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Introduction

In his paper [2], Atiyah completely classified the vector bundles on an elliptic
curve (see also O da [12 ]). His results have been extended to the curves of higher
genus in various ways. Another direction in which we must try to extend it is the
study of vector bundles on an abelian variety X  of higher dim ension. In  contrast
w ith the case g =dim X  =1, there are "too" many vector bundles on X  when g >1.
The main object of our study in this article is the vector bundle of the following type:

Definition. A vector bundle E on X  is semi-homogeneous if for every x e X,
there exists a line bundle L on X  such that

T ( E ) 7 E  L,

where Tx  is the translation of X  by x (see also Definition 5.2).

By this definition, the difference between the case g =1 and the case g>  1 can be
explained by the following two facts:

(1) Every indecomposable vector bundle on an elliptic curve is semi-homogene-
OUS.

(2) Semi-homogeneous vector bundles on X  are very special when g >1.

(1) will be easily seen by the following result of Atiyah ([2] Theorem 1 0 ) : If
two indecomposable vector bundles E and E' on an elliptic curve have the same rank
and the same degree, then E '  EOL for some line bundle L on X.

To show (2) is one of our main aims of this article.

Abelian varieties have a lot of automorphisms, that is, translations. As for the
vector bundles which are invariant under all translations (such vector bundles are
sa id  to  be  hom ogeneous), the ir structure has been considerably clarified by
Matsushima [6], Morimoto [9] and M iyanishi [7]. In §4, we shall complete their
results by i)  determining the  category of homogeneous vector bundles (Theorem
4.19) and ii) computing their cohomologies (Theorem 4 .12 ). (In the case g =1,
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i) was implicitly done by O da [12 ]. The essential tool for ii) is that of Mumford
which was used in the construction of the dual abelian variety ([10] §13).) These
results are inevitable for our study of semi-homogeneous vector bundles.

In contrast with rational homogeneous spaces, there exist many line bundles on
abelian varieties. In fact, the connected component Pic°(X) of Pic (X) has the same
dimension as X .  It is this fact that m akes our definition of semi-homogeneous
vector bundles meaningful.

In  § 5, semi-homogeneous vector bundles will be characterized by various
properties under the condition that they are simple (Theorem 5.8). Among those
the property dimk Hi(X , GP . d , x (E ))= g  is  the simplest one. The equivalence (1)
and (4 ) in  Theorem 5.8 i s  the generalization of the characterization given by
Morikawa [8] and Oda [12], [13] to the case where the characteristic p of the base
field is arbitrary. The keys of our proof are the pro-representability and the relative
representability of the moduli of simple vector bundles (they are summarized in
§1) and nice properties of the group scheme E (E ). (See § 2. For the basic idea, we
owe to Takemoto [15 ].) These enable us to overcome the difficulty which arises
when p> 0 (see Remark 3.18 and the proof of Proposition 2.6).

§ 6 is devoted to the study of semi-homogeneous vector bundles which may not
be simple. The similar results to homogeneous vector bundles will be obtained for
a certain category S 6  consisting of semi-homogeneous vector bundles (Theorem
6 .19 ). This almost determines the category S 6  and reduces the study of semi-
homogeneous vector bundles to the case they are simple.

In the final section, we shall again consider the simple semi-homogeneous vector
bundles. Various group schemes attached to them will be explicitly determined and
it will be shown that their ranks and other numerical invariants are much restricted
when g >1 (Remark 7.13).

The author expresses his hearty thanks to Professor M. Maruyama for his
valuable suggestions and kind advices.

N otation. Throughout this article k  denotes a  fixed algebraically closed
field of characteristic p> 0. By a scheme we understand a scheme of finite type over
k. For a scheme X , X is the contravariant functor on (Sch) to  (Sets) associated
to X .  For Ox -modules F  and G, y e a „ ( F ,  G) denotes the sheaf of Ox -homomor-
phisms, while Hom, x (F, G) is  the set of global Ox -homomorphisms. tr.,/, x (F)
and End,x (F) are *Yeam,x (F, F) and Hom, x (F, F), respectively. We use the terms
"vector bundles" (resp. "line bundles") and "locally free sheaves" (resp. "invertible
sheaves") interchangeably. For a vector bundle E  on X , r(E ) is  the rank of E.
Es' =.e.m , x (E, Ox )  denotes the dual vector bundle of E (especially, for a vector

space V, V" is its dual vector space). For a positive integer t, A E is the t-th exterior
power of E .  In the case t = r(E) it is a line bundle which we denote by det (E).

For a scheme X , Pic (X) is the set of isomorphic classes of line bundles on X
and Pic°(X) is the subset of Pic (X ) consisting of elements represented by line bundles
which are algebraically equivalent to zero . Pic (X) is an abelian group and Pic°(X)
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is its subgroup with respect to the  tensor product 0 .  We denote the quotient
Pic (X)/Pic°(X) by NS (X).

§ 1 .  Simple vector bundles

In  this section we shall summarize the  facts about families of simple vector
bundles. (A vector bundle E on a complete variety X is said to be simple if End,.(E)

k . )  They seems to be well-known in the case of line bundles and the proof is
similar to the case (see [10] §10). Thus we only sketch them for the convenience of
readers.

Let f : V—>S be a proper, flat, integral morphism. Let F and G be locally free
sheaves on V .  There exist a coherent Os-module A  and an isomorphism of functors
on quasi-coherent Os-modules M:

(1.1) f * G re ..„ (G , F )O s s M) .Yeom,s(A, M)

(EGA III (7.7.6)). F o r  a n  affine morphism, a : T-4S, this gives rise to isomor-
phisms

(1.2) ( f T)* (.Ç.smo„(GT, T ) ) ie— es(A, or)
(1.3) Hom,,,(GT, F )H o m ( A ,  CO.

Let Z be the closed subscheme of S defined by the ideal J . = Ann (A).

Lemma 1 .4 .  L e t a: T—>S b e  a  morphism. I f  F T ::_•=_GT O , T N  f o r som e in-
vertible sheaf N  on T, then a factors through Zc+ S.

Pro o f . We may assume that a is affine. Since F T  G T ®,, N ,

F ,„,(G 1 ) 0

Hence there exists an injective homomorphism

(1.4.1) (fT)*(N) .r e o i n o „ ( G T ,  T) •

By the assumption on f, we have

(f T )*( 69VT) :
41 (P T

Hence, taking the direct image of both sides of (1.4.1), we have an injective homomor-
phism

N aromes(A, 9 g.).

Therefore, it follows from the definition of .0" that., • N  = 0 . Since N is an invertible
ST -module, • C T  0, which completes our proof. q. e. d.

Obviously the underlying set of Z is

Supp {s e Sithere exists a non-zero homomorphism GsF 5 } ,
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and hence the set W= {s e F,} is contained in it.

Proposition 1.5. W is a constructible set.

P ro o f . The functor F T ) on (Sch/S) is representable by an
open subscheme Y of V (A ) (see [11] Lemma (11.11) and Remark (11.14)). Since
W= fl(Y), it is a constructible set, where 13: Y–>S is the structure morphism. q. e. d.

To obtain further results we have to assume that G is S-simple, Le., the natural
homomorphism Os -t f ,(S .,/ , v (G)) is an isomorphism. From this assumption we
have

Lemma 1.6. For every weW, there ex ists an  open  neighbourhood U  o f  w
in Z such that Alu 2 4 6 z1u.

P ro o f . By (1.3),

Home y .  (Ga, Fs)L, Homk (s ) (A  k(s), k(s))L-'- [A O k(s)] v

for all s e S .  Since G is S-simple, we have d im " )(A Ok(w))= 1 for all w e W . By
Nakayama's lemma, there exist an open neighbourhood -Ü of w and an ideal j"  of
ac such that Alu L'Ou/df . Obviously / = f l u , whence A I  Of o r  U= t7 n Z.u

q. e. d.

Proposition 1.7. W is an open subset of Z.

P ro o f . By (1.3) and Lemma 1.6, the map

H o m ( G u, F u ) — >  Hom, ( G ,  F w )

is surjective for a U in Lemma 1.5. Hence there exists a homomorphism Gu --+
F u  such that (p® k(w) is an isomorphism. The rest is routine,q .  e .  d.

By virtue of the above proposition, W can be regarded as an open subscheme of
Z.

Theorem 1.8. W represents the following functor of  (Sch) to (Sets);

T–SIF T -:-.'GT O,,,M  f or some invertible sheaf M  on T1.

P ro o f . Put 1.,= ( fw ),,,(e ,s . , , w (Gw , F m )). T h is  is an invertible sheaf on W
by (1.2) and Lemma 1.6. We see easily that the natural homomorphism

Gw  0  L  Fw

is an isomorphism This and Lemma 1.4 prove our theorem. q. e. d.

Under the assumption that F or G is S-simple, we shall refer to the above sub-
scheme W of S as the maximal subscheme over which F and G are isomorphic to each
other.

Let E be a simple vector bundle on a complete variety X .  Let C be the category
of artin local rings over a field k and g  the functor on C defined by

9(A )=  {El Ê  is  a  vector bundle on X A  such that (E) 0 = E 0 A  (A/m) is
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isomorphic to EVisom.
For this functor, we have the following.

Proposition 1 .9 .  The f u n c t o r  g  is pro-representable by  a pro-couple (R,
and, moreover, the Z arisk i tangent space tR  o f  R  is canonically  isom orphic to
IP (X , em ,/ ,.(E )) . W e shall call this R the local moduli of E.

For the terminology and the proof, see Schllesinger [14]. If one notes the
following lemma, he would see that the proof of the pro-representability of Picard
functor in [14] works in our case without any modifications.

Lemma 1 .1 0 .  If  E e  I(A ), then End,,,A (E)̂ .  A.
The proof is easy and we omit it.

§ 2 .  The group scheme E(E)

From now on, we shall fix an abelian variety X of dimension g over k. In this
section we shall give a condition for a vector bundle E on X to be isomorphic to the
direct image ir (E') for some isogeny Y — O f and vector bundle E' on Y (Propo-
sition 2.6).

In general we regard X  as a  variety . H ence, by a point of X , we mean
a k-rational point of X .  But, in some places, regarding X  as a scheme, we shall
consider subschemes of X  which may not be reduced or X x S for an arbitrary
scheme S.

We denote by /  the dual abelian variety of X .  For a point .R of we denote
by P I  the line bundle in Pic°(X) corresponding to 52. Moreover, for an arbitrary
scheme S and an S-valued point f  of / , we denote by P 1  the line bundle (l x  x f)* ( .9 )
on X s = X x S, where .9  is the normalized Poincaré bundle on X x g .

Let E be a vector bundle of rank r on X.

Definition 2 . 1 .  E°(E)={.R E  I E0/3
1 '. E} .

