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Introduction.

Consider a stochastic differential equation with respect to Brownian motions.
It is a known fact that the solution defines a stochastic flow of homeomorphisms,
provided that coefficients of the equation are Lipschitz continuous. See e.g.
Bismut [2], Kunita [6]. Hence the solution defines a Brownian motion in
homeomorphisms group G. Recently, Brownian motion in homeomorphisms group
itself is studied a lot. See Harris [4]. Le Jan [9], Baxendale [1], Kunita [7]
and Le Jan-Watanabe [10]. They characterize it by the infinitesimal mean and
covariance, called local characteristics.

The purpose of this paper is to study the related problem for jump processes.
The stochastic differential (integral) equations considered in this paper is based
on the Lévy process X,=X,(x), xR (process with independent increments,
continuous in probability), which takes values in the vector space of continuous
maps (or continuous vector fields). We call it a C-valued Lévy process. In
Section 1, we study systematically the C-valued Lévy process. We introduce the
system (a, b, v, U) which characterizes the law of C-valued process and discuss
the existence problem of C-valued Lévy process associated with a given charac-
teristics. The Lévy process with values in the vector space of C™-maps is also
considered.

In Section 2, we consider the stochastic differential equation based on C-
valued Lévy process X,(x). The equation is written in short by dé,=d X,(§,-) or
dé;/dt=X,(&,.). Hence it is a natural extension of a stochastic differential equa-
tion defined by a finite dimensional Brownian motion and a Poisson point pro-
cess. Generally, the solution does not define a stochastic flow of homeomorphisms,
owing to the jump part of the C-valued Lévy process. In fact, we prove that
the solution defines a Lévy process with values in the semigroup of continuous
maps, under Lipschitz conditions to the characteristics of the C-valued Lévy pro-
cess. Further, if the characteristics are smooth, then the solution defines a
Lévy process with values in the semigroup of smooth maps. In order that the
solution defines a Lévy process with values in homeomorphisms group (or dif-
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feomorphisms group), we had to introduce a specific condition to the characteristics.
The details will be discussed at Section 2.5.

Conversely suppose we are given a Lévy process &, with values in the semi-
group G, of continuous maps (or in the group of homeomorphisms). We prove
in Section 3 that under a few condition to &, there is a unique C-valued Lévy
process such that &; is represented as the solution of the stochastic differential
equation based on the C-valued Lévy process. Hence the associated C-valued
Lévy process is the (pathwise) infinitesimal generator of the G,-valued Lévy pro-
cess. In particular, a Brownian motion in homeomorphisms group G is repre-
sented as a solution of the stochastic differential equation based on C-valued
Brownian motion (=continuous Gaussian process in C with independent incre-
ments). The latter result is closely related to those of [9] and [1]. The case
where the Lévy process &, takes values in the semigroup of smooth maps is also
discussed in Section 3.

Our objective is a complete characterization to Lévy process with values in
homeomorphisms group or diffeomorphisms group via stochastic differential equa-
tion or infinitesimal generator. Results presented in this paper give a rather
satisfactory characterization both to Lévy processes with values in the semigroup
of continuous (or smooth) maps and to Brownian motions with values in homeomor-
phisms (or diffeomorphisms) group. However, there are still gaps between the
construction theorem and the representation theorem of the Lévy process with
values in homeomorphisms (or diffeomorphisms) group. This problem will be
discussed elsewhere.

§1. Lévy process with values in the vector space of continuous maps.

1.1. Preliminaries. Let C=C(R?; R%) be the totality of continuous maps
from R? into itself equipped with the compact uniform topology

= 1 Sup [f(x)—g(x)]

ol &)= 2 5w 1+ sup | f(x)—g(x)| *

Then C is a Fréchet space. Let k=(k,, -+, kq) be a multi-index of nonnegative
integers. We denote by D* the differential operator (0/0x,)*!--- (0/0x4)%¢. For
a positive integer m, we denote by C™*=C™(R?; R%), the subspace of C consisting
of C™maps. It is again a Fréchet space by the metric pn:

onlf, 9= o(D*f, D*g)

Let X,=X,(w), t€[0, T] be a stochastic process with values in C (or C™)
defined on the probability space (2, &, P). It is called a Lévy process if it is
continuous in probability, right continuous with the left hand limit in p-topology
(or pm, resp.), and has the independent increments: i.e., X,,,,—X,,, i=0,--- ,n—1
are independent for any 0=<t¢,<t#;< --- <t,=7T. In particular, if X, is continuous
in t, it is called a Brownian motion. In this paper, we always assume that the
C-valued (or C™-valued) Lévy process is stationary, i.e., the law of X,—X,
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depends only on t—s and that X,=0.
Given a C-valued Lévy process X,, we define a point process associated with
it. Set D,={s€(0, T];AX,#0}, where AX,=X,—X,- and X, _=liP1 X, Let

p: be a C-valued point process defined by p,=AX, if teD,. Let N,((0, t], A) be
the counting measure of p,;

N0, t], A)=4{s€D,N(O0, 11; p.€ A},

where A is a Borel subset of C. Then it is a stationary Poisson random measure.
The intesity measure

v((0, 11X A)=E[N,((0, t], A)]
is then written as v(A)t. The measure v satisfies the following property :
(1.1) It holds that
v({f : f=01)=0.
There is an open neighborhood U of 0 in C such that y(U¢)<oo and
Sulf(x)lzv(df)<oo holds for any x.

Let X,(x) denote the restriction of the C-valued Lévy process X, at the point
xeR?% Then for any x,, -+, x,€R?% the n-point process (X;(x,), -+, X:(xn))
is an nd-dimensional Lévy process. Hence the characteristic function admits the
Lévy-Khinchin’s formula:

n

(1'2) E[eikgl(ak.Xg(zk))]

=exXp f{i é: (ag, b(xk))_%gak a(xe, xi)au
+, @FrT R _1—i S, SN

+Suc(eiE(ak.f(zk)) —l)v(df)}
where,
{1.3) b(x) is an R<%-valued function,

(1.4) a(x, y) is a d Xd-matrix valued function such that a*!(x, y)=a'*(y, x) for
any k, /=1, ---, nand x, yeR?% and X; a;a(x;, x;)a;=0 for any x;, a;E
R%, i=1, -, n.

Note that the law of X,(w) is uniquely determined by the system (a, b, v, U).
It is called the characteristics of X,.
Here is an example of a C-valued Brownian motion.

Example. Let Bi, B, --- be finite or infinite sequence of independent stand-
ard one dimensional Brownian motions. Let X,(x), k=1, 2, -+ be elements in C.
Suppose that each X,(x) is Lipschitz continuous such that the Lipschitz constants



74 Tsukasa Fujiwara and Hiroshi Kunita
Ly: | Xe(x)—Xu(y)|=L,|x—y]| satisfies 3 Li}<oco. Then
(1.5) Xt(X)E§Xk(x)B’f

is a C-valued Brownian motion with characteristics

(1.6) alx, N=Z X)X, b(x)=0,

if (1.5) is a finite sum. We will see at Section 1.2 that the fact is valid even
if (1.5) is an infinite sum.

Conversely, let X;(x) be a C-valued Brownian motion with mean 0. Then
there is a finite or infinite sequence of one dimensional standard Brownian mo-
tions B% k=1, 2, --- and elements of C; X,(x), k=1, 2, --- with the above pro-
perty such that X, is represented as (1.5). For the proof of this we proceed as
follows. Let ¢t be in [0, T] and let H, be the closed linear span of Xi(x), x€ R¢,
i=1, ---, d. Then it is a Gaussian space. Choose a sequence {x,} from R¢
such that X#(x,), n=1, /=1, ---, d are linearly independent and dense in Hry.
Then {Xi(x,)} is dense in H, for any ¢. We shall reorder the latter sequence
and write it as {X?}. We define one dimensional process B} by

1
Bi=——X}
Xy
where | || is the L%norm. It is a standard Brownian motion. We next define

B? by
Bi=(Xi— (X}, B)B)|Xi—(X}, BD)Bill™*

where (,) denotes the L*inner product. Then B? is a standard Brownian mo-
tion independent of B}. We will define Bf. k=3 by induction:

l-l
Then B% k=1, 2, --- are independent standard Brownian motions. Obviously
{B%, k=1, 2, -~-} is an orthogonal basis of H, for each t. Therefore X,(x) has

the Fourier expansion (1.5), where X,(x)=(X,(x), B¥. The coefficients X,(x)
are continuous and satisfies (1.6).

(L7 t=(xt— 5 (x4, ByBY)|

k-1 )
Xi— 3 (Xt, BB

1.2. Existence of C-valued Lévy process associated to the characteristics.
Suppose we are given a system (a, b, v, U) satisfying (1.1), (1.3) and (1.4). We
are concerned with the existence of a C-valued Lévy process with the charac-
teristics (a, b, v, U). For this purpose, we introduce the following conditions.

(C,1) a(x, y) is bi-Lipschitz continuous in the following sense: There is a
positive constant L such that it holds

(1.8) la(x, x)—2a(x, y)+aly, MISL|x—yl?, Vx, yeR¢

where |al=2; ai;.

P X,(x) is a row vector function and X,(x)’ is the transpose.
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(C,0) b(x) is Lipschitz continuous, i.e., there is a positive constant L such that
(1.9) [b(x)—b(y)|=Llx—y|, Vx, yeR®.

(C,mm,) There is a positive constant L such that

(1.10) |, 1/—f 07 UdNSLIx=317,  V¥x, yeRS,

(11D [, fIPudnsLa+ishe,  vrers

holds for any p’e[2, p].
Here p is a positive number not less than 2.

Theorem 1.1. Let (a, b, v, U) be a system satisfying (1.1), (1.3), (1.4) and
(C, 1), (C,1) and (C,l,) for some p>d. Then there is a C-valued Lévy process
with the characteristics (a, b, v, U). In particular, if v is identically 0, it is a C-
valued Brownian motion, continuous in t with respect to the metric p.

