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Introduction

Classically it is well-known that P1 \ {3 points} is covered by the unit disc
and so it admits a Hermitian metric of constant negative curvature. Very little
is known in higher dimension. In the special case of complements of hyperplanes
in Pn, it is known (see [6], [7]) that Pn\{2n+1 hyperplanes in general position}
admits a Finsler metric with hsc (= holomorphic sectional curvature) ≤ −c2 <
0 where c is a constant. We shall simply refer to this by saying that the hsc
is strongly negative. Here the concept of holomorphic sectional curvature of a
Finsler metric is defined as follows (see [1], [19], [20], [23]). Let h be a Finsler
metric on a complex manifold M and X be a tangent vector at a point x ∈ M .
Then

hsc(X) = sup
C

{Gh|C (X)}

where the supremum is taken over all local smooth complex curve C through
the point x and Gh|C (X) is the Gaussian curvature of the metric on C induced
by h (for a Riemann surface, Finsler = Hermitian = Kähler). The definiton is
equivalent to the usual concept if h is Hermitian. The result for complements
of hyperplanes is improved in [25] and is further improved recently to the best
possible form (see [26]), namely, Pn \ {2n + 1 hyperplanes in general position}
admits a strongly negatively curved Finsler metric. Unfortunately, the method
is based on a very technical construction via the Nevanlinna-Ahlfors Theory
on hyperplanes. This method does not seem to lend itself readily to further
extensions, e.g., general hypersurfaces that are not hyperplanes.

In this article we initiate a more conceptual approach of constructing neg-
atively curved metrics. This is based on the observation (see [3], also [4] and
[5]) that, for a complex manifold M ,

the cotangent bundle T ∗M is ample if and only if there exists a Finsler metric
on TM with strongly negative holomorphic bisectional curvature.
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A detailed account of the concepts of holomorphic bisectional (hbsc) and sec-
tional curvature of a Finsler metric can be found in [1] (see also [3], [4] and [5])
with the implications:

hbsc ≤ −c2 =⇒ hsc ≤ −c2 =⇒ X is Kobayashi hyperbolic.

This generalizes the usual concepts for Hermitian metrics which can be found
in [17]. For examples of manifolds admitting Hermitian metric with strongly
negatively curved hbsc see [24]. For the general theory of Cartan connection
and Chern connection for Finsler metrics the readers are referred to [1] and
[2]. We consider the problem of finding curves C in P2 such that P2 \C admit
Finsler metrics with strongly negative holomorphic bisectional curvature. In
view of the result of [3] stated above we look for curves C in P2 such that the
logarithmic tangent bundle T ∗

P
2(log C) (algebraic geometers usually use the

notation Ω1
P2(log C)) is ample. The result in [3] then implies the existence of a

complete Finsler metrics on P2 \ C with strongly negative holomorphic bisec-
tional curvature. Completeness being a consequence of the fact that sections of
T ∗

P
2(log C) have poles along C. For the general theory of logarithmic bundles

the readers are referred to the deep and important works [8], [15] and [21]. The
main result of this article is the following theorem (see Theorem 2.2 in section
2):

Theorem. Let E be a rank 2 vector bundle over a non-singular compact
complex surface M . Assume that E is spanned, c2

1(E) − c2(E) > 0 and detE
is ample. Then E is ample.

The preceding result is obtained via the Riemann-Roch Theorem, the Bo-
gomolov Theorem (see [9] and [10]) and a Lemma of Gieseker [12]. This The-
orem is then applied to the case X = P2 and E = T ∗X(log C) where C is a
curve in P2 with simple normal crossings. Using the work of [21] (see also [10])
we obtain (see Theorem 3.6):

Theorem. Let C = C1+· · ·+Cq be a curve, of simple normal crossings,
in P2 with smooth irreducible components Ci of degree di for 1 ≤ i ≤ q. Assume
that KP2 +C is ample. Then c2

1(T
∗
P

2(log C))−c2(T ∗
P

2(log C)) > 0 if and only
if one of the following cases holds:



q ≥ 5 : 1 ≤ d1 ≤ d2 ≤ · · · ≤ dq,

q = 4 : (i) d1 = d2 = 1, 2 ≤ d3 ≤ d4, (ii) d1 = 1, 2 ≤ d2 ≤ d3 ≤ d4,

(iii) 2 ≤ d1 ≤ d2 ≤ d3 ≤ d4,

q = 3 : (i) d1 = 1, d2 = 3, 4 ≤ d3, (ii) d1 = 1, 4 ≤ d2 ≤ d3,

(iii) d1 = d2 = 2, 3 ≤ d3, (iv) d1 = 2, 3 ≤ d2 ≤ d3,

(v) 3 ≤ d1 ≤ d2 ≤ d3,

q = 2 : (i) d1 = 4, 7 ≤ d2, (ii) 5 ≤ d1 ≤ d2.

In fact we classify (see Theorem 3.12) all hypersurfaces X in P3 with
c2
1(T

∗X(log C)) − c2(T ∗X(log C)) > 0.
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It is much more difficult to verify the condition that E = T ∗X(log C) is
spanned (see sections 3 and 4) as required by Theorem 2.2. We obtain the
following result (see Corollary 3.9 and, for a more general result, Theorem 4.4):

Corollary. Let C = C1 + · · ·+Cq be any of the curves in the list below:


q ≥ 5 : 1 ≤ d1 ≤ d2 ≤ · · · ≤ dq,

q = 4 : (i) d1 = d2 = 1, 2 ≤ d3 ≤ d4,

(ii) d1 = 1, 2 ≤ d2 ≤ d3 ≤ d4,

(iii) 2 ≤ d1 ≤ d2 ≤ d3 ≤ d4.

Assume that C is of simple normal crossings and that ∩[JFI = 0] = ∅ where I
ranges over all subsets of {1, 2, . . . , q} consisting of 3 distinct elements. Then
there exists a complete Finsler metric on T ∗(P2 \ C) with holomorphic bisec-
tional curvature ≤ −c2 where c is a constant.

In the preceding Corollary JFI is the Jacobian determinant of the map FI

where

FI = (Pi0 , Pi1 , . . . , Pin
)

with Ci = [Pi = 0], and Pi is a homogeneous polynomial with deg Pi = di =
deg Ci (see section 3 for more details). The point is that a general configuration
of C = C1 + · · · + Cq in the list satisfies the condition ∩[JFI = 0] = ∅. In
other words, those configurations that do not satisfy this condition are Zariski
closed and of strictly lower dimension. For example the result implies that
the complement, in P

2, of any 5 (or more) smooth curves in general position
admits a Finsler metric with strongly negatively curved holomorphic bisectional
curvature. This result is stronger, even in the case of 5 lines, than the results
in [26] as the explicit construction there yields only strongly negatively curved
holomorphic sectional curvature. Our Theorem also shows that the complement
of a general configuration of 2 lines and 2 quadrics admits a Finsler metric with
strongly negatively curved hbsc and a priori, Kobayashi hyperbolic. In [9] it
was shown that actually the complement of a general configuration of 1 line and
2 quadrics is Kobayashi hyperbolic. However we do not know if this admits a
strongly negatively curved metric; equivalently, we do not know if T ∗P2(log C)
is ample in this case.

The article is written with complex analysts and complex geometers in
mind hence, instead of striving for efficiency, results from algebraic geometry
are presented in a leisurely manner.

1. Projectivized vector bundles

In the literature the notations are not standardized. To avoid confusion we
provide a brief account concerning projectivized vector bundles in this section.
The monographs [11], [22] and the articles [13], [18] are excellent references for
this section.
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Given a vector space V (defined over an algebraically closed field K of ar-
bitrary characteristic) the dual, i.e., the vector space of all hyperplanes through
the origin, will be denoted by V ∨. For a vector bundle E over a scheme X, the
dual E∨ is defined by dualizing each fiber. For a vector bundle E of rank r ≥ 2,
the projectivized bundle, P(E∨) = E∨

∗ /K∗ is defined by taking equivalence
classes under the K∗ = K \ {0} action. Here E∨

∗ = E∨ \ {zero − section}. The
projection is denoted by p : P(E∨) → X. There is a unique line bundle, hence-
forth referred to as the Serre bundle and denoted by OP(E∨)(1), which restricts
to the hyperplane line bundle OPr−1(1) along the fibers of p : P(E∨) → X.