If E P c sE , then det ( E )  prrOdet (E), whence rit =O . H ence E° (E) is con-
tained in the r-torsion of g .

Let p i  (resp. p 2 )  be the projection of X  x  g to  the first (resp. second) factor.
We shall apply the results in § 1 to the morphism p2 and the couple of vector bundles
F = (p,)*(E)0 .9 and G = (p i )* (E ) . By virtue of (1.1), there exist a  coherent e x -
module A  and an isomorphism of functors on quasi-coherent Ox -modules M:

(2.2) (P2)*( (p 1)*( . ./ ,x (E ))0 .9 0 M)r.reom,,,i(A, M ).

Let us assume that E is a simple vector bundle. It is easily seen that G is an
g-simple vector bundle.

Definition 2 .3 .  E(E) is  the maximal subscheme of g  over which F  and G
are isomorphic to each other.

By virtue of Theorem 1.8, E(E) represents the following functor of (Sch) to
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(Sets);

(2.3.1) {f e S(S)IE E OP f L'E s ® , s  N  for some invertible sheaf N on S) .
Obviously this is a subgroup functor of g .  Hence E(E) is a subgroup scheme of g .
As in the case of E°(E), we see that E(E) is contained in the scheme-theoretic kernel
( g ) ,  of the multiplication rg : S - 4  by r. Especially, E(E) is a finite commutative
group scheme. Since every invertible sheaf on E(E) is trivial, there exists an isomor-
phism

(2.3.2) (P i)* (E )0 (g lx  z(E)).'-=- (Pi) * (E)

where p i  : X x 1(E) -+X  is the projection.
The relation of A  and E(E) is as follows.

Lemma 2.4. AL'- 0, ( E ) e)A 1 f o r  some coherent 0,-module A ' an d  moreover,
Supp (A') n 1(E)=ø.

Proo f . By Proposition 1.7, E(E) is open in Z. Since E(E) is finite, we have,
by Lemma 1.6,

Aiz(e).--= Oziz(E)L' 0 1(E)

Since E(E) is a union of some connected components of Z, Al, (E ) f--.'0i ( E )  is  a direct
summand of A .  Hence we have J1' 62.(E ) (DA' for some coherent 9 g -module A '.
L e t  e E (E ). Since E is simple, we have

dimk (A0kM )=1=dim k (0E (E ) 01432)).

Therefore A' = 0, which proves the second assertion. q. e. d.

For a vector bundle E on X , let " e /(E) be the cokernel of the natural injec-
tion i of 0 x to 6°., / 0 ( E ) .  L e t  Tr: 61' M/ 1 (E) - '9x  be the trace m ap. We see easily
that Troi =r • idE , where r = r (E ) .  Hence i f  (r(E ), p )=1 , then e.,/ x (E )  0,
P i t/ i(E ) and especially I/ 1W is injective. In general this is not true.

Lemma 2.5. If  E is a sim ple vector bundle on X , then

(1) Lie (P)(E(E))'L'. Ker [111(X, 111(X, efid, x (E ))],

(2) H°(X, A l /(E))L'Lie ( P) (E(E))

Pro o f . There are natural identifications

(2.5.1) 111(X, Lie (P )(g)

(see [10] §15) and

(2.5.2) Hi(X, tR

(see Proposition 1.9), where R is the local moduli of E .  Hence (1) follows from the
definition of E (E ). (2) is derived from (1) and the exact sequence

0  - ->  x CS' tad  x (E ) / ir  /(E ) O.

q. e. d.
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E(E) has the following nice property.

Proposition 2 .6 .  L et E  be a sim ple  vector bundle on X  and suppose that
E(E) 0. Then there are a non-triv ial isogeny n: and a sim ple vector bundle
E l  on  Y such that n,,(E i )L'E.

P roo f. Our proof consists of several steps.
Step I. Let G be a simple subgroup scheme of E (E ). Let p: g--41G be the

natural isogeny and n: be the dual isogeny of p, where Y is the dual abelian
variety of g IG .  Ker ( i t )  is canonically isomorphic to the dual 0  of G ([10] §15).
We shall construct a vector bundle E, on Y so that n* (E i ):-tz- E.

Step II. Restricting (2.3.2) to X x G we have

(P1) * (E)0 .9  x G

where p, is the projection of X x G to X .  Taking the direct image by p l  we have

EO(Pi)*(.9  ix x E0 k F(G, OG).

Since (Pi)*(.9 Ix -22...n* (0 y ) ([12] Corollary 1.7), we have

(2.6.1) it*(n*(E))1-' EC)n * (0 y ) at- ,

where I is the order of G .  This and the assumption that E is simple imply that

(2.6.2) dimk End, y (n*(E))= dim,, Hom, x (E, n* n*(E))=1.

Step III. Since G is simple, I is a prim e num ber. W hen (I, p)=1, G Z11Z
and when 1= p, G is isomorphic to ZIpZ, pip  or Œp . T he  struc tu re  o f the  k-algebra
A= End, y (e(E )) is one of the following:

Case 1. AL-.- k [T ]l(T i — 1) if a n d  /k p.

Case 2. k [T ]l (T P ) if GL-'-ZIpZ.

Case 3. Af;!-_-' k[7]1(TP—T) if

Case 4. AL-- k[T]l(TP) if Ĝ.- ocp .

We shall prove the above only in the case 4. The others are similar (cf. [15]
Lemma (1.12) for the case 1).

The embedding G c,g  determines a non-trivial cohomology class a e 1-11(X, ex)
(cf. (2.5.1)) uniquely up to the constant multiplications. Since

(2.6.3) a(P)=0

By the definition of the isogeny it, we have

(2.6.4) rr*(a)= 0

in 1--P(Y, Of ). Let {A u } e Z 1(X, GL„(0 x)) be a  1-cocycle which defines E for some
affine open covering {U i}  o f  X .  F or the  covering {Ui}, a is represented by a
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1-cocycle {au }, a u  e F(U i n  Up  ex ). B y  (2.6.3), th e re  ex is ts  a  0-cochain { f i }

E ex), such that

(2.6.3') aff =fi —j, for all i an d  j .

By (2.6.4), there exists {ti}, t .  F(U i , n,(00), such that

(2.6.4') au= ti — ti f o r  a l l  i an d  j .

By Lemma 2.5, (2), there exists {B i }, e  F (U i, M r (e x )), such that

(2.6.5) a.41 =B iAi i  — A u B

where M r (0x ) is the sheaf consisting of all the (r, r)-matrices whose coefficients are
in Ox . By (2.6.3') and (2.6.4'), we can find a constant c  in k such that tf—fi =c
for all i. Replacing f, b y  — c we may assume that t ' = fi for all i. By (2.6.4') and
(2.6.5), we have

(Bi— ti l)A u = A u (B i — ti t) ,

where I  denotes the unit m atrix. H ence {B i —til }  determines an endomorphism
cp of n * (E ). Let K (X ) and K(Y) be the function fields of X  and Y, respectively.
Since ti K (X ) and  [K(Y): K (X )]=  p , the endomorphisms id, 9P-1 are
linearly independent in  End, y (e ( E ) ) .  M oreover, since (B i — tiI)P =1311— f i l ,  cp"
is induced by an endomorphism of E .  Since E is simple, (PP is a scalar multiplication.
By this and (2.6.2), we see that AL,' k[T]l(TP).

Step IV. In the case 1 and 3, the semi-simple endomorphism forces n*(E)
to decompose into a direct sum of its eigenspaces:

7r*(E)'L-: E e • • • @E l .

Hence we have

n*Or* (E))'-= n*(E 1) C ED it *(E i) •

By the Krull-Schmidt theorem of locally free sheaves (see [2]) and (2.6.1), we have
rc* (Ei).:- E for all i = 1, 2,..., I.

In the case 2 and 4, there exists an endomorphism (f) such that yoP =0 and 9P- 1 -
4 O . W e have two filtrations of n*(E) by its subsheaves:

0 4 Ker (9) Ker (9 2 ) c • • • c Ker (9P - ') c n*(E)
UI Ul UI

0 4 Im (9P- i)c Im (9P - 2 ) • • • c Im (9) n*(E) .

Since rc*  is an exact functor, we have

0 4 Ker (x) Ker (x2) c • • • c Ker (xP -  i) c rc* (ir*(E))
UI U1 UI

0 41m(xP - 1 )c Im(xP - 2 )c • • • c Im(x) n*(n*(E))

where x = n* ((p). Since x is an endomorphism of n* (n*(E))::: E 9 P and E is simple,
we see that
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Ker(xi)=Im(xP')L'Ee if o r  all i =1, P•

T his y ie lds that Ker(90=Im(9P - i )  a n d  that fo r  a l l  i =1, p,
where Ei = Ker ((pi). Moreover, we have 77,(E1lE1_ i ) -: E  for a ll i = 1, p.

It suffices, therefore, to show that all the Ei are locally free 0 1 -m odules. This
follows from the following lemma. (Apply the lemma to the case where f=cpi and
g=_- 9 P- i,)

Lemma 2 .7 .  L et R  be a  regular lo cal rin g  an d  le t M  an d  N  be f ree  R-
m odules w ith f inite rank s. Let f: M -+ N  and g: be hornomorphisms such
that Im (f)= K e r(g ) and that Im (g )= K e r (f ) .  Then Ker ( f )  and Ker(g) are free
R-modules.

Pro o f . The infinite complex

0 4-- 1m (g ) 4 -- /V 4-1.— M4-PL- N4-1-- M4

is considered as a free resolution of the R-module 1m (g). Since the cohomological
dimension of R is finite, both Ker(f) and Ker(g) are free. q. e. d.

For an isogeny 7r: Y->X and a  vector bundle E l  on  Y , we see that r(7r(E 1 ))
=(degir)•r(E i ). This and Proposition 2.6 show the following.

Corollary 2 .8 .  For every sim ple vector bundle E on X , there ex ist an isogeny
7r: and a sim ple vector bundle E' on Y  with E(E )=0, such that 7r,(E') E.

§ 3 .  The group scheme 0 (E )

For a line bundle L  on X , the homomorphism X -> g  can be defined. q5i,
is the unique morphism such that

( l  x 00 * (.9 )=- m* (L)0(Pi) * ( 4 -1 0(P2) * (4 -1 ,

where p, and p2  are projections of X x X to X  and m: X x X->X . is  the group law
of X .  As a map 4),,(x)= Tt(L)OL - ' for every point x E X, where Tx : X -+ X is the
translation of X by x. For details, see Mumford [10] §13.

For a vector bundle E on X , we define an analogue corresponding to (AL  in the
case of line bundles.

Definition 3 . 1 .  For a vector bundle E on X,

0°(E)= {(x, )e X  x .

Proposition 3 .2 .  (1)'(E) is a closed subgroup of X x g.