Before the proof of the theorem, we prepare a lemma, which is a modifica-
tion of Kolmogorov’s criterion for the continuity of random fields.

Lemma 1.1. Let X,(x), t€[0, T], x€R? be stochastic processes with param-
eter x. Suppose that for each x X,(x) is continuous (right continuous with the left
hand limits) in t a.s., and satisfies

Efsup | X,(x)|"]<e0,  VxeR?,
Elsup | X,(x)—X.(»|*]1=K|x—y[**?,  Vx, yeR*

for some positive a, 8. Then X,(x) has a modification such that it is a continuous
(resp. right continuous with the left hand limits) C-valued process.

Proof. Let C([0, T]; R%) (resp. D([0, T]; R?%) be the set of continuous (right
continuous with the left hand limits) maps from [0, 7] into R? equipped with
the norm Ilgb]I:stup |o@)|. Then X,(x) may be regarded as a C([0, T]; R%) (or

D([0, T]1; R%-valued random field satisfying
E[|X.(x)[*]1<o0,  E[X.(x)=X.()I*I=K|x—y|**E.

Then Kolmogorov’s theorem states that there is a modification of the random
field denoted by the same letter X.(x) such that it is continuous in %, i.e.,
yn}c | X.(x)—X.(¥)||[=0 holds for any all x a.s. See e.g. Chap. I, Appendix in

Kunita [8].

The above modification is what we want. We prove this in case where X,
is right continuous. Let t€[0, T] and ¢>0 be any given numbers. For each
x, there is a positive number 8, such that | X,(x)—X;+n(x)| <e if |h|<d,. Let
U(x) be an open neighborhood of x in R? such that || X.(x)—X.(y)|<e for any
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yeU(x). Then it holds | X(y)—Xin(y)| <3¢ for [yeU(x). Choose xi, =+, xn
from By={x||x| =N} such that C_le(xi)DBN. Set =min (3, -+, 6z,). Then

we have | X,(x)—X.4n(x)| <3¢ for all x&€By if |h|<d. This proves that X, is
a right continuous C-valued process. The existence of the left hand limit can
be proved similarly.

Proof of Theorem 1.1. Associated with the pair (g, b), we can construct a
Gaussian random field Xi(x), t<[0, T], x=R? with values in R® on a suitable
probability space (2, &, P) with the following properties

E[X5(x)]=tb(x),
EL(X5(x)—th(x)(X5(»)—sb(y) 1= As)alx, ¥).

Then, for each fixed x=(x,, -+, x,), Xi(x)=(Xi(xy), -+, Xi(x,)) is an R™%-valued
Brownian motion.

We shall prove that Y§(x)=Xi(x)—tb(x) has a modification which is con-
tinuous in (¢, x). Note that for each x and y, Yi(x)—Y§(y) is a Brownian mo-
tion with zero mean and covariance (a(x, x)—a(x, y)—a(y, x)+a(y, y))t. Hence
it is a continuous martingale. By Doob’s inequality and the moment property
of the Gaussian random variable, we have for any p’'>2

(1.12) Elsup 1Y) =Yin " I=GELYi(x)—Yi(y)|7']
=Cilla(x, x)—=2a(x, y)+aly, y)|P"*7""*.

The last member is dominated by C{L‘®'/?|x—y]|?'t®"/® in view of hypothesis
(C,1). Then by Lemma 1.1 Y{(x) is a continuous C-valued process.

Now let N,(dt, df) be a stationary Poisson random measure on (2, &, P)
with the intensity measure v. For arbitrary fixed x, define a Lévy process by

xt0=], @0, 1, dn+]_ N 11, df).
where
N30, 11, df)=N,((0, 1], df)—udf)t.

Obviously, the last member of the above is a C-valued Lévy process, since it is
written as a finite sum of f(x)’s. Now, denote the first member of the right
hand side by Y#(x). It is an L%martingale with zero-mean and covariance

tSUf"(x)ff(x)v(df). In order to prove that Y ¢(x) is a C-valued process, we shall get

the LP-estimate of N,=Y#(x)—Y¢(y), where x, y are fixed for a moment. By
It6’s formula for discontinuous semimartingales (Ikeda-Watanabe [5]), we have
for any p’€[2, pl,

|N;|? =a martingale with zero-mean

+], 1Vt = = v
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=0’ T )= FIONINA P N w(df)dr

where fi(x) is the i-th component of f(x). The absolute value of the integrant
{---} is dominated by

S DB =D~ F D INA0, ()= FGDI 7~

SCAI FR—FO) P INAP =4 | f) = F ()1 ')
where |0.]=<1. Therefore we get
(113)  Elsup |VE0—Yi(3)]?]

SGE[YHx)—Y(y)|?]

=ci{{ ELsup 17 #0)—Y )17 11 700~ 700 w0 )
+], 17— s )17 s}

=cy{lx—y 1| ELsup [VE0)—YE) |17 1dutt| x—i7}.
0 osrsu P
In case p’=2, the above inequality shows that

Efsup |V #(0)—Y#(»)|*]=Cit| x—y!*,
Then by Holder’s inequality, it holds
E[sup |V #(x) =Y 4()|? ISCa)” | x— 31
for any 0<p’=2. Substitute this to (1.13), and we get

(1.14) E[oi??; [YHx) =Y H) [P I=Cat|x—y|*

for any 2<p’<4Ap. Repeating this argument inductively, we obtain (1.14) for
any p'€[2, pl.
We can prove similarly as the proof of (1.14) that

(1.15) Elsup Vi) |P]=Cil+[xD?,  VxeR

holds for any p’[2, p]. Then using Kolmogorov’s criterion again, we see that
Y#(x) is a right continuous C-valued process. The sum X,(x)=Xi(x)+X%(x) is
then a C-valued Lévy process with characteristics (a, b, v, U).

Remark. L ,-estimates (1.14) and (1.15) are rather local in the following
sense. Suppose that (C, 1), (C, 1) and (C,1,) are valid for x, y with |x|, |y]
<N, where N is a positive constant. Then inequalities (1.14) and (1.15) are
valid for x, y with |x], |y|=N, too. Hence local Lipschitz continuities for q, b, v
are sufficient for Theorem 1.1.
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Remark. Applying Theorem 1.1, we see immediately that the infinite sum
(1.5) is a C-valued Brownian motion. Indeed, a(x, y) of (1.6) is bi-Lipschitz
continuous since

la(x, x)—2a(x, y)+a(y, y)ll=§)IIXk(:c)——Xk(y)II2
é(;Li)Ix—ylz-

Conversely, the Fourier coefficients X,(x) of a given C-valued Brownian motion
X:(x) are Lipschitz continuous, if it satisfies (C, I). In fact, we have

(1.16) ;|Xk(x)—Xk(y)l2=2k)E((X1(x)—X1(y))B’f)2
=(ElX.(x)— X%
=lla(x, x)—2a(x, y)+aly, .

We next discuss the problem converse to Theorem 1.1. We restrict our at-
tention to Lévy processes with p-th moment.

Theorem 1.2. Let X,(x), t€[0, T], xR? be a random field such that the
n-point process (X,(x,), -+, Xi(x,)) is an nd-dimensional stationary Lévv process
for any n and x,, --+, x,. Supposethat thereis p>dVz and constant K>0 such that

(1.17) E[X(x)—X(y)|"]=Kt|x—y|”, Vx, yeR?
(L.13) E[NX(0)|P]=Ktl+[x )P, VxeR?.

for any p’€[2, p]. Then X,(x) has a modification of C-valued Lévy process.
Furthermore, its characteristics satisfy (C, 1), (C, 1) and (C,1,) with U=C,

Proof. The existence of a modification of C-valued process is immediate
from Kolmogorov’s criterion. We shall prove that the characteristics satisfy
(C, 1), (C,I) and (C,IM,). For each x, the process X.(x) admits the Lévy-Itd
decomposition X,(x)=Y§(x)+b(x)t+Y ¢(x), where Y§(x) is a Brownian motion
with zero-mean and covariance a(x, x), and Y #(x) is a discontinuous Lévy pro-
cess with zero-mean. Since both are independent, we have

ET| X:(x)—X(»)%]
=E[Y{(x)=Y ) *]+|b(x)—b(y) |*+ E[1 Y Hx)—Y }H)|*]

=t{latx, m—2a(x, y)+aly, PI+16N—bG)I*

+], 1F—rosent.

Therefore, (1.17) with p’=2 implies (C, 1) and (C, II).

For the proof of (C,Il,) we proceed as follows. Observe that the variance
of Yix)—Yi(y) is tlalx, x)—a(x, y)—a(y, x)+a(y, ¥)). Then we haves imi-
larly as (1.12) that
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(1.19) ELsup |Yi(x)=Y ()7 I=Cit7 | x—y|7".

Hence Y§#(x) itself satisfies (1.17) (with different constant K). Set Z,=Y % (x)
—Y#i(y), where x, y and 7 are fixed. Then it is a discontinuous LZ%-martingale.
Let [Z]; be the quadratic variation of Z,. Then it holds

12 n n
(1.20) tz3=[ |17 w—rmeNyds, dn.
Therefore, by Itd's formula, we have for any p'<p

1237 = [ (200 | = F D = (202 Nods, df)

z( |, Lr—rio)17Nyds. 4.
Then by Burkholder’s inequality,
.21) E[1Z,1712CEL 21 "I 21G,| | [0~ )17 od ).

The left hand side is dominated by Ct|x—y|?'. Hence (1.10) follows. Inequality
(1.11) can be proved similarly. The proof is complete.

In case of Brownian motion, we can replace condition (1.17) to a weaker
one. Indeed, the proof of Theorem 1.2 shows the followings.

Corollary 1. Let X, (x), t€[0, T], x€R? be a random fiela sucn thar the

n-point process (X,(x,), -+, X,(x,)) is an nd-dimensional Brownian motion for any
n and x,, -+, X, Suppose that there is a constant K such that

117" E[1 X (x)—X (" ]=Kt|x—y]?, Vx, yeR?.