Definition 1.1. A vector bundle E of rank r ≥ 2 over X is ample (resp.
nef, spanned) if and only if the Serre line bundle OP(E∨)(1) over P(E∨) is ample
(resp. nef, spanned). The dual is denoted by OP(E∨)(−1) and will be referred
to as the tautological bundle. Tensor products of these bundles will be denoted
by OP(E∨)(m), m ∈ Z.

The following isomorphisms are well-known (see for example [14]) and shall
be referred to as Grothendieck’s isomorphisms (Rip∗ denotes the i-th direct
image of the projection):

Theorem 1.2. Let E be a vector bundle of rank r ≥ 2 over an algebraic
scheme X. Then for m ≥ 0, we have R0p∗OP(E∨)(m) = p∗OP(E∨)(m) ∼=
symmE and

Rr−1p∗OP(E∨)(−r − m) ∼= detE∨ ⊗ symmE∨

and all other direct images vanish. In particular, the corresponding cohomolog-
ical groups are isomorphic, more precisely, for any sheaf S on X

Hi(X, symmE ⊗ S) ∼= Hi(P(E∨),OP(E∨)(m) ⊗ p∗S)

for all i ≥ 0.

The Serre bundle is a quotient of the bundle p∗E, i.e., there is a surjection:

p∗E → OP(E∨)(1) → 0

where p : P(E∨) → X is the projection map. Equivalently we have an exact
sequence:

0 → OP(E∨)(−1) → p∗E∨ → Q → 0.(1.1)

The total Chern classes are related by Whitney’s formula:

p∗c(E∨) = c(p∗E∨) = c(OP(E∨)(−1)) · c(Q).

By eliminating the Chern classes of Q we arrive at:
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Lemma 1.3. Let E be a vector bundle of rank = r ≥ 2 over a complex
manifold X of dimension n. Let p : P (E∨) → X be the projectivized vector
bundle. If r ≤ n = dimX then

r∑
i=0

p∗ci(E∨) cr−i
1 (OP(E∨)(1)) = 0,

and if r = n + k + 1, k ≥ 0 then
r−k−1∑

i=0

p∗ci(E∨) cr−k−1−i
1 (OP(E∨)(1)) = cr−k−1(Q),

i.e.,
n∑

i=0

p∗ci(E∨) cn−i
1 (OP(E∨)(1)) = cn(Q)

where Q is the quotient bundle in (1.1).

Proof. Since rank Q = r − 1, we have
r∑

i=0

p∗ci(E∨) =
(
1 + c1(OP(E∨)(−1)

) r−1∑
i=0

p∗ci(Q)

hence

p∗ci(E∨) = c1(OP(E∨)(−1)) ci−1(Q) + ci(Q)(∗)
for 1 ≤ i ≤ min{r, n} with c0(Q) = 1 and ci(Q) = 0 for i ≥ min{r, n + 1}.
There are 3 cases to be considered: (1) r ≤ n, (2) r = n + 1 and (3) r > n + 1.

Case 1. r ≤ n
Then min{r, n} = min{r, n + 1} = r. Starting from i = r we get from (∗)

the identities

p∗cr(E∨) = c1(OP(E∨)(−1)) cr−1(Q),
p∗cr−1(E∨) = c1(OP(E∨)(−1)) cr−2(Q) + cr−1(Q),

...

p∗c2(E∨) = c1(OP(E∨)(−1)) c1(Q) + c2(Q),
p∗c1(E∨) = c1(OP(E∨)(−1)) + c1(Q).

Multiplying the i-th identity above by ci−1
1 (OP(E)(−1)) we get

p∗cr(E∨) = c1(OP(E∨)(−1)) cr−1(Q),

p∗cr−1(E∨) c1(OP(E∨)(−1)) = c2
1(OP(E∨)(−1)) cr−2(Q)

+ c1(OP(E∨)(−1)) cr−1(Q),
...

p∗c1(E∨) cr−1
1 (OP(E∨)(−1)) = cr

1(OP(E∨)(−1))

+ cr−1
1 (OP(E∨)(−1)) c1(Q).
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Taking alternating sum eliminates the Chern classes of Q, resulting in:

r∑
i=1

(−1)i−1p∗ci(E∨) cr−i
1 (OP(E∨)(−1)) = cr

1(OP(E∨)(−1)).

This yields
r∑

i=0

(−1)ip∗ci(E∨).cr−i
1 OP(E∨)(−1) = 0

and since cr−i
1 (OP(E∨)(1)) = (−1)r−icr−i

1 (OP(E∨)(−1)), we get

r∑
i=0

p∗ci(E∨) cr−i
1 OP(E∨)(1) = 0

as well.

Case 2. r = n + 1
Then min{r, n} = n and min{r, n + 1} = r = n + 1. Thus p∗cr(E∨) = 0

and we get from (∗) the following identities:

p∗cr−1(E∨) = c1(OP(E∨)(−1)) cr−2(Q) + cr−1(Q),
p∗cr−2(E∨) = c1(OP(E∨)(−1)) cr−3(Q) + cr−2(Q),

...

p∗c2(E∨) = c1(OP(E∨)(−1)) c1(Q) + c2(Q),
p∗c1(E∨) = c1(OP(E∨)(−1)) + c1(Q).

Multiplying the i-th identity above by ci−1
1 (OP(E∨)(−1)) we get

p∗cr−1(E∨) = c1(OP(E∨)(−1)) cr−2(Q) + cr−1(Q),

p∗cr−2(E∨) c1(OP(E∨)(−1)) = c2
1(OP(E∨)(−1)) cr−3(Q)

+ c1(OP(E∨)(−1)) cr−2(Q),
...

p∗c1(E∨) cr−2
1 (OP(E∨)(−1)) = cr−1

1 (OP(E∨)(−1)) + cr−2
1 (OP(E∨)(−1)) c1(Q).

Taking alternating sum eliminates the Chern classes of Q, resulting in:

r−1∑
i=1

(−1)i−1p∗ci(E∨) cr−i−1
1 (OP(E∨)(−1)) = cr−1

1 (OP(E∨)(−1))

+ (−1)r−2cr−1(Q)

which is equivalent to

r−1∑
i=0

(−1)ip∗ci(E∨) cr−i−1
1 (OP(E∨)(−1)) = (−1)r−1cr−1(Q)
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and is also equivalent to

r−1∑
i=0

p∗ci(E∨) cr−i−1
1 (OP(E∨)(1)) = cr−1(Q).

Case 3. r > n + 1
Let r = n + 1 + k, k ≥ 1. Then min{r, n} = n and min{r, n + 1} = n + 1.

Thus

p∗cr(E∨) = p∗cr−1(E∨) = ... = p∗cr−k(E∨) = 0

and we get from (∗) the following r − k − 1 = n identities:

p∗cr−k−1(E∨) = c1(OP(E)(−1)) cr−k−2(Q) + cr−k−1(Q),
p∗cr−k−2(E∨) = c1(OP(E∨)(−1)) cr−k−3(Q) + cr−k−2(Q),

...

p∗c2(E∨) = c1(OP(E∨)(−1)) c1(Q) + c2(Q),
p∗c1(E∨) = c1(OP(E∨)(−1)) + c1(Q).

