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Stable homotopy groups of spheres and higher
singularities

By

Yoshifumi ANDO

Abstract
We will construct an isomorphism of the group of all cobordism
classes of fold-maps of degree 0 of n-dimensional closed oriented mani-
folds to the n-sphere to the n-th stable homotopy group 7, of spheres.
As an application we will show that elements of 7}, are detected by higher
singularities of certain maps in dimensions n < 8.

1. Introduction

Let N and P be smooth (C*°) manifolds of dimension n. Let k > n (k
maybe o0). Let J¥(N, P) denote the k-jet bundle of manifolds N and P with
projection 7%, x 7% onto N x P, whose canonical fiber is the space J*(n,n) of
all k-jets of map germs (R”,0) — (R™,0). Here, 7% and 7% map a k-jet to its
source and target respectively. Let I = (i1,142,...,4,) be a Thom-Boardman
symbol (simply symbol) where iy, 49, ...,%, are a finite number of integers with
i1 > ig > -+ > 4, > 0. In [11] there have been defined what is called the
Boardman manifold X!(N, P) in J*(N, P). A smooth map germ f : (N,z) —
(P, y) has z as a singularity of the symbol I if and only if j*f € X/ (N, P). Let
QF(N, P) denote the open subset of J*(N, P) which consists of all Boardman
manifolds 7' (N, P) with symbols I’ of length  and I’ < I in the lexicographic
order. It is known that Q (N, P) is an open subbundle of J*(N, P) over N x P,
whose canonical fiber in J*¥(n,n) is denoted by Qf(n,n). A smooth map f :
N — P is called an Q!-regular map if and only if j*f(N) c Qf(N, P). When
I = (1,0), an Q19-regular map is called a fold-map.

Let I be a Thom-Boardman symbol with I > (1,0), namely either i; > 1
orilzlandigzo.

Let P be a closed connected oriented smooth manifold of dimension n.
We define the notion of oriented Qf-cobordism classes of fold-maps. Let f; :
N; — P (i =0,1) be two fold-maps of degree d, where N; are closed oriented
smooth n-dimensional manifolds. We say that they are oriented Q!-cobordant
when there exists an Q/-regular map, say Q!-cobordism E : (W,0W) — (P x
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[0,1],P x 0 U P x 1) of degree d such that, for a sufficiently small positive
number e,

(i) W is an oriented smooth manifold of dimension n + 1 with oW =
Ny U (—N7) and the collar of W is identified with Ny x [0,€] U Ny X [1 — ¢, 1],

(11) E|N0 X [0,6} = fo X id[O,e] and E|N1 X [1 — €, 1] = f1 X id[l—G,l]'

Let Q]Icold(P) (resp. Q]Ipold7d(P)) denote the set of all oriented Qf-cobordism
classes of fold-maps to P (resp. of degree d). When I = (1,0), we simply write
Qoa(P) and Qyo1a.a(P) for Qf,,4(P) and Qf ;4 ,(P) respectively. We provide
Qroia(P) and Qyoq,0(P) the structures of modules in the usual way.

Let F}, (resp. F{) denote the space of all base point preserving maps (resp.
of degree d) of S¥~1 with compact-open topology. The suspension induces
the inclusions Fy — Fj41 and F,‘j — F,f+1. Let F and F¢ denote the space
limyg_ o0 Fi and limy_, o F ,f respectively. Then we have the following theorem.

Theorem 1.1. Let n > 2 and P be a closed connected oriented n-
dimensional manifold. Then there exists the isomorphism w : Qroqa(P) —
[P, F], which induces the bijection wq : Qtora.a(P) — [P, FY).

We have proved that w is an epimorphism in [7, Corollary 2], while w
turns out to be an isomorphism. This fact has also been proved in [10] from
a different point of view. Therefore, F% is the classifying space of the cobor-
dism set Qfo1q,4(P). We will first construct the isomorphism of Qfq4(P) to
Ttk (T(V5)), where T(v%) is the Thom space of the stable k-dimensional nor-
mal bundle ulkg of P by using the results in [6]. By using S-dual spaces and
duality maps in the suspension category in [24] and [28], we can prove that
Tntk(T (V%)) is isomorphic to the set of homotopy classes [P, F] even if we take
the degree d into consideration.

Let 5 = limy_oo mnak(S¥) denote the n-th stable homotopy group of
spheres. It follows from [2] that [S™, F] is canonically isomorphic to 75. So
identifying [S™, F°] with 72, we have the following corollary.

Corollary 1.1.  The map wo : Qfo1a,0(S™) — 75, is an isomorphism for
n>1.

For two symbols I and J of any lengths, we write I < .J when Q! (m,m) C
Q7 (m,m) for any number m and write I < J when I < J and Qf(m,m) ¢
Q7(m,m) for some number m in this paper. Let i’ : Qfo1a,0(S™) = Qf,140(S™)
denote the homomorphism which maps an Q%% -cobordism class [f] to the
Qf-cobordism class of f : N — S™ If j/([f]) = 0, then there exists an Q-
cobordism Ef : (V,N) — (8" x I,5™ x 0) with 0V = N and Ef|N = f. We
call Ef an extension of f. Let I(f) denote the smallest symbol I such that
i1([f]) is a null element. It is obvious that I(f) depends only on the cobordism
class [f] in Qfoa,0(S™). We denote a generic Q!(/)-regular extension E/ by
E') in this paper. In dimensions n < 8 we will calculate I(f) and show that if
V is parallelizable in addition, then the singularities of certain type with symbol
I(f) of an extension E'(f) detect the stable homotopy class wo([f]) € 7.
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Let us explain the result. Recall that ©5 ~ 75 ~ Z/(2), 7§ ~ Z/(24),
s = Z/(2), 75 = Z/(240) and 75 =~ {0} for n = 4, 5. In the dimension
n = 7, we have to review an elaborate work in [15] to state the result. Let
IVy = (2% + y2,2%) and (22 + y3, 2y?) stand for the orbit of the k-jets of the
C®-stable germs (R®,0) — (R®,0) of the symbols (2,0) and (2, 1,0), which are
characterized by the local algebras R[[z,y]]/(2? + %, z*) and R[[z,y]]/(2? +
y3, 2y?), by the group action of Diff(R®, 0)xDiff(R®,0) respectively. These
classes of the singularities have been defined in [22]. It has been proved in [15,
Theorem 2.7] that there have been defined the cycle (22 + y3,zy?) — 21Vy)
under the integer coefficients of the Vassilyev complex and the integer Thom
polynomial of <(ac2 + 3, 2y?) — 2IV4>. We apply this result to a fold-map f :
N — 8" of degree 0 and an extension EX(/) and denote the algebraic numbers
of the singular points of types (z? + y3,zy?) and IV, of EI() by A and B
respectively. Then it will turn out that A — 2B is divisible by 6 - 9 = 54.