(1.18") E[X. ()X ]=Kt(1+x])?, YxeR?.

Then X,(x) has a modification of a C-valued Brownian motion.

Corollary 2. Suppose that C-valued Lévy process X, satisfies (1.17) and (1.18).
Then it admits the Lévy-Ito decomposition Xi+X¢, where X§ is a C-valued
Brownian motion and X¢ is a C-valued discontinuous Lévy process with zero mean

represented as X?(x)zgcf(x)ﬁp((o, 11, df).

1.3. Smoothness of C-valued Lévy process. We shall next discuss the
smoothness of the C-valued Lévy process. Let m be a positive integer. For the
system (a, b, v, U), we introduce the following hypotheses.

(C™ 1) a(x, y)=(a¥(x, y)) are m-times continuously differentiable in both x and
y. Further, D%D%a(x, y) is bi-Lipschitz continuous for any % with
| k| =m.

(€™ ) b(x)=(b*(x)) is a C™-function and D*b(x) is Lipschitz continuous for any
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k with |k|=Zm.

(C™,1,) The measure v is supported by C™. There is a positive constant L

such that
(1.22) SUlef(x)——D”f(y){P'v(df)gL|x—y|1", Vx, y= R
(1.23) SUID’*f(x)IP'v(df)gL, YxeR?

hold for any %k with 1=|k|=<m and (1.11) for p’[2, p].

Theorem 1.3. (i) Suppose that the characteristics of the C-valued Lévy pro-
cess X, satisfy (C™, 1), (C™ 1) and (C™ 1,) for some p>d+1. Then it is a
C™-valued Lévy process. Furthermsre, in case U=C, there is a positive constant
K such that

(1.24) E[|D*X(x)=D*X,(y)|”"1=Kt|x—y|",  Vx, yeR*
(1.25) E[|D*X,(x)|”]<Kt, VxeR®

for any k with 1=|k|<m and (1.18) for p'<[2, pl.

(ii) Conversely if X, is a C™valued Lévy process satisfying (1.24) and (1.25)
for any k with 1< | k| <m and p’€[2, p]. Then the characteristics satisfy (C™, 1),
(C™ 1) and (C™1,) with U=C.

Proof. We shall prove (i) in the case m=1 and U=C only. Let e¢;=
©,--,0,1,0, -+, 0) (1 is at the /-th component) and let ye R'— {0}. Set

Nix, y>=% (X(xtyed)—Xi(x)} .

Then using hypotheses (C?, 1), (C',I) and (C', 1), p>d, we can prove similarly
as in the proof of Theorem 1.1 that there is a constant C such that

(126 Elsup|Nulx, 3)—Nux', 317 ISCHIx =7 +13 =y |7},

(1.27) E[SgpINs(x, P I=Ct,

’

hold for any x, x’, y, ¥’. (Details are omitted). Then, by Kolmogorov’'s criterion,
N,(x, y) has a continuous extension at y=0. This proves that X,(x) is con-
tinuously differentiable and it holds N,(x, 0)=0,;X,(x) for any x a.s. Let y tend
to 0 in (1.26) and (1.27). Then we get

E[sup|d.X,(x)—0:X,(x)|" ISCt x—#'|P', ¥, s’ R%,
E[sg;t)laiXs(x)lP':IgCt, VxeR?.

Suppose conversely that X, is a C™-valued Lévy process satisfying (1.24),
(1.25) for any %k with |k|<m. It is clear that b(x)=E[X.(x)] satisfies (C™, II).
Let YV, (x)=X,(x)—b(x)t=Y§(x)+Y ¢(x) be the Lévy-Ité6 decomposition. We shall
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prove that both Y§(x) and Y§(x) are differentiable with respect to x up to 4,
with |k|<m and they satisfy (1.24) and (1.25). The first derivative 0;Y,(x) is
a C-valued process. It satisfies

E[0,Y (x)—0,Y (y)|?P1=Kt|x—y|?, Vx, yeR?

with a positive constant K because of (1.24). By Corollary 2 to Theorem 1.2,
0,Y, admits Lévy-Itd decomposition 8,;Y ,(x)=¥i(x)+¥&(x), where ¥i(x) is a C-
valued Brownian motion and Y#(x) is a discontinuous C-valued Lévy process.
By the mean value theorem, we have

Yt(x—l—hei)—Yt(x)th:ath(x+vhei)dv

=hS:ff(x+vhei)dv+hS:)~’?(x+vhei)dv
By the uniqueness of the Lévy-Itd decomposition, it holds
Y‘;‘(x—i—hei)—Yi(x):hS: Pi(x+vhe)dv.

This shows that the partial derivative 0;Y§(x) exists for all x a.s. and coincides
with the C-valued process 17'2(x). Therefore Y§(x) is a C!-valued Brownian mo-
tion. Repeating the argument inductively, we see that Y§{(x) is a C™-valued
Brownian motion. As a consequence, Y #(x) is also a C™-valued Lévy process.

We shall next prove that both Y§ and Y¢ satisfy (1.24). Note that the
quadratic variation of D*Y,(x)—D*Y,(y) is [D*Y*(x)—D*Y*(y)],+[D*Y%(x)—
D*Y%(y)];. Then (1.24) together with Burkholder’s inequality proves that
E[[D*Y*(x)—D*Y°(y)]?'/*] and E[[D*Y%(x)—D*Y%(y)]?'/?] are dominated by
Ct|x—y|?. Then again by Burkholder’s inequality, E[|D*Y¢(x)—D*Y$(y)[?']
and E[|D*Y{(x)—D*Y#(y)|?] are dominated by C’t|x—y|?', showing the in-
equality (1.24) for Y§ and Y¢. By the same argument, we can show that both
Y¢ and Y'¢ satisfy (1.25).

Consider the characteristics a(x, y). It is differentiable up to & with k]| <m
and satisfies

DiD%a(x, y)=E[D*Y{(x)D*Y ()],

which is bi-Lipschitz continuous because of (1.24) for Y§. Consider next Y¢. It
holds that

D"Y?(x)zSCD" FONLO, 1, df) a.s.

for any x. Then we can show similarly as in the proof of Theorem 1.2 that
there is a constant C independent of x such that

E[|D*Y{(x)—D*Y{(9)l ”']thSC | D*f(x)=D*f(y)|?'w(df).

Therefore inequality (1.22) is verified. Inequality (1.23) can be verified similarly.
The proof is complete.
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In case of Brownian motion, we can replace conditions (1.24) and (1.25) to

weaker ones.

Corollary. Let X, be a C-valued Brownian motion with characteristics (a, b).
It is a C™-valued Brownian motion satisfying

(1.24") E[ID*X(x)—D*X(y)|* ]1=Kt|x—y|*, Vx, yeR?
(1.25") E[|D¥*X,(x)|* 1K1, Vxe R, 1|k Em
and (1.18") if and only if (a, b) satisfies (C™, 1), (C™ 1) and (C™, 1I,).

§2. Stochastic differential equation governed by C-valued Lévy process.

2.1. Stochastic integrals by C-valued Lévy process. Let X,(x), x€R9,
1[0, T] be a C-valued Lévy process with characteristics (a, b, v, U) satisfying
(C, 1), (C,II) and (C,II,), p>d. Let s<t and &, be the least sub g-field of
g for which X,—X,; sSu=<v<t are measurable. Then for each s and x, X,(x)
—Xs(x), te[s, T] is an &, ,-adapted semimartingale. X,(x) is decomposed tc

the sum of the process of bounded variation B,(x)zb(x)t—l—sw FONHO, t1, df)

and an L%*martingale Y, (x)=X,(x)—B,(x). Let <Y'(x), Y¥(y)>, be the continuous
process of bounded variation such that

2.1 (Yix) =Y L)Y 1) =Yi(3)— KY'(x), Y3, —<Y(x), Yi(y)sh
is an &, ;-martingale. Then it holds <Y'¥(x), Y?(y)),=tA¥(x, y), where
@2) Az, 3)y=atx, )+ F0 ML)

Let s>0 be a fixed number and let ¢,(w) be an F;, ,-adapted R%-valued pro-

cess, right continuous with the left hand limits. It§ integral of ¢, by dY, is
defined by

@3) [ dariger=1im S (71, adBepnd = EindlBepn)

where 0 are partitions {s=f,<t;< -+ <t,=T}. The limit exists in probability
and is a local martingale. Let ¢,(w) be an &, ;-adapted process having the same
property as ¢,. Then it holds

2.4) ([Larsg., § avig,))={ ap., g.)ar.

See Le Jan [9] and Le Jan-Watanabe [10]. Now the stochastic integral by C-
valued Lévy process X, is defined by
t

2.5) S:er(sﬁr-)ES:dYr(¢r_)+S:b(¢,_)dr+S SUC £ IN(dr, df).

2.2, Stochastic differential equation. We shall consider the stochastic dif-
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ferential equation defined by the C-valued Lévy process X,:
{2.6) d&zdet(ft—)-

The definition of the solution is as follows. Given a time s and state x, an R¢-
valued &, ;-adapted process &;, right continuous with the left hand limits is called
a solution of equation (2.6) if it satisfies

@ g=xt| dXE).

Note that this is an extension of a standard stochastic differential equation
with respect to Poisson point process. Indeed, let (B}, ---, B?) be a standard
Brownian motion and let Xy(x), ---, X,(x) be Lipschitz continuous R<%-valued
functions and let N,((0, t], A) be a Poisson random measure on C such that the
intensity measure v satisfies (C,1I;). Then

X0)= 3 X0 Bi+ Xt | SR(0, 11, df)+{ | FCONO, 13, df)

is a C-valued Lévy process. The corresponding stochastic differential equation
is written by

déi= 3 Xu(€)d Bi+ X6, )dt

+{, rEatat, dp+] fENdt, df).

