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Stable homotopy groups of spheres and higher
singularities

By

Yoshifumi Ando

Abstract

We will construct an isomorphism of the group of all cobordism
classes of fold-maps of degree 0 of n-dimensional closed oriented mani-
folds to the n-sphere to the n-th stable homotopy group πs

n of spheres.
As an application we will show that elements of πs

n are detected by higher
singularities of certain maps in dimensions n < 8.

1. Introduction

Let N and P be smooth (C∞) manifolds of dimension n. Let k � n (k
maybe ∞). Let Jk(N, P ) denote the k-jet bundle of manifolds N and P with
projection πk

N × πk
P onto N × P , whose canonical fiber is the space Jk(n, n) of

all k-jets of map germs (Rn, 0) → (Rn, 0). Here, πk
N and πk

P map a k-jet to its
source and target respectively. Let I = (i1, i2, . . . , ir) be a Thom-Boardman
symbol (simply symbol) where i1, i2, . . . , ir are a finite number of integers with
i1 ≥ i2 ≥ · · · ≥ ir ≥ 0. In [11] there have been defined what is called the
Boardman manifold ΣI(N, P ) in Jk(N, P ). A smooth map germ f : (N, x) →
(P, y) has x as a singularity of the symbol I if and only if jk

xf ∈ ΣI(N, P ). Let
ΩI(N, P ) denote the open subset of Jk(N, P ) which consists of all Boardman
manifolds ΣI′

(N, P ) with symbols I ′ of length r and I ′ ≤ I in the lexicographic
order. It is known that ΩI(N, P ) is an open subbundle of Jk(N, P ) over N ×P ,
whose canonical fiber in Jk(n, n) is denoted by ΩI(n, n). A smooth map f :
N → P is called an ΩI -regular map if and only if jkf(N) ⊂ ΩI(N, P ). When
I = (1, 0), an Ω(1,0)-regular map is called a fold-map.

Let I be a Thom-Boardman symbol with I ≥ (1, 0), namely either i1 > 1
or i1 = 1 and i2 ≥ 0.

Let P be a closed connected oriented smooth manifold of dimension n.
We define the notion of oriented ΩI -cobordism classes of fold-maps. Let fi :
Ni → P (i = 0, 1) be two fold-maps of degree d, where Ni are closed oriented
smooth n-dimensional manifolds. We say that they are oriented ΩI-cobordant
when there exists an ΩI -regular map, say ΩI -cobordism E : (W, ∂W ) → (P ×
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[0, 1], P × 0 ∪ P × 1) of degree d such that, for a sufficiently small positive
number ε,

(i) W is an oriented smooth manifold of dimension n + 1 with ∂W =
N0 ∪ (−N1) and the collar of ∂W is identified with N0 × [0, ε]∪N1 × [1− ε, 1],

(ii) E|N0 × [0, ε] = f0 × id[0,ε] and E|N1 × [1 − ε, 1] = f1 × id[1−ε,1].
Let ΩI

fold(P ) (resp. ΩI
fold,d(P )) denote the set of all oriented ΩI -cobordism

classes of fold-maps to P (resp. of degree d). When I = (1, 0), we simply write
Ωfold(P ) and Ωfold,d(P ) for ΩI

fold(P ) and ΩI
fold,d(P ) respectively. We provide

Ωfold(P ) and Ωfold,0(P ) the structures of modules in the usual way.
Let Fk (resp. F d

k ) denote the space of all base point preserving maps (resp.
of degree d) of Sk−1 with compact-open topology. The suspension induces
the inclusions Fk → Fk+1 and F d

k → F d
k+1. Let F and F d denote the space

limk→∞ Fk and limk→∞ F d
k respectively. Then we have the following theorem.

Theorem 1.1. Let n ≥ 2 and P be a closed connected oriented n-
dimensional manifold. Then there exists the isomorphism ω : Ωfold(P ) →
[P, F ], which induces the bijection ωd : Ωfold,d(P ) → [P, F d].

We have proved that ω is an epimorphism in [7, Corollary 2], while ω
turns out to be an isomorphism. This fact has also been proved in [10] from
a different point of view. Therefore, F d is the classifying space of the cobor-
dism set Ωfold,d(P ). We will first construct the isomorphism of Ωfold(P ) to
πn+k(T (νk

P )), where T (νk
P ) is the Thom space of the stable k-dimensional nor-

mal bundle νk
P of P by using the results in [6]. By using S-dual spaces and

duality maps in the suspension category in [24] and [28], we can prove that
πn+k(T (νk

P )) is isomorphic to the set of homotopy classes [P, F ] even if we take
the degree d into consideration.

Let πs
n = limk→∞ πn+k(Sk) denote the n-th stable homotopy group of

spheres. It follows from [2] that [Sn, F 0] is canonically isomorphic to πs
n. So

identifying [Sn, F 0] with πs
n, we have the following corollary.

Corollary 1.1. The map ω0 : Ωfold,0(Sn) → πs
n is an isomorphism for

n ≥ 1.

For two symbols I and J of any lengths, we write I ≤ J when ΩI(m, m) ⊂
ΩJ (m, m) for any number m and write I < J when I ≤ J and ΩI(m, m) �

ΩJ (m, m) for some number m in this paper. Let jI : Ωfold,0(Sn) → ΩI
fold,0(S

n)
denote the homomorphism which maps an Ω(1,0)-cobordism class [f ] to the
ΩI -cobordism class of f : N → Sn. If jI([f ]) = 0, then there exists an ΩI -
cobordism Ef : (V, N) → (Sn × I, Sn × 0) with ∂V = N and Ef |N = f . We
call Ef an extension of f . Let I(f) denote the smallest symbol I such that
jI([f ]) is a null element. It is obvious that I(f) depends only on the cobordism
class [f ] in Ωfold,0(Sn). We denote a generic ΩI(f)-regular extension Ef by
EI(f) in this paper. In dimensions n < 8 we will calculate I(f) and show that if
V is parallelizable in addition, then the singularities of certain type with symbol
I(f) of an extension EI(f) detect the stable homotopy class ω0([f ]) ∈ πs

n.
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Let us explain the result. Recall that πs
1 ≈ πs

2 ≈ Z/(2), πs
3 ≈ Z/(24),

πs
6 ≈ Z/(2), πs

7 ≈ Z/(240) and πs
n ≈ {0} for n = 4, 5. In the dimension

n = 7, we have to review an elaborate work in [15] to state the result. Let
IV4 = (x2 + y2, x4) and (x2 + y3, xy2) stand for the orbit of the k-jets of the
C∞-stable germs (R8, 0) → (R8, 0) of the symbols (2, 0) and (2, 1, 0), which are
characterized by the local algebras R[[x, y]]/(x2 + y2, x4) and R[[x, y]]/(x2 +
y3, xy2), by the group action of Diff(R8, 0)×Diff(R8, 0) respectively. These
classes of the singularities have been defined in [22]. It has been proved in [15,
Theorem 2.7] that there have been defined the cycle

〈
(x2 + y3, xy2) − 2IV4

〉
under the integer coefficients of the Vassilyev complex and the integer Thom
polynomial of

〈
(x2 + y3, xy2) − 2IV4

〉
. We apply this result to a fold-map f :

N → Sn of degree 0 and an extension EI(f), and denote the algebraic numbers
of the singular points of types (x2 + y3, xy2) and IV4 of EI(f) by A and B
respectively. Then it will turn out that A − 2B is divisible by 6 · 9 = 54.