Theorem 1.2.  Let [f] € Qto1a,0(S™) and EXY) be an extension of fas
above. Suppose that wo([f]) # 0 in w5. Then we have the following.

If n = 1, then E'Y) must have the odd number of singularities of the
symbol (1,1,0).

Ifn =2, then ETY) must have the 1-dimensional singularities of the symbol
(1,1,0).

If n = 3, then we identify wo([f]) € 7§ ~ Z/(24) with the corresponding
number modulo 24. Then the algebraic number of singular points of the symbol
(2,0) of E'U) is equal to 2wo([f]) modulo 48.

Ifn = 6, then ET) must have the 3-dimensional singularities of the symbol
(2,0).

If n =7, then we have that I(f) = (2,0) or (2,1,0). If we take V to be
parallelizable and denote the algebraic numbers of the singular points of types
(22 +9°, 2y?) and IV, of E') by A and B respectively, then A—2B is divisible
by 6-9 = 54 and the integer (A —2B)/54 modulo 240 corresponds to the stable
homotopy class wo([f]) € 8 ~ Z/(240).

In general it will be a hard problem to detect a non-zero element wy([f]) €
7$ by higher singularities of B! (f) in dimensions n > 8. This range lies outside
the Mather’s nice range in [22] and there are many difficulties for the study of
singularities such as integer Thom polynomials.

In Section 2 we will explain notations used in this paper. In Section 3
we will review the results which are necessary for the definition of wy and
will prove Theorem 1.1. In Section 4 we will prove that an Q!-regular map
is homotopic relative to a fold-map to Q19 _regular map. In Section 5 we
will study the obstructions for finding simpler extensions E/ of fold-maps f
in order to determine I(f). In Section 6 we will construct a special fold-map
f such that wy([f]) generates 7§ and an extension E/ to determine I(f). In
Section 7 we will prove Theorem 1.2.
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2. Preliminaries

Throughout the paper all manifolds are smooth of class C°°. Maps are
continuous, but may be smooth (of class C*) if necessary. Given a fiber bundle
7% : G — X and a subset C in X, we denote 7~ (C) by Gl¢. Let 7% : H —» Y
be another fiber bundle. A map b: G — H is called a fiber map over a map
b:X — Y if 77 0ob = bonx% holds. The restriction b|(G|c) : Gl¢ — H (or
H|y(c)) is denoted by blc. In particular, for a point z € X, G|, and b|, are
simply denoted by G, and by : Gy — Hy(s) respectively. The trivial bundle
X x R is denoted by &% .

Let G — X and H — Y be n-dimensional vector bundles. Define the
vector bundle J*(G, H) over X x Y by

k
(2.1) TG, H) = @ Hom(S' (n% (G)), my-(H))
i=1

with the canonical projections % : J*(G,H) — X and «¥ : J*(G,H) — Y.
Here, S*(G) is the vector bundle U,e x S*(G,) over X, where S*(G,) denotes
the i-fold symmetric product of G,. The fiber G}f:l Hom(S*(R™),R™) is canon-
ically identified with J*(n,n). The origin of R” is simply denoted by 0. Let
GL*(n), O(n) and SO(n) denote the group of orientation preserving linear
isomorphisms of R™, the orthogonal group and the rotation group of degree n
respectively. Let L¥(n) denote the group of all k-jets of local diffeomorphisms
of (R™,0). Let h; : (R",0) — (R™,0) (i = 1,2) be local diffeomorphisms.
We define the action of L¥(n) x L¥(n) on J¥(n,n) by (jkhyi,jikhe) - jbf =
j&(h1o fohy'). In particular, O(n) x O(n) acts on J¥(n,n). Then Q! (n,n) is
an open subset of J¥(n,n) which is invariant with respect to the action of L¥(n)
x L¥(n) ([12]). Let Q' (G, H) be an open subbundle of J*(G, H) associated to
Qf(n,n).

If we provide N and P with Riemannian metrics, then the Levi-Civita
connections induce the exponential maps expy , : T, N — N and expp, :
T,P — P. In dealing with the exponential maps we always consider the convex
neighborhoods (][20]). We define the smooth bundle map

(2.2) J¥(N,P)—=J*(TN,TP) over N x P

by sending z = j& f € (nf x )~ (z,y) to the k-jet of (expp,) o foexpy , at
0 € TN, which is regarded as an element of J*(T,N,T,P)(= J¥ (TN, TP))
(see [20, Proposition 8.1] for the smoothness of exponential maps). More
strictly, (2.2) gives a smooth equivalence of the fiber bundles under the struc-
ture group L¥(n) x L¥(n). Namely, it gives a smooth reduction of the structure
group L¥(n) x L¥(n) of J¥(N, P) to O(n) x O(n), which is the structure group
of J¥(TN,TP). Let us recall Boardman submanifolds X! (N, P) in J*(N, P)
and X! (n,n) in J¥(n,n) (see [11] and [21]). Let S (TN, TP) and Q! (TN, TP)
denote the subbundles J*(T'N, T P) associated to ! (n,n) and Qf(n,n), which
are identified with /(V, P) and Q! (N, P) under (2.2).
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3. wq is bijective

We first review the results of [5], [6] and [7] necessary for the definition of
the map wq : Qpoa.a(P) — [P, F?. Let (O1,02) be an element of SO(n) x
SO(n) and M be an element of SO(n+1). Then define the actions of SO(n) x
SO(n) on SO(n + 1) and on J?(n,n) by

(01,02) - M = (O14(1)) M (*O2+(1)),
(01,02) - 5 f = j3(O1 0 f 0 'Os),

where O; and Oy are identified with the corresponding linear maps of R” and
+ denotes the direct sum of matrices. Then we have the following theorem ([5,
Theorem (ii)] and [6, Proposition 2.4]).

Theorem 3.1 ([5], [6]).  There exists a topological embedding i, : SO(n+
1) — QWO (n,n) such that i, is equivariant with respect to the above actions
and that the image of iy, is a deformation retract of Q19 (n,n).