Theorem 2.1. For each s, x, the equation (2.7) has a univue solution.

Proof. We first consider the case C=U. We construct a solution by the
successive approximation. Set &=x and

(2.8) 5?+‘=x+S:dX,(£?_), n=0,1,2, -
Then it holds
£ sup 1¢r7—¢e11=C{E[ | avien—{ avaer)| ]

+E[| [} ez r—pez=nar| ]}
<c{e[[l1aer, e—2acr, g0+, gl

+e—9E| || Ine)—br=12ar |}
Using (C, 1), (C,II) and (C,1,), p=2, we get
E[ sup |63 —€21*1SC+TIL] B sup |61—e2-149dr
ssust s ssusr

5 (E—s)"

={GA+T)L} 1

EEE‘JE, [Ea—E&21%].
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Then £2+!' converges to a right continuous &, ,-adapted process &, in L*-sense.
It is a solution of the equation (2.7). The uniqueness of the solution can be
proved similarly.

We next consider the general case. Let s=o¢,<0,<--- be a sequence of
jumping times of N,(t, U)=N,((0, t], U°):

(2.9) Go=inf{{>0,-1; Np(t, U)—=Ny(on-y, UNZ1}, n2l
=00 if {}=¢.

Then it holds lim,..0,=c0. Set

Rw=X0={_ FONJO, 13, 4f)
and consider an SDE
(2.10) dé,=dX,E.).

It has a unique solution £, starting at (s, x). We will define a right continuous
process &, te[s, T] as follows. For t€[s, a,), set &=E&, and for t=a,, set
601=¢p01(§al-), where ¢,=f+idP and p, is the Poisson point process of X.
Let now &, t€[o,, 0,) be the solution of (2.10) starting at (oy, &,). For te
[oy, d,) we define &=£&, and for t=¢,, we define Saz=¢paz(éaz_). Repeating this
argument inductively, we can define &, for all t[s, T]. It is easy to see that
this &, is a unique solution of equation (2.7).

2.3. The continuity of the solution with respect to the initial data. Let
&, .(x), t€[s, T] be the solution of equation (2.7) starting at (s, x). In this sec-
tion, we will show that there is a modification of the solution such that the
map &, .; R%—R? is continuous a.s. For this purpose, we get some LP-estimates
for the solution and then apply Kolmogorov’s criterion for the continuity of
random fields.

Lemma 2.1. Suppose that the characteristics of the C-valued Lévy process X,
satisfy (C, 1), (C, 1) and (C,ll,) for some p>d and U=C. Then there is a
positive constant M depending only on constants L and p appearing in (C, 1), (C,1I),
(C,10,) and T such that

@.11) ELsup |6, /(x)— x—&,,()+3 |7 IS Mt—9)|x— 17,
(2.12) EESSSLTIR [&s, ()= x| P ]S M(t—s)(14|x |)*
holds for any s, t€[0, T]1, x, yeR® and p'[2, p].

Proof. We shall give the proof of (2.11) only, since the proof of (2.12) is
similar. In the following, we write & ,(x) as &,(x) and write 7,=&.(x)—&.(y)
since s, x, y are fixed. Let X,(x)=Y§{(x)+Y&(x)+b(x)t be the decomposition

P id is the identity map.
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such that Y¢(x) is a C-valued Brownian motion with zero-mean and Y(x) is a
discontinuous Lévy process with zero-mean. Then we have

213) ni—(—9)={ av &)= arsce-o)
+[ avee - avee-on

+{. 10—, -orar
= MH‘ ]W? +At .

We shall compute the p-th moments of the supremum of M§, Mg and A, one by
one. For the convenience, we write p’ as p. By (C,1II),

@) ECsup | 4,171=t—s172E[ [ 66,-(0)— b6, -()dr |

<lt—s|#=L2( Bll,-|71dr.

Next, we have by Doob’s inequality and Burkholder’s inequality,

(2.15) E( sup | Mz|PI=CELI ME| 7]
=CiE[{{ 12 (), &-()—20(-(x), &-)
+a6-), &-Mlar}"]

<Cl|t1—s]| <P/2>—1LP/ZS:E[ 19, |71dr .

The last inequality follows from (C, I).
For the computation of E[sup | M¢|?], we proceed as follows. Apply It6’s
formula to discontinuous martingale M¢. Then we have

(2.16) |M¢|?=a martingale with zero-mean
t .
+ [, 1 MEtg 17— M 17— 3 507 | ML 122 M i fydr

where g;(r)=f(&-(x))—f(&-()), and ME*? is the i-th component of d-vector
process M¢. By the mean value theorem, the absolute value of the integrant
{---} is dominated by

1
51’(1)—1)Igf(r)lleé’-+0gf(r)l”'Zécz{lgf(r)llef-I”'Z-‘- lgs)|?},
where |#]|=<1. By condition (C,1I,), it holds

{18/ 1PdN)=Cly,- 17
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for any 2=<p=<p. Consequently,

2.17) Elsup [M?[7]=CELI ME|7]
SsT

<ci{( Bty 173ar+{ ECin,- 120t 7-42dr
Substitute M@=x,—(x—y)—M:—A, to the last member of the above and then
apply inequalities (2.14) and (2.15). Then we get
(2.18) ECp- 1P ME| P ] =Col{l x—y [P ELl - "1+ EL sup |77}
Substitute the above to (2.17) and then sum up (2.14), (2.15) and (2.17). Then
we get

(2.19) E[sssggt [p.—(x—y)|7]
<C{lx—y17~*[ ECIy- 191+ ECsup 190l 21dr}
t
<Cu—s)lx—ylP+1x—y17[ ELln-—(x, 9)I%1ar

t
+§ E[sup Im—(x—y)l”]dr}-
s 3$sSVsT
In case p=2, the above inequality is written as

(2.20) ELsup, |7, —(x =) *]<Cilt—s)| x—3|°

t
+2C| ECsup [no—(x—)141dr .
Gronwall’s lemma implies

ECsup [9,— (=) ]=Clt—s) [x—yl%.

Substitute the above to (2.19). Then we get (2.20) replacing the 2-nd power by
the p-th power. Then, by Gronwall's inequality, we get (2.11). The proof is
complete.

We can now state the main result of this section.

Theorem 2.2. Let X,(x) be a C-valued Lévy process with characteristics
(a, b, v, U) satisfying (C, 1), (C,11) and (C,M ) for some p>d. Then the solution
of equation (2.7) has a modification &, . with the following properties.

(i) For each s, &, t€[s, T] is a right continuous C-valued process with the
left hand limits.

(ii) For any 0=t,<t;< -+ <tn, &t; ti4p 1=0, -, n—1 are mutually inde-
pendent.

(ili) For each s, it holds that & ,=&; v°&;. . a.s. for any s<t<u

Proof. Suppose first that the characteristics (a, b, v, U) satisfies (C, 1), (C, I),
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(C,1,), p>d with U=C. Then the solution &, ,(x) satisfies (2.11) and (2.12).
Then by Lemma 1.1, we see that &, satisfies (i). In case U+C, the solution
of equation (2.7) is written by

(2.21) Ss,t(x):§a",t°¢pan°gon_1,:7,," °¢pa1°és,01(x) ’ if t€loa, 0041

where &, ,(x) is a C-valued process satisfying (2.10) (See the proof of Theorem
2.1). The above &; . is obviously a right continuous C-valued process with the
left hand limits.

The second assertion is clear since & ;,, iS Fy,,.,,,-measurable and &, ,,, .,
z;=0, -+, n—1 are mutually independent. Next observe that both of &, .(x) and
&, u(x)=&s,4°8s,4(x), ucst, T] are solutions of equation (2.7) starting at ¢ at
&;,«(x). Then by the uniqueness theorem, we have Ss,u(x)=és_u(x), for all ue
[t, T]. Then the assertion (iii) follows. The proof is complete.

Let us define the product of two elements f, g of C(R?%; R?) by the com-
position feg of the maps. Then C(R?; R%) becomes a topological semigroup by
the topology p. We denote the semigroup by G.. Then the solution &, defines
a Lévy process in the semigroup G. because of properties (i)~(iii) of Theorem
2.2. The associated C-valued Lévy process X, is called the infinitesimal generator
of &, and &, is said to be generated by the C-valued Lévy process X..

2.4. Regularity of the solution with respect to the initial data. In this
section, we shall study the smoothness of the solution with respect to the initial
value under some regularity assumptions to the characteristics (a, b, v, U). We
denote by GT the sub-semigroup of G. consisting of C™-maps. It is a topological
semigroup by the metric p,,. Lévy process with values in GT is defined similarly
as that with values in G,.

Theorem 2.3. Suppose that the characteristics of a C-valued Lévy process
satisfy (C™, 1), (C™ M) and (C™I,) for some p>(m+1)°d. Then the solution
&, 1(x) of equation (2.7) has a modification such that it is a GT-valued Lévy process.
Furthermore, in case U=C, there is a constant M such that

(222)  ELup |D*.(0)—D*%. )| ISMt—3) | x—3|7,  Vx, yeR?,
(2.23) E[ssstrlgtID”(Es,r(x)—x)[”']éM(t—S), VxeR?
hold for any k with 1= |k|<m and p’'€[2, p/(m+1)%].

We prove the theorem in case m=1 mainly. Our argument is based on the
following lemma.

Lemma 2.2. Suppose U=C. Let ¢;=(0, ---,0,1,0, -+, 0) (1 zs at the i-th
component) and y= R*'— {0} Set

Ndlx, y>=% o (xFye)—Es ).



88 Tsukasa Fujiwara and Hiroshi Kunita

Then there is a positive constant C such that
2.24) ECsup [Ng,r(x, y)—Nso(x', INPISCllx—x" [P+ | y—y'| P’} (t—5)

holds for any x, x’€R%, y, y'€R'— {0} and p’<[2, p/2].