Theorem 1.2. Let [f ] ∈ Ωfold,0(Sn) and EI(f) be an extension of fas
above. Suppose that ω0([f ]) 
= 0 in πs

n. Then we have the following.
If n = 1, then EI(f) must have the odd number of singularities of the

symbol (1, 1, 0).
If n = 2, then EI(f) must have the 1-dimensional singularities of the symbol

(1, 1, 0).
If n = 3, then we identify ω0([f ]) ∈ πs

3 ≈ Z/(24) with the corresponding
number modulo 24. Then the algebraic number of singular points of the symbol
(2, 0) of EI(f) is equal to 2ω0([f ]) modulo 48.

If n = 6, then EI(f) must have the 3-dimensional singularities of the symbol
(2, 0).

If n = 7, then we have that I(f) = (2, 0) or (2, 1, 0). If we take V to be
parallelizable and denote the algebraic numbers of the singular points of types
(x2+y3, xy2) and IV4 of EI(f) by A and B respectively, then A−2B is divisible
by 6 · 9 = 54 and the integer (A− 2B)/54 modulo 240 corresponds to the stable
homotopy class ω0([f ]) ∈ πs

7 ≈ Z/(240).

In general it will be a hard problem to detect a non-zero element ω0([f ]) ∈
πs

n by higher singularities of EI(f) in dimensions n ≥ 8. This range lies outside
the Mather’s nice range in [22] and there are many difficulties for the study of
singularities such as integer Thom polynomials.

In Section 2 we will explain notations used in this paper. In Section 3
we will review the results which are necessary for the definition of ωd and
will prove Theorem 1.1. In Section 4 we will prove that an Ω1-regular map
is homotopic relative to a fold-map to Ω(1,1,0)-regular map. In Section 5 we
will study the obstructions for finding simpler extensions Ef of fold-maps f
in order to determine I(f). In Section 6 we will construct a special fold-map
f such that ω0([f ]) generates πs

6 and an extension Ef to determine I(f). In
Section 7 we will prove Theorem 1.2.



150 Yoshifumi Ando

2. Preliminaries

Throughout the paper all manifolds are smooth of class C∞. Maps are
continuous, but may be smooth (of class C∞) if necessary. Given a fiber bundle
πG : G → X and a subset C in X, we denote π−1(C) by G|C . Let πH : H → Y
be another fiber bundle. A map b̃ : G → H is called a fiber map over a map
b : X → Y if πH ◦ b̃ = b ◦ πG holds. The restriction b̃|(G|C) : G|C → H (or
H|b(C)) is denoted by b̃|C . In particular, for a point x ∈ X, G|x and b̃|x are
simply denoted by Gx and b̃x : Gx → Hb(x) respectively. The trivial bundle
X × Rk is denoted by εk

X .
Let G → X and H → Y be n-dimensional vector bundles. Define the

vector bundle Jk(G, H) over X × Y by

(2.1) Jk(G, H) =
k⊕

i=1

Hom(Si(π∗
X(G)), π∗

Y (H))

with the canonical projections πk
X : Jk(G, H) → X and πk

Y : Jk(G, H) → Y .
Here, Si(G) is the vector bundle ∪x∈XSi(Gx) over X, where Si(Gx) denotes
the i-fold symmetric product of Gx. The fiber

⊕k
i=1 Hom(Si(Rn), Rn) is canon-

ically identified with Jk(n, n). The origin of Rn is simply denoted by 0. Let
GL+(n), O(n) and SO(n) denote the group of orientation preserving linear
isomorphisms of Rn, the orthogonal group and the rotation group of degree n
respectively. Let Lk(n) denote the group of all k-jets of local diffeomorphisms
of (Rn, 0). Let hi : (Rn, 0) → (Rn, 0) (i = 1, 2) be local diffeomorphisms.
We define the action of Lk(n) × Lk(n) on Jk(n, n) by (jk

0h1, j
k
0h2) · jk

0 f =
jk
0 (h1 ◦ f ◦ h−1

2 ). In particular, O(n)×O(n) acts on Jk(n, n). Then ΩI(n, n) is
an open subset of Jk(n, n) which is invariant with respect to the action of Lk(n)
× Lk(n) ([12]). Let ΩI(G, H) be an open subbundle of Jk(G, H) associated to
ΩI(n, n).

If we provide N and P with Riemannian metrics, then the Levi-Civita
connections induce the exponential maps expN,x : TxN → N and expP,y :
TyP → P . In dealing with the exponential maps we always consider the convex
neighborhoods ([20]). We define the smooth bundle map

(2.2) Jk(N, P )→Jk(TN, TP ) over N × P

by sending z = jk
xf ∈ (πk

N ×πk
P )−1(x, y) to the k-jet of (expP,y)−1◦f ◦expN,x at

0 ∈ TxN , which is regarded as an element of Jk(TxN, TyP )(= Jk
x,y(TN, TP ))

(see [20, Proposition 8.1] for the smoothness of exponential maps). More
strictly, (2.2) gives a smooth equivalence of the fiber bundles under the struc-
ture group Lk(n)×Lk(n). Namely, it gives a smooth reduction of the structure
group Lk(n)×Lk(n) of Jk(N, P ) to O(n)×O(n), which is the structure group
of Jk(TN, TP ). Let us recall Boardman submanifolds ΣI(N, P ) in Jk(N, P )
and ΣI(n, n) in Jk(n, n) (see [11] and [21]). Let ΣI(TN, TP ) and ΩI(TN, TP )
denote the subbundles Jk(TN, TP ) associated to ΣI(n, n) and ΩI(n, n), which
are identified with ΣI(N, P ) and ΩI(N, P ) under (2.2).
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3. ωd is bijective

We first review the results of [5], [6] and [7] necessary for the definition of
the map ωd : Ωfold,d(P ) → [P, F d]. Let (O1, O2) be an element of SO(n) ×
SO(n) and M be an element of SO(n+1). Then define the actions of SO(n)×
SO(n) on SO(n + 1) and on J2(n, n) by

(O1, O2) · M = (O1+̇(1))M(tO2+̇(1)),

(O1, O2) · j2
0f = j2

0(O1 ◦ f ◦ tO2),

where O1 and O2 are identified with the corresponding linear maps of Rn and
+̇ denotes the direct sum of matrices. Then we have the following theorem ([5,
Theorem (ii)] and [6, Proposition 2.4]).

Theorem 3.1 ([5], [6]). There exists a topological embedding in :SO(n+
1) → Ω(1,0)(n, n) such that in is equivariant with respect to the above actions
and that the image of in is a deformation retract of Ω(1,0)(n, n).

Let N and P be oriented manifolds of dimension n. If we choose an or-
thonormal basis of Rn, then there are canonical inclusions of GL+(n) into
L2(n) and of SO(n) into GL+(n). Providing N and P with Riemannian
metrics, we reduce the structure group L2(n) × L2(n) of the fibre bundle
Ω(1,0)(N, P ) over N × P to SO(n) × SO(n). Let GL+

n+1(TN ⊕ ε1
N , TP ⊕ ε1

P )
and SOn+1(TN ⊕ ε1

N , TP ⊕ ε1
P ) be the subbundle of Hom(TN ⊕ ε1

N , TP ⊕ ε1
P )

associated with GL+(n + 1) and SO(n + 1) respectively. Then we have the
inclusion iSOn+1 : SOn+1(TN ⊕ ε1

N , TP ⊕ ε1
P ) → GL+

n+1(TN ⊕ ε1
N , TP ⊕ ε1

P ),
which is a homotopy equivalence of fibre bundles covering idN×P .