P ro o f . Let p 1 2 , p
1 3 , p i ,  etc. be the various projections of X x X x t .  W e

shall apply the results in §1 to the morphism p 2 3 : X xX x g-->X x g  and the couple
o f  vector bundles F=(p i 2 )*(m*(E))0(p 1 3 ) * ( g r  a n d  G = (p ,)* (E ). Obviously
0°(E)={(x, .t)E X x  F l x x { x } x { R } L ' G l x x ( x ) . ( R } } .  T h u s  0°(E) i s  a constructible
set by Proposition 1.5. On the other hand, 0°(E) is closed under the multiplication.
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Hence our proposition is proved, q. e. d.

Let p°: V (E ) - X  b e  the restriction of the projection of X x  Î  to  X .  Set-
theoretically the kernel of p° is isomorphic to L A E). Hence we have

Proposition 3 .3 .  Fo r a vector bundle E on X , we have dim 0°(E )<g . p ° is
surjective if  and only if dim 0°(E)=g.

If E is simple, we have more information on 10 (E ) .  First we have

Proposition 3 .4 .  If E is a sim ple vector bundle, then 0°(E) is a union of  some
connected components of  the closed set P°(E)={(x, 3Z) e X x g i there exists a non-
zero homomorphism f : T (E )--E O P }.

Pro o f . On one hand, Proposition 3.2 implies that 4)°(E) is closed in  P°(E).
On the other hand, it is open in W°(E) by Proposition 1.7. Thus we have proved
our proposition. q. e. d.

Secondly, we have

Definition 3 .5 .  F or a  sim ple  vector bundle E o n  X , 0(E) i s  the  maximal
subscheme of X x g over which F and G are isomorphic to each other, where F and
G are the same as in the proof of Proposition 3.2.

By virtue of Theorem 1.8, 0(E) represents the following functor on (Sch);

(3.5.1) S  ->  {(h, f) E X(S) x±(S)IT,t(Es )L'- Es OP f ® , s N  for some

invertible sheaf N on SI,
where T„ = (m.(1 x h), p2): X x S - 0( x S.

Clearly this functor is a subgroup functor of X x Î .  H e n c e  0(E) is a  subgroup
scheme of X x Î .

Let p (resp. g) be the restriction of the projection P i : X  x 2->x (resp. p 2 : X x g
—4) to 0(E).

Lemma 3 .6 .  p*(E) Lor f o r some line bundle L on 0(E), where r=r(E).

Pro o f . If h: S---0X factors the morphism p: 0(E) - +X, then by (3.5.1), we have
71(E5 )._'E5 O L for some line bundle L  on  X s . Restricting this isomorphism to
{0} x S, we have that h*(E)L-'- (0SP)OL. Putting h=p, we have our lemma.

q. e. d.

By (2.3.1) and (3.5.1), we have

Lemma 3 .7 .  Fo r a s im p le  vector bundle E  o n  X ,  th e  (scheme-theoretic)
kernel of p is isomorphic to Z(E).

For the morphism g, we can manage a similar business to p.

Definition 3 .8 .  For a sim ple vector bundle E  o n  X , K(E) i s  th e  maximal
subscheme of X  over which the vector bundles re (E ) and (p,)*(E) on X x X  are
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isomorphic to each other, where X x X  is regarded as an X - scheme via the projec-
tion p2 : X x X -4X.

Under this definition we have

Proposition 3 .9 .  Let E be a sim ple vector bundle on X .
(1) K(E) represents the following functor on (Sch);

(3 .9 .1 ) S {h e X(S)1T,T(Es )- Es ®,, s N f or some invertible sheaf N on S} .

(2) There exist a line bundle L on K(E) and an isomorphism

(3.9.2) 1,1*(E)=-(P1)*(E)0(P2)*(L)

on X xK(E), where y is the restriction of  m: X x X—>X to X x K(E).
(3) The scheme-theoretic kernel of  g is isomorphic to K(E).

We shall consider the relation between 0°(E) and 0°(F) in the case where E
and F are related with each other.

Definition 3 .1 0 .  For a vector bundle E on X , 0 "(E ) is the neutral component
of 0°(E).

Proposition 3 .1 1 .  Let F be a vector bundle on X .
(1) If  E is a direct summand of F, then 0 " (F )g 0 " (E ).
(2) If  F has a f iltration

0=F 0 c F 1 c ...cF„_ 1 =F„=F

such that (i=1, n) f o r a s im p le  v ector bundle E , then 0°°(F)
g 000(E) .

Pro o f . ( 1 )  Assume that 1," (F ) 0 " (E ) .  We can choose an infinite sequence
a1, a2 ,... of points in 0 " (F ) so that a, and ci ;  do not belong to the same coset of
0 "(E ) whenever i j .  Put a i = (x i , E X x Î .  F r o m  the choice of a i 's, we see
that E1= T x*1(E)013

2- ,' is a direct summand of F for every i and that Ei "\- - E;  whenever
j ,  which contradicts to the Krull-Schmidt theorem of locally free sheaves (see

[2]).
( 2 )  If T ( F ) F O P ,  then there exists a non-zero homomorphism f :  T (E )

- + E O P ,. Hence 0 ° (F )g T ° (E ).  Since E  is sim ple, our assertion follows from
Proposition 3.4. q .  e .  d.

Proposition 3 .1 2 .  Let Y.-*X b e  an  isogeny and  F  a  vector bundle on  Y.
For E=74(F), we have

(7E x 1) (0°(F) x g)g (E) .

P ro o f . A point of 0 ° (F )x  g  corresponds to  a point (y, J2) e Yx g  such that
(y, itM) e 0° (F). Hence F  P  * 0 0 24 F n* (P Taking the direct image
by 7C, we have

(T „ (3,) )*(7r * (F ) ) - * ( r;,̀ (F)).2-_-' 7r,,,(F)0 Pt.
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This proves our proposition. q. e. d.

Let us refine the above proposition in the case where both E and F are simple.

Lemma 3 .1 3 . L et F  be a  simple vector bundle on Y. I f  E =n ,(F ) is simple,
then

K(F) n Ker (n) = 0,

w here n means the scheme-theoretic intersection.

P ro o f . The followings are easily verified;

End,x (E)L'Hom, y (n*n * (F), F)

and 7r*n*(F )" i)*(v * (F))

where v is the restriction of m: X x X-0( to X x Ker (n). Since H =K(F) n Ker (n)
is finite, we have

v*(F)ix,,tr-=(Pi)*(F)

by (3.9.2). Hence there exists a surjection etr,k(F)--FE9 ", where h is the order of
H .  Therefore h < Hom,,,,(7r*n*(F), F)=dim k Encl e,x (E ) . B y  th e  assumption,
h=1, which proves our lemma. q. e. d.

In the above lemma, the converse is true if F  is a  line bundle ([12] Theorem
1.2).

Proposition 3 .1 4 . Let it :b e  an  isogeny and F  a sim ple vector bundle
on Y. A ssume that E=74(F) is s im p le . Then the restriction a of  nx l g  to  0(F)
x r / factors through 0 (E ).  Moreover, a is a closed immersion.

Yx Xx

0(F) x 0 (E )

P ro o f . An S-valued point of .1)(F)x It corresponds to a  p a ir  (h, f)E Y(S)
x /(S) such that (h, 12(f)) e ck (F ) (S ) .  Hence

T (F s )cz- FOP f t ( f ) 0 0 , N

for some invertible sheaf N  o n  S .  Since P, ( f ) 2t-(trs )*(P f ), taking the direct image
by ïts  we have

T,r(h) * (n ,),(F)s) ( 7r, )*( 7 1(Fs));t-( 74(F))50P f® s N.

Hence (n(h), f)e 0(E)(S), which proves the first assertion . We see that

Ker (a).1-; (0(F) x n (Ker (n) x {(1});'_'- K(F) n Ker (n).

Hence by Lemma 3.13, we have our second assertion. q. e. d.

Corollary 3 .1 5 .  Under the situation of  Proposition 3.14, we have the follow-
ing.
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(1) The projection 0 (F )x  1 t - 4  induces a closed immersion

((Ker (7r) x f) n 0(F)) x  g 4 E(E) .

Especially, when F  is a  line bundle, the projection of K er (n ) x  g  to g  induces a
closed immersion

(3.15.1) Ker (n) x g 4 E(E),

where Ker (7r) is regarded as a f -scheme via ad IF,K er(n)

(2) 7r: Y—*X induces a closed immersion

(3.15.2) K(F) 4 K(E)

P ro o f . Restricting the morphism a in Proposition 3.14 to Ker (n) x g  (resp.
Yx {6}), we have the first assertion of (1) (resp. the assertion (2)). The second
assertion of (1) is easily derived from the fact that for a line bundle F, O(F) is the
graph of ch• q .  e .  d .

In the case where E is simple, dim O(E) is closely related with the dimension of
the local moduli of E .  In fact,

Proposition 3 .1 6 . L et E  be a sim ple  v ector bundle o n  X  an d  R  its load l
m o d u li. Then we have

g —dim 0 (E )  dim R S,./,x(E)).

Pro o f . T he first inequality follows from Proposition 3.3 and the third in-
equality from Proposition 1.9. It suffices to show the second inequality. By the
PoincarEs complete reducibility theorem, there exists an abelian subvariety Y of
X x g such that

(3.16.1) Y n 0(E ) is finite,

(3.16.2) Y and 0(E) generate X x g.

Let us consider the family F'= f i x  x  y  of vector bundles on X , where F is the same as
in the proof of Proposition 3.2. Since Fl x  „ L-- E, there exists a homomorphism

, ^R—e), c, of complete local rings. The dimension of the fibre 0,, 0 0,(R/in) should
be  O . For otherwise there exists an artin local k-algebra A„= 1,,,,/a„ of length n
for an arbitrarily large n such that F' ix  „ s p e c ( A 0  is isom orphic to E(3) k A„, which
contradicts to (3.16.1). H ence w e have that dim Y<dim R .  Since dim Y= 2g
— dim 0(E), we have our proposition. q .  e .  d .

Corollary 3.17. Under the situation of Proposition 3.16, we have
(1) dimk ili(X ,
(2) i f  dimk I-11(X , ernd, x (E ))= g , th en  dim 0 (E )= g  an d  th e  rin g  R  i s  a

regular local ring.

: Ker (n) 4 1'7 .

Remark 3.18. I f  (r (E ), p )= 1 , th e n  1.,/, x (E )  contains ex  a s  a  d i r e c t
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summand. Hence (1) o f  Corollary 3.17 is  trivial in this case.
In the proof of Proposition 3.16, if p= 0, then Y n 0(E) is a discrete finite group.

Hence the natural map

Ty,0 H l(X , S ./ ,,(E ))

is injective, where Ty ,0  is  the tangent space of Y at O. Thus, in this case, we can
prove the inequality

2g —dim 45(E) climk H 1(X, 6 " . .1 0„ (E))

without aid of Proposition 1.9.