Let N and P be oriented manifolds of dimension n. If we choose an or-
thonormal basis of R™, then there are canonical inclusions of GLT(n) into
L?(n) and of SO(n) into GL*(n). Providing N and P with Riemannian
metrics, we reduce the structure group L?(n) x L?(n) of the fibre bundle
QUO(N, P) over N x P to SO(n) x SO(n). Let GL}, (TN @ ek, TP ®e})
and SO, +1(TN @ ek, TP ®e}) be the subbundle of Hom(TN @ ek, TP ®e}h)
associated with GLT(n + 1) and SO(n + 1) respectively. Then we have the
inclusion igo, ,, : SOpt1(TN @ ek, TP ®ceh) — GLY (TN & ey, TP G eh),
which is a homotopy equivalence of fibre bundles covering idy« p.

Considering the fiber homotopy equivalence
(3.1) i(N,P): SO, 1 (TN @ ek, TP ® eb) — QLO(N, P)

associated with 4, and its homotopy inverse (i(N,P))~! : QLO(N, P) —
SO,+1(TN @ ek, TP & },), we obtain the fiber homotopy equivalence

i50,., © (i(N,P))™": QEO(N, P) — SO, 11 (TN ® e, TP @ e})

3.2
3.2) — GL} (TN @ ey, TP ®ep).

It has been shown in [6, Proposition 3.1] that the homotopy class of the fi-
bre map iso, ., © (i(N,n))~! over idyxp does not depend on the choice of
Riemannian metrics of N and P.

The set of all continuous sections of GL,, (TN @ ek, TP & e}) over N
corresponds bijectively to the set of all orientation preserving bundle maps of
TN @ el to TP @& ebh. Thus we have the following theorem.

Theorem 3.2 ([6, Corollary 2]).  Given a fold-map f : N — P, the
section j*f determines the homotopy class of the section igo, ,, o (i(N,P))™*o
J2f of GL, (TN @el, TP®e}). It induces a bundle map T(f) : TN ®el —
TP @ ek determined up to homotopy (this is denoted by f in [6]).
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Let N and P be embedded in R™* with the stable normal bundles vy
and vp respectively. Then we have the trivializations ty : 75 © vy — 5%“ and
tp:Tp ®vp — 2 respectively. Let 7(f) denote the bundle map 7 (f) @ (f x
idgr-n-1). Then we have the following proposition.

Proposition 3.1 ([6, Proposition 3.2]).  Let k > n. Let N and P be
oriented manifolds of dimension n embedded in R™* with the above trivial-
izations ty and tp respectively. Then a fold-map f : N — P determines the
homotopy class of a bundle map v(f) : vy — vp over f such that tp o (7(f) @
v(f)) oty' is homotopic to f x idgar.

According to [28], let {X,Y} denote the set of S-homotopy classes of S-
maps S'A X — SYAY (i > 0). Let us define the bijection cp : {S¥PY S*} —
[P, F] for k > n. Let {3} € {S*P° S*} be represented by 3 : SkP? — Sk
For a point x € P we define 3(z) : S* = SO A S¥ — S¥ by (B|{xp Ux} A SF)o
(tz Aidgr), where 1 : SY — {xp Uz} is the canonical identification. Then we
set cr({8})(x) = {B(x)}. Let {S*P°, Sk}, be the subset of {S*P°, S¥} which
consists of all {3} such that 3(x) is of degree d, namely cp({8})(z) € F¢
for any z € P. It is not difficult to see that cp induces the bijection cpa :
{SkPO, Sk}d — [P, Fd].

An element of {S™"** T(vk)} represented by a map a : S* A S"HF —
SUAT(vE) is written as {a}. Since k > n, {S"** T(v5)} is isomorphic to
Ttk (T(VE)). It has been proved in [24, Lemma 2] that T'(v}) is the S-dual
space of P® = P U #p, where *p is the base point. Namely, we have the
isomorphism D : {S"* T(vk)} — {S¥P°, SF}. Let {S"+F T(vk)}4 denote
the subset of {S"+* T(v%)} which consists of all S-maps of degree d. It has
been proved in [7, Lemma 2.4] that D induces the bijection {S"** T(vE)}q —
{SkPY, Sk,

Now we are ready to define the map wq : Qfo14,a(P) — [P, F9. Let ay :
Stk — T(vy) denote the Pontrjagin-Thom construction for an embedding
N — R""%_ Given a fold-map f : N — P of degree d, there is a bundle map
7(f) : 7~ — 7p and a bundle map v(f) : vy — vp determined up to homotopy
by Theorem 3.2 and Proposition 3.1 respectively. Let T'(v(f)) : T(vn) — T'(vp)
be the Thom map associated with v(f). Then we set wq(f) = cpa(D{T(v(f))o
an})). Since T'(v(f)) is of degree d, D({T(v(f)) o an}) is of degree d. It has
been proved in [7, Lemma 3.4] that wq(f) = cpa(D{T(v(f)) o an})) does not
depend on the choice of embeddings of N and P to R"** and does not depend
on the choice of a representative f of the Q19 -cobordism class [f] € Q oa.4(P).

The author has missed in [7] the fact that wy is injective. Here we give its
proof.

Proof of Theorem 1.1. We have proved in [7, Theoem1] that wy is surjec-
tive. The rest is to prove that wy is injective. Take two fold-maps f; : N; — P
(i = 0,1) of degree d such that wy([fo]) = wa([f1]). Recall that wy([fi]) =
cpa(D{T(v(fi)) o an, }). Since cpa and D are bijections, it follows that there
is a homotopy H : S"** x [0,1] — T(vp) x [0, 1] satisfying the following prop-
erties. Set I(0,¢) = [0,¢] and I(1,€) = [1 — ¢, 1] for a sufficiently small € > 0.
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Set P01 = P x [0, 1]. Then we have, for i = 0,1,
(i) H(z,t) = (T(v(f)) o an,(z),t) for € S"F and t € I(i,¢),
(ii) H is smooth around H~'(PI®) and is transverse to P!,
We set W = H~'(P1), where the zero-section of vp is identified with P.
Then we have
(iii) W N S™Hk x I(i,e) = N; x I(i,€),
(iv) H(z,t) = (fi(z),t) for z € N; and ¢ € I(i,¢) under (iii),
(v) TW N, x1(i,e) = T(Ng x I(i,€)) = (T'N; @ 5}\&) x I(i,€) under (iii),
(Vi) vwn,x1(i,e) = VN, X I(i,€), where vy is the normal bundle of W in
Stk 0, 1].
By (ii) we have the bundle map B, : vw — vp x [0,1] covering H|W such
that
(vii) By, (Vg t) = (v(fi)(vs),t) for © € N;, v, € vy, and t € I(i,€) under

(vi).