Considering the fiber homotopy equivalence

(3.1) i(N, P ) : SOn+1(TN ⊕ ε1
N , TP ⊕ ε1

P ) −→ Ω(1,0)(N, P )

associated with in and its homotopy inverse (i(N, P ))−1 : Ω(1,0)(N, P ) →
SOn+1(TN ⊕ ε1

N , TP ⊕ ε1
P ), we obtain the fiber homotopy equivalence

(3.2)
iSOn+1 ◦ (i(N, P ))−1 : Ω(1,0)(N, P ) −→ SOn+1(TN ⊕ ε1

N , TP ⊕ ε1
P )

−→ GL+
n+1(TN ⊕ ε1

N , TP ⊕ ε1
P ).

It has been shown in [6, Proposition 3.1] that the homotopy class of the fi-
bre map iSOn+1 ◦ (i(N, n))−1 over idN×P does not depend on the choice of
Riemannian metrics of N and P .

The set of all continuous sections of GL+
n+1(TN ⊕ ε1

N , TP ⊕ ε1
P ) over N

corresponds bijectively to the set of all orientation preserving bundle maps of
TN ⊕ ε1

N to TP ⊕ ε1
P . Thus we have the following theorem.

Theorem 3.2 ([6, Corollary 2]). Given a fold-map f : N → P , the
section j2f determines the homotopy class of the section iSOn+1 ◦ (i(N, P ))−1 ◦
j2f of GL+

n+1(TN ⊕ε1
N , TP ⊕ε1

P ). It induces a bundle map T (f) : TN ⊕ε1
N →

TP ⊕ ε1
P determined up to homotopy (this is denoted by f̄ in [6]).
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Let N and P be embedded in Rn+k with the stable normal bundles νN

and νP respectively. Then we have the trivializations tN : τN ⊕ νN → ε2k
N and

tP : τP ⊕ νP → ε2k
P respectively. Let τ (f) denote the bundle map T (f) ⊕ (f ×

idRk−n−1). Then we have the following proposition.

Proposition 3.1 ([6, Proposition 3.2]). Let k � n. Let N and P be
oriented manifolds of dimension n embedded in Rn+k with the above trivial-
izations tN and tP respectively. Then a fold-map f : N → P determines the
homotopy class of a bundle map ν(f) : νN → νP over f such that tP ◦ (τ (f)⊕
ν(f)) ◦ t−1

N is homotopic to f × idR2k .

According to [28], let {X, Y } denote the set of S-homotopy classes of S-
maps Si ∧ X → Si ∧ Y (i ≥ 0). Let us define the bijection cF : {SkP 0, Sk} →
[P, F ] for k � n. Let {β} ∈ {SkP 0, Sk} be represented by β : SkP 0 → Sk.
For a point x ∈ P we define β(x) : Sk = S0 ∧ Sk → Sk by (β|{∗P ∪ x} ∧ Sk) ◦
(ιx ∧ idSk), where ιx : S0 → {∗P ∪ x} is the canonical identification. Then we
set cF ({β})(x) = {β(x)}. Let {SkP 0, Sk}d be the subset of {SkP 0, Sk} which
consists of all {β} such that β(x) is of degree d, namely cF ({β})(x) ∈ F d

for any x ∈ P . It is not difficult to see that cF induces the bijection cF d :
{SkP 0, Sk}d → [P, F d].

An element of {Sn+k, T (νk
P )} represented by a map α : Si ∧ Sn+k →

Si ∧ T (νk
P ) is written as {α}. Since k � n, {Sn+k, T (νk

P )} is isomorphic to
πn+k

(
T (νk

P )
)
. It has been proved in [24, Lemma 2] that T (νk

P ) is the S-dual
space of P 0 = P ∪ ∗P , where ∗P is the base point. Namely, we have the
isomorphism D : {Sn+k, T (νk

P )} → {SkP 0, Sk}. Let {Sn+k, T (νk
P )}d denote

the subset of {Sn+k, T (νk
P )} which consists of all S-maps of degree d. It has

been proved in [7, Lemma 2.4] that D induces the bijection {Sn+k, T (νk
P )}d →

{SkP 0, Sk}d.
Now we are ready to define the map ωd : Ωfold,d(P ) → [P, F d]. Let αN :

Sn+k → T (νN ) denote the Pontrjagin-Thom construction for an embedding
N → Rn+k. Given a fold-map f : N → P of degree d, there is a bundle map
τ (f) : τN → τP and a bundle map ν(f) : νN → νP determined up to homotopy
by Theorem 3.2 and Proposition 3.1 respectively. Let T (ν(f)) : T (νN ) → T (νP )
be the Thom map associated with ν(f). Then we set ωd(f) = cF d(D({T (ν(f))◦
αN})). Since T (ν(f)) is of degree d, D({T (ν(f)) ◦ αN}) is of degree d. It has
been proved in [7, Lemma 3.4] that ωd(f) = cF d(D({T (ν(f)) ◦ αN})) does not
depend on the choice of embeddings of N and P to Rn+k and does not depend
on the choice of a representative f of the Ω(1,0)-cobordism class [f ] ∈ Ωfold,d(P ).

The author has missed in [7] the fact that ωd is injective. Here we give its
proof.

Proof of Theorem 1.1. We have proved in [7, Theoem1] that ωd is surjec-
tive. The rest is to prove that ωd is injective. Take two fold-maps fi : Ni → P
(i = 0, 1) of degree d such that ωd([f0]) = ωd([f1]). Recall that ωd([fi]) =
cF d(D{T (ν(fi)) ◦ αNi

}). Since cF d and D are bijections, it follows that there
is a homotopy H : Sn+k × [0, 1] → T (νP ) × [0, 1] satisfying the following prop-
erties. Set I(0, ε) = [0, ε] and I(1, ε) = [1 − ε, 1] for a sufficiently small ε > 0.
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Set P [0,1] = P × [0, 1]. Then we have, for i = 0, 1,
(i) H(x, t) = (T (ν(fi)) ◦ αNi

(x), t) for x ∈ Sn+k and t ∈ I(i, ε),
(ii) H is smooth around H−1(P [0,1]) and is transverse to P [0,1].

We set W = H−1(P [0,1]), where the zero-section of νP is identified with P .
Then we have

(iii) W ∩ Sn+k × I(i, ε) = Ni × I(i, ε),
(iv) H(x, t) = (fi(x), t) for x ∈ Ni and t ∈ I(i, ε) under (iii),
(v) TW |Ni×I(i,ε) = T (Ni × I(i, ε)) = (TNi ⊕ ε1

Ni
) × I(i, ε) under (iii),

(vi) νW |Ni×I(i,ε) = νNi
× I(i, ε), where νW is the normal bundle of W in

Sn+k × [0, 1].
By (ii) we have the bundle map BνW

: νW → νP × [0, 1] covering H|W such
that

(vii) BνW
(vx, t) = (ν(fi)(vx), t) for x ∈ Ni, vx ∈ νNi

and t ∈ I(i, ε) under
(vi).

