
az =cx , c 'z =bx , y 'z =w 'x . Thus we may assume that

i) If j> 0, then f j = f j o +f j ,(a+b )  with f, i ,& c],
ii) If i> 0, then fo=f ico+.1;(a+b) with fo, 6 K-IY', w ', a, c, cr];

here if f o , is in p, then f x ,= O. (For, if f o p, then fo , can be ex-
pressed as (aw' —cy')go + (c'w ' +ay ')g,+ (cc' +a 2 )g,„ by the remark
after Lemma D. But aw '— cy', c'w '=by ' and cc'= ab. Therefore
.4,— (a +b)y 'g,+ (a +b)ag2 . Thus J  i s  divisible by a +b. There-
fore if k = 0 , then f .„, can be writen in the form fo, (a +b) ; if k=1,
then f o, (a+b ) is divisible by (a+b) 2 and the term can be changed
to a term of lower degree.)

An expression satisfying the above condition is called a reduced
expression of the element f .  Then

LEMMA F . I f  f&  o, then v (f )  is obtained by the formal calcu-
lation from a  reduced expression of f . Namely, assume that
Ef,x' 25 is a reduced expression of f  and let d  be the degree of
the expression with respect to x  and z. I f  d = 0 , then obviously
v (f  )=v (f oo). If d> 0, then v(f ) = —2d+ o- with c = 0  or 1 according
to i )  there exists at least one f , , which is not divisible by (a +b)
or ii)  all the a r e  d iv is ib le  by (a+b).

Pro o f . Assume that d> O. Use the notation J  a s  before and
set g2= Y.1 fri-i,j,OX d - i z ' , If
g2 0 ,  then since v (g, + (a + >  — 2d, we m ay assume that
f =g ,; if g 2 = 0, then since v(g1 ) > - 2 d +1  and since f =g ,+(a+b )g ,
in this case, we may assume that f = (a +b )g ,. Then, in the last
case we have only to prove that v(g3 ) = — 2d. Thus we have only
to prove the case where f =g ,,; it  is sufficient to show that v(f/xd)
= 0 .  It is obvious that v ( f ) > -2d and v ( f / e ) >  O. Assume that
v(f/xd) > 0 .  For a moment, we shall denote by -  the residue class
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in the field o * p / P o * p . Then that v(f/x) >0 means that
(2/x) 0. Observe first that —a, P  and y ' generate a prime ideal
o f rank 1  in o * /p  (by the remark after Lemma D ) .  Let v*  be
a valuation whose valuation ring dominates 0 * ( ,, ,,, ) / ( p ) .  Since
z/x=c/a=b/c'=w7y 1 , v*(z/x) is negative. Now let e be the largest
number such that f „ , , ,  0 .  If e = 0 , then it is a contradiction.
Assume that e > O. T h e n  v*(f„...,,e)  must be positive (see Lemma
3 ) .  But by the property o f reduced expressions, f i _,,,,,E c]
and w ' and c remains algebraically independent modulo (1, a, c',
y')0*, hence v* ( f , , ,  , )  cannot be positive. Thus we have a con-
tradiction also in this case. Therefore v(f ) = —2d+0-.0-.

LEMMA G. An element f  of o is in o* if and only if v (f )>  O.
P ro o f  The only if part is obvious. I f  v (f )>  0 , then the

degree of a reduced expression of f  must be zero and f8
COROLLARY. 0* = o n o'.
P ro o f  This follows from Lemmas E  and G.
LEMMA H. If an element f  of o is not in o ', then for every

integer r  such that ufeo', u' f is in the ideal y'o' + w'o'.
Pro o f . By Lemma E , v (u 'f)>  0  and r > — v(f ) and we have

only to prove the case where r=  —  v(f) . Let E  z i  be a reduced
expression of f  and let d be the degree of the expression. Since
p o ',  d  is positive and —v(f)=2d—o- with the same a as in
Lemma F. Then obviously u'•(Z , j ,,, f, i x' ZOE (a + b)o' = (x'y'
-Fz'w')o' çy'o' +w'o'. If =1, then every f,,_ j ,, is divisible by (a ± b)
= u .  Therefore it' = i t -  (y  z i )  with f*  o *  ; this
last holds also in the case where O. u '(E f ,*  xd-Jzi)=EL*
(u2x)d - i( u 2 z ) J= E fi *y'd - l w ' i8 y 'o i+ w io ' .  Thus Lemma H is proved.