§ 4 .  Homogeneous vector bundles

For a scheme V, we denote by C y  th e  category of coherent C y -modules. Let
us consider the functor ,99  on Cg  to Cg  defined by

(4.1) Y(M)= 03 1)*(g) e l ,  M)

for every ME C g , where p i (resp. p2 ) is the projection of X x g  to X (resp. g).

Proposition 4 .2 .  .9' is a  lef t exact functor. Moreover, „V has a  lef t adjoint
functor .9" and f or every  N EGA,  and  M eC z ,  there ex ists a  functorial isomor-
phism

(4.2.1) (p2)*.re.me ((P1) * (N ), ,90 , k M ) M).

Pro o f . The functor .99  is  a composition of the functor ..q" o n  Cz  to  Cx x 2
and the functor (p i ) * , where .9"(M )= .90 M for every M e Cg . Since .9 is an
(9g -flat module, SP" is an exact functor. Since p2 is  a  proper morphism, .99 ' has a
left adjoint functor g"' and for every L ECx x i ,  and M e Cg , there exists a functorial
isomorphism

(4.2.2) (P2)*,e,m (L, .90 0 ,7 M ) M ),

(see EGA III (7.7.2)). As is well known, (p i )*  is left exact and has a  left adjoint
(p 1)*. Therefore 9 '= ((p i ) * )0Y ' is left exact and .9" =--Y '. ( (p i )* ) is the left adjoint
of .99 . Putting L= (p 1)*(N ) in (4.2.2), we have (4.2.1). q .  e .  d .

Lemma 4 .3 .  L e t MECI? an d  N E C x .  T hen  w e  hav e  the  follow ing iso-
morphisms:

(4.3.1) YOU T (9 9 (M )), 9°( .11(M)):#: Y (M )0

(4.3.2) .F(NOPx)—L'T!i(g"(N)), g"(T(1V))2:-.°7 -(N )0P. r ,

where Px  is  the line bundle in P ie (g ) corresponding to xE X 2-f() ).

Pro o f . (4.3.1) is easily verified by the  following properties o f th e  Poincaré
bundle .9:



Semi-homogeneous vector bundles on an ab elia n  variety 253

.9  06,7 P .--"=- ( 7 4.0)) * ( 9 )

and (T (0 ,)* (g )-=  O o x  PA'
The isomorphisms (4.3.2) are derived by (4.3.1) and the adjointness property of
and Y .q .  e .  d .

Other properties of .9 and .9-  will be pursued in a forthcoming paper. In this
section we shall consider them in a special case to obtain some results related with
homogeneous vector bundles.

Definition 4.4. A vector bundle F  on X  is homogeneous if  T t(F ) .-F  for
every point x of X .  We denote by /Ix the full subcategory of Cg  consisting of the
zero sheaf and all homogeneous vector bundles on X.

Definition 4.5. A vector bundle F on X is unipotent if F has a filtration

0=F 0 cF 1 c•••cF n _ 1 cF „= F

such that F 1lF i _ 1 2-'-_9x  for all i = 1,..., n. We denote by Ug  the full subcategory of
C, consisting of the zero sheaf and all unipotent vector bundles on X.

Definition 4.6. e x. i s  the full subcategory of Cg  consisting of all coherent
OR -modules supported on a finite set.

Definition 4.7. We put B = 0 g ,6 . M o d f  (B) is the category of B-modules of
finite length. We identify Modf  (B) with the full subcategory of C-1; consisting of all
coherent I2g -modules with Supp (M)= {0^}.

In the rest of this section we shall show that the functors .9" and .9-  give us close
relations among the above categories.

Lemma 4.8. I f  M e e ,  th e n  99 (M) e Hg  a n d  r(Y(M ))= length ( M ) .  I f
M e Modf  (B), then Y(M ) e  U .

Pro o f . If M e C, then M has a composition series by k(.R), e g .  Since the
restriction of .9' to  C I is  exact, .V(M) has a composition series by .99(kM )=  P .

Hence r(.99 (M))=1ength(M) and if Supp(M)= {0}, then .99 (M ) is unipotent. The
homogenity of 6 9 (M) follows from (4.3.1). q .  e .  d.

Lemma 4.9. I f  U e Ug  an d  .Rk el, then Hi(X, UOP 2 )=0 f o r all i.

Pro o f . It suffices to show the lemma when U.̂4'elx . But in that case it is well-
known ([10] §8).

Lemma 4.10. I f  U e U g , then we have

length R9(p 2 ) * ((p 1 )*(U)0 .9) = r(U) .

P ro o f . There exists an exact sequence

V U ex
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fo r  som e y e  U .  S i n c e  R g ( P 2 ) * ( 9 ) k ( 6 )  a n d  R g - qP2)*( 9 )= 0  ([1 0 ] §1 3 ), we
have

length R g (P2)*((P i) * ( U) = length R9(P2)*((p1)* ( 17)0 .9) + 1.

Hence an induction on r(U) completes our proof. q. e. d.

Proposition 4 .1 1 .  I f  U E  Ux, then 9 - (U) has a support at the origin Ô.

Pro o f . Putting N =U  and M = k ( )  in (4.2.1), we have

H°(X , Uv ( -_)13
2 ) Hom, ;7 (9"(U), k(R)).

Hence, by Lemma 4.9, if O, then Hom, i (T(U), k(52)) = O . S ince  Hom, k  (9 - (U),
k( ) ) '' [9 -  (U) ,(:)k(52)]v , the stalk ,°7(U)1  of 9 -  (U) at R is zero whenever Ô. H e n c e
9 - (U) is supported at the origin Ô. q. e. d.

By Lemma 4.8 and Proposition 4.11, .99 (resp. 5 -) defines a functor on Mod f  (B)
(resp. Ux )  to  Ux  (resp. Mod f  (B)), which we also denote by ,99 (resp...°7"). Then
we have the following theorem.

Theorem 4.12.
(1) 9 ' and  9 -  g iv e  a n  equivalence o f  categories betw een M od f (B )  and

ux .

(2) For M , N  eM od f (B ), le t U=..?(M ) and V = .9 '(N ). T hen w e have the
following correspondences:

i) r(U)= length (M ).
ii) the dual vector bundle L I" of  U corresponds to  (-1)19(M ), w here  g  is

the dualiz ing functor of Mod f (B) and ( -1 ) B : B—>11 is the isomorphism induced by
( -1 ) g : S . - 4 .

iii) U O V  corresponds to  M *N , w here  M *N  is M O N  regarded  a s  a  B-
k

m odule v ia the co-m ultiplication p: —>13 013 of the f orm al group B.
iv) Hi(X , U) ExtiB (k, M) for all i, where k= B lm .

Remark 4 .1 3 .  By the above theorem, the category //,‘ is determined by the
local ring B, whence essentially by g =dim X .  But the operations V  and  0  depend
on the formal group scheme structure of B (especially in the case p> 0).

Let U e U .  B y  L em m a 4.6, R i ( P 2 ) * ( ( P i ) * a P 0 0 . 9 )  a r e  concentrated at the
o rig in . There exists a complex

K :0 K° K1 - - >  Kg - 1 K g  ---> 0

of locally free B-modules of finite rank which gives the direct images of (p i )*(Uv)
0 .9  universally, that is, there exists an isomorphism of functors

(4.14.1) R i(p2)*((pi)*(Uv )0,9C) M).'_--f H i(K O B M )

on the category of B-modules M  ([10] §5, see also § 1 3 ) .  Since B is a regular local
ring  and  H i(IC ) a re  artinian modules, H ( K ) = 0  fo r  O i < g .  (See [10] §13
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L em m a. The regularity of B is not necessary. One sees easily that it is sufficient
that B  is  Cohen-Macaulay.) Put Q =R 9(p 2 ),((p i )*(U v ) 0 .9 )= H g (K • ).  Then the
sequence

0 K° K1 K g I K g - -0  Q • O.

is exact. Let

( K •)v  :0  ----(K g )v (Kg-1)v - - ( K 1 ) v  - - ( K ° ) v

be the dual complex of K .  T h e n  w e  a lso  have th a t H i((K • )v )= 0  for 0< i <g.

Putting R =Hg((K •)v )=Ext 9
B (Q, B), we have the exact sequence

(4.14.2)
(z) (K s)"a c e - i y (lc (Ko)"R O.

Since B is Gorenstein, Extt ( , B) is the dualizing functor 2  of B and we have

(4.14.3) length (R )= length (Q).

Lemma 4.15.

P ro o f .  Hom B  (R, M) Ker[Hom B ((V ) v , --+  Horns ((K 1)v A 4 ) ]

Ker [K°C) B  M K1 On 11°(K• OB M) •

Hence by (4.14.1), we have

HomB (R, Al)-(P2)*OP1) * (U v ) 0 -9  0 2 '
By this, (4.2.1) and Proposition 4.11, we have our lemma. q. e. d.

Proof  of  Theorem 4.12
(1 )  Since 5" is a left adjoint functor of 9', there exist morphisms of functors

idu x —>,9909- an d  tp: 5- 0,99—>idm o d , ( 8 ) . It suffices to show that and tfr are
isomorphisms. First we note that cp(U) and ik(M) are not zero for every U=0 in
Ux  and M =0 in Mod f (B). By Lemma 4.10, (4.14.3) and Lemma 4.15, we have

(4.16.1) length Y (U )= r (U ),

for every Ue  U .  Hence by Lemma 4.8, we have

(4.16.2) r (V (.F (U )))--r (U ),

(4.16.3) length (Y (Y (M )))=  length (M ),

for every U n Ux  an d  M E Modf  (B). Since r(99(.3- (0 x ) ) )= 1 , Y (9 - (6 x ) ) - -. 0 x  and
(P(C9x) is an isomorphism. Let

0 U 0

be an exact sequence in U .  T h e n  w e  have the sequence

(4.16.4) 0. 9 ' ( . ( V )) .9'(.9"(U)) ,99(.9-(0x)) 0
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in U .  S ince 9 ' is right exact and .99 is exact, (4.16.4) is exact in the middle and the
right terms. By (4.16.2), we have

r(9'(.9- ( 0 ))=  r(99 (.9- ( v)) )+ r(" F (o x ) )

Hence the sequence (4.16.4) in  Ux  is e x a c t. Therefore we have the following com-
mutative exact diagram

U x 0

low) 19(U)

0 .99(.9T(V)) 9 ' (5 -(U )) Y (.9 -(
1?

x)) O.

By the  5-lemma, if ç (V )  is an isomorphism, then yo(U) is also an isomorphism.
Hence by induction on r(U ), we see that p (U ) is an isomorphism for every U E U .
For the morphism tfr it is similarly proved.