It follows from Proposition 3.1 that there exists a bundle map

BτW
: τW → τP [0,1]

covering H|W : W → P [0,1] such that tP [0,1] ◦ (BτW
⊕ BνW

) ◦ t−1
W is homotopic

to (H|W ) × idRn+2k+2 . We may assume by (iii), (iv) and (v) that
(viii) BτW

((vx, w)⊕a∂/∂t,w, t) = (T (fi)(vx, w)⊕a∂/∂t,w, t) for vx ∈ TNi,
w ∈ R, w ∈ Rk and t ∈ I(i, ε).
Let us consider

iSOn+1 ◦ i(W, P [0,1])−1 : Ω(1,0)(W, P [0,1]) →
GL+

n+2(TW ⊕ ε1
W , T (P [0,1]) ⊕ ε1

P [0,1]),
jGL : GL+

n+2(TW ⊕ ε1
W , T (P [0,1]) ⊕ ε1

P [0,1]) −→ GL+
n+2+k(τW , τP [0,1]),

where jGL is the fiber map over W ×P [0,1] associated to the inclusion GL+
n+2 →

GL+
n+2+k. We consider the obstructions for finding a bundle map

bTW : TW ⊕ ε1
W → T (P [0,1]) ⊕ ε1

P [0,1]

covering H|W such that
(ix) bTW |Ni×I(i,ε) = T (fi × idI(i,ε)) = T (fi) × idI(i,ε),
(x) jGL(bTW ) is homotopic relative to N0 × [0, ε] ∪ N1 × [1 − ε, 1] to BτW

which is regarded as a section of GL+
n+2+k(τW , τP [0,1]) over W .

Since Hi(W , N0 ∪ N1; πi(SO(n + 2 + k)/SO(n + 2))) = {0} , all of these
obstructions vanish and hence, there exists such a bundle map bTW . By the
fiber homotopy equivalence iSOn+1 ◦ i(W, P [0,1])−1, we obtain a section sW :
W → Ω(1,0)(W, P [0,1]) such that

sW |Ni × I(i, ε) = j2(fi × idI(i,ε))|Ni × I(i, ε)

and that iSOn+1 ◦ i(W, P [0,1])−1
SOn+2

◦ sW is homotopic relative to N0 × [0, ε] ∪
N1 × [1 − ε, 1] to bTW as a section over W .

By the relative homotopy principle on the existence level for fold-maps in
[7, Theorem 4.1] (see also [8, Theorem 0.5]), there exists a fold-map E : W →
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P [0,1] of degree d such that E(x, t) = (f0(x), t) for 0 ≤ t ≤ ε/2, E(x, t) =
(f1(x), t) for 1 − ε/2 ≤ t ≤ 1 under (iii) and that j2E is homotopic to sW

relative to N0 × [0, ε/2] ∪ N1 × [1 − ε/2, 1]. This implies that the fold-maps
f0 and f1 are Ω(1,0)-cobordant. This proves that ωd is injective. This proves
Theorem 1.1.

4. Ω1-regular maps

Let us briefly review the fundamental properties of Boardman manifolds
introduced in [11]. Let V and Y be smooth manifolds of dimension n + 1. Let
D and P denote the total tangent bundle defined on J∞(V, Y ) and (π∞

Y )∗(TY )
respectively. Let f : (V, x) → (Y, y) be a map defined on a neighborhood Ux of
x with coordinates (x1, . . . , xn+1) and F be a smooth function in the sense of
[11, Definition 1.4] defined on a neighborhood of z = j∞x f . We have the local
vector fields Di defined around z with the property

(4.1) DiF ◦ j∞f =
∂

∂xi
(F ◦ j∞f) (1 ≤ i ≤ n + 1),

which span D. Hence, we have that d(j∞f)(∂/∂xi)(F) = DiF(j∞f), where
d(j∞f) : TV → T (J∞(V, Y )) around x. This implies d(j∞f)(∂/∂xi) = Di.
Hence, we have D ∼= (π∞

V )∗(TV ). There have been defined the homomorphism
d1 : D → P over J∞(V, Y ) such that d1,z(Di) = (z, dxf(∂/∂xi)). The sub-
manifold Σ1(V, Y ) is defined to be the subset of J∞(V, Y ) which consists of all
jets z such that the kernel rank of d1,z is 1. The open subbundle Ω1(V, Y ) of
J∞(V, Y ) consists of all regular jets and Σ1(V, Y ). Since d1|Σ1(V,Y ) is of con-
stant rank n, we set K1 =Ker(d1) and P1 =Cok(d1), which are vector bundles

over Σ1(V, Y ). Let 1r denote (

r︷ ︸︸ ︷
1, . . . , 1) in this paper. The Boardman manifold

Σ1r (V, Y ) (r ≥ 1) has the following properties.
(4-i) There exists the (r + 1)-th intrinsic derivative

dr+1 : T (Σ1r−1(V, Y ))|Σ1r (V,Y ) −→ Hom(SrK1,P1)|Σ1r (V,Y ) −→ 0,

so that Ker(dr+1) = T (Σ1r(V, Y )). Namely, dr+1 induces the isomorphism
of the normal bundle (T (Σ1r−1(V, Y ))|Σ1r (V,Y ))/T (Σ1r(V, Y )) of Σ1r(V, Y ) in
Σ1r−1(V, Y ) onto Hom(SrK1,P1)|Σ1r (V,Y ).

(4-ii) Σ1r+1(V, Y ) is defined to be the submanifold of Σ1r(V, Y ) which
consists of all jets z such that dr+1,z|K1,z vanishes.

(4-iii) The (r + 2)-th intrinsic derivative dr+2 is defined to be the intrinsic
derivative d(dr+1|(K1|Σ1r (V,Y ))) :

T (Σ1r(V, Y ))|Σ1r+1(V,Y ) → Hom(Sr+1K1,P1)|Σ1r+1(V,Y ).

(4-iv) The submanifold Σ1r (V, Y ) is actually defined so that it coincides
with the inverse image of a submanifold Σ̃1r(V, Y ) in Jr(V, Y ) by π∞

r . The
codimension of Σ1r(V, Y ) in J∞(V, Y ) is r.
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In the proof of the following theorem the homotopy principle on the exis-
tence level in [4] and [9] plays an important role. This homotopy principle has
been proved by using [13], [14] and [16].

Theorem 4.1. Let V be an oriented (n + 1)-manifold with ∂V , which
may be empty, Y be an oriented (n+1)-manifold and let C be a closed subset of
V . Let s be a section of Ω1(V, Y ) over V which has a fold-map g defined on a
neighborhood of C into Y , where j∞g = s. Then there exists an Ω(1,1,0)-regular
map E : V → Y and a homotopy sλ of sections of Ω1(V, Y ) over V relative to
a neighborhood U(C) of C such that s0 = s and s1 = j∞E. In particular, we
have E|U(C) = g|U(C).

Proof. In the proof we use the notation introduced in [11]. By (2.2) we
always identify Jr(V, Y ) with Jr(TV, TY ). We may assume that s is transverse
to Σ1r(V, Y ) and we set S1r(s) = s−1(Σ1r(V, Y )). It follows that (π∞

r ◦ s)(V \
(S1r(s))) ⊂ Ω1r−1,0(V \ S1r(s), Y ).