Multiplying the i-th identity above by ci−1
1 (OP(E∨)(−1)) we get

p∗cr−k−1(E∨) = c1(OP(E∨)(−1)) cr−k−2(Q) + cr−k−1(Q),

p∗cr−k−2(E∨) c1(OP(E∨)(−1)) = c2
1(OP(E)(−1)) cr−k−3(Q)

+ c1(OP(E∨)(−1)) cr−k−2(Q),
...

p∗c1(E∨) cr−k−2
1 (OP(E∨)(−1)) = cr−k−1

1 (OP(E∨)(−1))

+ cr−k−2
1 (OP(E∨)(−1)) c1(Q).

Taking alternating sum eliminates the Chern classes of Q, resulting in:

r−k−1∑
i=1

(−1)i−1p∗ci(E∨) cr−k−i−1
1 (OP(E∨)(−1)) = cr−k−1

1 (OP(E∨)(−1))

+ (−1)r−k−2cr−k−1(Q)

which is equivalent to

r−k−1∑
i=0

(−1)ip∗ci(E∨) cr−k−i−1
1 (OP(E∨)(−1)) = (−1)r−k−1cr−k−1(Q)

and is also equivalent to

r−k−1∑
i=0

p∗ci(E∨) cr−k−i−1
1 (OP(E∨)(1)) = cr−k−1(Q).
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We shall mainly be interested in the case r = rankE = dim X = n = 2.
The Lemma in the general form here should be of great interest in higher
dimension as well.

Let ∆0 = 1, ∆1 = −c1(E∨) and define inductively, for j = 2, . . . , n+r−1 =
dimP(E∨):

∆j = ∆j(E∨) = −
j∑

i=1

∆j−i · ci(E∨)(1.2)

where it is understood that ci(E∨) = 0 for i > min{r = rank E∨, n = dimX}.
The ∆i’s are polynomials in the Chern classes of E∨. The first few polynomials
are explicitly given by:


∆2 = −∆1 c1(E∨) − ∆0 c2(E∨) = c2

1(E∨) − c2(E∨),
∆3 = −∆2 c1(E∨) − ∆1 c2(E∨) − ∆0 c3(E∨)

= −c3
1(E

∨) + 2c1(E∨) c2(E∨) − c3(E∨),
∆4 = c4

1(E
∨) − 3c2

1(E
∨) c2(E∨) + 2c1(E∨) c3(E∨) + c2

2(E
∨) − c4(E∨),

etc. ...

Proposition 1.4. Let p : P(E∨) → X be the projectivized vector bundle
where rank E = r ≥ 2 over a complex manifold X of dimension n. If r ≤ n
then the following intersection formulas hold:

cr+j−1
1 (OP(E∨)(1)) · p∗D1 · · · p∗Dn−j = ∆j+1 · D1 · · ·Dn−j

for j = 0, 1, . . . , n and for any divisors D1, . . . , Dn in X. In particular, we
have:

cr+n−1
1 (OP(E∨)(1)) > 0 ⇔ ∆n > 0.

Proof. Note that the dimension of P(E∨) is n + r − 1 and the dimension
of a fiber, P(E∨)x, is n = r − 1 and since the bundle OP(E∨)(1)|P(E∨)x is
isomorphic to OPr−1(1), we have:∫

P(E∨)x

cr−1
1 (OP(E∨)(1))|P(E∨)x) = 1.

This implies that

cr−1
1 (OP(E∨)(1)) · p∗D1 · · · p∗Dn = D1 · · ·Dn = ∆0 · D1 · · ·Dn.(1.3)

For simplicity of notation write H for OP(E∨)(1). If r ≤ n, we get by Lemma
1.3:

cr
1(H) + cr−1

1 (H).p∗c1(E∨) + cr−2
1 (H).p∗c2(E∨) + · · · + p∗cr(E∨) = 0.(1.4)
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Multiplying the above by p∗D1, . . . , p
∗Dn−1 we get

cr
1(H) · p∗D1 · · · p∗Dn−1 + cr−1

1 (H) · p∗c1(E∨) · p∗D1 · · · p∗Dn−1 = 0

as the rest of the terms vanish for dimension reason. By (1.3) and the definition
of ∆1 we get from the preceding identity

cr
1(H) · p∗D1 · · · p∗Dn−1 = −cr−1

1 (H) · p∗c1(E∨) · p∗D1 · · · p∗Dn−1

= cr−1
1 (H) · p∗∆1 · p∗D1 · · · p∗Dn−1(1.5)

= ∆1 · D1 · · ·Dn−1.

Multiplying (1.4) by c1(H) yields:

cr+1
1 (H) = −cr

1(H) · p∗c1(E∨) − · · · − cr+1−n
1 (H) · p∗cn(E∨)

hence

cr+1
1 (H) · p∗D1 · · · p∗Dn−2

= −(
cr
1(H) · p∗c1(E∨) + cr−1

1 (H) · p∗c2(E∨)
) · p∗D1 · · · p∗Dn−2

as the rest of the terms vanish, again, for dimension reason. By (1.3), (1.5) and
the definition of ∆2, we get

cr+1
1 (H) · p∗D1 · · · p∗Dn−2

= −(
cr
1(H) · p∗c1(E∨) + cr−1

1 (H) · p∗c2(E∨)
) · p∗D1 · · · p∗Dn−2

= −(
∆1 · c1(E∨) + ∆0 · c2(E∨)

) · D1 · · ·Dn−2

= ∆2 · D1 · · ·Dn−2.

Inductively, we have

cr+j−1
1 (H) · p∗D1 · · · p∗Dn−j

= −{cr+j−1
1 (H) · p∗c1(E∨) + · · · + cr−1

1 (H) · p∗cj(E∨)} · p∗D1 · · · p∗Dn−2

= −{∆j−1 · c1(E∨) + ∆j−2 · c2(E∨) + · · · + ∆0 · c3(E∨)} · D1 · · ·Dn−j

= ∆j · D1 · · ·Dn−j

for j ≤ n. In particular, we get cr+n−1
1 (H) = ∆n and the assertion of the

Proposition follows.

If rank E = dim X = 2 we obtain from the preceding Proposition the
following intersection formulas on P(E∨):


c1(OP(E∨)(1)) · p∗D · p∗D′

= D · D′
,

c2
1(OP(E∨)(1)) · p∗D = ∆1 · D = −c1(E∨) · D = c1(E) · D,

c3
1(OP(E∨)(1)) = ∆2 = c2

1(E∨) − c2(E∨) = c2
1(E) − c2(E),

(1.6)

where D and D
′
are divisors in X. We have c1(E) = −c1(E∨) and, for a rank

2 bundle, E ∼= (detE) ⊗ E∨ (equivalently, E∨ ∼= (detE∨) ⊗ E) hence

c2(E) = c2((detE) ⊗ E∨) = c2
1(E) + c1(E)c1(E∨) + c2(E∨) = c2(E∨).

Thus c2
1(E) − c2(E) = c2

1(E
∨) − c2(E∨).
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Theorem 1.5 (Riemann-Roch). Let E be a holomorphic vector bundle
of rank r = 2 over a compact surface X with c2

1(E) > c2(E). Then χ(symmE) =
O(m3).

Proof. By Grothendieck’s isomorphism χ(symmE) = χ(OP(E∨)(m)).
Since rank of E = r = 2 and X is of dimension n = 2, it is clear that
dim P(E∨) = r + n − 1 = 3 hence Riemann-Roch implies that

χ(OP(E∨)(m)) =
c3
1(OP(E∨)(1))

3!
m3 + O(m2).

By Proposition 1.4, c3
1(OP(E∨)(1)) = ∆2 = c2

1(E)− c2(E) > 0 and the Theorem
follows.

Theorem 1.6 (Bogomolov). Let E be a holomorphic vector bundle of
rank r = 2 over a compact surface X satisfying the conditions (i) c2

1(E) > c2(E)
and (ii) there exists a positive integer m0 such that K−1

X ⊗(detE)m0 is effective.
Then E is big, namely,

h0(X, symmE) = dim H0(X, symmE) = O(m3).

Proof. By Riemann-Roch we have

h0(symmE) + h2(symmE) ≥ χ(symmE) = O(m3).