(2 )  i)  has been already proved in Lemma 4 .8 .  We omit the proof of ii) and
iii) since we shall not use them later. By Lemma 4.15, we have to compute ExtiB  (k,
R) to prove iv). Since B is Gorenstein, we have

(4.16.5) ExtiB (k, B)= 0 f o r  i k g ,

f o r  i = g .

Hence for every free B-module L, we have

(4.16.6) ExtiB(k, L)= 0 f o r  i g ,

'_--L O B k f o r  i = g .

Hence by the exact sequence (4.14.2), we have

Extia (k, k).--' H i ((lC • B O ') --,-'--[H g - i (K . O lik )] v •

By (4.14.1) and the duality theorem, we have

ExtiB (k, ( J v ) ] v  H i(X , U ) . q. e. d.

The following theorem was proved in  Matsushima [6 ] and Morimoto [9], in
the case p= 0 .

Theorem 4 .1 7 .  Let F  be a  vector bundle on X . T h e n  the following condi-
tions are equivalent.

i) F  is homogeneous,
ii) there exist line bundles P i in Pic°(X) and Ui e U x  such that FL'ED(P i OU i).

Proof. T h is  was proved i n  Miyanishi [7]. Since P i

e Pic°(X), T t(P i)L"-P i for every x e X .  Hence it suffices to show that every unipotent
vector bundle U  is  homogeneous. By virtue o f Theorem 4.12, (1), there exists
M e Modf  (B) such that U24 61W ) .  Hence by Lemma 4.8, U is homogeneous.

q. e. d.
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As a corollary to the above theorem, we have the following proposition which
will play an important role later.

Proposition 4 .1 8 . Let F be a homogeneous vector bundle.
(1) There exists a  line bundle M  in Pic°(X) such that H°(X, F(DM) O.
(2) The following conditions are equivalent.
i) H ° (X , F ) 0,
ii) H°(X, Fv) 4 0,

Hi(X, F)#0,
i v )  F contains a unipotent vector bundle U #0 as a direct summand.

P ro o f . By Lemma 4.9 and Theorem 4.17, i) and ii) are equivalent to iv), and
iii) implies iv). I f  U * 0 ,  then ,F (U ) r 0 .  Since .7"(U) is artinian, Extib(k, g - (U ))
*0  for 0 < i < g .  Therefore iv) implies iii). q .  e .  d .

The category H x  is determined as follows.

Theorem 4.19. and Y  g i v e  a n  equivalence o f  categories between C I;
and H I .

P ro o f . As in the proof of (1) of Theorem 4.12, we have only to show that cp:
id„x —>99 0.,-  and kfr : 3 - 0,99 —> icy -, are isomorphisms. Let F e H .  W e  have to show
that p(F) is an isomorphism. Since Y and g -  are additive functors, we may assume
that F is indecomposable. Then, by virtue of Theorem 4.12, F P Ø  U for some

e X - and U E  U . B y  L em m a 4.3, we have only to show the assertion in the case
U .  In this case cp is an isomorphism by Theorem 4 .1 2 . For the morphism tp,

it is similar ,q .  e .  d.

Let 7t: be an isogeny. The following is obvious.

Lemma 4 .2 0 . If  F e H y  and G  e
 I i ,

 then  n ,(F )eH x  an d  n*(G)e H y .

Hence n*  (resp. n*) defines a functor of H y (resp. Hx ) to H x  (resp. H y ). As
a special case of Lemma 4.20, rc* (0 y ) is a  homogeneous vector bundle on X .  In
fact, we have

Proposition 4 .2 1 .  n*(60-=(Pi)*(glx.G ), t h a t
 i s , 7 r* (C 9 x ) - ' -= S q (9 G ) , w here G=

K er (fr).

For the proof see [ 1 2 ] .  As a corollary to the above we have,

Corollary 4 .2 2 . I f  it is separable , then n* (e)y )'-' ( D  P .  I f  ft  is purely
.ReKer(*)

inseparable, then n* (e y )  is an  indecomposable unipotent vector bundle on X .

Proposition 4.21 is a special case of the following theorem.

Theorem 4 .2 3 . Let i t :  Y-+X be an  isogeny and it: g-÷k the dual isogeny of
Then the following diagrams are commutative.
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Ci
(foi

H y

and

 

5-

 

The proof is not difficult. We omit it since we shall not use it later.

§ 5 .  Semi-homogeneous vector bundles

Every vector bundle E  on an abelian variety X  has two natural deformations.
The one is the fam ily {Tp(E)I x e X }  and the other is the  family {E0.13

/ 1. e ST} .

The algebraic group 0°(E) considered in § 3 represents a relation between these two
deformations. The object studied in the rest of this paper is the vector bundle E
such that the former family is included in the latter.

Proposition 5 . 1 .  L e t E  b e  a  v ector bundle o n  X .  T h e n  the  following
conditions are equivalent:

(1) f or every x e X , there exists a line bundle L  on X  such that Tf(E) EOL ,
(2) p°: 0°(E) — 4  X  is surjective,
(3) dim 0°(E)=g,
(4) f or every X E X , there ex ists an isomorphism 9 x  o f  P(E ) which covers the

translation Tx , where P(E ) is the projective bundle associated with E.

P ro o f . The equivalence of (1) and (4) follows from the well-known fact that
P(E) P(F) as X-schemes if and only if E:•.=._'FOL with some line bundle L on X.
I f  Tt(E)'.--- EOL, then we have T(det (E)) det (E)OL or, where r= r(E). Hence
L®" ePic° (X ). Since NS (X ) is torsion free, L itself is contained in P ic°(X ). Hence
(1) implies (2). The converse is trivial. The equivalence of (2) and (3) was shown
in Proposition 3.3. q .  e. d.

Definition 5 .2 .  A  vector bundle E on X  is semi-homogeneous if  E  satisfies
the equivalent conditions of Proposition 5.1.

Our aim of this section is to characterize semi-homogeneous vector bundles.
In the first place, we have

Proposition 5 .3 .  Let F be a semi-homogeneous vector bundle on X.
(1) Every direct summand of F  is semi-homogeneous.
(2) If  F has a f iltration

0 =F0 c F1 c — c Fn _ 1 c F„=F
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such that (1=1, n) f or a sim ple vector bundle E, then E is also
semi-homogeneous.

Pro o f . This is an immediate consequence of Proposition 3.11 and Proposition
5.1. q. e. d.

Semi-homogeneous vector bundles behave nicely under isogenies.

Proposition 5 .4 .  Let Tr: Y-4X and t :  X-4Z be isogenies of  abelian varieties.
Let E be a vector bundle on X .

(1) If  E is semi-homogeneous, then so are 7r,,,(E) and T*(E).
(2) Assume that E is simple or * (resp. or) is separable. If  n*(E)(resp. -c * (E))

is semi-homogeneous, then so is E.

Pro o f . (1 )  S in c e  it  is  su r je c tiv e , it  is  e a s ily  se e n  th a t  n *(E ) is sem i-
hom ogeneous. It easily  follow s from  Proposition 3.12 that  t ( E )  is sem i-
h omogeneou s.

( 2 )  I f  n*(E) is semi-homogeneous then n* n*(E).- -'EO7r * (e),) is semi-homo-
geneous by (1). If it is separable, then, by Corollary 4.22, ir* (e),) decomposes into
the direct s u m  0  P .  Hence E is contained in  n* n*(E) as a direct summand.

eKer(Ii)

Therefore, by (1) of Proposition 5.3, E is semi-homogeneous. Suppose tha t E is
sim ple . By the above result, we may assume that * is purely inseparable. Then,
by Corollary 4.22, n * (e y) is un ipoten t. H ence our assertion follows from (2) of
Proposition 5.3.

If T* (E) is semi-homogeneous, then -c*T* (E )=(p i ),,v*(E) is semi-homogeneous,
where y: X x Ker (r)—>X i s  the  restric tion  o f the  multiplication m: X x X-+X.
If t is separable, then E is a direct summand of e r * (E ) .  Hence E is semi-homo-
geneous. Therefore, we may assume that t is purely inseparable and deg(r)=p.
Set G= K er (r) . Since O G  is  an  artin  local ring  and dim, (m/m 2 )= 1, OG ,..-'k[T]/
(T P ) (which also follows from the structure theorem of local group schemes). Hence
the filtration

O = m P c m P 'c . . . c l u c t9G

induces a filtration

O=F o c P i c  •••c Pp _ i c F p =r*r * (E)

such that F ilF i _ 1 E (1 < i< p ) .  Therefore, as before, we see that if  E is simple,
then it is semi-homogeneous. q. e. d.

Remark 5 .5 .  In Proposition 5.3, (2) and 5.4, (2), the assumption o f simple-
ness or separability of isogeny is superfluous. W e shall show it in  a  forthcoming
paper.

A s a  special case of (1) of Proposition 5.4, we have tha t E=74(L) is semi-
homogeneous for every line bundle L on Y.

Proposition 5 .6 .  It is necessary  and sufficient f o r E to be sim ple that Ker(n)
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n = (o).
P ro o f . We have seen the necessity in  Lemma 3 .1 3 . For the  sufficiency, see

[12] Theorem 1.2. q. e. d.

Lemma 5 .7 .  L e t E  be  a sim ple semi-homogeneous vector bundle on X .  If
E(E)=0, then E is a line bundle.

P ro o f . T h e  assum ption im plies that p: 0(E)— *X  i s  an isom orphism . In
view of Lemma 3.6, r(E) must be one. q. e. d.

We are now ready to prove the main theorem in this section.

Theorem 5 .8 .  L e t E  be a sim ple vector bundle on  X . T h e n  the following
conditions are equivalent to one another:

(1) dim k 111(X , S .,/ , x (E))=g,

(1') d im k  H i(X  , eNal, x (E))=(gi ) f or a l l  j =  1, 2,..., g,

(2) E  is semi-homogeneous,
(3) S . , / , ( E )  is a homogeneous vector bundle,
(4) there ex ist an isogeny 7r: Y — *X  and a line bundle L  on Y  such that E

L-'74(L).

P ro o f . We shall prove the theorem following the diagram below:

(1)    (2) < > (4)

(1') (3)

The implication (1) (2) is  an  immediate consequence o f  Corollary 3.17, (2)
and Proposition 5 .1 .  The implication (2 ) .(3 )  is obvious.

(3) (1'): Let A  be as in (2.2). Then A = ..i(g .,/ , x (E)) by (4.2.1). Since E
is simple, we have, by Lemma 2.4, that A 9 ( E ) A ' for some A ' and that Supp(A')
n 1(E)=(0). S in c e  e . / ( E )  is homogeneous, AE 4. Therefore, A ' is also

contained in C .  S in c e  80Supp (A '), Hi(X , .99 (A ))=0  for all i. Thus we have

(5.8.1) I / 1(X ,  S . / „( E ) ) . - H i (X , 99 (0E ( E ) ) ,EDY (A ))2-_-'H i (X , , 9 9 (0 7.(5)))

for all i.
Let G be the connected component of identity in 1 ( E ) .  By the similar reason,

we have

(5.8.2) Hi(X , 99(0 1 ( , ))) Hi(X , 6 9 (0 G )) for all i.