Let us construct a section s of Ω(1,1,0)(V, Y ) such that π∞
2 ◦ s = π∞

2 ◦ s.
We set (s|S1(s))∗K1 = K1 and (s|S1(s))∗P1 = P1. Since V and Y are oriented
and since K1 and P1 are line bundles, we have that K1 and P1 are isomorphic.
In particular, we have the isomorphism K1|S12 (s) → P1|S12 (s). Consider the
homomorphism

r3 : Hom(S3(TV ), TY )|S12 (s) −→ Hom(S3K1, P1)|S12 (s)

which is induced from the inclusion S3K1|S12 (s) → S3(TV )|S12 (s) and the pro-
jection TY |S12 (s) → P1|S12 (s). Since S3K1 ≈ K1, there exists the isomorphism
ι3 : S3K1|S12 (s) → P1|S12 (s), which induces the isomorphism K1|S12 (s) →
Hom(S2K1, P1)|S12 (s). Since S12(s) is a closed submanifold of V such that
S12(s) ∩ C = ∅ in V , there exists a homomorphism h3 : S3(TV )|S12 (s) →
(π∞

Y ◦ s)∗(TY )|S12 (s) such that r3◦ h3 = ι3. We extend h3 to a homomor-
phism H3 : S3(TV ) → (π∞

Y ◦ s)∗(TY ). If (π∞
Y ◦ s)TY : (π∞

Y ◦ s)∗(TY ) → TY
denote the canonical bundle map covering π∞

Y ◦ s, then we define the section
s : V → J∞(TV, TY ) to be the composite of

π∞
3 ◦ s(x) = π∞

2 ◦ s(x) ⊕ (π∞
Y ◦ s)TY ◦ H3|x

and the canonical inclusion J3(TV, TY ) → J∞(TV, TY ).
We now show that s(V ) ⊂ Ω(1,1,0)(V, Y ). In fact, it is obvious that s(V ) ⊂

Ω12(V, Y ). It remains to prove that if x ∈ S12(s), then

(4.2) d3,s(x) : K1,s(x) −→ Hom(S2K1,s(x),P1,s(x))

is an isomorphism. In other words the homomorphism S3K1,s(x) → P1,s(x)

induced from d3,s(x) is an isomorphism. For any point x ∈ S12(s), let y =
π∞

Y ◦s(x), Ux and Vy be convex neighborhoods of x and y respectively. Let t and
u be the coordinates of expV,x(K1,x) and expY,y((π∞

Y ◦s)TY (P1,y)) respectively,
where P1 is regarded as a line subbundle of (π∞

Y ◦ s)∗(TY )|S12(s) by virtue of



156 Yoshifumi Ando

the Riemannian metric of Y . It follows from (4.1), (4.2), the definition of d3

in (4-i), (2.2) and the definition of ι3 that

(©3Dt)u|s(x) = ∂3u/∂t3(x) 
= 0 for x ∈ S12(s).

Hence, we have that s(S12(s)) ⊂ Σ(1,1,0)(V, Y ).
By the homotopy principle on the existence level for Ω(1,1,0)-regular maps

in [9] there exists an Ω(1,1,0)-regular map E : V → Y such that j∞E and s are
homotopic relative to a neighborhood of C as sections of Ω1(V, Y ) over V .

5. Obstructions

In order to determine I(f) for a fold-map f and singularities of an extension
EI(f) we have to prepare some machinery, although the dimensions are low.

Let V be an (n + 1)-manifold with ∂V = N , and let τV be the stable
k-dimensional tangent bundle of V . Given a fold-map f : N → Sn of de-
gree 0, we have the bundle maps T (f) : TN ⊕ ε1

N → εn+1
Sn in Theorem 3.2

and τ (f). Let us consider the obstruction for τ (f) to be extended to the
trivialization of τV , in particular, the primary obstruction o(τV , τ (f)) defined
in Hi+1(V, N ; πi(SO(k))) for some i ([29]). Let V̂ = V ∪N CN , which is
obtained by pasting V and the cone CN of N . Let τ (V̂ , τ (f)) be the k-
dimensional vector bundle, which is obtained by pasting τV and εk

CN by using
τ (f). We have the primary obstruction o(τ (V̂ , τ (f))) ∈ Hi+1(V̂ ; πi(SO(k))) ≈
Hi+1(V, N ; πi(SO(k))) for τ (V̂ , τ (f)) to be trivial. It is not difficult to see that
o(τV , τ (f)) = o(τ (V̂ , τ (f))) under the isomorphism.

Remark 1. In this case we may take k = n+2 and consider the subbun-
dle SOn+2(τ (V̂ , τ (f)), εn+2

bV
) of Hom(τ (V̂ , τ (f)), εn+2

bV
) associated to SO(n+2).

Since iSO
n+2 : SO(n + 2) → Ω(1,0)(n + 1, n + 1) is a homotopy equivalence, we

have the fiber homotopy equivalence

SOn+2(τ (V̂ , τ (f)), εn+2
bV

) −→ Ω(1,0)(τ (V̂ , τ (f)), εn+2
bV

).

Therefore, o(τ (V̂ , τ (f))) coincides with the obstruction to find a section of
Ω(1,0)(τ (V̂ , τ (f)), εn+2

bV
), which is equal to the Thom polynomial of the clo-

sure Cl(Σ(1,1)(τ (V̂ , τ (f)), εn+2
bV

)) in H2(V̂ ; π1(SO(n+ 2)) (see, for example, [3,
Proposition 3.1]). This Thom polynomial is equal to the second Stiefel-Whitney
class w2(τ (V̂ , τ (f))) by [25].

If n + 1 = 4m and ω0([f ]) lies in what is called the J-image of

J : π4m−1(SO(k)) −→ πs
4m−1

of order jm in [1], then we can choose an fold-map f such that N = Sn by [7,
Proposition 5.1]. This is also true for the case n = 1. Furthermore, we can take
V to be a parallelizable manifold. Hence, o(τ (V̂ , τ (f))) lies in the (n + 1)-th
cohomology group.
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We have the following lemma due to [23, Lemma 2]. Let am denote 2 for
m odd and 1 for m even.

Lemma 5.1 ([23]). Let n+1 = 4m. Let V be a parallelizable manifold.
Then o(τ (V̂ , τ (f))) is related to the m-th Pontrjagin class Pm(τ (V̂ , τ (f))) by
the identity Pm(τ (V̂ , τ (f))) = ±am(2m − 1)!o(τ (V̂ , τ (f))).