It follows from Proposition 3.1 that there exists a bundle map
BTW L TW — Tplo,1]

covering H|W : W — P01 such that tp1 o (B, ® By, ) oty is homotopic
to (H|W) X idgntae+2. We may assume by (iii), (iv) and (v) that

(viii) Bry, ((Vg, w)®ad/0t,w,t) = (T (f;)(Ve, w)®ad/0t, w,t) for v, € TN,
weR, weRFand t €I(i,e).
Let us consider

iSO'n,+1 Oi(VV, P[O,l])fl . Q(I,O)(VV7 P[O,l]) N
GL} o(TW @ ey, T(POY) @ Epio));
Jor GL:_‘_Q(TW D E%VvT(P[O’l]) @ 5}3[0,1]) - GL:+2+1§(TW,TP[0,1])7

where jqr, is the fiber map over W x PI% associated to the inclusion GL;!, , —
G’L;r o4k We consider the obstructions for finding a bundle map

brw : TW & 6%/1/ — T(P[O’I]) S 5}3[0,1]

covering H|W such that

(ix) brw N, x1¢i,e) = T (fi X idrae) = T (fs) X idyie),

(x) jer(brw) is homotopic relative to Ny x [0,¢] U Ny x [1 —€,1] to By,
which is regarded as a section of GL} o, (tw, Tproar) over W.
Since H*(W, Ny U Ny;m;(SO(n + 2 + k)/SO(n + 2))) = {0} , all of these
obstructions vanish and hence, there exists such a bundle map bry. By the
fiber homotopy equivalence iso, ., o (W, P%)~1 we obtain a section sy :
W — Q10 (W, PI01]) such that

swNi x I(i,€) = j2(fi X idy(i,e))|Ni x I(i,€)

and that iso, ., © i(W,P[O’l])gén+2 o sw is homotopic relative to Ny x [0, €] U
Ny x [1 —¢,1] to by as a section over W.

By the relative homotopy principle on the existence level for fold-maps in
[7, Theorem 4.1] (see also [8, Theorem 0.5]), there exists a fold-map E : W —
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PO of degree d such that E(x,t) = (fo(x),t) for 0 < t < €¢/2, E(x,t) =
(fi(z),t) for 1 —¢/2 < t < 1 under (iii) and that j?E is homotopic to sy
relative to Ny x [0,€/2] U Ny x [1 — ¢/2,1]. This implies that the fold-maps
fo and f; are Q19 _cobordant. This proves that wq is injective. This proves
Theorem 1.1. O

4. Q'-regular maps

Let us briefly review the fundamental properties of Boardman manifolds
introduced in [11]. Let V and Y be smooth manifolds of dimension n + 1. Let
D and P denote the total tangent bundle defined on J>°(V,Y) and (73°)*(TY)
respectively. Let f: (V,2) — (Y,y) be a map defined on a neighborhood U,, of
x with coordinates (x1,...,2Z,+1) and F be a smooth function in the sense of
[11, Definition 1.4] defined on a neighborhood of z = j°f. We have the local
vector fields D; defined around z with the property

(4.1) DiFo*f = 2 (Foj®f) (1<i<n+1)

which span D. Hence, we have that d(j*°f)(9/0x;)(F) = D;F(j*f), where
d(7°f) : TV — T(J*°(V,Y)) around z. This implies d(j*°f)(0/0z;) = D;.
Hence, we have D = (7{?)*(T'V'). There have been defined the homomorphism
d; : D — P over J*(V,Y) such that d; ,(D;) = (2,d,f(9/0z;)). The sub-
manifold $1(V,Y) is defined to be the subset of J>°(V,Y) which consists of all
jets z such that the kernel rank of d; , is 1. The open subbundle Q!(V,Y") of
J>°(V,Y) consists of all regular jets and X'(V,Y). Since di|s1(v,y) is of con-
stant rank n, we set K; =Ker(d;) and P; =Cok(d;), which are vector bundles

——
over 1(V,Y). Let 1, denote (1,...,1) in this paper. The Boardman manifold
Y1 (V,Y) (r > 1) has the following properties.
(4-1) There exists the (r + 1)-th intrinsic derivative

dyy1: T(E(V,Y))|s2 (v.yy) — Hom(S"Ky, Py)|ss(v,y) — O,

so that Ker(d,y1) = T(X(V,Y)). Namely, d,y; induces the isomorphism
of the normal bundle (T(E'=(V,Y))|s1. (v,y))/T(E*(V,Y)) of Z17(V,Y) in
S1-1(V,Y) onto Hom(S"K1, P1)|si(v,y)-

(4-ii) X1+1(VY) is defined to be the submanifold of ¥1*(V,Y) which
consists of all jets z such that d,41 ,|K; . vanishes.

(4-iii) The (r + 2)-th intrinsic derivative d,2 is defined to be the intrinsic
derivative d(dr+1|(K1|er(V7y))) :

(S (V, Y))|21r+1(V,Y) — Hom(S" 'K, P1)|21T+1(V’Y)'

(4-iv) The submanifold X1 (V,Y) is actually defined so that it coincides
with the inverse image of a submanifold X'+ (V,Y) in J"(V,Y) by 72°. The
codimension of X1 (V,Y) in J*(V,Y) is r.
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In the proof of the following theorem the homotopy principle on the exis-
tence level in [4] and [9] plays an important role. This homotopy principle has
been proved by using [13], [14] and [16].

Theorem 4.1.  Let V be an oriented (n + 1)-manifold with OV, which
may be empty, Y be an oriented (n+1)-manifold and let C' be a closed subset of
V. Let s be a section of Q*(V,Y) over V which has a fold-map g defined on a
neighborhood of C into Y , where j°g = s. Then there exists an QU1 regular
map E:V —Y and a homotopy sy of sections of Q(V,Y) over V relative to
a neighborhood U(C) of C such that so = s and s1 = j®°E. In particular, we
have E|U(C) = g|U(C).

Proof. In the proof we use the notation introduced in [11]. By (2.2) we
always identify J"(V,Y) with J"(TV,TY). We may assume that s is transverse
to X17(V,Y) and we set St (s) = s~ (X1 (V,Y)). It follows that (72° 0 s)(V \
(S (s))) C Q=101 \ §17(s), ).