Proof. For simplicity, we only prove (2.24) in case x=x’. We will write
N, (x, ) by N,(y) since s and x are fixed. By inequality (2.11), it holds that
for any p’<€[2, p]

(2.25) E[sup [N.(y)—e:| 1= M({—s).
ssrst
The process N,(y) is written by

t
$

@20 No=ect| dZNGH | g, YN Fidr, d)
+(. BoWr,

where Z,(y)=S:Y$'(C,-(x, v, v)dv,  gs(r, y)=S:f/(Cr-(x, v, v)dv, B (y)=

S:b«c,(x, 9, v)dv, and

Clx, 3, v)=E(x)FvE(x+ye;)—E&(x)) .

Here Y¢(x) etc. are dXd-matrix (0Y¢'(x)/dx;) etc. Let 7:=Ny(y)—N.(»’) and
Ne=M¢+M¢+ A, (d-vector) be the decomposition such that M¢ is a continuous
martingale, M{ is a purely discontinuous martingale and A, is a process of
bounded variation, respectively. Let M§*® be the 7-th component of M¢{. Then

CMe 6,22 35 (VH) N D) =N e, )dr

+2.33[ N OINI) takiy, 9) =268y, y)+adi(y’, ¥} dr

where

) 1(1 0? .
atin, 3= (G @) C 30 Glx, 37, v)dvdy’
It holds by (C™, I) that
laii(y, »'I=C:,  Vy, y'ER4,
lai(y, y)—2aii(y, y")+aii(y, ¥")
=G lé(x+ye)—E(x+y'es)|*
Then by Burkholder’s inequality, we have

E[szgg|M$|P']§03§3E[<M“'>§’"2]
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¢ '
<C.E[ [, IN)-N.)1 7 dr |

+CE[ [, NP [6.(x+yed =6 (x-+y'en] 7 dr |

The last member is dominated by Cj|y—y’|?'(t—s) in view of Lemma 2.1 and
(2.25). Therefore we have

ECsup | M; |7 1=C.{| ELI7,173dr+Cily—y' |7 (t—s).
By a similar calculation, we have
@.27) ECsup | 4,17 1SC.f ELIne| »1dr+Cily—'|7 (=3,
For the estimate of M¢, we proceed as follows. By Itd’s formula,
(2.28) | M¢|? =martingale with mean 0

) I ME+ 17 = | M2 —p S hy)| ME|P *ME ) (d)dr

where
hy(r)=gs(r, YINy)—gs(r, Yy INL3').

The integrant of the last member of (2.28) is dominated by
WCs{| Ry P+ hp(r)|P| ME| P~}
as before. Since S||f’(x)l|"'u(df)” is bounded in x and Scllf'(x)—f’(x’)llp’v(df)

<const |x—x’|? by (C™1I,), we have

@29) | Ihsn)17sa)

<C{ 917 N, IPAANHINGZ | g str, »)—gs(r, 317 d )

SCo{ln AP+ NP 1E(x+ye)—E(x+y e 7'} .

The expectation of the above is dominated by Ci{E[|%.]?'J4+|y—y’[?'}. On
the other hand,

@30 E[1Mg17 1h, )

SCuEL(n: |7 2 | ME|?' 2+ | AP %) | 2] 7]
FCE[(| 9,7 2 | Me|? 24| A |2 -3 | N:(9) 12| &:(x + yey)
—&(x+y'e)|*].

The first member of the right hand side is dominated by C{,E[étgg [7]7]

P |la|| denotes the matrix norm X; ; |a;;].
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+Ciily—y’|?'. Obviously E[|M{¢|?'] is dominated by the sum of the above two,
integrating by dr from s to ¢. Summing up the above calculations, we arrive at

t
@30 ECsup |97 1=Cual y= |7 t=5)+Cu|| ELsup 7.7 Jdr

t
+Cual ELIn 177t ME| 7 54| A7)
X INAY) 1218, ye)—8,(x+ e | 1dr .
We will prove by induction on p’ that
t
@32 ELsup 7,17 IS Cul y—y' |7 (t—=)+Cu] ELsup 7,7 Jdv
ssrst 8 Ssvsr
holds for any p’e[2, p/2]. In case p’=2, (2.31) is written as
t
ELsup, |7 71=(Cua+Cio) |y —y' 1t —=9)+Cu|| EL sup 7./°1dr
ssrsi 8 ssvsr

which is nothing but (2.32). By Gronwall’'s inequality, we have E[sup|y,|*]=<
Cis|ly—y’|*(t—s). Suppose next 2=<p'<3Ap/2. Let p=2/(p’—2) and § be its
conjugate. The last member of (2.31) is dominated by

ClSS:(E[Ian]lIﬁ_i_EI]A,Iglz]llﬁ_‘_E['Arlz]l/ﬁ)
XE(IN'(y)IZ&lér(x'l'yei)—fr(x—!—y’ei)|2ﬁ)1/6d7
t ' v
éc‘*’(SsE['”’[z](p P1dr) |y =y |PSCool y =3/ 17 (=) .

Therefore we get (2.32) in case 2<p'<3Ap/2.

Consider next 3Ap/2<p'<4Ap/2. Let p=3/(p’—2). Then we can show
similarly as the above that the last member of (2.31) is dominated by const.
X |y—y’|?'(t—s). Therefore we get (2.32) in case 3Ap/2=p’<4Ap/2. Repeat-
ing this argument inductively, we get (2.32) for any p’ less than p/2. The
proof is complete.

Proof of Theorem 2.3. 1t is enough to prove the theorem in case U=C.
By Kolmogorov’s theorem, aiés,,(x)=lirrgNt(x, y) exists for any ¢, x, a.s. It
P

satisfies (2.22) with D*=0; by (2.24) and satisfies (2.23) by (2.25). Therefore
&+ is a right continuous C! valued process.

Now, let y tend to 0 in (2.26). Then we see that the Jacobian matrix
0&;,,(x)=(0:&,,,(x)), i=1, -+, d satisfies

08 () =T+ d X (€0r-(x)080r- (1)

+:], G028, (0 Rtar, ).

Therefore, the pair (&, ,(x), 0&;,.(x)) satisfies a closed system of SDE. Apply the
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same argument to the pair process. Then we see that 0§ (x) is a C-function
of x and in fact that &, is a right continuous process with values in C*(R?; R%).
Repeating the argument inductively on m, we get the assertion of the theorem.

2.5. Homeomorphic property of the solution. We have seen in Section 2.3
that the solution of SDE (2.7) defines a Lévy process with values in the semi-
group G, of continuous maps. In this section, we shall discuss the case that
the maps &;,;: R—> R? become homeomorphisms a.s. In case of continuous SDE,
i.e., v(C)=0, it is known that the maps &, are homeomorphisms. (See Kunita
[6], Bismut [2]). However, in case of discontinuous SDE, additional require-
ments have to be made to the intensity measure v of the Poisson point process.

We denote by G the totality of homeomorphisms of R?. It is a subgroup
of G,, and is a topological group by the metric d(f, g)=p(f, @)+p(f, g™
where p is the compact uniform metric on C. However, we will not use the
metric d in this paper, but use the metric p. The definition of the G-valued
Lévy process is similar to that of G.-valued Lévy process.

We first consider the case that the intensity measure v of the Poisson point
process is a finite measure.

Theorem 2.4. Let X,(x) be a C-valued Lévy process satisfying (C, 1), (C, 1)
and (C,1,) for some p>d. Suppose the following.

(C,IV) The intensity measure v is finite and is supported by f such that ¢;=f
+id eG.

Then the solution of SDE (2.7) defines a G-valued Lévy process.
Proof. By the condition (C,IV), the equation (2.7) is written by
(2.33) de=d Xe€ )+ FEINdt, df),

where X¢ is a Brownian motion with values in C. Now let &, ,(x) be the solu-
tion of the equation d&,=dXi(é,.) starting at (s, x). Then it is a G-valued
Brownian motion. The solution of equation (2.33) is written as (2.21). Since
¢»s, are all homeomorphisms by hypothesis (C,IV), the solution &; , defines the
homeomorphisms a.s. Therfore, it is a G-valued Lévy process.

In case that the intensity measure v is o¢-finite, we require additional re-
gularity conditions to v. Let us introduce a Lipschitz norm:

[ f(x)] [f)—f(»)]
R PTRE y p—y

I fll=sup
x
and introduce an assumption to y.

(C,V) ¢;=f4id are homeomorphisms a.s. v. v satisfies

12
(2.34) Scﬁwuw)@o.

Note that (C,V) implies (C,I,) for p=2. Indeed, setting U={f;|fll<1}
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we have v(C—U)<co and SU Ifl?v(df)<co for any p=2 by (2.34). The latter
property implies (C,1I,).

Theorem 2.5. Assume (C, 1), (C,11) and (C,V). The solution of equation
2.7) defines a G-valued Lévy process.

The proof is based on the following L?-estimates.

Theorem 2.6. In addition to (C, 1), (C,11) and (C,V), assume further that

(2.35) essf-sup(l!f||+|lf||)<+oo with respect to v,

where f=¢}‘—z'd. Then, for any p=2, there is a positive constant M, such that
(2.36) ELsup |&,.-(x)=&0. (NI P1=Mplx =177, Vx, yeR?,

(2.37) Elsup (141&. () PI=Mp(1+[x )77, VxeR?.

Remark. In case of continuous SDE, inequalities (2.36) and (2.37) without
“sup” in the expectations have been obtained in [6].

We give the proof of (2.36) only, since the proof of (2.37) is similar. For
the proof of (2.36), we require a lemma.

Lemma 2.4. Suppose conditions (C,V) and (2.35). Let 6 be any positive num-
ber. There are positive constants C, and C, not depending on & such that

2.38) |, 16+16,0—,0) 197 =@+ x—y19
+ =N =y N0+ x =% (df)
=G0+ [x—y[).