We next see how o(τV , τ (f)) varies depending on the choice of V and
f (the following argument is available for the case n = 1). Let two fold-
maps fi : Sn → Sn of degree 0 (i = 0, 1) be Ω(1,0)-cobordant by a cobordism
E : (W, ∂W ) → (Sn × [0, 1], Sn × 0 ∪ Sn × 1) of degree 0 as in Introduction.
Assume that there exists a parallelizable (n+1)-manifold Vi with ∂Vi = Sn× i.
Then we have the bundle maps T (fi) : T (Sn × i) ⊕ ε1

Sn×i → εn+1
Sn and T (E) :

TW ⊕ε1
W → εn+2

Sn×[0,1] by Theorem 3.2 such that TW |Sn×i = T (Sn × i)⊕ε1
Sn×i

and the stabilizations of T (E)|Ni
and T (fi) are equal. Consider the almost

parallelizable manifold Ŵ = V0 ∪Sn×0 W ∪Sn×1 (−V1), which is obtained by
pasting V0, W and V1 with orientation reversed. Let

o(τ (Ŵ )) ∈ Hn+1(Ŵ ; πn(SO(k))) ≈ πn(SO(k))

be the unique primary obstruction for τ (Ŵ ) to be trivial. This is equal to the
primary obstruction for extending τ (E) : τ (Ŵ )|W → εk

W to a bundle map to
εk

cW
over the whole space Ŵ . Therefore, it is not difficult to see that

o(τV0 , τ (f0)) − o(τV1 , τ (f1)) = ±o(τ (Ŵ )) in πn(SO(k)).

Define the integer m(n) for n > 1 to be the minimal nonnegative number such
that there exists an (n + 1)-dimensional almost parallelizable closed manifold
Ŵ ′ such that o(τ (Ŵ ′)) = m(n). We will see that it is reasonable to set m(1) = 2
later. We have the following theorem due to [23, Theorems 1 and 2].

Theorem 5.1 ([23]). Let n + 1 = 4m. Then we have
(i) The Pontrjagin class Pm(Ŵ ′) of an almost parallelizable closed mani-

fold Ŵ ′ is divisible by ±jmam(2m − 1)!.
(ii) There exists an almost parallelizable closed manifold Ŵ0 such that

Pm(Ŵ0) = ±jmam(2m − 1)!.

Consequently, we have m(n) = jm.

Lemma 5.2. Let n + 1 = 4m. Let f : N → Sn be a fold-map of degree
0 and EI(f) : V → Sn be an extension. If V is parallelizable, then o(V̂ , τ (f1))
is well-defined in Z/(jm).

In the rest of the paper we are only concerned with the case n < 8. By
the definition of τ (V̂ , τ (f)) in the case ∂V = Sn, τ (f) yields the section of
Ω(1,0)(τ (V̂ , τ (f)), εn+2

bV
)|CSn , which we denote by sτ(f), for k = n + 2.
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Lemma 5.3. Let n < 8. Let f : N → Sn be a fold-map and Ef : V →
Sn × [0, 1] be an extension. Then we have the following.

(i) If P1(τ (V̂ , τ (f)) does not vanish, then any extension Ef has the sin-
gularities of codimension 4 and of symbol (2).

(ii) Let V be parallelizable in addition and P1(τ (V̂ , τ (f)) vanish. Then
sτ(f) is extendable to a section of Ω(1,0)(τ (V̂ , τ (f)), εn+2

bV
) over V̂ if and only if

P2(τ (V̂ , τ (f)) vanishes.

Proof. (i) follows from the fact that P1(τ (V̂ , τ (f)) is the integer Thom
polynomial of the topological closure of Σ2(τ (V̂ , τ (f)), εn+2

bV
) ([26]).

(ii) is clear.

6. πs
6

Let us recall a map Sk+6 → Sk which generates πs
6. Let H : S7 → S4

denote the Hopf map and νk : Sk+3 → Sk denote the (k − 4)-fold suspension
of H. Then the composite νk ◦ νk+3 generates πs

6 ([30, Proposition 5.11]).
Since (νk)−1(a point) is diffeomorphic to S3, the inverse image of a regular
value of νk ◦ νk+3 is diffeomorphic to S3 × S3. Therefore, it follows from
Corollary 1.2 that there exists a fold-map f : S3 × S3 → S6 of degree 0
such that ω0([f ]) is the non-zero element of πs

6. Let us construct a precise
example of f such that I(f) = (2, 0). Let Q denote the field of quarternion
numbers which is canonically identified with R4. The product of elements x,
y ∈ Q is denoted by x · y. Let S denote the set of x ∈ Q which is denoted
by x = x1e0 + x2e1 + x3e2 + x4e3 (= (x1, x2, x3, x4)) with ||x|| = 1. Let
tTS : TS → Te1R3 = R3 denote the trivialization given by tTS(x,v) = x−1 · v,
where x ∈ S, v ∈ TxS is identified with a vector in R4 and R3 is spanned by ei

for i = 2, 3, 4. Let iS : S → R4×R3 = R7 denote the composite of the inclusions
S → R4 = R4 × 0 and R4 × 0 → R7. Let nS denote the normal bundle of iS(S).
Let tnS

: nS → R4 denote the trivialization defined by

tnS
(x, tx + a5e5 + a6e6 + a7e7) = te1 + a5e5 + a6e6 + a7e7,

where R4 is spanned by ei for i = 1, 5, 6, 7. They yields the trivialization

tS = tTS ⊕ tnS
: TS ⊕ nS −→ R7.

Let τS and νS denote the stable tangent and normal bundles of TS and nS

without specifying the dimensions respectively. The trivialization of τ S ⊕ νS

induced from tS is also denoted by the same letter tS. Let β : S3 → SO(4)
denote the map defined by β(x)v = x · v where x ∈ S, v ∈ R4. It is known
that the composite of β and SO(4) → SO(k), k � 4 generates π3(SO(k)) ≈ Z.
This composite is also denoted by the same letter β. Let βk : S × Rk → Rk

be the bundle map defined by βk(x,v1 ⊕ v2) = x · v1 ⊕ v2 for x ∈ S, v1 ∈ R4

and v2 ∈ Rk−4. Let βτ
k : TS × R × Rk−4 → Rk be the bundle map defined by

βτ
k (x,w1, w2,w3) = (x−1 · (w2 ⊕ (x−1 · w1)),w3) for x ∈ S, w1 ∈ TxS, w2 ∈ R
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and w3 ∈ Rk−4. Then we can prove by an analogous argument in the proof
of [6, Proposition 3.3] that βτ

� ⊕ βk is homotopic to tS for sufficiently large
numbers � and k.

It follows from Theorem 3.2 that there exists a fold-map fS : S → R3 such
that τ (fS) is homotopic to βτ

� for some large number �. Let βτ
4 : TS×R → TR4

be the bundle map defined by βτ
4 (x,w) = (x, βτ

4 (w)). By the Smale-Hirsch
Immersion Theorem ([17] and [27]) there exists an immersion jS : S → R4 such
that d(jS) and βτ

4 |TS are homotopic as monomorphisms. Let us try to express
d(fS)x : TxS ≈ Te1S → TfS(x)R

3 ≈ R3 by a 3 × 3 matrix and d(jS)x : TxS ≈
Te1S → TfS(x)R

4 ≈ R4 by a 4 × 3 matrix under the trivialization tS. Then we
may choose fS and jS to satisfy the following property (P).

(P) d(fS)x is equal to 2E3 and d(jS)x is equal to the 4×3 matrix 2(δ1+i,j)
for 0 ≤ i ≤ 3, where E3 is the unit-matrix of degree 3, δ1+i,j = 1 for i = j
and δ1+i,j = 0 for i 
= j if x lies in a very small disk neighborhood D(e1) of
e1 in S.