By virtue of Theorem 4.12, we have

(5.8.3) dim, Hi(X , ,9'(OG ))= length s  Extis  (k, ,

where B =e x ,,5 and k =k (6 )=B lin . By virtue of Cartier's theorem of local group

schemes ([3] III, §3 , 6 .3 ), w e have that OG t i ' " B ,  where {ti } i s  a  regular
i=i
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system of parameters of B  and ,'s are som e non-negative integers. Using the
Koszul complex we see easily that

(5.8.4) length,, Ext (k , for all i= O , 1 ,..., g.

By (5.8.1), (5.8.2), (5.8.3) and (5.8.4), we have (1').
The implication (1')=.(1) is obvious and the implication (4)=.(2) is a special case

of Proposition 5.4 as we have seen before Lemma 5.6.
(2)=.(4): By Corollary 2.8, there exist an  isogeny i t :  Y—*X and a vector bundle

E' on Y with E(E')=O  such that  i t * (E') E. By (2) of Proposition 5.4, E' is also a
simple semi-homogeneous vector bundle. Therefore, E' is a line bundle by Lemma
5.7, which implies (4). q .  e .  d .

The natural injection f  of to / ( E )  induces a homomorphism H '(i)
of H '(X , t o  H '(X ,  A s  i s  stated before Lemma 2.5, if (r(E), p)
= I, then H '(i)  is injective. Surprisingly, the converse is true if E  is simple and
semi-homogeneous. In fact,

Proposition 5.9. L et E be a sim ple vector bundle on X . Then the follow ing
conditions are equivalent:

(1) H 1 ( i) : H 1 (X, c9) -2 '  H 1 (X, I / ( E ) )  is an isomorphism ,
(1') H i(i): H i(X , tD ) Hi(X, / 1 (E)) is an isom orphism  for all j= 1,

2,...,g,
(2) E is semi-homogeneous and  (r(E), p)= 1,
(3) E is sem i-hom ogeneous and  X(E) is reduced.

Pro o f . ( l)=- (1 ') : Since dim k  H 1 (X, H '(X ,) = g ,
(E) is homogeneous by virtue of Theorem 5.8, whence so is / ( E ) .  Consider the
exact sequence

O - ---- n/vx(E) - p  , , / ( E )  - b  O.

Since H '(i)  is injective an d  E  is simple, we see that H °(X , ,.,/ (E ))=O . B y  v irtue
of Theorem 4.17 and Lemma 4.9,we have that Hi(X, ,/ (E ))= O  for a llj .  B y  th e
above exact sequence, we have (1').

(I')=-(2): Consider the trace map

T,-: - t  
9 x.

By the canonical isomorphism  [ n / ( E ) ]  V 8 J ( E ) ,  T r  i s  identified
with the dual homomorphism j "  of 1. Therefore, by the duality theorem, H '(T r )
is identified with

H 9 '(i)"  :[H 9 '(X, +  [H '(X ,  £O)]''.

Hence, by the assumption, both  H '(i)  and  H '(T r )  are isomorphisms. It follows
that H 1(Troi) i s  an isomorphism. Since  H '(T ro i)(a )= r.a  for every  a e H 1(X,

we have (r, p) = I.
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The implication (2 )-(3 ) follows from the fact that E(E) is a  closed subscheme
of (g) r .  The implication (3) (l) is obvious if one takes Lemma 2.5 into account.

q. e. d.

As an application of the above, we have

Proposition 5.10. A ssume that p>0 and  that the p-rank of  X  is m ax im al.
If  E is a simple semi-homogeneous vector bundle on X , then there exist a separable
isogeny 7r: Y—>X and a line bundle L on Y such that E --'7-c,(L).

P ro o f . If (r(E), p)= I, then the assertion is c le a r . Assume that p divides r(E).
Then E(E) is not reduced by virtue of Proposition 5.9. Since the p-rank of X  is
maximal, E(E) contains a  subgroup scheme G  isomorphic to tip  ([10] §15). By
Step l in the proof of Proposition 2.6, there exist an isogeny Tr' : X ' -4 X  and a vector
bundle E ' o n  X ' such that a ) (77')(E').-E and b) Ker(Tr')-6L-2Z/pZ. b) means
that 7' is separable. By virtue of (2) of Proposition 5.4, E' is also simple and semi-
homogeneous. Hence repeating the above argument we have our proposition.

q. e. d.

§6 . The category Sa

Semi-homogeneous vector bundles are characterized in  the  preceding section
when they a re  sim ple . In  th is section we shall study semi-homogeneous vector
bundles which may not be simple. Let us begin with a definition.

Definition 6.1. Let E be a  vector bundle on X .  A vector bundle F  on  X  is
said to be E-potent if F has a filtration

0=-Fo c F 1 c ••• F „ _ i c F r,=F

such that for all i = 1, n. We denote by Ux , E the full subcategory
of Cx  consisting of all E-potent vector bundles and the zero sheaf on X.

It is easily seen that if E is a simple vector bundle, then Ux , E is  a n  abelian
subcategory of Cx  and E is a  unique "simple" object in Ux , E.

For a vector bundle E on X , a natural functor

U —

is defined by ccE(U)= UOE and Œ E ( ) ) = Q ® 1  for each U, U' e Ux  and yo e Hom,x (U,
U').

Proposition 6.2. I f  E  is  a  sim ple sem i-hom ogeneous vector bundle and  if
(r(E), p)=1, then CIE is an equivalence of categories.

P ro o f . Consider the natural injection

,;r,m„ x (V, U) ,Yee,n,x(VOE, U0E)

fo r  U , Ve Ux . By the canonical isomorphism .7e,,,,, x (V O E , UQE)-SA.../„x(E)
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O .Y e ., x (V, U), /1 is identified  w ith  i0 ,1 , ,n,x (V , U ), w here  i: Ox —>Snei,x (E)
is the  natural in jec tion . B y Proposition 5.9, Hi(i) i s  a n  isomorphism for all j.
Hence by the 5-lemma argument, we see that !P (i O W) is an isomorphism for every
We U. Thus we have two natural isomorphisms

(6.2.1) 1-1°(.1.): Hom, x (V, H om (VC )E , U 0E ),

(6.2.2) IP(A): IP(X, ,re,.„„ x (v, u» 2 H 1 (X, U 0E )).

By (6.2.1), a, is a full embedding. Hence it suffices to show the following lemma.

L em m a. For every F e  Ux , E, there exists a  Ue Ux  such that F'L-' U0E.

P ro o f  W e prove our lemma by induction on r (F ) .  If  r(F )< r(E ), then the
assertion is trivial. If r(F )>r(E ), then there is an exact sequence 0—>F' F-4F"—>0
in  Ux ,, such that both F ' and F " are  non-zero . By induction hypothesis, there
exist U and V in U„ such that F' U  (DE and F "  V  0 E .  The isomorphism (6.2.2)
means that every extension of F" by F' is derived by tensoring E from some extension
of V by U .  Hence there exists a  We U,. such that FL-' W OE, which completes our
proof. q .  e .  d .

Let n: Y-4X be an isogeny and L a line bundle on Y. For E=7r,,(L), a functor

=  f in ,L  U Y U X ,E

is defined by A U )=Tr,(U O L ) a n d  fl(9)---n * (9 0 1 ) fo r  each  U, U' e Uy  a n d  9
e Hom e, y (U, U'). In this situation we have

Proposition 6 .3 .  If  ir is separable and E is sim ple, then fl is an  equivalence
of categories.

P ro o f  L et U, Ve Uy  a n d  9e Hom, y (V, U ) .  Then 9  induces a homomor-
phism rpOl of V OL  to  UO L. f3 (9 ) is, by definition, the homomorphism 7c((p01)
o f  n* (V O L ) t o  Ir* (U O L ) .  Since 7r* is a  le ft ad jo in t o f 74, there exists an
isomorphism

Hom, x (7r* (V O L ), 7r* (UC)L)) H om ,y(n*n,(VO L),UO L),

of functors on  U and V. It is easily seen that 0- '([1(9)) is the composition eir,,,(V
OL) V OL U O L, w here e is  the  canonical homomorphism. Similarly,
the natural homomorphism

(6.3.1) 7r*( e . , , (V O L , U O L )) .Ye,m,x(n*(VOL), n * (U O L ))

0 L), UOL))

equals to 7r * (p), where

p: UOL) .re..(7 r*T r*(V O L ), U O L )

is the homomorphism induced by the natural surjection e. On the other hand, we
see that
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(6.3.2) rc*Ir*(V OL)'' T :(V O L )''' voLo( po L ( a ) )
creKer(rz) aeK er(n)

because it is separable and  V is homogeneous (Theorem 4.17). Since E is simple,
w e have, by Lemma 3.13, that 4L (a) 0  fo r every a  0  in  K e r (n ) . Hence the
restriction e(a) of 8 to  V OL OP o L ( a )  is zero for every a 0 0 in Ker(n) by Lemma 4.9.
O n the other hand, since s  is  surjective, e(0) is an isom orphism . Hence it is an
isom orphism  onto the direct summand A P..,,,(V O L , U O L ) o f  .e ., , ,,,,,,(7r*n * (V
12)L ) ,  U 0 L ) . For the other direct summands 1-1„- P.,,,(VOLOP 4), (a ) , UOL),
we see that Hi(X , H a ) -=- 0 for all i, where a0  O. T herefore , HI(u) is an isomorphism
for each i. Hence, by (6.3.1), we have isomorphisms

(6.3 .3) H om , y (VOL, UOL) Hom,x(n*(VOL), 7-c* (UOL))

(6.3.4) 1-1 1(Y, .Y ea.,x(rt*(V OL), n * (UOL)))

It is easily seen that the homomorphism (6.3.3) is /3 and that the homomorphism
(6.3.4) sends each extension class 0-*IT-> V ->0 in  U y  t o  the extension class
0-+,(3(U)->13(W)-+13(V)-0 in  Ux ,E . Hence the rest is similar to the latter part of
the proof of Proposition 6.2. q .  e .  d .

As a corollary to the above two proposition, we have

Proposition 6 .4 .  L et E  be a sim ple semi-homogeneous vector bundle on X .
A ssume that one of the following conditions holds:

(1) (r(E), p)= 1,
(2) the p-rank of  X  is maximal.

Then every E-potent vector bundle is semi-homogeneous.

P ro o f . By Theorem 4.17, every unipotent vector bundle is homogeneous.
Hence, if (1) holds, our assertion follows from Proposition 6.3 and if (2) holds, our
assertion follows from Proposition 5.4 and 6.4.