Let us construct a section s of Q19 (VY) such that 75° 05 = 75° o s.
We set (s]S1(s))*K; = K; and (s]S*(s))*Py = Py;. Since V and Y are oriented
and since K; and P; are line bundles, we have that K; and P, are isomorphic.
In particular, we have the isomorphism Ki|g1,(5) — Pilg12(s). Consider the
homomorphism

r? : Hom(S*(TV),TY)|s12(5) — Hom(S? K1, P1)|s12(s)

which is induced from the inclusion S®Ki[g1,(5) — S*(TV)|g12(s) and the pro-
jection TY [ g1, () — Pi[g12(5)- Since S3K, = K, there exists the isomorphism
3 S?’Kl\sqg(s) — Pi]g12(5), which induces the isomorphism Ki[g1,(s) —
Hom(S%K1, P1)|g12(s)- Since S'2(s) is a closed submanifold of V' such that
S'2(s)NC = 0 in V, there exists a homomorphism h3 : S*(TV)|g1,(5) —
(752 0 8)*(TY)|g12(s) such that r3o h® = /3. We extend h? to a homomor-
phism H? : S3(TV) — (752 0 8)*(TY). If (72 0 8)py : (752 0 8)*(TY) —» TY
denote the canonical bundle map covering 73° o s, then we define the section
5:V — J®(TV,TY) to be the composite of

7 0s(x) = 75° 0 s(x) ® (75 0 8)py o H3|,

and the canonical inclusion J3(TV,TY) — J>(TV,TY).
We now show that (V') ¢ Q19 (V,Y). In fact, it is obvious that s(V) C
Q'2(V,Y). It remains to prove that if z € S2(s), then

(4.2) d3 s(2) : Kis(z) — Hom(S?K (), P1s(2))

is an isomorphism. In other words the homomorphism S3K1’5(r) — P
induced from ds ;) is an isomorphism. For any point = € S'2(s), let y =
2 os(x), Uy and V, be convex neighborhoods of z and y respectively. Let t and
u be the coordinates of expy, , (K1 ) and expy., ((75° 08)ry (P1,,)) respectively,
where P; is regarded as a line subbundle of (75° 0 5)*(T'Y')|g12(5) by virtue of
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the Riemannian metric of Y. It follows from (4.1), (4.2), the definition of d?
n (4-i), (2.2) and the definition of * that

(Q3Dt)u|5(w) = 03u/ot3(x) #0 for x € S12(s).

Hence, we have that s(S2(s)) ¢ X(LLO(VY).

By the homotopy principle on the existence level for Q119 _regular maps
n [9] there exists an Q119 regular map E : V — Y such that j°F and s are
homotopic relative to a neighborhood of C' as sections of QY (V,Y) over V. O

5. Obstructions

In order to determine I(f) for a fold-map f and singularities of an extension
ET(f) we have to prepare some machinery, although the dimensions are low.

Let V be an (n + 1)-manifold with 9V = N, and let 7 be the stable
k-dimensional tangent bundle of V. Given a fold-map f : N — S™ of de-
gree 0, we have the bundle maps 7(f) : TN & ek — 5g+ in Theorem 3.2
and 7(f). Let us consider the obstruction for 7(f) to be extended to the
trivialization of 7y, in particular, the primary obstruction o(my, 7(f)) defined
in Ht1(V,N;7;(SO(k))) for some i ([29]). Let V = V Uy CN, which is
obtained by pasting V and the cone CN of N. Let 7(V,7(f)) be the k-
dimensional vector bundle, which is obtained by pasting 7y and &, by using
7(f). We have the primary obstruction o(7(V,7(f))) € H1(V;m(SO(k))) ~
H*TY(V, N;1,(SO(k))) for 7(V, 7(f)) to be trivial. It is not difficult to see that
o(rv,7(f)) = o(7(V,7(f))) under the isomorphism.

Remark 1. In this case we may take k = n+2 and consider the subbun-
dle SOn+2( V,7r(f)), 5%+2) of Hom(7(V, 7(f)), 57‘1/+2) associated to SO(n+2).
Since 59y : SO(n+2) — QU9 (n +1,n + 1) is a homotopy equivalence, we

have the fiber homotopy equivalence

SOusalr(V, 7). 257 — QO (T (), <572).

7(f))) coincides with the obstruction to find a section of
n+2)

Therefore, o(r(V,

QIO (r(V,7(f)), e , which is equal to the Thom polynomial of the clo-
sure C1(XY (7 17 7(f)), € ";“)) in H2(V;7m,(SO(n+2)) (see, for example, [3,
Proposition 3.1]). This Thom polynomial is equal to the second Stiefel-Whitney
class wo(r(V, 7(f))) by [25].

);
(

If n 4+ 1= 4m and wo([f]) lies in what is called the J-image of
S am 1 (SO(k)) — T,

of order j,, in [1], then we can choose an fold-map f such that N = S™ by [7,
Proposition 5.1]. This is also true for the case n = 1. Furthermore, we can take
V to be a parallelizable manifold. Hence, o(r(V,7(f))) lies in the (n 4 1)-th
cohomology group.
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We have the following lemma due to [23, Lemma 2]. Let a,, denote 2 for
m odd and 1 for m even.

Lemma 5.1 ([23]). Letn+1=4m. LetV be a parallelizable manifold.
Then o(T(V,7(f))) is related to the m-th Pontrjagin class P (7(V,7(f))) by
the identity P, (t(V,7(f))) = £am(2m — Dlo(7(V,7(f))).

We next see how o(7my,7(f)) varies depending on the choice of V' and
f (the following argument is available for the case n = 1). Let two fold-
maps f; : S — S™ of degree 0 (i = 0,1) be Q1:%_cobordant by a cobordism
E: (W,0W) — (S™ x [0,1], 5™ x 0U 8™ x 1) of degree 0 as in Introduction.
Assume that there exists a parallelizable (n+ 1)-manifold V; with 0V; = S™ x 4.
Then we have the bundle maps 7 (f;) : T(S™ X i) @ €kny; — cod’ and T(E) :
TW @el, — Egji[o,l] by Theorem 3.2 such that TW |gny; = T(S™ X i) B ebn .,
and the stabilizations of 7 (E)|y, and 7 (f;) are equal. Consider the almost
parallelizable manifold W = Vo Ugnxo W Ugnx1 (=V41), which is obtained by

pasting Vy, W and V; with orientation reversed. Let

o(r(W)) € H" 'Y (W . (SO(k))) ~ m, (SO(K))

o~

be the unique primary obstruction for 7(W) to be trivial. This is equal to the
primary obstruction for extending 7(E) : 7(W)|w — ¥, to a bundle map to

5% over the whole space w. Therefore, it is not difficult to see that

o(rvy, 7(f0)) = 0(rv1, 7(f1)) = Fo(r(W))  in m,(SO(k)).