This implies that either

h0(symmE) = O(m3) or h2(symmE) = O(m3).

We are done if the first alternative holds. We use Serre’s Duality to deal with
the second alternative above:

h2(symmE) = h0(KX ⊗ symmE∨).

Recall that

E∨ ∼= (detE∨) ⊗ E

hence

symmE∨ ∼= (detE∨)m ⊗ symmE

and so under the second alternative

h0(KX ⊗ (detE∨)m ⊗ symmE) = h2(symmE) = O(m3).

By the second assumption the sheaf (detE)m0 ⊗ K−1
X admits a non-trivial

section σ hence we have, for any positive integer λ, an injection:

0 → H0(KX ⊗ (detE∨)λm0 ⊗ symλm0E) ⊗σλ

−→ H0(symλm0E), ω �→ ω ⊗ σλ.
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Thus h0(symλm0E) ≥ h0(KX ⊗(detE∨)λm0) which implies the first alternative
holds, namely, h0(symmE) = O(m3).

2. Big and spanned bundles

Let V be a vector space of dimension N and denote by VX = X × V the
trivial bundle over X. A vector bundle E of rank r ≥ 2 is spanned if it is a
quotient of VX for some V , i.e., we have a surjection VX → E → 0. This gives
an injection

0 → P(E∨) ι→ P(V ∨
X ) = X × P(V ∨).(2.1)

Note that the restriction of ι to a fiber P(E∨
x ) over a point x ∈ X is an injection

of P(E∨
x ) into {x} × P(V ∨). Define a map

φ = p2 ◦ ι : P(E∨) → P(V ∨)(2.2)

by taking the composite of the projection p2 : X × P(V ∨) → P(V ∨) = P
N−1

with the injection map ι. Note that φ injects a fiber P(E∨
x ) into P(V ∨). By

construction, we have

OP(E∨)(1) = φ∗OP(V ∨)(1).(2.3)

For a point x ∈ X the fiber Ex is a quotient of the vector space V or, equiva-
lently, P(E∨

x ) is a linear subspace of P(V ∨). For a point [v] ∈ P(V ∨) consider
the set

Z[v] = {x ∈ X | [v] ∈ P(E∨
x )}.(2.4)

It is well-known that:

Lemma 2.1. Let E be a rank r ≥ 2 vector bundle over a projective va-
riety. Assume that E is spanned. Then the following conditions are equivalent:

(a) E is ample,
(b) the map φ is finite,
(c) #Z[v] < ∞ for all [v] ∈ P(V ∨).

Theorem 2.2. Let E be a rank 2 vector bundle over a non-singular
compact complex surface X. Assume that E is spanned, c2

1(E)− c2(E) > 0 and
det E is ample. Then E is ample.

Proof. Since c2
1(E) − c2(E) > 0 and detE is ample the assumptions of

Bogomolov’s Theorem are satisfied hence E is big. Gieseker’s Lemma (see
Gieseker [12]) implies that, if E were non-ample, there exists an effective irre-
ducible curve C in X such that E|C admits a trivial quotient. Indeed the trivial
quotient is constructed as follows. Since E is spanned we have a surjection:

X × V
ev−→ E → 0, (x, σ) �→ σ(x)
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via the evaluation map and V = H0(X, E). By the preceding proposition E
is not ample if and only if the associate map φ in (2.2) is not finite. This
is equivalent to saying that there is an effective irreducible curve C̃ in P(E∨)
which is contracted, via φ, to a point [v0] ∈ P(V ∨). By (2.3) we have

OP(E∨)(1)|C̃ = φ∗(OP(V ∨)(1))[v0]

where the right hand side, being the pull-back of a single fiber of φ, is a trivial
bundle over C̃. Since OP(E∨)(1) is a quotient of p∗E,OP(E∨)(1)|C̃ is a trivial
quotient of p∗E|C̃ . Since φ is an injection of a fiber P(Ex) into P(V ∨), the
curve C̃ cannot be contained in a fiber of p : P(E∨) → X. Thus p(C̃) = C is a
curve in X. Moreover, the injectivity of φ implies that p|C̃ is an isomorphism.
This yields a trivial quotient p∗OP(E∨)(1)|C̃ of p∗(p∗E|C) = E|C .

Since OP(E∨)(1)|C̃ is a trivial quotient of p∗E|C̃ , we have c1(OP(E∨)(1)|C̃) =
0. Consider the surface p−1(C) in P(E∨). This is a P1-bundle over C containing
C̃. The Chern number c2

1(OP(E∨)(1)|p−1(C)) is computed via Proposition 1.4
(see formula (1.6)):

c2
1(OP(E∨)(1)|p−1(C)) = c2

1(OP(E∨)(1)) · p∗C = ∆1 · C = c1(E) · C.

The condition that det E is ample implies that c1(E) · C > 0 thus E|C is big
(and spanned as E is spanned). By the vanishing theorem of Kawamata-Vieweg
(see [11]) H1(C, E|C) = 0. Let Q be the trivial quotient of E|C (i.e., Q ∼= OC)
then H1(C, Q) = 0 as there is a surjection H1(C, E|C) → H1(C, Q) → 0. Since
deg Q = 0, Riemann-Roch implies that

H0(C,OC) = H0(C, Q) = H0(C, Q) − H1(C, Q) = 0

which is absurd. Thus E must be ample.

By a (complex) Finsler metric (see [1] or [3] for more details) on a holo-
morphic vector bundle E we mean a non-negative function h on E with the
following properties:

(FM1) h is an upper semi-continuous function on E;
(FM2) h(z, λv) = |λ|h(z, v) for all λ ∈ C and (z, v) ∈ Ez;
(FM3) h(z, v) > 0 on E \ {zero − section};
(FM4) for z and v fixed the function h2(z, λv) is smooth even at λ = 0.

For example the Kobayashi metric on a hyperbolic manifold is a Finsler met-
ric on the tangent bundle. More generally, any intrinsic (i.e., depending only
on the complex structure) (pseudo)-metric of a complex manifold is a Finsler
(pseudo)-metric (i.e.,(FM3) is replaced by the weaker condition h(z, v) ≥ 0 on
E). Obviously the norm of a Hermitian metric on E is Finsler and satisfies,
among others, the following additional conditions:

(FM5) h is of class C0 on E and of class C∞ on E \ {zero-section};
(FM6) h is strictly pseudoconvex on Ez \ {0} for all z ∈ M .

This last two properties are, in general, not shared by the intrinsic metrics.
There are many Finsler metrics with these additional properties which are not
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Hermitian. With these conditions the mixed holomorphic bisectional curvature
of E can be defined (see [3]). The term “mixed” refers to the fact that we
shall be considering curvature in two directions: one in the space direction and
the other in the fiber direction. If E is the tangent bundle and h a Hermitian
metric this coincides with the usual notion of holomorphic bisectional curvature
as introduced by Goldberg (see [17]). The significance of Finsler metric is the
following characterization of ample vector bundles (see [3]):

Theorem 2.3. Let E be a rank r ≥ 2 holomorphic vector bundle over
a compact complex manifold M . Then E is ample if and only if there exists
a Finsler metric along the fibers of E∨ with negative mixed holomorphic bisec-
tional curvature.

Theorem 2.2 and Theorem 2.3 imply the following result:

Corollary 2.4. Let E be a rank 2 vector bundle over a non-singular
compact complex surface X. Assume that E is spanned, c2

1(E) − c2(E) > 0
and det E is ample, then E admits a Finsler metric along the fibers of E∨ with
negative mixed holomorphic bisectional curvature. In particular, if E = T ∗X
is the cotangent bundle then the preceding conditions imply that TX admits
a Finsler metric along the fibers of TX with negative holomorphic bisectional
curvature.