(2.39) SC [0+ 18 5(x) =@ (M) =@+ [x—y )P "u(df)=Col0+ [ x—y |57

Proof. We will prove (2.38). Let 0<e<1 and set U.={f||fll<e}. Con-
sider the integrand of (2.38) in case f&U.. Since |¢7 (x)—d7 (W)=l x—y],
we have |x—y|=Z|¢7 | s(x)—¢,(»)|. Therefore,

0+ 1¢s(x)—d,NIDT=A+F M0+ [x—p[H)7 .

Also, note that | f(x)—f(»)|=Z1fllx—y|. Then the integrand of (2.38) is dom-
inated by

(2.40) A+l 1P+ IDE+[x =319, feC-U..

We next estimate the case f€U.. By the mean value theorem, the integrand of
(2.38) is dominated by
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(2.41) Collx=y * 1 f()—=FOIPO+ [(x—»)+0(f ()= fN D)},
where @ is a number such that |§]|=<1. Since f€U,, we have
[(x=2)+0(f()—fONI=2A—=1fDIx—yI=A—e) [ x—y].
Therefore (2.41) is dominated by
(2.42) Cld—=e) I fIF0+1x—y1D7",  feU..

Integrating (2.40) on C—U. and (2.42) on U, by the measure v, we get (2.38).
The proof of (2.39) is done similarly.

The inequality (2.36) of Theorem 2.6 follows from the following lemma.

Lemma 2.5. Suppose (C,V) and (2.35). Then it holds
(2.43) E[Slgp(5+Icfs.a(x)—&,t(y)Iz)'””]écs(ﬁ-l-lx—yIQ)“”z, Vx, yeR®

where the constant Cy does not depend on 6.
Proof. Set n,=&.(x)—&(y), Then by Itd’s formula,
@+ 19| '=0+|x—y|H)*

2 ;S:(B—;— [, 1229 {dY & H(Er)—dY & (¥}
L], O+ 17 -g, D =@+ 9197 Notdr, df)

—2 5[ @+ 919980 E N — b Er

— 2@+ 19197 @+ 1.1 900—4nh
X (a6, (x), €(x)—2a"(E,(x), &9+ (E,(y), &y} dr
T R O PR AP
+2 2 g5 (N6@+ - 19 n1-} v(ddr
=@+ x—y )7+ Me+ Mi+ AL+ Ap+ A3
We shall compute the p/2-th moments of sup | M;| etc. Similarly as the estimate

of (2.13), we can easily show
(2.44) Elsup | A}|?"*+sup IA?IZ’”]éCeStE[SSuE (0+19,15)-7*]dr .
For the estimate of A}, we shall apply Lemma 2.4. By (2.38), we have

sup | 42 =G, @G-+ 17,1977 .
SsrTst s
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Therefore we have
(2.45) E[Ssugclx‘lil"’z]éCiStE[ssgp 0+ [nu|®)-?"]dr .

Next, by Burkholder’s inequality etc.,
(2.46) Elsup | Mg|P*]=(q)?*E[I M| PP 1S CE[KMP']

éCvE[(S:@JrIml?)-*lr;,12||a<sr<x>, £.(x))
—2a(6:(x), &N+ al(y), Sr(,v))lldr)l’“]

t
=G\ ELsup @0+ 9|#7]dr .

where ¢ is the conjugate of p/2.
For the computation of |M¢|?/?, we apply Ité's formula. It holds

2.47) | M¢|?/2=a martingale with mean 0

+S:Sc{]‘M’d+hI(7’)lplz—|Mg]p/z

— L h )| M2 210 sign (MO} f)dr

where h;(*)=0+ |9, +g;7) > —(@+19,]*)"". The integrant of the above is
dominated by Co(| A ()| P2+ hs(r)|?| ME|®®-2), From (2.39), we have

[insor17man=ca+ g e
for p'/2€[2, p]. Therefore we get
ELsup | M*|*1<q?*EL| Mg |7"]
<Cuo|, B+ 17,9721+ ELG+| 9,177 Mg | 21051} dr

Substitute ME¢=(3+1|9,|3)"'—0+|x—y | —Mi—A;—A;— A? to the last member
of the above and then apply (2.44)—(2.46). Then

248 Elsup | M?|?"1=Cy| EL sup (6+17,1%)-#1dr
T $ SSVST n

+Cilo+ 13— 3192+ ELsup @+ 721921 .
Summing up (2.44), (2.45), (2.46) and (2.48), we obtain
ELsup (5+17,1) 75 <Co@+| x—y 972"

1 CoB+ 1 x— Iz)("pm”S:E[sSslgET @+ n.15)21dr
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t
+Cuol ELsup @+ 721 721d7 .
s $SVST
Then we get the desired inequality (2.43), similarly as the proof of (2.11).

Proof of Theorem 2.5. Assume first that conditions of Theorem 2.6 is sat-
isfied. The one to one and onto property of the map &; . for each s<t can
be proved similary as [6]. Indeed, inequalities (2.11) and (2.36) imply that
égl?ulés_r(x)—&,r(y)l‘1 is continuous in (x, y)€R*X R?—{(x, x)|x€R*. This

proves that the map &, ,; R~ R% is one to one for all t=[s, T]. Next, inequality
(2.37) implies lim z;nfr |&;.:(x)] =00 a.s. Then &, is extended to a continuous map
| X ] =00 3, T]

from R¢ (=one point compactification of R?) onto itself all for all ¢t[s, TJ,
such that oo is the invariant point. Then we see that & ,; R®—R¢ is onto and
the inverse &;74(x) is continuous in x for all te[s, T]. a.s.

We next consider the general case. Set U= {f|||fl|<1/2} and consider the
SDE

(2.49) d€=dXsE)+ |, FENyd, df).

It satisfies condition (C,1,) for p=2. Furthermore, since |¢5'(x)—@7 (y)—x+y|
< £l 167 (x)—¢7'(»)], we have |$7(x)—¢7'(»)|=2|x—y| if feU. Similarly,
we have [¢7'(x)|=2(1+|x|) if f€U. Therefore condition (2.35) is satisfied.
Consequently the solution of (2.49) defines for each s, a right continuous G-
valued process &; ., t€[s, T]. Now let s<0,<0.< - be jumping times of
Poisson process N,(t, C—=U), t=s. Define & (x) by

(2.50) és.t(x):éan,t°¢p(on_l)° °¢p(al)°gs,o’1(x) if 0,=t<0p41.

Then we can prove similarly as Theorem 2.1 that for each s, &, t<[s, T] is
a solution of equation (2.7) and defines a right continuous G-valued process with
the left hand limits. The proof is complete.

§3. Representation of Lévy process with values in the semigroup of
continuous maps.

In the previous section, we have seen that the solution of a stochastic dif-
ferential equation defined by C-valued Lévy process defines a G, (or G)-valued
Lévy process provided that its characteristics satisfy (C, 1), (C,1I) and (C,II,),
p>d ((C,IV) or (C,V), resp.). In this section, we shall show conversely that a
Lévy process with values in G, or G can be represented as a solution of a
stochastic differential equation defined by C-valued Lévy processes. Our problem
is thus to find the infinitesimal generator of G,-valued Lévy process.

3.1. Main result. We begin with introducing some hypotheses to G.-valued
Lévy process & ;. We always assume that &, , is stationary.

&, 1) & .(x) is square integrable for any s<t and x=R% The limit
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. .1 ) .

3.1) A(x, 3)=lim —— B[ eea(x) = %€ ss(3)— 3]
exists for any x, yeR?* and 7, j=1, -, d.
(6,1) The limit

. L1 ; \
(3.2) bi(x)=lim — {E[&§ s+n(x)]— x4}

-0 N

exists for any x€R? and /=1, -, d.
Let p be a positive number greater than or equal to 2.

(6,I,) There is a positive constant M such that

(3.3) |EL&s,i(x)—x— (&, (3)— ]| =EME—s)|x—y],
(3.4) E[1&. (x)—x—(&s. . (3)—NIPI=ME—s) | x—v|7,
(3.5) ET|&, (x)—x|?"J=M({t—s)(141x])¥

holds for any x, yeR? and p’€[2, p].

Remark. Condition (§,1l,) (p=2) implies that A*/(x, y) is bi-Lipschitz con-
tinuous and bi(x) is Lipschitz continuous.

Theorem 3.1. Let & .(x) be a stationary Lévy process with values in G,.
Suppose that it satisfies (§,1), (§, 1) and (§,1,) for some p>d. Then it is
generated by a unique C-valued Lévy process X, satisfying conditions (1.17) and
(1.18) of Theorem 1.2.

The proof will be given at Section 3.2.

It should be noted that hypotheses (£, 1), (§,11) and (§,1l[,)), p>d are satisfied
for any G.-valued Lévy process which is generated by a C-valued Lévy process
satisfying (1.17) and (1.18). Indeed, let X, be a C-valued Lévy process satisfy-
ing (1.17) and (1.18). Then it satisfies (C, 1), (C,1I) and (C,I,) with U=C by
Theorem 1.2. Let X,(x)=Y,(x)+b(x)t be the decomposition such that Y,(x) is
of zero-mean. Then the G.-valued Lévy process generated by X, satisfies

t
E&, (01— x=E| | o6 txnar .
The property (§,II) and (3.3) follow from the above. Furthermore, the relation

E[ (gt oenter—xi= " 060 0 dr) €)=y, 06, ) |

s+
s

—E[|"" avie, -] avie. o]

=E[S:+hAﬂ<es. A{x), eg.r<y>>dr]

implies (§, I). Hypothesis (§,10,) is verified in Lemma 2.1. As a consequence,
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we have the following.

Corollary. A necessary and sufficient condition that &, is a G,-valued Lévy
process satisfying hypotheses (§,1), (6, 1) and (§,1,), p>d is that it is generated
by a C-valued Lévy process satisfying (1.17) and (1.18).