Define the integer m(n) for n > 1 to be the minimal nonnegative number such
that there exists an (n + 1)-dimensional almost parallelizable closed manifold

W’ such that o(T(W’)) =m(n). We will see that it is reasonable to set m(1) = 2
later. We have the following theorem due to [23, Theorems 1 and 2].

Theorem 5.1 ([23]). Letn+1=4m. Then we have

(i) The Pontrjagin class Pm(W\’) of an almost parallelizable closed mani-
fold W' is divisible by £jmam(2m — 1)\

(i) There exists an almost parallelizable closed manifold WO such that
P (Wo) = jmam(2m — 1)1,

Consequently, we have m(n) = jp,.

Lemma 5.2.  Letn+1=4m. Let f: N — S" be a fold-map of degree
0 and BE') .V — S™ be an extension. If V is parallelizable, then o(V,7(f1))
is well-defined in Z/(jm)-

In the rest of the paper we are only concerned with the case n < 8. By
the definition of 7(V,7(f)) in the case OV = S™, 7(f) yields the section of

QIO (r(V, T(f)),&"i/+2)|cgn, which we denote by s, (g, for k =n + 2.
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Lemma 5.3. Letn <8. Let f : N — S™ be a fold-map and Ef : V —
S™ x [0,1] be an extension. Then we have the following.

(i) If Pl(T(‘/}7T(f)) does mot vanish, then any extension EY has the sin-
gularities of codimension 4 and of symbol (2).

(i) Let V' be parallelizable in addition and Py (T(‘/},T(f)) vanish. Then
5-(p) is extendable to a section of QIO (r(V, T(f)),e"l/"’?) over V if and only if

PQ(T(‘/}7 7(f)) vanishes.

Proof. (i) follows from the fact that P;(r(V,7(f)) is the integer Thom
polynomial of the topological closure of 32(7(V,7(f)), 5"1/"’2) ([26]).
(ii) is clear. O

6. mg

Let us recall a map S¥*6 — S* which generates 7. Let H : S7 — S*
denote the Hopf map and vy, : S¥*3 — S* denote the (k — 4)-fold suspension
of H. Then the composite v o vy3 generates g ([30, Proposition 5.11]).
Since (v)~!(a point) is diffeomorphic to S3, the inverse image of a regular
value of vy, o v 3 is diffeomorphic to S x S3. Therefore, it follows from
Corollary 1.2 that there exists a fold-map f : S x 8% — S6 of degree 0
such that wo([f]) is the non-zero element of 7§. Let us construct a precise
example of f such that I(f) = (2,0). Let Q denote the field of quarternion
numbers which is canonically identified with R*. The product of elements z,
y € Q is denoted by x - y. Let S denote the set of x € Q which is denoted
by © = x1eg + xoe1 + x3e2 + z4e5 (= (1,22, 23,24)) with ||z|]| = 1. Let
trs : TS — Te, R3 = R? denote the trivialization given by trs(z,v) = 271 - v,
where z € S, v € T,S is identified with a vector in R* and R? is spanned by e;
for i = 2,3,4. Let ig : S — R*xR3 = R7 denote the composite of the inclusions
S — R*=R* x 0 and R* x 0 — R". Let ng denote the normal bundle of ig(S).

Let ty, : ng — R* denote the trivialization defined by
tns (T, 1T 4 ases + ages + arer) = tey + ases + ages + arer,
where R* is spanned by e; for i = 1,5,6,7. They yields the trivialization
ts = trs @ty : TS ®ng — R7.

Let 7¢ and vg denote the stable tangent and normal bundles of T'S and ng
without specifying the dimensions respectively. The trivialization of 75 & vg
induced from tg is also denoted by the same letter ts. Let 8 : S — SO(4)
denote the map defined by 3(z)v = z - v where z € S, v € R%. Tt is known
that the composite of 5 and SO(4) — SO(k), k > 4 generates m3(SO(k)) ~ Z.
This composite is also denoted by the same letter 3. Let 8 : S x RF — R
be the bundle map defined by G (z,vi ©@ V) =z -vy @ vy forx €S, v; € R*
and vo € R*=4. Let 37 : TS x R x R*=% — R* be the bundle map defined by
Br(z, w1, w2, w3) = (71 - (we @ (z71 - wy)), w3) for z € S, wy € T,,S, we € R
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and ws € RF~*, Then we can prove by an analogous argument in the proof
of [6, Proposition 3.3] that 5] @ i is homotopic to ts for sufficiently large
numbers ¢ and k.

It follows from Theorem 3.2 that there exists a fold-map fs: S — R3 such
that 7(fs) is homotopic to 3] for some large number £. Let 8] : TS xR — TR*
be the bundle map defined by 37 (z,w) = (z,3](w)). By the Smale-Hirsch
Immersion Theorem ([17] and [27]) there exists an immersion js : S — R* such
that d(js) and ﬁ_ﬂTS are homotopic as monomorphisms. Let us try to express
d(fs)e : TpS = Te,S — Tfs(m)]R?’ ~ R3 by a 3 x 3 matrix and d(js), : T,S ~
Te,S — Tpy)R* = R* by a 4 x 3 matrix under the trivialization ¢5. Then we
may choose fs and js to satisfy the following property (P).

(P) d(fs)z is equal to 2E5 and d(js), is equal to the 4 X 3 matriz 2(0144,;)
for 0 <@ < 3, where E3 is the unit-matriz of degree 3, 01445 = 1 for i =]
and 61445 = 0 for i # j if x lies in a very small disk neighborhood D(e1) of
e in S.

In fact, we first deform js and fs so that js(e;) = ey, fs(er) = 0 € R?,
d(js)e; = 2(6144,5) and d(fs)e, = 2E3. By a standard argument in differential
topology we next deform js and fs so that

jS(xh xT2,T3, 374) = (17 2$27 2'T37 2$4)u
fs(w1, 22,73, 24) = (272, 273, 274)

on a very small disk neighborhood D(e;) of e; in S. This assures the property
(P).