If a Finsler metric on the tangent bundle is of negative holomorphic bisec-
tional curvature then it is also of negative holomorphic sectional curvature (see
[1]). It is well-known that the existence of a Finsler metric with holomorphic
sectional curvature imples that the variety is Kobayashi hyperbolic (see [1],
[19], [20], [23]). Thus we have

Corollary 2.5. Let X be a non-singular compact complex surface. As-
sume that T ∗X is spanned, c2

1(T ∗X) − c2(T ∗X) > 0 and that the canonical
bundle detT ∗X = KX is ample. Then X is Kobayashi hyperbolic.

3. Complements of curves

The main references of this sections are [8], [15], [16], [21]. For applications
related to this section see [9], [10].

The logarithmic cotangent bundle T ∗X(log D), with log-pole along a divi-
sor D, is defined for any divisor of simple normal crossings in a smooth variety
X. By simple normal crossings we mean

(i) each irreducible component Di of D is smooth;
(ii) for any point x ∈ D there exists a coordinate neighborhood

(U, t1, . . . , tn) of x such that U ∩ D = {z ∈ U | t1(z) · · · tk(z) = 0}, 1 ≤ k ≤ n.
The second condition means that the components {Di} intersect transversally.
The number k in (ii) is the intersection number at x, i.e., #{i | x ∈ Di} = k.
This number shall be referred to as the crossing number at x. A local section
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ω ∈ H0(U, T ∗X(log D)) is (just as in the case of hyperplanes) of the form

k∑
i=1

ai(z)
dti
ti

+
∑

j≥k+1

bj(z)dtj

where ai and bj are regular functions on U .

In the preceding section we obtained results concerning the bisectional cur-
vature of certain projective surfaces. Differential geometers are also interested
in non-compact manifolds. Our results in the preceding sections are valid for
general vector bundles E not merely for the cotangent bundle. This is not just
for the sake of generality. In fact, if we take E = T ∗X(log C) (the logarithmic
cotangent bundle) where C is a curve in X with simple normal crossings then
what we obtained in section 2 are results concerning the existence of Finsler
metric on the quasi-projective surfaces X \ C with negative bisectional curva-
ture. The fact that we are using the cotangent sheaf with log-poles along C
means that the metric blows up along C which means that the metric is com-
plete on X \ C. Under this situation Theorem 2.2 maybe restated as follows:

Theorem 3.1. Let X be a non-singular compact complex surface and
let C be a curve in X with simple normal crossings. Assume that the logarithmic
cotangent bundle E = T ∗X(log C) is spanned, c2

1(E) − c2(E) > 0, and the
logarithmic canonical bundle detE = KX + C is ample. Then X \ C admits
a complete Finsler metric with negative holomorphic bisectional curvature. In
particular, X \ C is Kobayashi hyperbolic.

We proceed to construct examples satisfying the conditions of Theorem
3.1. First we deal with the “spanned” condition.

Let H =
∑n

i=0 Hi = [z0 · · · zn = 0] be the union of the coordinate hyper-
planes in Pn. Denote by EH = T ∗Pn(log H) the logarithmic cotangent bundle
with poles along the coordinate hyperplanes. The logarithmic cotangent bun-
dle can be described in terms of its presheaf of local sections as follows. Let U
be an open set. Then U ∩ H = {zi1 · · · zik

= 0} for some 1 ≤ k ≤ n. The local
sections of EH over U (H0(U, EH)) are of the form:

∑
i∈I

ai(z)
dti
ti

+
∑
j∈J

bj(z)dtj(3.1)

where I ∩ J = ∅, I ∪ J = {1, . . . , n}, ai and bj are regular functions on U . A
section is said to vanish at a point z if ai(z) = bj(z) = 0 for all i, j.

Lemma 3.2. Let H =
∑n

i=0 Hi = [z0 · · · zn = 0]. Then the bundle
EH = T ∗Pn(log H) is spanned.

Proof. There is no loss of generality in assuming that ij = j for j =
1, . . . , k in the remark preceding the Lemma. We may take ti = zi/z0, i =



�

�

�

�

�

�

�

�

Bisectional curvature of complements of curves in P
2 613

1, . . . , n to be a local coordinate system on U . The logarithmic 1-forms{
ωi = d log ti =

dti
ti

= d log
zi

z0
, i = 1, . . . , n

}

are globally defined regular sections of EH because ti = zi/z0, 1 ≤ i ≤ n, are
globally defined rational functions and each dti/ti is of logarithmic type with
simple poles along [zi = 0] and [z0 = 0]. Since t1, . . . , tn is a local coordinate
system on Pn \ [z0 = 0] it is clear that ωi are linearly independent. Note that
for any i �= j,

d log(zi/zj) = d log(ziz0/z0zj) = d log(zi/z0) − d log(zj/z0) = dti/ti − dtj/tj .

Since rank EH = n this shows that the bundle EH is spanned.

The following simple general result is often useful.

Lemma 3.3. Let f : X → Y be a holomorphic surjective map between
complex varieties. Let π : E → Y be a holomorphic vector bundle over Y . If E
is spanned then the pull-back f∗E is also spanned.

Proof. By definition

f∗E = {(x, v) ∈ X × E | π(v) = f(x)},
i.e., the fiber (f∗E)x over x ∈ X is identified with the fiber Ey over y = f(x).
If E is spanned then, for any v ∈ Ey there exists σ ∈ H0(Y, E) such that
σ(y) = v. The pull-back f∗(σ) is a global section of f∗E. By definition,
f∗σ(x) = (x, v) ∈ f∗E if y = f(x). Thus f∗E is spanned.

Let D = D0 + D1 + · · · + Dn be a divisor in Pn with smooth irreducible
components Di in simple normal crossings. Assume that deg Di = d ≥ 1 for
all i. Let Di = [Pi = 0] where Pi(z0, . . . , zn) is a homogeneous polynomial of
degree d = deg Di. Then the map

f = [P0, P1, . . . , Pn] : P
n → P

n

is a well-defined holomorphic map. It is well-defined because each component
is homogeneous of the same degree. It is holomorphic because D is of simple
normal crossings hence, for any x ∈ D there exists i such that x �∈ Di, i.e.,
Pi(x) �= 0. This shows that P0, P1, . . . , Pn have no common zeros hence f is
holomorphic. Indeed,

f∗([zi = 0]) = Di

where zi = 0 is the i-th coordinate hyperplane. Thus the map

F = (P0, P1, . . . , Pn) : C
n+1 \ {0} → C

n+1 \ {0}
is a well-defined holomorphic map with

f ◦ π = π ◦ F,
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where π : Cn+1 \ {0} → Pn is the Hopf fibration. The Jacobian determinant

JF = det




∂P0/∂z0 ∂P0/∂z1 . . . ∂P0/∂zn

∂P1/∂z0 ∂P1/∂z1 . . . ∂P1/∂zn

. . . . . .

. . . . . .

. . . . . .
∂Pn/∂z0 ∂Pn/∂z1 . . . ∂Pn/∂zn




(3.2)

is a homogeneous polynomial of degree (d−1)(n+1). If d = 1 then [JF = 0] is
empty, otherwise it is a well-defined divisor of degree (d − 1)(n + 1) in Pn. By
Lemma 3.3 the pull-back bundle f−1(T ∗Pn(log H)) is spanned. Since f∗(H) =
D where H = H0 + H1 + · · · + Hn is the union of the coordinate hyperplanes
we verify readily that, for any ω ∈ H0(Pn, T ∗Pn(log H)), the pull-back of ω via
f is a regular 1-form with logarithmic singularity along D, i.e., a global section
of T ∗Pn(log D)). Indeed, f−1(T ∗Pn(log H)) is isomorphic to T ∗Pn(log D) on
the complement of the divisor [JF = 0]. Thus we have,

Corollary 3.4. Let D = D0 + D1 + · · · + Dn be a divisor in Pn with
irreducible components Di in simple normal crossings. If deg Di = d for all i
then the restriction of T ∗Pn(log D) to Pn \ [JF = 0] is spanned, where JF is
given by (3.2).