In fact, we first deform jS and fS so that jS(e1) = e1, fS(e1) = 0 ∈ R3,
d(jS)e1 = 2(δ1+i,j) and d(fS)e1 = 2E3. By a standard argument in differential
topology we next deform jS and fS so that

jS(x1, x2, x3, x4) = (1, 2x2, 2x3, 2x4),
fS(x1, x2, x3, x4) = (2x2, 2x3, 2x4)

on a very small disk neighborhood D(e1) of e1 in S. This assures the property
(P).

Let ejS(x) denote the vector of length 1 in R4 such that
(i) ejS(x) is orthogonal to jS(S) at jS(x),
(ii) the orientation determined by (ejS(x), djS(x · e2), djS(x · e3), djS(x · e4))

coincides with the canonical orientation of R4.
Let njS

= S × R be the orthogonal normal bundle to the immersion jS. We
define the map expjS

: njS
→ R4 by

expjS
(x, t) = jS(x) + tejS(x).

Then for a sufficiently small positive real number ε and the disk bundle D2ε(njS
)

with radius 2ε, we find a small neighborhood Ox for each x ∈ S such that
expjS

|(D2ε(njS
)|Ox

) is an embedding.
Using expjS

we define a fold-map fS×S : S × S → R6 = R4 × R2 by

fS×S(x, y) = (jS(x) + εf1
S (y)ejS(x), εf

2
S (y), εf3

S (y))

where fS(y) = (f1
S
(y), f2

S
(y), f3

S
(y)). Then we have the following proposition.

Proposition 6.1. ω0([fS×S]) is the generator of πs
6.

Let us prepare the following lemma for the proof of the proposition. There
exists the trivialization of T (S × S) which is induced from tS. Let

βτ
S×S : T (S × S) × Rk−6 = S × S × Rk −→ Rk,

βS×S : S × S × Rk −→ Rk
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denote the bundle maps defined by

βτ
S×S(x, y)(v1,v2, v3, v4,v5) = (βτ

4 (x,v1, v3), βτ
4 (y,v2, v4),v5),

βS×S(x, y)v = β(x)β(y)v,

where x, y ∈ S, v1,v2 ∈ T (S), v3, v4 ∈ R, v5∈Rk−8 and v ∈Rk.

Lemma 6.1. Under the above trivialization of T (S×S) and the canon-
ical trivialization of TR6, τ (fS×S) is homotopic to the bundle map βτ

S×S
, and

so ν(fS×S) is homotopic to the bundle map βS×S.

Proof. We will show that τ (fS×S)|S×{e1} and τ (fS×S)|{e1}×S are homo-
topic to βτ

k : TS⊕Rk−3 → Rk under the identification S×{e1} = S = {e1}×S.
Let D(e1) be the above very small disk neighborhood of e1 in S. There exists
a deformation retraction of S × S\Int{D(e1) × D(e1)} to S × {e1} ∪ {e1} × S.
Hence, it follows from π6(SO(6)) ≈ {0} that τ (fS×S) is homotopic to βτ

S×S
.

By the property (P) the differential (dfS×S)x,y is equal to 2E3

·
+ (dfS)y for

x ∈ D(e1) and y ∈ S. Since fS is a fold-map, it follows from the definitions of
τ (fS) and τ (fS×S) that τ (fS×S)|{e1}× S are homotopic to βτ

k . Next recall that
jS : S → R4 is defined by the bundle map βτ

4 , the differential dfS×S|S × {e1} is
homotopic to βτ

4 ⊕ idR2 . This proves the lemma.

Let πnS
: nS → S be the projection and αS be the Pontrjagin-Thom con-

struction for iS. It is not difficult to see that the composite

T (β4) ◦ T (πnS
× tνS

) ◦ αS : S7 → T (nS) → T (S × R4) → S4

is homotopic to the Hopf map H.

Proof of Proposition 6.1. Consider the embedding iS × iS : S× S → R4 ×
R4×Rk−2 with the normal bundle νk

S×S
which consists of all points ((x, y), tx⊕

t′y ⊕ v) for x, y ∈ S, t, t′ ∈ R and v ∈ Rk−2. Let tνk
S×S

: νk
S×S

→ S × S × Rk be
the bundle map defined by tνk

S×S

((x, y), tx⊕t′y⊕v) = ((x, y), te1+t′e2+v). Let
B : S×S×Rk → Rk be the bundle map defined by B(x, y,v) = β(x)β(y)v. Let
αS×S denote the Pontrjagin-Thom construction for the embedding iS×iS. Then
it is not difficult to see by [30, Proposition 5.11] that {T (B) ◦ T (tνk

S×S

) ◦ αS×S}
and its dual map D({T (B) ◦ T (tνk

S×S

) ◦ αS×S}) are homotopic to the generator
of πs

6. If we recall the isomorphism {S6+k, Sk} ≈ {(s6)0 ∧ Sk, Sk} for k � 6
(see also [2, Proof of Lemma 1.3]), then we have

ω0([fS×S]) = cF 0(D({T (B) ◦ T (tνk
S×S

) ◦ αS×S})).

This proves the proposition.

Recall that fS has a smooth extension EfS : D4 → R4 with EfS |S = (fS, 0)
and EfS |IntD4 being contained in R3 × (0,∞) such that EfS has non-empty
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isolated singularities of type I2,2 or II2,2 of symbol (2, 0) in the terminology in
[22]. Define the smooth extension EfS×S : S × D4 → R6 × (0,∞) of fS×S by

EfS×S(x, y) = ((jS(x) + εE1
S(y)ejS(x)), εE2

S(y), εE3
S(y), εE4

S(y)),

where EfS(y) = (E1
S
(y), E2

S
(y), E3

S
(y), E4

S
(y)), where ε is a small positive real

number as before. It is obvious that EfS×S has singularities of types Ai (1 ≤
i ≤ 4) I2,2 or II2,2. This shows I(fS×S) ≤ (2, 0).

Proposition 6.2. Let [f ] ∈ Ωfold,0(S6). If ω0([f ]) 
= 0 in πs
6, then

I(f) = (2, 0).

Proof. Let f : N → S6. Since I(fS×S) ≤ (2, 0), we have I(f) ≤ (2, 0).
Suppose that I(f) < (2, 0). Then there exists an extension Ef : (V ′, N) →
(S6 × [0, 1], S6 × 0) such that Ef is an Ω1-regular cobordism. By Theorem
4.1 we may assume that Ef is an Ω(1,1,0)-regular cobordism of f and I(f) ≤
(1, 1, 0). Namely, we may assume that the singularities of Ef are of symbols
(1, 0) or (1, 1, 0). Since [f ] = [fS×S], there exists an Ω(1,0)-regular cobordism E :
(W, ∂W ) → (S6× [0, 1], S6×0∪S6×1) such that ∂W = N ∪(−S×S), E|N = f
and E|S× S = fS×S. Let GS×S : V = V ′ ∪N W → S6 × [0, 1] be an extension of
fS×S which is obtained by pasting Ef and E on N . Let S(1,1,0)(GS×S) denote the
set of singularities of symbol (1, 1, 0) of GS×S. Then GS×S|(V \S(1,1,0)(GS×S))
is a fold-map, and V \S(1,1,0)(GS×S) is stably parallelizable by Theorem 3.2.