Set P=o ( ) , P=0' cy , ,o ) and Q= o* (y ,y1 Then
LEMMA I. P  and P ' dominate Q.
Pro o f . y, y', w, w', a, b, c, c' are in yo + wo. Since (y, y', w, w',

a, b, c, c')o* is a maximal ideal, we see that (yo + w o) n = (y, y',
w, w', a, b, c, c')o* and Q is dominated by P  and therefore also by
P ' because Q'= Q.

LEMMA J. Let D  be a divisorial closed set of the model M
such that D n A ' has no component defined by uo'. Let f  be an
element of o such that fo  defines D n A  and let r  be the smallest
integer such that u y  o ' ( r  may be negative). Then u' fo' defines
D n A'.

Pro o f . Since o o[l/u]=  o '[1/u], it follows that the closed
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set D ' of A ' defined by u'fo' coincides with D n A ' up to component
defined by u o '.  Since u ' f  u o ' by our assumption on r, D ' has no
component defined by u o ' (observe that uo' is a prime ideal) and
D' =D n A '.

L E M M A  K. If a divisorial closed set D  of M  does not contain
any of the spots P  and P ',  then every eiement fE LI such that fo
defines D n A  is in o* and D n A ' is defines by fo'.

Proo f . Assume first that f  Then f  o '  by the corollary to
Lemma G. Let r  be the smallest integer such that wif 6 o'. Then
u' fo' defines D n A ' by Lemma J. By Lemma H, u' J6 yo' ±wo' ,
which shows that P' ED n A ' and this is a contradiction. Thus
f 6 o*. Since P D , f ( P ) 0 0 .  Since P dominate Q and since fE 0*,
f (Q )  =f  (P) . Similarly, f (Q) = f (P') . Thus f ( P ')  O .  Therefore
f  u o ' and f  o' defines D n A ' by Lemma J.

Now we prove.
PROPOSITION 1. Q =P n P '.
Pro o f . Since Q is dominated by P  and P ' by Lemma I, Q is

contained in P n P '.  We prove the converse inclusion. Let f  be
an element of P n P ' .  Let D  be the divisorial closed set of M
which is defined as the pole of f . Then P  and P ' are not in D.
Therefore there exists an element g 6 o* which defines D by Lemma
K .  Then g(P) = g(Q) = g(P') 00 and there exists a natural number
r such that g 'f  has no pole on M .  Then g'16  o n o'=o* and there-
fore f = ( g 1 ) / g  is in Q .  Thus Q =Pn P '.

C O R O L L A R Y . S e t  F =M (P )  an d  F '=M (P ')  ( th at is , F an d
F' are loci of  th e  sp o ts  P an d  P' in  M ). I f  P* E F an d  P* * E F',
th e n  P *  n P " — Q . In  p articu lar, if  a f unc tion  f  o n  M  is well
defined at P* a n d  P " ,  then  f (P*)=f (P**) and therefore M is not
a  subset of  any  projective model.

Pro o f . P*  and P "  contains Q. On the other hand, P* c P,
p** c p ,  and therefore Q =P* n P**.

§ 3. A condition for a model to be a  subset of
projective model

TH E O R E M  1.') L et M  be a model over a ground ring I. T h e n
M  is a  subset of  a projective model if  and only i f  there exist affine
m odels A „ •••, A  w hich are  def ined by  af f ine rings o„ o „  r e -

2 )  The present theorem was established under co-operation with Mr. Y. Nakai.
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spectively and a system of  elements a,,(i, j=1, • •, n) such that 1) M
is the union of  the A /s, 2 )  (4.1 8 oj ,  3 )  o i [o i ] =-o[a i , ] ,  4 )  a,,=1 and
5 )  ai j ai k =a ik .