Suppose now that D = D0 + · · · + Dn + Dn+1 + · · · + Dn+k is a divisor
with n + 1 + k (k ≥ 1) irreducible components in simple normal crossings.
Assume that each component Di = [Pi = 0] where Pi(z0, . . . , zn) is a homoge-
neous polynomial of degree d = deg Di. Let I = (i0, . . . , in) be any subset of
{0, 1, . . . , n + k} consisting of n + 1 distinct elements. Then the map

fI = [Pi0 , Pi1 , . . . , Pin
] : P

n → P
n

is a well-defined holomorphic map. The preceding Corollary implies that the
restriction of T ∗

P
n(log D) to P

n \ [JFI = 0] is spanned where JFI is the
Jacobian of the map FI = (Pi0 , Pi1 , . . . , Pin

).

Corollary 3.5. Let D = D0 + D1 + · · · + Dn+k, k ≥ 1, be a divisor in
Pn with irreducible components Di in simple normal crossings and deg Di = d
for all i. Assume that

∩I [JFI = 0] = ∅
where I ranges over all subsets of {0, 1, . . . , n + k} consisting of n + 1 distinct
elements. Then the bundle T ∗Pn(log D) is spanned.

Proof. This is clear as the condition ∩I [JFI = 0] = ∅ implies that ev-
ery point x ∈ Pn is contained in Pn \ JFI for some I and the restriction of
T ∗Pn(log D) to Pn \ [JFI = 0] is spanned.

Now we consider the case of a surface X and C = C1 + · · · + Cq a divisor
in X with irreducible components Ci, i = 1, . . . , q. Assume that C is of simple
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normal crossings. In particular this implies that each component is smooth and
Ci �= Cj if i �= j. Denote by E = T ∗X(log C) the logarithmic cotangent bundle.
The logarithmic Chern numbers c̄1 = c1(E) = c1(KX +C) (as detE = KX +C
is the logarithmic canonical bundle) and c̄2 = c2(E) are defined and are given
by the following formulas (for more details see [21] and [10] in which more
general situations are considered):{

c̄2
1 = (c1(KX + C))2,

c̄2 = 3 − ∑q
i=1(2 − 2g(Ci)) +

∑
1≤i<j≤q CiCj ,

(3.3)

where g(Ci) is the genus of Ci.

Take X = P2 and assume, without loss of generality, that d1 ≤ d2 ≤ ... ≤
dq. Then

c̄1 =
q∑

i=1

di − 3

hence

detE is ample if and only if deg C =
q∑

i=1

di ≥ 4.(3.4)

Using the genus formula, we get from (3.3)

c̄2 = 3 − 2q +
q∑

i=1

(di − 1)(di − 2) +
∑

1≤i<j≤q

didj

= 3 +
q∑

i=1

d2
i +

∑
1≤i<j≤q

didj − 3
q∑

i=1

di

so that

c̄2
1 − c̄2 =

∑
1≤i<j≤q

didj − 3
q∑

i=1

di + 6(3.5)

By a direct verification using the preceding formula we have:

Theorem 3.6. Let C = C1 + · · · + Cq be a curve, of simple normal
crossings, in P2 with irreducible components Ci of degree di for 1 ≤ i ≤ q.
Assume that KP2 + C is ample. Then c̄2

1 − c̄2 > 0 if and only if one of the
following cases hold:



q ≥ 5 : 1 ≤ d1 ≤ d2 ≤ · · · ≤ dq,

q = 4 : (i) d1 = d2 = 1, 2 ≤ d3 ≤ d4, (ii) d1 = 1, 2 ≤ d2 ≤ d3 ≤ d4,

(iii) 2 ≤ d1 ≤ d2 ≤ d3 ≤ d4,

q = 3 : (i) d1 = 1, d2 = 3, 4 ≤ d3, (ii) d1 = 1, 4 ≤ d2 ≤ d3,

(iii) d1 = d2 = 2, 3 ≤ d3, (iv) d1 = 2, 3 ≤ d2 ≤ d3,

(v) 3 ≤ d1 ≤ d2 ≤ d3,

q = 2 : (i) d1 = 4, 7 ≤ d2, (ii) 5 ≤ d1 ≤ d2.
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Proof. If q = 1 then ∆1 = −3(d1 − 2) hence ∆1 > 0 if and only if d1 = 1.
This case is eliminated by the condition that KP2 + C is ample.

If q = 2 then ∆2 = c̄2
1 − c̄2 = d1d2 − 3(d1 + d2) + 6. If d1 = 1 then

∆2 = −3d1 − 2d2 + 6. The ampleness of KP2 + C is equivalent to 1 + d2 =
d1 +d2 ≥ 4 or equivalently, d2 ≥ 4 but then ∆2 = −3−2d2 +6 = −2d2 +3 < 0.
Thus the case d1 = 1 is eliminated. If d1 = 2 then d2 ≥ d1 ≥ 2 hence
∆2 = −3d1 − d2 + 6 = −d2 is strictly negative. Thus the case d1 = 2 is also
eliminated. Analogously, if d2 ≥ d1 = 3 then ∆2 = −3d1 + 6 = −3 < 0 hence
this case is also eliminated. If d2 ≥ d1 = 4 then ∆2 = −3d1 + d2 + 6 = d2 − 6
which is strictly positive if and only if d2 ≥ 7. If d2 ≥ d1 = 5 + k ≥ 5 then
∆2 = −3d1 + (2 + k)d2 + 6 = (2 + k)d2 − 9 which is strictly positive if and only
if d2 ≥ d1.

If q = 3 then ∆3 = c̄2
1− c̄2 = d1d2+d2d3+d3d1−3(d1+d2+d3)+6 = ∆2+

d2d3+d3d1−3d3 = ∆2+(d1+d2−3)d3 where ∆2 = d1d2−3(d1+d2)+6. Thus,
if d3 ≥ d2 ≥ d1 = 1 then ∆3 = −2d2+3+(d1+d2−3)d3 = −2d2+3+(d2−2)d3

which is ≤ ∆2 if d2 ≥ 2. Thus the cases (d1 = 1, d2 ≤ 2, d2 ≤ d3) are eliminated.
If d3 ≥ d2 ≥ d1 = 2 then ∆3 = −d2 + (d1 + d2 − 3)d3 = −d2 + (d2 − 1)d3 which
is ≤ 0 if and only if (d3 − 1)d2 ≤ d3 if and only if d2 = d3 = 2. Thus only
the case d1 = d2 = d3 = 2 is eliminated. If d3 ≥ d2 ≥ d1 = 3 + k ≥ 3 then
∆3 = −3(3 + k) + kd2 + 6 + d2d3 = (d2 − 3)k − 3 + d2d3 ≥ −3 + d2d3 > 0.

If q = 4 then ∆4 = c̄2
1 − c̄2 = ∆3 + (d1 + d2 + d3 − 3)d4 where ∆3 =

d1d2+d2d3+d3d1−3(d1+d2+d3)+6. Thus ∆4 ≥ ∆3 unless d1 = d2 = d3 = 1.
Thus we must eliminate the cases d4 ≥ d3 = d2 = d1 = 1. If d3 = 2 + k ≥ 2
then (d1 + d2 + d3 − 3)d4 ≥ (d1 + d2 − 1 + k)d4 ≥ 2(d1 + d2 − 1 + k) and
∆3 = d1d2+(2+k)d2+(2+k)d1−3(d1+d2+2+k)+6 = d1d2−(1−k)(d1+d2).
Thus ∆4 ≥ d1d2 + (1 + k)(d1 + d2) − 2 − k > 0 for all k ≥ 0.