Remark 6 .5 .  Proposition 6.4 is true without the assumption (1) o r  ( 2 ) .  We
shall prove it in a forthcoming paper.

Let E  be a  vector bundle on X .  We denote by S(E) the equivalence class of
det(E)  in N S (X )0, Q . The following equalities are easily verified :r(E)

5(E0F)=5(E)+ 6(F)

and 6(Ev)= -S (E ).

Definition 6 .6 .  F o r  a  SE NS (X )®  Q ,  S 6  i s  th e  fu ll  subcategory o f  C ,
consisting o f all semi-homogeneous vector bundles E  with 6(E)=-6 and the zero
sheaf.

If F e Ux , E ,  then it is clear that 6(F)= S (E). Thus Proposition 6.4 implies that
if E is a simple vector bundle in S 6, then S 6  contains Ux , E  under the assumption
(1) or (2) in the proposition. W e shall show that S is covered by such U,,E 's
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(Proposition 6.18).

Lemma 6 .7 .  L et E  be a  semi-homogeneous vector bundle on  X . T h e n  for
all x  e X , we have

T (E ) .E 0 P0 ,,(x ) ,

w here r=r(E) and D= det(E).

P ro o f . Since E is semi-homogeneous,

(6.7.1) T(E)L=E(8)M

for some line bundle M in P ic°(X ). Hence we have

(6.7.2) E  M g r

On the other hand, taking determinants of both sides of (6.7.1), we have r(d e t(E ))
det (E )0 M o r. This and (6.7.2) prove our lemma. q.e. d.

Lemma 6 .8 .  L e t  F  a n d  G  be sem i-hom ogeneous v ector bundles. T hen
(5(F)= (5(G) if  and only  if  0 "(F)=0 "(G ).

Pro o f . By Lemma 6.8, 10 (F) contains YF  { (rx , (h (x ))e  X  x gIx  e X } , where
r_—r(F) and D =d e t(F). Since dim V (F)= dim Y,  (= g) and  Y F is irreducible, we
have 0 " (F )= Y  ,.  It is easily seen that Y F = Y G if and only (5(F)= (5(G). Hence
we have our lemma. q. e. d.

Proposition 6 .9 .  L e t F  a n d  G  be v ector bundles o n  X .  L e t  b e NS (X )
OzQ.

(1) F e S o if  and only if  F is homogeneous.
(2) FOG e S, if  and only  if  both F and G are contained in S .

P ro o f . If F is homogeneous, then F is semi-homogeneous and det(F) is also
homogeneous, which implies that F e S o . The converse is obvious by Lemma 6.7.
(2) is an immediate consequence of Lemma 6.8 and (1) of Proposition 3.11. q. e. d.

Let F  and G be vector bundles in S .  T h e n  dra.., x (F, G) is a  homogeneous
vector bundle by (1) of the above proposition. Applying Proposition 4.18 to this
vector bundle, we have

Proposition 6 .1 0 . Let F and G be vector bundles in S .
(1) There exists a non-zero homomorphism(p: F—>GOM f or some line bundle

M  in Pic°(X).
(2) The following conditions are equivalent:

i) there exists a non-zero homoniorphism f :
ii) there exists a non-zero homomorphism g : G--, F,

iii) H i(X , d r,. . , x (F, G)) 0 O.

Let E be a semi-homogeneous vector bundle. We put r= r( E ) .  For every line
bundle L on X  and integer I, (lx )*(L)_ L®1 2 , where — means the algebraic equiva-
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lence ([10] §8). Since

det ((rx) * (E))'-=(rx) * (det(E )) , , , det (E)0 r2 ,

we have det ar x )*(E)Odet(E) ® - ') - 6 x . Hence, by (1) of Proposition 6.9, we have

Lemma 6 .1 1 .  (r x )*(E) d et(E )O rO H , w here H  i s  a  homogeneous vector
bundle.

By Theorem 4.17, for every line bundle L we have x(LO H )=r • z ( L ) .  Hence

g • Z(E) = Zar X)* (E)) =  z(det (E)Or  H )  (Lemma 6.11)

= r • z(det (E)0 r)= rg +1 • Ada (E)) •

Thus we have proved

Proposition 6 .1 2 .  I f  E  i s  a  sem i-hom ogeneous v ector bundle, then z(E)
x (det(E ))

=  r (E )g - ' •

We shall fix an ample line bundle 0(1) on X  and use the terms "stable" and
"semi-stable" in the sense of Gieseker [4]. For a non-torsion coherent Ox -module

x(E(777)) E we denote by P E  the polynomial such that PE(m)—
r ( E )

f o r  all integers

where r(E) is the rank of E at the generic point of X.

Proposition 6 .1 3 .  Every semi-homogeneous vector bundle is semi-stable.

P ro o f . Obviously, every unipotent vector bundle is semi-stable. Therefore,
by Theorem 4.17, every homogeneous vector bundle is semi-stable. Let F  be  a
semi-homogeneous vector bundle. By Lemma 6.11, w e see  that F '= (r x )* (F ) is
semi-stable, where r = r ( F ) .  If  G is an Ox -submodule of F, then G' =(r x )*(G) is an
Ox -submodule of F'. Hence P G,(m )< P F,(m ) for m  »0 . Therefore, by the follow-
ing lemma, PG (m )<P F (m) for m »0, which completes our proof.

Lemma 6 .1 4 .  L e t  F  b e  a  coherent Ox - m o d u l e .  L e t  F '= (r x )*(F). Then
p F ,( r 2m ) = -r 2 gP r (m) for all integers ni, where r= r(F ).

Pro o f . Obviously, r (F )= r (F ') .  On the other hand,

A F (r 2m))= Mrx) * (F )0 0 (r 2m))= Afrx) * (F(m)))

because (9(r2 ) is a lgebra ica lly  equ iva len t to  (rx )*(0(1)). H ence x(F'(r 2m))=
(deg(rx ))•z(F(m))=r 2 g •  z (F (m )) . Thus our lemma is proved. q.e.d.

By Lemma 6.13, every semi-homogeneous vector bundle has a filtration

0=F 0 cF 1 c — c F n _ 1 cF „= F

such that E,=F,IF i _ , is stable and PE , = P E for all i =1, n. Moreover, E ,,...,
E„ are determined uniquely up to permutations (see [4]). We fix an index i. If
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(x, .5?) a 0°(F), th e n  T t(F )0 / 3 _,T Hence, fo r each (x, .52) a 0°(F ), there exists
an index j  such  tha t T (E 1)® P ; ' E .  I n  other words, 4)°(F)g J  Oi j ,  where

Ou= {(x, a X x g I M E i ) ' . ; f - E i 0 P . i l .  S in c e  Ei is  stable, O u  is  a  closed subset of
X x (Langton [5]. Though the concept of stability in it differs from what we are
using in this section, the proof works in our case without any modifications). More-
over, I i  a closed subgroup and O u  is a coset of OH if Oi j O 0 .  Hence we have that
0 "(F )g (P 11. T hus E. sa tisfies the condition (1) of Proposition 5.1. Therefore,
Ei is  a  semi-homogeneous vector bundle (the fact that E. is locally free is deduced
immediately from that condition) and 6(E1) =5(F) by Lem m a 6.8. Thus we have
proved

Proposition 6 .1 5 . Every vector bundle F in S 0  has a f iltration

0 = F 0 F 1 • • • F n -1 F n = "F

such that Ei =F ilF i _ , is a stable vector bundle in S, f or all i=  1,2 .....  n.

Proposition 6 .1 6 . Every sim ple semi-homogeneous vector bundle is stable.

Pro o f . Let E be a simple vector bundle in S 0 . A ssu m e  that E  is not stable.
By Proposition 6.15, there exists a  proper subbundle E' o f E which is stable and
belongs to S .  T hen  by  (2 ) of Proposition 6.10, there exists a non-zero homomor-
phism g: E .-4 E ' E, which contradicts to our assumption.  q .  e .  d .

By Proposition 6.12, w e see that if E, E' a S 0 , then PE = P E . Hence by the
above proposition, we see that for every simple vector bundles E and E' in S0, every
non-zero homomorphism f :  is an isomorphism (see [4]).

Proposition 6 .1 7 . L et E and E ' be sim ple vector bundles in S0.
(1) There exists a line bundle M in Pic°(X) such that E'r--'EOM.
(2) Let F (rasp. F ')  be an  E (resp. E')-potent v ector bundle. If  E E ' ,  then

Horn, x (F, F ')= 0 and H'(X, F'))= 0.

Pro o f . (1) follows from the above result and (I) of Proposition 6.10. 1f E E ' ,
then Hom, x (E, E')= 0 , w hence  H'(X, E ') )= 0  b y  (2 )  of Proposition
6.10. P u t  H = .re ,,(E , E'). Since Ye,...„x (F ,  F ')  is H-potent, H°(X, H )= 0
and Ill(X , H )=0 , we have (2) by cohomology exact sequence. q .  e .  d .

The followings are main results in this section.

Proposition 6 .1 8 . I f  F E S g ,  then there ex ist sim ple vector bundles E1 ,..., E„
in S, such that F F 1 , where F i e E J X . E , f o r  all i=  I. 2 ,..., n.

P ro o f . We prove our proposition by induction on r(F). By Proposition 6.15,
there exists an exact sequence 0--+E—*F G — *0, where E, G e S0 and E is simple.
If G e Ux , E, then so is F .  If G Ux ,E , then by induction hypothesis, there exists a
simple vector bundle E' which is not isomorphic to E such that Ga=G'eG", for some

UX,E'• W e see that F  (p -  '(G')+ 9 - 1 (G ") and 9 -  '(G') n 9 - 1 (G " )= E .  By (2)
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o f  Proposition 6.17, th e  e x a c t  sequence 0->E--49 - 1 (G ')->G '->0 splits. H e n c e
G'09 - 1 (G "), which completes our proof because G', 9 - 1 (G") e S 6 b y  (2 )  of

Proposition 6.9. q. e. d.

Let C, (i n I) be a  family of abelian categories. Let C = 6 C ; be the following
ie l

category:
(1) An object a of C is a  sequence (a1)1 1 such that a1 E Ci for every i n I and

a; = 0 for all but a finite number of i.
(2) A morphism f : (a 1)-)(131) is a collection of morphisms f i : in C 1 for

every i E Ï .

Theorem 6 .1 9 . Let (5 E NS (X )® , Q.
(1) S 0  is  a full subcategory  of  0  U x  E , where E  runs ov er the isomorphic

E
classes of  all simple vector bundles in Sa .

(2) A ssume that one of the following conditions holds.
i) For some (any) simple vector bundle E in S 0, (r(E), p)=1.

ii) The p-rank of X  is maximal.
Then the category S 0  is equivalent to the category  e ux  E .

E

Pro o f . (1) is an immediate consequence of Proposition 6.18 and (2) of Propo-
sition 6.17. (2) follows from (1) and Proposition 6.4. q. e. d.