Proof . Assume first there are affine models and elements as
above. Let x i j 's  be elements of I), such that o = / [ x ,  • • •, x„,1]. Since
a,i  8 Oi  and o5 [o,]=D

5
[a j i] =o,[1/(2,•i ] ,  xkiai; 80.,  for sufficiently large

i ' s  (for every k )  and there exists such an r  independently on i
and j. Then considering a o '  instead of a, i ,  we may a su u m e  that
xk ,a, j & oi  for every (i, k ) .  Let V  be the projective model defined
by the homogeneous coordinates (a,,, a21, • • • , a.., x 11 a 11 , • • • ,
x„a,,, • • • , X„.2 a21 y • • • y xi„ am, • • •, x„,„a„•). Then the affine representative
o f  V  defined by the i - t h  coordinate (i=1, • • •, n )  coincides
with A i  and M  is a subset o f V. Conversely, assume that M  is
a subset of a projective model V. Since M  is a model, M  is an
open set of V and F=r V —  is a closed set of V .  Therefore there
exists a homogeneous coordinates (to , •••,t„) which defines V  such
that F is defined by to =t 1 = • • • =t,=0. Then M  is the union of
affin e  models A o , •-•, A ,. defined by the affine rings no =/[t./t.,
• • • , t„/t0], • • =/[t,/t,, t i / t ,, • • • , t4 /t,] respectively. With these affine
models and elements ao =t,/t i ,  the condition in Theorem 2  is
satisfied.

§  4 .  A  monoidal transform of the example

We recall the model M  defined in  § 3: M  is the union of
the following a ff in e  models A  and A '.

A  is defined by o=K [x , y, z , w] and A ' is defined by o'=K [x ',
y ', z ', w '], where x , y, z , w  are algebraically independent elements
and setting u=x y +z w , x '=y /u 2 , y' -=u= x, z' =w/u 2 , w' -=u2  z.

We set again P'= o' c„,,„0 . Then
PROPOSITION 2. The monoidal transform M *  o f  M  with the

center P ' is a  subset of a projective model.
Proof . Since M (P') n A  is empty, M *  is the union of the

affine model A and the following affine models A , and A ,:
A , is defined by the affine ring o, = K [x ', y', z', w'/y'],
A , is defined by the affine  ring o2=K lx', z ', w ', Y7w /l•
Obviously

u 2x 3 = y"/u 1 = y"/ (x 'y' + = 1/ (x ' +z' (w '/y ')) 4y',
u 2z 3_  w /3/u 4 1 /  ( x  ( y 7 u f z/),1w /.
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S et ao1=(x '+(Z w '/Y ')) 4.11', ao ,=((x /3)//w ')+z ') 4 w/ , a„0 =a 11 =a,
=1 , a, 0 =1/a 01 ,  a , 0 1/a,,, (42=010 a02, a21=1/a12. Then a1 0 =u 2e ,
a 0 =u 2z3, a, 2 =u 2e /u 2z3 =y "/w " , a„=w "/ y " . Denoting o  by 00,  we
see that a , 5 5 o ,  and a11 =1, a k i a,,,=a, k  for every i, j, k =0,1, 2. In
order to prove that M *  is a  subset of a projective model, it is
sufficient to prove that odoj=  oda, j ] for every (i, j). For i=j ,  the
assertion is obvious and we prove the case where j j. Since
60i  we have only to prove that o,[oi ]g_ ot [a Li].