Remark. There are some gaps between the class of G-valued Lévy process
constructed in Theorem 2.5 and the class of G-valued Lévy process treated in
Theorem 3.1. In particular, the condition (C, V) seems to be stringent, since it
is hardly checked whether the generator of a given G-valued Lévy process has
the property (C,V) or not. The problem of filling out these gaps will be dis-
cussed elsewhere.

We will next consider the case of smoothness property. Let & , be a G?P-
valued Lévy process. We introduce the following hypotheses.

(™, 1) A¥(x, y) defined by (3.1) is m-times differentiable in both x and y.
Furthermore, D%D* A(x, y) is bi-Lipschitz continuous for any % with
| k] Zm.

(™ 0) b¥(x) defined by (3.2) is a C™function and D*pi(x) is Lipschitz con-
tinuous for any k with |2]|=m.

(é™,1,) There is a positive constant M such that (3.5) and the following in-
equalities hold for any %2 with 1=|%|=<m and p’'<[2, p].

(3.6)  E[ID*&s,(x)—x)—D*&s, (») =P I=Mt—s)|x—y|?,  Vx, yeR*
@7 E[D*&(x)—x)|”1=M(t—s), VxeR?

Theorem 3.2. Suppose that &;,, is a GT-valued Lévy process satisfying (€™, 1),
(™ 1) and (€™, ,) for some p>(n+1)*d. Then it is generated by a unigne
C™valued Lévy process X,(x) whose characteristics satisfy (C™, 1), (C™ 1) and
(C™ M, ) with U=C for p'<p/(m+1)%

The proof will be given at Section 3.3.
Combining the above theorem with Theorem 1.3 and Theorem 2.3 we ob-
tain the following corollary.

Corollary. A necessary and sufficient condition that &, is a GT-valued Lévy
process satisfying (™, 1), (6™, 1) and (™ 1ll,), for any p>d is that it is generated
by a C™valued Lévy prscess whsse characteristics satisfy (C™, 1), (C™ 1) and
(C™ M ,) with U=C for any p>d.

Remark. There is a one to one correspondence between the following three.

(a) Gy-valued (resp. GT-valued) Lévy process satisfying (¢, 1), (&, 11), (§,1I,),
for some p>d (resp. (§™ 1), (¢™ 1), (6™ 1M,) for any p>d).

(b) C-valued (resp. C™-valued) Lévy process satisfying (1.17) and (1.18)
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(resp. (1.24) and (1.25) for any %k with |k|<m) for some (any) p>d.
(¢) The system (q, b, v, U) with U=C satisfying (1.1), (1.3), (1.4) and (C, I,
(C,m), (C,my,), p>d (resp. (C™, 1), (C™ ) and (C™ 1), for any p>d).

Finally we restrict our attention to G.-valued Brownian motion. In this
case, we can replace the condition (§,1,), p>(m-+1)’d to a weaker condition

(Sr HIZ)-

Theorem 3.3. Let &, be a Gi-valued Brownian wmotion satisfying (§, 1),
(&, 1) and (&, 1,). Then it is generated by a unique C-valued Brownian motion X,,
whose characteristics satisfy (C, 1) and (C, 1).

Suppose further that &, satisfies (6™, 1), (€™ 1) and (6™ ,). Then X, isa
C™-valued Brownian motion whose characteristics satisfy (C™, 1) and (C™ 1I).

Note that the G,-valued Brownian motion of Theorem 3.3 is actually a G-
valued Brownian motion, owing to the above theorem and Theorem 2.4. There-
fore we have the following.

Corollary. A necessary and sufficient condition that &, is a G-valued (resp.
G™-valued) Brownian motion satisfying (&, 1), (§, 1) and (§10,) (resp. (§™, 1),
€™ 1), (6™ 11,)) is that it is generated by a unique C-valued (resp. C™-valued)
Brownian motion whose characteristics satisfy (C, 1) and (C, ) (resp. (C™, 1) and
€™, 1).

Remark. There is a one to one correspondence between the following three.

(a) G-valued (resp. G™-valued) Brownian motion satisfying (§, 1), (§ 1),
(,10,) (resp. (§™, 1), (§™ M), (§™ IL,)).

(b) C-valued (resp. C™-valued) Brownian motion satisfying (1.17’) and (1.18’)
(resp. (1.247) and (1.25")).

(¢) The pair (a, b) satisfying (1.1), (1.3) and (C, 1), (C, @) (resp. (C™ 1),
(€™, m)).

Remark. The construction of C-valued Brownian motion from G-valued
Brownian motion was shown by Baxendale [1] and Le Jan [9] in different con-
texts. The reproducing kernel Hilbert space associated with a(x, y) studied in
[1] is isomorphic to the Gaussian space generated by Gaussian random variables
X.(x)—b(x)t, x€ R® where t is fixed. The Gaussian random field W(x, t) in-
roduced in [9] has the same law as that of X,(x)—b(x)t. However, W(x, t) and
& :(x) are not directly related by SDE, but the solution governed by W(x, t)
has the same law as that of the given & ;.

A result analogous to Theorem 3.3 was obtained by Kunita [7] assuming an
additional condition to the o-field F; ,=0d(§,,»; sSusv=t).

3.2. Proof of Theorem 3.1. Since the proof of Theorem 3.1 is long, we
shall first present a loose idea of the proof. The principal part is the construc-
tion of C-valued Lévy process. Suppose for a moment that we could have con-
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structed such X;. Then it holds
t t
80— 3= b&, (Ndr={ dY (&, - (x)),

where Y, (x)=X,(x)—b(x)t. Both of the above are martingales, which we denote
by M, .(x). Now in case where &, , has the inverse map &%, Y.(x) could be
obtained by

Vo= dM. s

= i My, 0, (654, (0)— Mo, (623, (),

1410

where A= {s=t,< --- <t,=t} are partitions and |A|=max(t;;;—?;). Note that
M, (x) has the additive property M, ., (x)=M, ; (x)+M;, ¢,,,(6s:,(x). Then
Y (x) could be written as

Yt(x}zlldilrilo ; Mtk, tk+1(x) .

We shall carry out the idea rigorously. We first consider the martingale
M .. Set % ,=0(fu0; s=u=v=t) and define

3.9 M, () =80 — x| b dr

Lemma 3.1. Suppose (§,1), (§11) and (§,1I;). Then for each s and x,
(M (x), Fs,0), t€s, T] is an L*-martingale with zero-mean. Furthermore,

3.9 M), M (= A (2, £

Proof. Set my (x)=E[& . (x)]—x. By the multiplicative property & .=
&, 408, for s<t<u, we have my (x)=m; (x)+Ts ;. (x), where T ,f(x)=
E[f(&;,(x))]. By (3.3), it holds [(1/h)m;, cn(x)| SM(1+|x|) and (1+]x|) is in-
tegrable relative to T, (-, dx)=P(&; (-)edx). Therefore

D ek =tim T (5N =T, ).

t
Integrating the above by f, we get ms,L(x)=SsT,,,b(x)dr. Note that &,,, and F,,,

are independent. Then we have

ECMS, ()= M (0| B, A= E[ 8w )= 8600 = D G0re8i (07 [ 54

=t u(En ()= | T b, (0 dr
=0.

Therefore M: ,(x) is a martingale with zero-mean.
Consider next
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Vix, =ELM ()M (»].

Using the relation M ,(x)=M, (x)+ M, (&, «(x)) and the martingale propery,
we have

Vi (x, »)=ViUx, »+TEVE(x, 3).

where T f(x, y)=E[f(&,(x), &, «(»))]. Then we have

0 ij —1i () Vilien TE A
D vigr y=timre(VEe Y, y)=1@ v, 5).

The change of the order of lim and integration by T is verified by (3.4). In-
) ¢ )
tegrating the above by ¢, we get V¥(x, y)=S T&AY(x, y)dr. Then we can
s
prove that

M5 ()M ()= | A5, (), 8,7

is a martingale with zero-mean, similarly as the case of M} ,(x). This proves
the second assertion of the lemma.

Now, given a partition 0= {0=t,<t,< -- <t,=T}, we define
n-1
(3.10) Yi(x)= kZ=)0 My nt e ne(x) .
Lemma 3.2. Suppose the same condition as in Lemma 3.1. For each s and
x, Y2 (x)=Y¥x)—Yx) is a martingale adapted to F,. It converges in L*-sense

as |6|—0. Furthermore, the limiting process denoted by Y, (x)=(Y} (x), -,
Y2.(x)) satisfies

(3.11) Y ux), Yi(y»=A%x, y)t—s),

(3.12) i), ML= A%, &, )dr

Proof. The martingale property of Y ,(x) is immediate from that of M, ,(x).
Let Y% ¥4x) be the i-th component of Y% x). Then we have from (3.9)

L), YO =|, A5G0, sco. (37,

where d(r) is a function such that é(t)=t; if t;=<t<t¢;s;. Now let d,, n=1, 2, ---
be a sequence of partitions such that |d,|—0. Then

Vi i (x0)—Yime(x)>
=V e () =2V ir(x), Yim (x> +<Yim (x>
:S: {Aii(sﬁn(r).r(x)y 55,1(7'),r(x))’_2A“($5n(r).T(x)y Eﬁm(r).r(x))

+Aii(55m(r). r(x)y Eam (r)'r(x))} dr.
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Since A'(x, y) is bi-Lipschitz continuous, we have
ELIY i =Y iy )| DS M| L3, 00,500 s, ()17
The right hand side is dominated by
2M([ 410a(r)=r [ +13mr) =7 |} dr)1+ ] 2 ])?

because of (& 1I,). Therefore, Y?»%x) converges to an L%martingale Y{ ,(x).
It satisfies

YL, Yi (D= lim Vimi(x), Yin(y)=Ax, y)t—s)

and
YL (x), M, (»)>=lim<Yini(x), Mi ,(y)>

—lim S:A”@an o, (%), & (3))dr

= (" A%, &0

The proof is complete.