Let ej;(») denote the vector of length 1 in R* such that

(i) ejy(x) is orthogonal to js(S) at js(z),

(ii) the orientation determined by (ej, (), djs(z - €2), djs(x - e3), djs(7 - e4))
coincides with the canonical orientation of R%.
Let nj; = S x R be the orthogonal normal bundle to the immersion js. We
define the map exp;, : nj, — R* by

expjs(x,t) = Js(x) + tejy(a)-
Then for a sufficiently small positive real number € and the disk bundle Do, (n;;)
with radius 2¢, we find a small neighborhood O, for each x € S such that
expj, |(Dae(nj)lo,) is an embedding.
Using exp;, we define a fold-map fsxs:S xS — R% = R?* x R? by
foxs(@,y) = (s(x) + ef5 (Y)ejo), /3 (y), €3 ()
where fs(y) = (f2(y), f2(y), f3(y)). Then we have the following proposition.

Proposition 6.1.  wo([fsxs]) is the generator of w§.

Let us prepare the following lemma for the proof of the proposition. There
exists the trivialization of T'(S x S) which is induced from tg. Let

BT :T(SxS) x R¥6=8x8 xR — RF,
Bsxs: S xS xRF — RF
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denote the bundle maps defined by

Bixs(®,y)(Vi, va,v3,v4,Vs) = (B1(z,v1,v3), B1 (¥, V2, V1), V5),

Bsxs(@,y)v = B(z)B(y)v,
where z, y € S, vi, vy € T(S), v3,v4 € R, vs€R*® and v €R*.

Lemma 6.1.  Under the above trivialization of T(S X S) and the canon-
ical trivialization of TR®, 7(fsxs) is homotopic to the bundle map (3., and
so V(fsxs) is homotopic to the bundle map Psxs.-

Proof. 'We will show that 7(fsxs)|Sx {e1} and 7(fsxs)|{e1} xS are homo-
topic to 87 : TS®R*=3 — R¥ under the identification Sx {e1} =S = {e;} x S.
Let D(e1) be the above very small disk neighborhood of e; in S. There exists
a deformation retraction of S x S\Int{D(e;) x D(e1)} to S x {e1}U{e1} xS.
Hence, it follows from 74(SO(6)) =~ {0} that 7(fsxs) is homotopic to 3%, .

By the property (P) the differential (dfsxs)z,y is equal to 2E3 + (dfs), for
x € D(ey) and y € S. Since fs is a fold-map, it follows from the definitions of
7(fs) and 7(fsxs) that 7(fsxs)|{e1} x S are homotopic to 5] . Next recall that
js : S — R* is defined by the bundle map 7, the differential dfsys|S x {e;} is
homotopic to 3] @ idge. This proves the lemma. O

Let my, : ng — S be the projection and ag be the Pontrjagin-Thom con-
struction for ig. It is not difficult to see that the composite

T(B4) 0 T(mn; X ty)oag:S” — T(ng) — T(S x RY) — 84
is homotopic to the Hopf map H.

Proof of Proposition 6.1. Consider the embedding is x is : S x S — R* x
R* x R¥~2 with the normal bundle ¥, s which consists of all points ((z,y), tx®
tyev)forz,yeS, t,t' €Rand ve RF2. Let tys vl — S xS xRk be
the bundle map defined by ¢,x ((z,y), tz®t'y®v) = ((x,y), te1+t'ex+v). Let
B :SxSxRF — R* be the bundle map defined by B(z,y,v) = 3(x)3(y)v. Let
asxs denote the Pontrjagin-Thom construction for the embedding ig X is. Then
it is not difficult to see by [30, Proposition 5.11] that {T(B) o T(tl,Sng) o agxs}
and its dual map D({T(B) o T(tl,éng
of §. If we recall the isomorphism {S6t% S*} ~ {(s5)° A S* S*} for k > 6
(see also [2, Proof of Lemma 1.3]), then we have

wo([fsxs]) = cro(DHT(B) o T(tys ) 0 asxs}))-

SxS§

) o agxs}) are homotopic to the generator

This proves the proposition. 1

Recall that fs has a smooth extension Efs : D* — R* with Ef$|S = (fs,0)
and Ef¢|IntD* being contained in R x (0, 00) such that E/¢ has non-empty
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isolated singularities of type Iz 2 or I3 5 of symbol (2,0) in the terminology in
[22]. Define the smooth extension Efsx¢ : § x D* — RS x (0,00) of fsxs by

BT (2,y) = ((Js(@) + B (y)ejo()), €EZ (1), €EE (y), €B5 (y)),
where € is a small positive real

®)),
x5 has singularities of types A; (1 <
(2,0).

where EF(y) = (E3(y), E3(y), E3(y), Es
number as before. It is obvious that F
i <4) I or II5 5. This shows I(fsxs)

SO

IN

Proposition 6.2.  Let [f] € Qfoa,0(S%). If wo([f]) # 0 in 7§, then
I(f) = (2,0).

Proof. Let f: N — S° Since I(fsxs) < (2,0), we have I(f) < (2,0).
Suppose that I(f) < (2,0). Then there exists an extension E/ : (V' N) —
(8% x [0,1], 5% x 0) such that E/ is an Q'-regular cobordism. By Theorem
4.1 we may assume that Ef is an Q119 regular cobordism of f and I(f) <
(1,1,0). Namely, we may assume that the singularities of E7 are of symbols
(1,0) or (1,1,0). Since [f] = [fsxs], there exists an Q19 regular cobordism F :
(W, 0W) — (85 x10,1],5%x0US®x1) such that OW = NU(-SxS), E|N = f
and E|S xS = foxs. Let Gsxs: V = V'Uxy W — S% x [0, 1] be an extension of
fsxs which is obtained by pasting £/ and E on N. Let §(1:0) (Gsxs) denote the
set of singularities of symbol (1,1,0) of Gsxs. Then ngg|(V\S(1’1’0)(GSX§))
is a fold-map, and V\S(19) (Ggys) is stably parallelizable by Theorem 3.2.