Remark 6 .2 0 . As was stated in Remark 6.5, the condition i) or ii) of (2) in
the above theorem is superfluous.

Here we have to show that the category S6 is not trivial.

Lemma 6 .2 1 . Let n: Y .-0C be an  isogeny and E a  vector bundle on  Y. For
F = n ,(E ), w e hav e n*(det(F))-(det(E))gd, w here d=deg(n) an d  -  m eans the
algebraic equivalence.

P ro o f . Assume n= n, on, for some isogenies n 1 : Z-4X  and n 2 : Y ->Z . It is
easily seen that if our lemma holds for n, and n 2 , then it does f o r  n .  Hence we may
assume that deg (n) is a prime num ber. If n is separable, then n*(7r* (E ))-

xeKer(R)
T ( E ) .  Since det(Tt(E))-det (E), we have n*(det (F ))-det(E ) 0 4 . Assume that n
is purely inseparable and d =  p . As we have seen in the proof of Proposition 5.4,
n*(n * (E)) has a filtration

0 = c  G,=•••=G p _ ,= G p =n*(F)

such that for a ll i = 1, p .  Hence det(n*(F))fdet(E) 0 d. q .  e .  d.

Proposition 6 .2 2 . For every be NS(X)O z Q , there ex ists a  vector bundle in
S o .

[L ]P ro o f . Let (5= -T - ,  where [L] is the equivalence class of L  in NS (X ) and 1
is a positive in tege r. Put F = (( x ) * (L0 '). By Proposition 5.4, F  is semi-homogene-
ous. B y  the above lemma, we have
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det (F)0 ' 2 ( / x)*(det (F)) ,-, L 0 1 2 9 + 1

12 9 - 1 [L ] [L ] Since r (F )= l 2 9 , we have 5(F)— 12 9
— = 5 .  Therefore, F  is contained in

S . q. e. d.

By Proposition 6.15, we have

Corollary 6 .2 3 . F o r every e  N S (X )0 ,Q , th ere  ex is ts  a  s im p le  semi-
homogeneous vector bundle E with 5(E)=5.

§ 7 .  Simple semi-homogeneous vector bundles

In  the preceding section we have seen that fo r e v e r y  e NS (X )® , Q , there
exists a simple vector bundle in S a (Corollary 6 .2 3 ). Proposition 6.17 tells us that
simple vector bundles in  S a are  unique u p  to  tensoring line bundles in  Pic°(X).
Furthermore, Theorem 6.19 shows that simple vector bundles play a key role in S .
Hence our task is to study more closely simple vector bundles in S .  I n  this section
we shall investigate the various group schemes associated with those vector bundles.

Proposition 7.1. L et E  be a sim ple semi-homogeneous vector bundle on X.
Then ord E(E)=-r(E) 2  and  an,/„(E)'Lz 99 (0 i m ).

Since E is stable and S n . / o ( E )  is homogeneous, our proposition follows from
Theorem 4.19 and the following lemma.

Lemma 7 .2 .  For every stable vector bundle E, ( S . /  x (E)).

P ro o f . Let A  be a s  in  (2.2). Since E  is  stable, for every line bundle L  in
Pic°(X), every non-zero homomorphism f :  E -4EO L is  an isom orphism . Hence
Supp (A)=Supp (E(E)). Therefore, our lemma follows from Lemma 2.4. q. e. d.

H e re  w e  a d d  o n e  property which characterizes simple semi-homogeneous
vector bundles.

Proposition 7.3. For a sim ple vector bundle E on X , the following conditions
are equivalent:

i) E is semi-homogeneous,
ii) There exist an isogeny 7 i :  Y—OC and a line bundle M on Y  such that e (E )

L634 , where r=r(E).

Pro o f . P u t R = 0 " (E ) .  Since E  is  simple, R  is considered as the  reduced
scheme associated with the neutral component of 0 (E ).  Let p ' be the restriction to
R of the projection 1)1 : X  x  — 0 ( . If E is semi-homogeneous, then p': R—OC is
an isogeny. Hence the implication is obtained from Lemma 3 .6 . The con-
verse is clear by (2) of Proposition 5.4. q. e. d.

We shall investigate such an  isogeny as in  ii) of the above proposition. Let
p: Z—*X be the dual of the natural isogeny 1 -4/E(E), where Z  is the dual abelian
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variety of glE(E).

Lemma 7 .4 .  L et E be a stab le  v ector bundle. Fo r every  isogeny 72  : Y-->X,
we have

dim,, End(7r*(E))= ord (E(E) n Ker (p)).

P ro o f  The following isomorphisms of k-vector spaces are easily verified:

Hom n * n*(E))'_--.' Horn, x (E, E0n * ((Oy ))

Hom, x ( E ) ,  n *( a  .

B y  Proposition 4.21. 7c*(0 0- 9Viceijit)). H e n c e , b y  t h e  definition o f  5 ' ,
Hom, x  (S.,/ , x (E), rc,„(ey ))''H om ,,, K „(*)). This and Lemma 7.2
complete our proof. q. e. d.

Lemma 7 .5 .  L e t  E  b e  a s im p le  sem i-hom ogeneous v ector bundle. Let
it: Y -0 (  be an  isogeny of  abelian v arieties. I f  .7t*(E)'MEE) r f or some line bundle
M  on Y , then there exists an isageny 7C: Y—>Z such that 7r= pen'.

P ro o f  If  7r*(E)c..—' MED% then dim ,,End(7r*(E))=r 2 . H e n c e  b y  Proposition
7.1 and Lemma 7.4, i(E)g_Ker(71). There exists an isogenyf : )?1I(E)-4') '  such that

o p .  Hence we have It = port' for 7C= f. q. e. d.

Proposition 7 .6 .  L et E  be a sim ple semi-homogeneous vector bundle and  p
the restriction to 0(E) of the projection p,: X x g

(1) There exists an isomorphism 9: 0(E) Z such that p.9= p.
(2) For an  isogeny TE : Y—>X, the follow ing conditions are equivalent:
i) n*(E) ME9 r for some line bundle M on Y ,

ii) There exists an  isogeny i t ' :  Y --0 (E ) such that 7E — p o n ' .

P ro o f .  Let p': R -÷X be as in the proof of Proposition 7.3. By Lemma 7.5,
there is an isogeny R.-4.Z such that p' = p.9. By Lemma 3.7, Ker(p):•41(E).
Hence deg (p ') . r 2 . O n  th e  o th e r  h an d , deg (p)= r 2 . Hence deg (0 = 1  and
deg (0 =  r 2 , which implies that i s  an  isomorphism and R'L.' (P(E). Thus we have
proved (1). (2) is an immediate consequence of (1) and Lemma 7.5. q .  e .  d .

Among others the above proposition implies that 0(E) is an abelian variety for
every simple semi-homogeneous vector bundle E .  Therefore, by Lemma 6.7, we
have

Proposition 7 .7 .  I f  E  i s  s im p le  an d  sem i-hom ogeneous, then 0(E)=Im
[X ( ''''''f'D) > X x g], where r= r(E ) and D=det(E).

Corollary 7 .8 .  L et E  b e  a sim p le  semi-homogeneous vector bundle o n  X .
Then there are exact sequences of group schemes

(7.8.1) 0 X, n K(D) X , 2 L-3 > 1(E) 0

(7.8.2) 0 X,. K (D ) --+  K (D ) K (E) 0
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P ro o f . By the proposition

0 ---3 X  n K (D ) — 4  X ---  0 (E ) 0

is an exact sequence, where a --(r x , OD ). Since E(E)=Ker (p), cCi(E(E))= Ker
P )= X ,. .  Similarly a- 1 (K (E))= K (D ). By these isomorphisms, our corollary is
clear. q. e. d.

Corollary 7 .9 .  For a sim ple semi-homogeneous vector bundle E, we have
(1) dim K(E)= dim K(D),
(2) if  x (E )00 , then ord K(E)=x(E) 2 .

Proof . (1) is clear by the exact sequence (7.8.2). If x(E)0 0, th e n  (D) 0 by
Proposition 6 .1 2 . Hence ord K(D)=z(D) 2 (see [1 0 ] § 1 6 ) . By the exact sequences
(7.8.1) and (7.8.2), we have

ord X,. o r d  K(D) 
ord E(E) ord K (E) •

Since ord E(E)= r 2  and  z(D)2= r2g-2. x(E)2 (Proposition 6.12), (2) is easily derived
by direct computation. q. e. d.

Remark 7 .1 0 . In  general, we can prove the inequalities ord E(E)< r(E) 2 and
in the case x(E)0 0, ord K (E)<x(E) 2 for every simple vector bundle E on X.

We summarize the results in this section in the following theorem.

EL] Theorem 7 .1 1 . Let 6—
'
 w here [L ] is  the equivalence class in NS (X ) of1 

a line bundle L  and 1 is a positive integer.
(1) There exists a sim ple vector bundle E=E, in S .
(2) Every sim ple vector bundle in S 6  is isom orphic to EOM  f o r some line

bundle M  in Pic°(X).
(3) 0(E)=Im [X  ( I x  4 -) > X  x g] .
(4) There are exact sequences of group schemes

0 X, n K (L ) — > X , E (E) 0

and 0 X, n K(L) K(L) K (E) — 4 O.
(5 ) o rd  (X, n K(L))-=u 2 f o r  som e positiv e integer u. F o r this u, w e hav e

r(E)= —
I g  

and x(E)—  
) c ( L )  

u

EL] [E ]  P ro o f . (1 )  and  (2) has been proved in § 6 .  If — in NS ( x ) 0  z

then Im [X ( l x"i'L ) > X x g ] = Im [X ( 1 " ''L ' ) X  x  g ] .  Hence (3) and (4) follow from
Proposition 7.7 and Corollary 7.8. ( 5 )  is an immediate consequence of (4). q . e . d.

Corollary 7 .1 2 . A ssum e th at  1  is  m inim al am ong the positive integers l'
[L '] such that 6—  1, f or some line bundle L'. Then
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(1) I divides r(E) and r(E) divides l g . E sp e c ially , 1 r(E) lg .
(2) If (I, x(L ))=1, then r(E)=1 9 and x (E)---(L ). Moreover, I(E)=X 1 and

K(E)= K(L).

Remark 7.13. L e t  (X, L )  b e  a  principally polarized abelian varie ty . B y
the above theorem, for each pair of integers (n, In) w ith  n>0  an d  (n, tn)=1, there
exists a  s im p le  sem i-hom ogeneous vector bundle En ,„, w ith  r(E„,,,)=11 9 ,  det (E)
= L o m "' and x ( E ) = m g . In addition, if NS (X) Z, then they are all the simple
semi-homogeneous vector bundles on X  modulo tensoring line bundles in Pic°(X).
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