i) When i = 0 ,  j = 1  :  Since a01 =1/u 2x 3 , o 0 [a0 ,]=0 0
[1/u, 1/x ],

which contains 01 because x '=y /u 2 , y '=u 2x , z '=w /u 2 , w '/y '=z /x .
ii) The case where i= 0 ,  j= 2  can be proved similarly.
iii) When i= 1 ,  j= 2  : Since a12=1/(w7y') 3 , o 1 [a1 2 ]=o 1 [1/

(w7Y ')]=01[Y 7w1, which contains 02 obviously.
iv) The case where i= 2, j = 1  can be proved similarly.
NO When i = 1 ,  j = 0 :  Since a1 0 =1/ (x' + (z 'w' ty')) 431/, oi[ald=

o,[1/y' , 1/ (x' + (z'w' /y'))]=o,[1/ y' , 1/u].  S ince o, [1/u] contains oo ,
01 [ai d  contains 00.

vi) The case where i= 2 ,  j= 0  can be proved similarly.
Thus we see that M * is a subset of a projective model.

§  5 .  Some remarks and a related question

I) Affine models containing given spots.
T H E O R E M  2. Let P„ •-•,P„ be spots of a function f ield. T hen

there exists an affine model which contains P,'s if and only if every
P, is a ring of quotients of the intersection b  of the spots P,'s.

Pro o f . The only if part is obvious. Assume that every P, is
a ring of quotients of b. Let o; b e  an affine ring which has a
prime ideal p , such that 1:),== (0 i )p i  a n e  let x,,,•••,x„„ be elements
of o; which generate o , .  Let S , be the set of elements of b  which
are units in P,. Since P,=bs i , orçbs, and there exists an element
s; 6 S , such that xi ,s, 6 b. Let o* be the affine ring generated by all
the si 's  and all the xi ,s/s. Then the affine model A *  defined by
o* contains the spots P,.

R E M A R K . If spots P1 , P„ are in a m odel M  and if  there
exists an affine model A  which contains P„ •••, P„, then there exists
an affine model A * which contains the P,'s and is contained in M.

P ro o f  M n A  is a model containing the spots P, and F= A —
(M n  A ) is a  closed set of the affine model A  which does not
contain any of the P ' s .  Therefore there exists a hypersurface H
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of A  which contains F  and which does not contain any of the
P : s .  Then A—H is an affine model contained in M  and A—H
contains all the P's.

II) Two existence theorems of  models.
THEOREM 3. L et M  be a  model and let P  be a spot. Then

there exists a  model M ' which contains M  and P  if  and only  if  the
following condition is satisf ied: I f  P  is a  specialization of  a spot Q
and if  Q corresponds to a spot Q' in  M , then Q=Q'.

P ro o f  The only if part is obvious because if P  is a speciali-
zation of a spot Q, then Q  is in every model which contains P.
Assume that the condition is satisfied. Let A  be an affine model
which contains P .  Let C  be the set of spots P'& A  such that P '
correspond to some spots in M  which is different from P ' .  Then
C is a constructive set. By our assumption, the closure C  of C
does not contain P. Then A—C is a  model and Mu (A— C ) is
a model which contains M  and P.

THEOREM 4. L et P  and  Q be spots. Then the following threee
conditions are equivalent to each other :

1) There exists a  model which contains P  and  Q.
2) I f  P and  Q are  specializations of  spots P ' an d  Q ' respec-

tively and if  P ' corresponds to Q', then P ' Q'.
3 )  P E el i s  a  ring of quotients of both P  and  Q.
P ro o f  It is obvious that 2 )  follows from 1). Assume that