By applying the surgery technique introduced in [19] we may assume
that V\S™W10) (Ggys) is 2-connected and that the inclusion {e;} x S — S x
S is null-homotopic as a map to V\SMH10 (Ggyg). The last assertion fol-
lows from the fact that we can deform this inclusion to an embedding into
Int(V\S11:0) (Ggys)) and its normal bundle is trivial by m(SO(4)) = {0}.
Therefore, we can apply the surgery to this embedding. Let 7'(‘7, T(fsxs)) over
V (resp. € = 7(5% 7(fs)) over $%) be the vector bundle which is constructed
by pasting 7(V) (resp. £%.) and C(S x S) x R¥ (resp. %,) by the bundle map
T(fsxs) (resp. 7(fs)). Let j: S — {e1} xS C S x S be the inclusion. Then
it is extended to a map j : D* — V\S(Gsxs) C V. Since 7(fexs)|{e1} x S
is homotopic to 7(fs) under the identification S = {e;} x S, it follows that
there exists a bundle map & — T(‘77T(fg><§)) covering j. This implies that
JF(PL(T(V,7(fsxs)))) = Pi(€). We have proved that P;(¢) # 0 in Lemma 5.3
(i), and hence Py(7(V,7(fsxs))) # 0. Consequently, it follows that Gsys must
have the singularities of symbol (2). This is a contradiction. Hence, we have

I(f)=(2,0). ]

As is observed, the worst singularities of E1(fsx) are of type Iz o or 11 5.
In the equidimension 7 we have the singularities of many types of symbol (2, 0)
other than I5 5 and I 5 as described in [22, Section 7]. This fact suggests that
Boardman symbols are not sufficient, and in order to detect elements of 7; in
higher dimensions we need some nice classification of higher singularities. This
view will turn out to be more evident in the case 75.
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7. Proof of Theorem 1.2

Recall the homomorphism i’ : Qfoq.0(S™) — Q]Icoldp(S") and the symbol
I(f) for [f] € Qo1a,0(S™) defined in Introduction. Then there exists an exten-
sion EIU) : (V,0V) — (S™ x [0,1], 8™ x 0) such that OV = N, the collar of OV
is identified with N x [0, €], and EX()|N x [0,€] = f x idjy . In this section we
show that the singularities of certain type with symbol I(f) of EI() detect the
non-zero stable homotopy class wo([f]) € 75. Note that in dimensions n = 1, 2,
stable tangent bundles 7y is trivial (an orientable 3-manifold is parallelizable).

Proof of Theorem 1.2. (Case: n = 1) We may take N = S'. We have
by [25] that o(rv, 7(f)) = o(7(V,7(f))) is equal to the second Stiefel-Whitney
class wy (V) by Remark 1. This is, as an invariant in Z/ ( ), coincides with the
number of the singularities of the symbol (1,1,0) of E19 modulo 2, since
the Thom polynomial is the dual class of S0 (E(1:1.0)) " Hence, we have
m(l) = 2.

(Case: n = 2) It follows from Theorem 4.1 that we can choose an extension
E®L0) for a fold-map f. Hence, o(ry,7(f)), namely o(r(V,7(f))) lies in
H2(V;m(SO(k))) and coincides with ws(7(V,7(f))) by Remark 1. Suppose
that wy(7(V,7(f))) vanishes. Since m5(SO(3)) ~ {0}, the second obstruction
in H3(V;75(S0(3))), for 7(V, 7(f)) to be trivial, always vanishes. This implies
that wo([f]) # 0 if and only if wy(r(V,7(f))) does not vanish for any choice
of V and E(10) | Hence, E(19) must have 1-dimensional singularities of the
symbol (1, 1,0).

(Case: n = 3) By Lemma 5.1 and Theorem 5.1 we have that m(3) =
ji = 24 and a; = 2. By Lemma 5.1 we have that o(7(V,7(f))) is equal
to £P(r(V,7(f))/2. The Thom polynomial of 2(r(V,7(f )) ‘ﬁ) is equal to

Pi(m(V,7(f)) by [26] (see also [3]). Consequently, for an element wp([f]) €
Z/(24), the algebraic number of the singular points of the symbol (2,0) of an
extension B/ is equal to 2wo([f]) modulo 48. We note that codim-?!(n,n) =
7.

(Case: n = 6) By Proposition 6.2 we have I(f) = (2,0) and E° has
3-dimensional singularities of type Is 2 or Ils o with the symbol (2,0).

(Case : n = 7) By [19, Section 7, Discussions and commputations], an
element of 78 ~ 7Z/(240) is detected by Py(r(V,7(f))/6 modulo 240. We note
codim¥3(n + 1,n + 1) = 9 and codim¥?11(n,n) = 10. By Lemma 5.1 and
Theorem 5.1 we have that m(7) = jo = 240 and a; = 1. Let f : ST — §7
be a fold-map with wo([f]) # 0. If P (r(V,7(f)) does not vanish, then we
have that I(f) = (2, ,0) or (2,1,0) by Lemma 5.3 (i). If V is parallelizable in
addition, then Py(r(V,7(f))= £60(r(V,7(f))) do not vanish for any extension
B (V,87) — (87 x [0,1], 57 x 0) by Lemmas 5.3 (ii).

Let us recall the orbits IVy = (22 +42,2*) and (22 +33, 2y?) of the k-jets of
the C>-stable germs (R®,0) — (R®,0) of the symbols (2,0) and (2, 1,0) which
are characterized by the local algebras R[[z,y]/(z% + y2,2*) and R[[z, y]/(x? +
y3, 2y?) respectively. They have been defined in [22]. If we apply an elaborate
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work in [15] to the jet bundle Jk(T(‘/},T(f)),E%), then we obtain the cycle
((#* + y3,2y?) — 2IV,) under the integer coefficients of the Vassilyev complex
([15, Theorem 2.7]) and the Thom polynomial of {(z*+ y® xy?) — 2IVy) is
equal to 9P (T(V,7(f))) ([15, Section 3]). We denote the algebraic numbers of
the singular points of types (2% 4 y*,zy?) and IV, by A and B respectively.
Then A — 2B =9 - 60(r(V,7(f))) is divisible by 6 -9 = 54 and (A — 2B)/54
modulo 240 corresponds to the stable homotopy class wo([f]). Hence, we have
I(f)=(2,0) or (2,1,0). O

We remark that the numbers of the singular points in the case n = 3,7
correspond the e invariants introduced in [1] and [30]. The author would like to
propose a problem: To what extent do higher singularities of extensions detect
the stable homotopy groups of spheres?. We will find two difficulties in the
study of this problem. First we may not find parallelizable manifolds V for
extensions in general. This makes harder to determine types of singularities as
in the case n = 3,7. Next, as far as the author knows, we do not yet have a nice
classification of singularities outside the Mather’s nice range for this purpose.
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