If q = 5 then ∆5 = c̄2
1 − c̄2 = ∆4 + (d1 + d2 + d3 + d4 − 3)d5 where

∆4 = d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4 − 3(d1 + d2 + d3 + d4) + 6. For
d5 ≥ d4 ≥ d3 ≥ d2 ≥ d1 ≥ 1, ∆5 > ∆4. Thus ∆5 > 0 if ∆4 > 0 and so all the
cases that work for q = 4 certainly work for q = 5. The only remaining cases to
be checked are d3 = d2 = d1 = 1. In these cases ∆4 = 3+3d4−3(3+d4)+6 = 0
hence ∆5 > 0 even in these cases.

It is clear that ∆q > 0 for q ≥ 6.

Remark 3.7. If we drop the ampleness condition on KP2 + C in the
preceding theorem then there are two more cases: (a) q = 1, d1 = 1 and
(b) q = 2, d1 = d2 = 1.

Remark 3.8. It is convenient to list all the cases violating Theorem
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3.6:

q = 2 q = 3 q = 4 q ≥ 5
(1,≥ 2) (1, 1,≥ 1) (1, 1, 1,≥ 1) none
(2,≥ 2) (1, 2,≥ 2)
(3,≥ 3) (1, 3, 3)
(4, 4) (2, 2, 2)
(4, 5)
(4, 6)

Corollary 3.9. Let C = C1 + · · · + Cq be any of the curves in the list
below: {

q ≥ 5 : 1 ≤ d1 = d2 = · · · = dq,

q = 4 : 2 ≤ d1 = d2 = d3 = d4.

Assume that ∩[JFI = 0] = ∅ where I ranges over all subsets of {1, 2, . . . , q}
consisting of 3 distinct elements. Then there exists a complete Finsler metric on
T ∗(P2 \C) with holomorphic bisectional curvature ≤ −c2 where c is a constant.

Proof. Any curve C in the list of Theorem 3.6 has the property that
the bundle E = T ∗P2 \ C satisfies the conditions of Theorem 2.2 except for
“spannedness”. This last condition is satisfied, via Corollary 3.5, under the
assumption that ∩[JFI = 0] = ∅. The existence of a Finsler metric on T ∗(P2 \
C) with holomorphic bisectional curvature ≤ −c2, where c is a constant, is
guaranteed by Theorem 2.2. By [3] this metric is constructed as follows. Since
E is ample there exists a positive integer m such that symmE is very ample.
Let ω0, ..., ωN be a basis of H0(X, symmE). Then

N∑
i=0

|ωi|2/m

is the desired Finsler metric. Since E = T ∗X(log C) the metric blows up along
C and completeness follows.

Example 3.10. Let Q0 = z2
0 , Q1 = z2

1 , Q2 = z2
2 and

Q3 =
2∑

i,j=0

aijzizj

with aij = aji. The coefficients of Q3 are chosen such that the linear forms:

L0 =
2∑

j=0

a0jzj , L1 =
2∑

j=0

a1jzj , L2 =
2∑

j=0

a2jzj
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are linearly independent and aij �= 0 for all i, j. The linearly independent
condition is equivalent to the condition that the hyperplanes [L0 = 0], [L1 =
0], [L2 = 0] have no common zero. It is clear that a general quadrics satisfies
these conditions. Let Fi0i1i2 = (Qi0 , Qi1 , Qi2). Then the Jacobian determinant

JF012 = 8 det


z0 0 0

0 z1 0
0 0 z2


 = 8z0z1z2,

JF013 = 8 det


 z0 0 0

0 z1 0∑2
j=0 a0jzj

∑2
j=0 a1jzj

∑2
j=0 a2jzj


 = 8z0z1

2∑
j=0

a2jzj ,

JF032 = 8 det


 z0 0 0∑2

j=0 a0jzj

∑2
j=0 a1jzj

∑2
j=0 a2jzj

0 0 z2


 = 8z0z2

2∑
j=0

a1jzj ,

JF312 = 8 det




∑2
j=0 a0jzj

∑2
j=0 a1jzj

∑2
j=0 a2jzj

0 z1 0
0 0 z2


 = 8z1z2

2∑
j=0

a0jzj .

By the choice of Q3 we have

[JF012 = 0] ∩ [JF013 = 0] ∩ [JF032 = 0] ∩ [JF312 = 0] = ∅.(∗)

The configurations satisfying condition (∗) is Zariski open and, as was
demonstrated above, is non-empty. In particular, we may deform, obtaining:
Q0,t, Q1,t, Q2,t, Q3,t so that Qi,0 = Qi and Ci,t = [Qi,t = 0] is a smooth quadrics
for t �= 0 (|t| small), Ct = C0,t + C1,t + C2,t + C3,t is of simple normal crossings
and condition (∗) is satisfied for Ct.

Remark 3.11. The example can obviously be carried out for any de-
gree. Thus the condition “∩[JFI = 0] = ∅ where I ranges over all subsets of
{1, 2, . . . , q} consisting of 3 distinct elements” in Corollary 3.9 may be replaced
by requiring that the curve be general (meaning that the exceptional set is
Zariski closed and of strictly lower dimension) :

Let C = C1 + · · ·+ Cq be a general member of any of the curves in the list
below: {

q ≥ 5 : 1 ≤ d1 = d2 = · · · = dq,

q = 4 : 2 ≤ d1 = d2 = d3 = d4.

Then there exists a complete Finsler metric on T ∗(P2 \ C) with holomorphic
bisectional curvature ≤ −c2 where c is a constant.

Consider now the case of a smooth hypersurface X in P3 of degree a and
let Ci = X ∩ Yi, i = 1, . . . , q, be an irreducible smooth curve in X, where Yi

is a hypersurface of degree bi in P
3. Let C = C1 + C2 + · · · + Cq. The Euler
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numbers of X, Ci and C are given by the following formulas (see [10]):



e(X) = a(2 + (a − 2)2),
e(Ci) = a(4 − a − bi)bi,

e(C) =
∑q

i=1 e(Ci) −
∑

1≤i<j≤q Ci · Cj

(3.6)

where
∑

1≤i<j≤q Ci · Cj = abibj . Hence

e(C) = a


 q∑

i=1

(4 − a − bi)bi −
∑

1≤i<j≤q

bibj


 = a


(4 − a − b)b +

∑
1≤i<j≤q

bibj




(3.7)

where b =
∑q

i=1 bi. Let E = T ∗X(log C) and c̄i = ci(E). Then (by Sakai [21]):

c̄2
1 − c̄2 = c2

1(KX + C) − e(X) + e(C).

By the adjunction formula we have KX = OP3(a − 4)|X , hence KX + C =
OP3(a + b − 4)|X , which is ample if and only if a + b ≥ 5 and

c̄2
1 = c2

1(KX + C) = (detE)2 = a(a + b − 4)2, b =
q∑

i=1

bi.(3.8)

This together with (3.6) and (3.7) yield

c̄2
1 − c̄2 = a(a + b − 4)2 − a(2 + (a − 2)2) + a


(4 − a − b)b +

∑
1≤i<j≤q

bibj


 .

This shows that c̄2
1 − c̄2 > 0 if and only if

(a + b − 4)2 − (2 + (a − 2)2) +


(4 − a − b)b +

∑
1≤i<j≤q

bibj


 > 0.

This last inequality is equivalent to the condition that

(a − 4)(b − 4) − 6 +
∑

1≤i<j≤q

bibj > 0.

If a = 1 then X = P2, a case which was dealt with earlier. In the following a
q-tuple (b1, . . . , bq) represents the degrees of Yi, i = 1, . . . , q with the convention
that b1 ≤ b2 ≤ · · · ≤ bq.

Theorem 3.12. Under the assumptions above the condition c̄2
1− c̄2 > 0

is satisfied if and only if C is in the list below:
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I. a = 2


q ≥ 5 : all,
q = 4 : all except (1, 1, 1, 1),
q = 3 : (i) b1 = 1, 2 ≤ b2 ≤ b3, (ii) 2 ≤ b1 ≤ b2 ≤ b3,

q = 2 : (i) b1 = 3, b2 ≥ 5, (ii) 4 ≤ b1 ≤ b2.