2 )  holds. Let A  and A ' be affine models which contain -P  and
Q respectively. Since the function fields of P  and Q correspond
to each other, P  and Q  are spots of the same function field.
Therefore A n A' is a model. Let D  be the union of irreducible
components of A —  (A  n A ')  which do not contain P  and set M '
= A — D . Then M ' is a model which contains P. Further, if P '
is a specialization of a spot Q ' and if Q ' corresponds to a spot
Q &M', then Q = Q ' and therefore there exists a model M  which
contains P  and Q by theorem 3. Thus 1 )  and 2 )  are equivalent
to each other. Next, we assume again 2 )  holds. Let 43 be the
set of prime ideals ri of P  such that Q  is a  specialization o f Pp
and let S  be the intersection of the complements of E ,.13 in P.
If an element s 8 S is a non-unit in P[Q ], then there exists a place
0 which dominates P [Q ] such that s  is a non-unit in 0. Let u  be
the maximal ideal of 1.) and set P'=P(nnP), q-----Q (nnP). Then by
our assumption P' = Q' , but sEit n P, which is a contradiction.
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Thus every element of S is a unit in P[Q] and P[Q]= P s .  Similar-
ly , P[Q ] i s  a ring of quotients of Q  and 3 )  holds. Conversely,
assume that 3 )  holds, then obviously 2 )  holds and therefore 2)
and 3 )  are equivalent to each other. Thus 1 )  ,  2 )  and 3 )  are
equivalent to each other.

REMARK. There exists a  model which contains given spots P1,
••• , P  i f  (and only 0  there ex ists a  model M,3 w hich contains P,
and p, f o r ev ery  pair (i, j).

Pro o f . W e prove the assertion b y  induction on n. When
n = 2 , the assertion is obvious. Assume that the assertion is true
for n -1  spots. Then there exists a model M  which contains P1,
• • •, P,,-1. Let A  b e  an affine model which contains P. and set
D=M— (A  n Ill). D  is  a closed set of M .  Let D ' be the union
of irreducible components of Dwh i ch do not contain any of P1, •• •,
P .  Then M "=-M — D' is a model which contains P„ •-•, P„_,.
If P . is  a specialization of a spot Q  and if Q  corresponds to  a
spot Q' in M ", then Q = Q ' and therefore there exists a model M*
which contains M "  and P„ by Theorem 3.

III) A  rem ark  on imbedding in  a complete model.
THEOREM 5. L et P  be a  spot in  a model M .  I f  t h e  induced

model 61 (M )  of  M  defined by the spot P  is a  complete model and
if  the monoidal transform  M *  of M  w ith the center P  i s  a  subset
of  a  complete model, then M  is  a  subset of a  complete model.

Proo f . Let D* be the set of spots in M *  which correspond
to spots in the locus M (P )  of P  in M .  We shall prove that (M *

D*) u M is  a complete model. Since M* —D* is  a model, (M *
—D*) u M is  the union of a finite number of affine m odels. Let
b  be a place of the function field of M .  Since M * is a complete
model, b  has a unique center P *  in  M * .  I f  P* E D*, then the
projection P ' of P *  in M  is the only one spot in (M* — D*) u M
which is dominated by b  ; if P* tD*, then P *  is the only one spot
in (M* —D*) u M  which is dominated by b. B y  the uniqueness
of spots dominated by places, w e see first that (M* — D*) u M is
a model and by the existence of such spots, w e see that (M*
D*) u M is a complete model.

COROLLARY. L et P  be a  spot of dimension zero in a model M.
L et M * be the quadratic transform  of  M  w ith the center P .  Then
M  is  a  subset of a  complete model if and only if  so is M * .  When
M  is a norm al m odel, M  is  a  subset o f  a  complete model if  and
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only if  the derived norm al model of  M * is  a  subset o f  a  complete
model.

Pro o f . The first half is an immediate consequence of theorem
5. The last half can be proved by the same way as in  the  proof
of theorem 5.

We want to ask the following question :
P R O B L E M . Is every  normal complete model a projective model?
I f  th e  answer o f  this question is affirmative, then 1 )  our

example in § 2 is a  model which is not a  subset of any complete
model and 2) it holds that if  a  quadratic transform of a  norm al
model is a  subset of a projective m odel, then so is the original
model (by the  corollary to Theoren 5).

Observe that "quadratic transform" in the corollary to Theorem
5  cannot be replaced by " monoidal transform" without any addi-
tional condition (by our example) and the same to 2 )  just above.
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