By applying the surgery technique introduced in [19] we may assume
that V \S(1,1,0)(GS×S) is 2-connected and that the inclusion {e1} × S → S ×
S is null-homotopic as a map to V \S(1,1,0)(GS×S). The last assertion fol-
lows from the fact that we can deform this inclusion to an embedding into
Int(V \S(1,1,0)(GS×S)) and its normal bundle is trivial by π2(SO(4)) = {0}.
Therefore, we can apply the surgery to this embedding. Let τ (V̂ , τ (fS×S)) over
V̂ (resp. ξ = τ (S4, τ (fS)) over S4) be the vector bundle which is constructed
by pasting τ (V ) (resp. εk

D4) and C(S× S)×Rk (resp. εk
D4) by the bundle map

τ (fS×S) (resp. τ (fS)). Let j : S → {e1} × S ⊂ S × S be the inclusion. Then
it is extended to a map j : D4 → V \S(GS×S) ⊂ V . Since τ (fS×S)|{e1} × S

is homotopic to τ (fS) under the identification S = {e1} × S, it follows that
there exists a bundle map ξ → τ (V̂ , τ (fS×S)) covering j. This implies that
j∗(P1(τ (V̂ , τ (fS×S)))) = P1(ξ). We have proved that P1(ξ) 
= 0 in Lemma 5.3
(i), and hence P1(τ (V̂ , τ (fS×S))) 
= 0. Consequently, it follows that GS×S must
have the singularities of symbol (2). This is a contradiction. Hence, we have
I(f) = (2, 0).

As is observed, the worst singularities of EI(fS×S) are of type I2,2 or II2,2.
In the equidimension 7 we have the singularities of many types of symbol (2, 0)
other than I2,2 and II2,2 as described in [22, Section 7]. This fact suggests that
Boardman symbols are not sufficient, and in order to detect elements of πs

n in
higher dimensions we need some nice classification of higher singularities. This
view will turn out to be more evident in the case πs

7.
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7. Proof of Theorem 1.2

Recall the homomorphism jI : Ωfold,0(Sn) → ΩI
fold,0(S

n) and the symbol
I(f) for [f ] ∈ Ωfold,0(Sn) defined in Introduction. Then there exists an exten-
sion EI(f) : (V, ∂V ) → (Sn × [0, 1], Sn × 0) such that ∂V = N , the collar of ∂V
is identified with N × [0, ε], and EI(f)|N × [0, ε] = f × id[0,ε]. In this section we
show that the singularities of certain type with symbol I(f) of EI(f) detect the
non-zero stable homotopy class ω0([f ]) ∈ πs

n. Note that in dimensions n = 1, 2,
stable tangent bundles τV is trivial (an orientable 3-manifold is parallelizable).

Proof of Theorem 1.2. (Case: n = 1) We may take N = S1. We have
by [25] that o(τV , τ (f)) = o(τ (V̂ , τ (f))) is equal to the second Stiefel-Whitney
class w2(V̂ ) by Remark 1. This is, as an invariant in Z/(2), coincides with the
number of the singularities of the symbol (1, 1, 0) of E(1,1,0) modulo 2, since
the Thom polynomial is the dual class of S(1,1,0)(E(1,1,0)). Hence, we have
m(1) = 2.

(Case: n = 2) It follows from Theorem 4.1 that we can choose an extension
E(1,1,0) for a fold-map f . Hence, o(τV , τ (f)), namely o(τ (V̂ , τ (f))) lies in
H2(V̂ ; π1(SO(k))) and coincides with w2(τ (V̂ , τ (f))) by Remark 1. Suppose
that w2(τ (V̂ , τ (f))) vanishes. Since π2(SO(3)) ≈ {0}, the second obstruction
in H3(V̂ ; π2(SO(3))), for τ (V̂ , τ (f)) to be trivial, always vanishes. This implies
that ω0([f ]) 
= 0 if and only if w2(τ (V̂ , τ (f))) does not vanish for any choice
of V and E(1,1,0). Hence, E(1,1,0) must have 1-dimensional singularities of the
symbol (1, 1, 0).

(Case: n = 3) By Lemma 5.1 and Theorem 5.1 we have that m(3) =
j1 = 24 and a1 = 2. By Lemma 5.1 we have that o(τ (V̂ , τ (f))) is equal
to ±P1(τ (V̂ , τ (f))/2. The Thom polynomial of Σ2(τ (V̂ , τ (f)), ε4

bV
) is equal to

P1(τ (V̂ , τ (f)) by [26] (see also [3]). Consequently, for an element ω0([f ]) ∈ πs
3 ≈

Z/(24), the algebraic number of the singular points of the symbol (2, 0) of an
extension EI(f) is equal to 2ω0([f ]) modulo 48. We note that codimΣ2,1(n, n) =
7.

(Case: n = 6) By Proposition 6.2 we have I(f) = (2, 0) and E(2,0) has
3-dimensional singularities of type I2,2 or II2,2 with the symbol (2, 0).

(Case : n = 7) By [19, Section 7, Discussions and commputations], an
element of πs

7 ≈ Z/(240) is detected by P2(τ (V̂ , τ (f))/6 modulo 240. We note
codimΣ3(n + 1, n + 1) = 9 and codimΣ2,1,1(n, n) = 10. By Lemma 5.1 and
Theorem 5.1 we have that m(7) = j2 = 240 and a1 = 1. Let f : S7 → S7

be a fold-map with ω0([f ]) 
= 0. If P1(τ (V̂ , τ (f)) does not vanish, then we
have that I(f) = (2, 0) or (2, 1, 0) by Lemma 5.3 (i). If V is parallelizable in
addition, then P2(τ (V̂ , τ (f))= ±6o(τ (V̂ , τ (f))) do not vanish for any extension
EI(f) : (V, S7) → (S7 × [0, 1], S7 × 0) by Lemmas 5.3 (ii).

Let us recall the orbits IV4 = (x2+y2, x4) and (x2+y3, xy2) of the k-jets of
the C∞-stable germs (R8, 0) → (R8, 0) of the symbols (2, 0) and (2, 1, 0) which
are characterized by the local algebras R[[x, y]/(x2 + y2, x4) and R[[x, y]/(x2 +
y3, xy2) respectively. They have been defined in [22]. If we apply an elaborate
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work in [15] to the jet bundle Jk(τ (V̂ , τ (f)), ε8
bV
), then we obtain the cycle〈

(x2 + y3, xy2) − 2IV4

〉
under the integer coefficients of the Vassilyev complex

([15, Theorem 2.7]) and the Thom polynomial of
〈
(x2 + y3, xy2) − 2IV4

〉
is

equal to 9P2(τ (V̂ , τ (f))) ([15, Section 3]). We denote the algebraic numbers of
the singular points of types (x2 + y3, xy2) and IV4 by A and B respectively.
Then A − 2B = 9 · 6o(τ (V̂ , τ (f))) is divisible by 6 · 9 = 54 and (A − 2B)/54
modulo 240 corresponds to the stable homotopy class ω0([f ]). Hence, we have
I(f) = (2, 0) or (2, 1, 0).

We remark that the numbers of the singular points in the case n = 3, 7
correspond the e invariants introduced in [1] and [30]. The author would like to
propose a problem: To what extent do higher singularities of extensions detect
the stable homotopy groups of spheres?. We will find two difficulties in the
study of this problem. First we may not find parallelizable manifolds V for
extensions in general. This makes harder to determine types of singularities as
in the case n = 3, 7. Next, as far as the author knows, we do not yet have a nice
classification of singularities outside the Mather’s nice range for this purpose.
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