II. a = 3 


q ≥ 5 : all,
q = 4 : all except (1, 1, 1, 1),
q = 3 : (i) b1 = b2 = 1, b3 ≥ 4,

(ii) b1 = 1, 2 ≤ b2 ≤ b3,

(iii) 2 ≤ b1 ≤ b2 ≤ b3,

q = 2 : (i) b1 = 2, b2 ≥ 5, (ii) 3 ≤ b1 ≤ b2.

III. a = 4


q ≥ 5 : all,
q = 4 : all except (1, 1, 1, 1),
q = 3 : (i) b1 = b2 = 1, b3 ≥ 3,

(ii) b1 = 1, 2 ≤ b2 ≤ b3,

(iii) 2 ≤ b1 ≤ b2 ≤ b3,

q = 2 : (i) b1 = 1, b2 ≥ 7, (ii) b1 = 2, b2 ≥ 4, (iii) 3 ≤ b1 ≤ b2.

IV. a ≥ 5


q ≥ 5 : all,
q = 4 : all except (1, 1, 1, 1),
q = 3 : (i) b1 = b2 = 1, b3 ≥ 3,

(ii) b1 = 1, 2 ≤ b2 ≤ b3,

(iii) 2 ≤ b1 ≤ b2 ≤ b3,

q = 2 : (i) b1 = 1, b2 >
3a − 6
a − 3

, (ii) b1 = 2, b2 ≥ 3, (iii) 3 ≤ b1 ≤ b2,

q = 1 : b1 >
4a − 10
a − 4

.

We omit the straight-forward verification. Note that all cases in the list
of the preceding theorem satisfies the condition that KX + C is ample because
a + b ≥ 5. We also have the analogue of Corollary 3.9 (Remark 3.11):

Corollary 3.13. Let X be a smooth hypersurface of degree a in P3 and
Ci = X ∩ Yi, i = 1, . . . , q, be an irreducible smooth curve in X where Yi is a
hypersurface of degree bi in P

3. Let C = C1 + · · · + Cq be a general member of
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any of the families of curves in the list below:{
q ≥ 5 : 1 ≤ b1 = b2 = · · · = bq,

q = 4 : 2 ≤ b1 = b2 = b3 = b4.

Then there exists a complete Finsler metric on T ∗(X \ C) with holomorphic
bisectional curvature ≤ −c2 where c is a constant.

4. The case where the components may have different degrees

Denote by MD(X)∗ (or simply M∗
D) the sheaf of germs of not identically

zero meromorphic functions on X with zeros and poles contained in a divisor
D in X. Given a local meromorphic function f ( �≡ 0) on an open neighborhood
U ⊂ M with zeros and poles contained in U ∩D, then d log f is a meromorphic
1-form on U with logarithmic poles in U ∩D. Thus d log(MD(M)∗) (or simply
d logM∗

D) is a subsheaf of T ∗X1(D)(= T ∗X ⊗ [D]) = the sheaf of germs of
meromorphic 1-forms with poles along D. It is immediate from the definition
that the following sequence is exact

0 → C
∗ → M∗

D
d log−→ d log(M∗

D) → 0

and we have the induced exact sequence of cohomology groups

0 → H0(X, C∗) → H0(X,M∗
D)

d log−→ H0(X, d logM∗
D) ∆−→ H1(X, C∗) → · · ·

(4.1)

Definition 4.1. The sheaf of germs of logarithmic 1-forms with poles
along an arbitrary divisor D, denoted by T ∗X1(log D), is by definition the sheaf
generated by d logMD(X)∗ over OX , i.e., it is the sheaf of germs of rational
1-forms of the type ∑

fiωi

where fi ∈ (OX)x and ωi ∈ (d logMD(X)∗)x.

The definition coincides with our earlier definition in the case where D is
of simple normal crossings. In fact the following result is known ([8], [15]):

Proposition 4.2. Let β : (X̂, D̂) → (X, D) be a succession of monodial
transformations with the properties that

(i) β∗ : X̂ \ D̂ → X \ D is biholomorphic;
(ii) D̂ is a divisor of simple normal crossings.

Then the induced maps

β∗ : H0(X, d logMD(X)∗)) → H0(X̂, d logMD̂(X̂)∗))

and

β∗ : H0(X, T ∗X(log D)) → H0(X̂, T ∗X(log D̂))

are isomorphisms.
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To extend the results in the preceding to the case where the components
of the divisor D (assumed to be simple normal crossings) may have different
degrees di, we need only the fact that for any rational function f ∈ H0(X,M∗

D)
the singularity of d log f is of log-type along D (otherwise regular). Hence we
have an injection

0 → H0(d logM∗
D) → H0(T ∗X1(log D)).

Let Di = [Pi = 0] where Pi(z0, . . . , zn) is a homogeneous polynomial of
degree di = deg Di. Let m be the least common multiple of d0, . . . , dn and let
m = dimi. Then deg Pmi

i = m and the map

f = [Pm0
0 , Pm1

1 , . . . , Pmn
n ] : P

n → P
n

is a well-defined holomorphic map. This is well-defined because each component
Pmi

i is homogeneous of the same degree m. It is holomorphic because D is of
simple normal crossings hence, for any x ∈ Pn there exists i such that x �∈ Di,
i.e., Pi(x) �= 0. This is equivalent to the condition that Pmi

i (x) �= 0. This shows
that Pm0

0 , Pm1
1 , . . . , Pmn

n have no common zeros hence f is holomorphic. By
Lemma 3.2, E = Pn(log H) (where H = [z0 = 0] + [z1 = 0] + · · · + [zn = 0]) is
spanned. Thus f∗E is also spanned. In fact ωi = dti/ti, ti = zi/z0, i = 1, . . . , n
span E. The pull back f∗ti = Pmi

i /Pm0
0 is an element of H0(Pn,M∗

D) hence
by the observation above,

f∗ωi = f∗d log ti ∈ H0(Pn, d logM∗
D) ⊂ H0(Pn, T ∗

P
n(log D)).

Thus we obtain as in section 2:

Corollary 4.3. Let D = D0 + D1 + · · · + Dn be a divisor in Pn with
irreducible components Di, of degree di, in simple normal crossings. Then the
restriction of T ∗Pn(log D) to Pn \ [JF = 0] is spanned where JF is given by

JF = det




∂Pm0
0 /∂z0 ∂Pm0

0 /∂z1 . . . ∂Pm0
0 /∂zn

∂Pm1
1 /∂z0 ∂Pm1

1 /∂z1 . . . ∂Pm1
1 /∂zn

. . . . . .

. . . . . .

. . . . . .
∂Pmn

n /∂z0 ∂Pmn
n /∂z1 . . . ∂Pmn

n /∂zn




,

a homogeneous polynomial of degree (m−1)(n+1) where m is the least common
multiple of d0, . . . , dn and m = dimi.

Theorem 4.4. Let X be a smooth hypersurface of degree a in P3 and
Ci = X ∩ Yi, i = 1, . . . , q, be an irreducible smooth curve in X where Yi is a
hypersurface of degree bi in P3. Let C = C1 + · · · + Cq be a general member of
any of the families of curves in the list below:
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(i) a = 1 


q ≥ 5 : 1 ≤ b1 ≤ b2 ≤ ... ≤ bq,

q = 4 : (i) b1 = b2 = 1, 2 ≤ b3 ≤ b4,

(ii) b1 = 1, 2 ≤ b2 ≤ b3 ≤ b4,

(iii) 2 ≤ b1 ≤ b2 ≤ b3 ≤ b4.

(ii) a = 2{
q ≥ 5 : 1 ≤ b1 ≤ b2 ≤ ... ≤ bq,

q = 4 : 1 ≤ b1 ≤ b2 ≤ b3 ≤ b4 except the case b1 = b2 = b3 = b4 = 1.

Then there exists a complete Finsler metric on T ∗(X \ C) with holomorphic
bisectional curvature ≤ −c2 where c is a constant.
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