The process Y (x)=(Y%¥x), ---, Y3 #(x)) has the additive property Y ,=
Y3 ,4+Y?, for s<t<u of 8. Thus the limiting process Y has also the additive
property for any s, t, u[0, T]. Set Y (x)=Y,,.(x). It holds Y, (x)=Y.(x)—
Y(x). Then Y,x) has independent increments, since Y, , is independent of
Fo,s. Therefore, n-point process Y ,(x)=(Y,(x,), .-, Y:(x,)) is an nd-dimensional
Lévy process. We shall prove that Y, (x), x€R? is a C-valued Lévy process.

Lemma 3.3. Suppose (£.1), (§, 1) and (&, 1Il,).

(i) If &, . is a Gi-valued Brownian motion, then Y ,(x) is a C-valued Brownian
motion.

(ii) Suppose further (&1,) for some p>d. Then Y, (x) is a C-valued Lévy
process satisfying (1.17) and (1.18).

Proof. In case that &, is continuous M, (x), t€[s, T] is a continuous
martingale for each s, x. Therefore, Y,(x) is also continuous in ¢&. Then the
n-point process Y ,(x) is an nd-dimensional Brownian motion such that E[Y,(x)]=0
and E[Y.(x)Y . (y)]1=tA(x, y). Since A¥(x, y) is bi-Lipschitz continuous, Y ,(x)
has a modification such that it is a C-valued Brownian motion by Theorem 1.1.

We shall next consider the discontinuous case. We shall suppress the index
7 from Y¢%x) and write it as Y%(x). Constants in the followings do not depend
on partitions d. Let p’=[2, p]. By Burkholder’s inequality, we have

ELYx)—=Y¥)| P I=Cpr E[[Y(x)—Y(y)]?"/7],
where
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o o n-1
Yo(x)—Y°(y)]= :430 (M, BAL L k+1/\t(x)—Mt kﬂ/\t(J’))zo

For simplicity, we assume t=t,. Then

(3.13) [Y(x)=Y°(y)]1F'*= X ALY ()= Y9I/, — [V (x)— Y015

3
-

£
<

! n-1
<%k=0(Mtk,;,,H(x)—Mc,,,:,,+1(y))2[Y"(X)—Y"(J})]E’,ﬁ'ﬁ’"
5%2“’ - 1{2 IMtk tk+1(x) Mtk tk+1(y)l

n-1
+ 5 Moy 1y (8) = Mo LYV 2(0)— V()15
Since we have
E[‘Mtk,tk+1(x)_Mtk,tk+l(y)lp,]

<27 {BLI8, 040,00 — 2= (0417

+E[S by ()b Ee () | ]}

S22 M1+ [thr—te | 2 D ps—te) [ x— | ¥

by hypothesis (§,1,), the expectation of the first member of the right hand
side of (3.13) is dominated by Cit[x—y|?. Next, note that the last member
of (3.13) is of the form >;X;Y; where X; and Y, are independent random
variables. Then the expectation of the last member of (3.13) is dominated by

Colx—y] 25: E[[Y(x)—Y3(»)] m-11dr. We have thus obtained
(3.14) E[[Y(x)—Y°(y) 1P *]<Cit| x—y |

+Clx—y1*, ELLY20)— Y (50327 1dr .
We now prove
3.15) E[[Y(x)=Y(»)]p *1=Cat | x—y|7".
In case p’=2, (3.14) is nothing but (3.15). Then by Holder’s inequality, we have
E[[Y()—Y(]F*1=Cil x—y |7

for any 0<p’<2. Substitute this to the right hand side of (3.14). Then we can
see that (3.15) is valid for any 2=<p’<4. Repeating this argument inductively,
we obtain (3.15).

Now apply Burkholder’s inequality to (3.15). Then we get

(3.16) E[IYx) =Y 7 ]1=Citlx—y|?.

Let |d] tend to 0 in (3.16). Then we get the inequality (1.17). The inequality
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1.18) can be proved similarly. Therefore Y, (x) is a C-valued Lévy process
whose characteristics satisfy (C, 1), (C,I) and (C,1I,) with p>d. The proof is
complete.

Proof of Theorem 3.1. Let Y, be the C-valued Lévy process of Lemma 3.3.
We prove that & ; is generated by the Lévy process X,=Y,+tb. It is enough
to prove

My ()= XG0 ()= 1060 -0 dr={ 4V (8-

Denote the right hand side by M, (x). Then, since (Vi (x), Yi,(y)>=
(t—s)A¥(x, y), we have

VTS (), BB (> =, 43803, ()
by (2.4). On the other hand, from (3.12) we obtain
L (), ML, )= A0 ), EurlpDdr

Using the above two equalities and (3.9), we get
M, () = M, (0> =M, (60> =24 ME, o), MEo(x))
<M (%), M (x))=0.
This proves M;,,(x)zﬁi,t(x). The uniqueness of X, is obvious from the method

of the construction of Y,.

3.3. Proof of Theorems 3.2 and 3.3. In this section, we assume that GP-
valued Lévy process &;,, satisfies (6™, 1), (6™, 1) and (é™,1,). We have to prove
that C-valued Lévy process constructed at Lemma 3.2 is a C™-valued Lévy
process. Let Y¥(x) be the martingale defined by (3.10). It is m-times contin-
uously differentiable in x.

Lemma 3.4. There is a positive constant C independent of the partitions 0
such that

(3.17) E[|D*Yx)—D*Yy)|?I<Ct|x—y]|?", Vx, yER?,
(3.18) E[|D*Yi(x)|?']1<Ct, VxeR?
hold for any k with 1= |k|=m and p’<[2, p/(m+1)2].

Proof. We prove (3.17) only. We fix indices %,/ and write D*Y¥4x)=
Z%x). It is a discrete martingale with parameter 0. Let [Z%x)—Z%y)]; be the
quadratic variation of Z{(x)—Zi(y), i.e.,

[220)=2°(]i=, 3 | DMy 11, (¥) = D* M 1y ()1

Then, similarly as in the proof of Lemma 3.3 we have
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[ZX(x)—Z°(n]E'"*= %—2"" M 3 ID*ME, ()= DML (D)

tiy1St

+, 3 [Z20)=Z2(9)E "2 D My, 1004(%)

i+18¢
_DkM%i,li.‘.l(y)lz} .

Taking the expectations,

(3.19) E[[Z‘;(X)—Zs(y)]f'”]é%’w’"”“{E[ S ID*Miy i ()= D M ey, (D)IP]

ti+1s

+, 3 E[LZ°(x)—Z°(y)) 2 1EL D M, b ()= DF ML, e ()P}

i+15¢t

Note that derivatives of b* are all bounded up to 2. Then, we get

gl

making use of (§™,11,). This and (3.6) imply that

[ D04 k) = DHB o oM dr | | SCultisa—t =517

E[ID*M}, ¢y (x)=D*Mt 1, (P ISColtii—t) | x—y 7"
Then (3.19) is written by
E[LZx)— 20 "1 <Cat | x—y |7 +Col x—y ||| ELLZ%0)—Z2) )2 1dr
Then Burkholder’s inequality implies
EL1 24— ZA0)| P 1SCit | x =317 +Cil x—3 ||| ELI 28— Zi»)|» 1dr .
This proves (3.17) as in the proof of Lemma 3.3.

Proof of Theorem 3.2. Let d, be a sequence of partitions of [0, T] such
that |8,|—0. We first show that for each x D*Y{»(x) converges in L*sense as
n—oo, Consider the bracket process of D*Yér(x)—D*Y?» (x). It holds

(DMY I (x) = DAY Pm ()= | DEDY A s 00,1 (), Gy 9)

_ZAii(Ea,,(r). r(x)y 55,,, (r),r(y))'*‘A”(Eﬁn, (r),r(x); 55,‘. (r).r(y)} |y=zdr

which converges to 0 a.s. Since {|D*&;,m.-(x)|?', n€N} is uniformly integra-
ble for each x, £’(1=<|k’| <|k|) and p'<p by (6™, 1), the expectation of the above
converges to 0 as n, n’—oo. Therefore for each k, t and x, D*Y?»(x) converges
toan L’random variable Y4(x). It is a right continuous L*martingale for each
b and x. Let |6,] tend to 0 in (3.17) and (3.18). Then we obtain by Doob’s
inequality for LP?-martingales and by Fatou’s lemma,

ELsup |Vx)—Yiy) |7 I=Ctlx—y|7,
Esup [Vix)|71=C1.
ossst

Therefore, by Kolmogorov’s criterion (Lemma 1.1), we see that }7": is a C-valued
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Lévy process.
We show that Y, is a C™-valued process and satisfies D"Y,=17£. Consider
first the case where £=(0, ---, 1, 0, ---, 0) (1 is at /-th component). It holds

—;— {Yi(x+ye)—Yi(x)} =S:3¢Y‘3(x+vyei)dv .

Let |d] tend to 0. Then we get for each {, x and y,
— Viatye—Y o) = Pllatoyeddy  as. P.

However, each of the above is a right continuous C-valued function. Hence the
above holds for all ¢, x and y. Then, the derivative 9;Y,(x) exists and equals
Y¥x) for all ¢, x a.s. Repeating this argument inductively, we see that Y ,(x)
is a right continuous C™-valued process and satisfies D*Y ,(x)=Y*x) for any Fk
with |k|<m. Therefore, both Y, x) and X,(x)=Y.,x)+b(x)t are C™-valued
Lévy processes satisfying (1.24) and (1.25) for any k with |2|<m and p’'€[2,
p/(m+1)*]. The assertion of the thoerem follows from Theorem 1.3.

Proof of Theorem 3.3. The first assertion of the theorem is immediate from
Lemma 3.3 (i). For the proof of the second statement, we proceed as follows.
Since the infinitesimal generator X, is a C-valued Brownian motion, the pair
(A, b) defined by (3.1) and (3.2) is the characteristics of X,. It satisfies (C™, 1)
and (C™ 1) because of our assumption (§™, 1) and (§™,1I). Therefore X, is a
C™-valued Brownian motion.
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