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Abstract

Let X be a Calabi–Yau threefold fibred over P
1 by non-constant

semi-stable K3 surfaces and reaching the Arakelov–Yau bound. In [25],
X. Sun, Sh.-L. Tan, and K. Zuo proved that X is modular in a certain
sense. In particular, the base curve is a modular curve. In their result
they distinguish the rigid and the non-rigid cases. In [17] and [28] rigid
examples were constructed. In this paper we construct explicit exam-
ples in non-rigid cases. Moreover, we prove for our threefolds that the
“interesting” part of their L-series is attached to an automorphic form,
and hence that they are modular in yet another sense.

1. Introduction

Let X be an algebraic threefold and let f : X → P1 be a non-isotrivial
morphism whose fibers are semi-stable K3 surfaces. Let S ⊂ P1 be the finite
set of points above which f is non-smooth, and assume that the monodromy at
each point of S is non-trivial. Jost and Zuo [9] proved the Arakelov–Yau type
inequality:

degf∗ωX/P1 ≤ deg Ω1
P1(logS).

Let ∆ ⊂ X be the pull-back of S. Let ωX/P1 be the canonical sheaf.
The Kodaira–Spencer maps θ2,0 and θ1,1 are maps of sheaves fitting into the
following diagram:

f∗Ω2
X/P1(log ∆) θ2,0

→ R1f∗Ω1
X/P1(log∆) ⊗ Ω1

P1(log S)

θ1,1

→ R2 f∗OX/P1 ⊗ Ω1
P1(logS)⊗2.

The iterated Kodaira–Spencer map of f is defined to be the map θ1,1θ2,0.
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It is known (see [25]) that when the (iterated) Kodaira–Spencer map is 0,
one actually has the stronger inequality

degf∗ωX/P1 ≤ 1
2
degΩ1

P1(logS).

Assume from now on that X is a Calabi–Yau threefold. Then the triviality
of the canonical bundle implies that deg f∗ωX/P1 = 2 (see (3.2) below).

Recently X. Sun, S-L. Tan and K. Zuo [25] considered Calabi–Yau three-
folds for which the Arakelov–Yau inequality becomes equality. Thus S consists
of 6 points when the Kodaira–Spencer map is 0 and of 4 points otherwise.

As a consequence of the main theorem of [25], the following results were
obtained.

Theorem 1.1 ([25], Corollary 0.4). (i) If the iterated Kodaira–Spencer
map θ1,1θ2,0 of f is non-zero, then X is rigid (i.e., h2,1 = 0) and birational to
the Nikulin–Kummer construction of a symmetric square of a family of elliptic
curves f : E → P1. After passing to a double cover E′ → E (if necessary), the
family g′ : E′ → P1 is one of the six modular families of elliptic curves on the
Beauville’s list ([2]).

(ii) If the iterated Kodaira–Spencer map θ1,1θ2,0 of f is zero, then X is a
non-rigid Calabi–Yau threefold (i.e., h2,1 �= 0), the general fibers have Picard
number at least 18, and P1 \ S � H/Γ where Γ is a congruence subgroup of
PSL(2, Z) of index 24.

Remark. The base curve P1 \S is a modular variety of genus zero, i.e.,
H/Γ where Γ is a torsion-free genus zero congruence subgroup of PSL(2, Z) of
index 12 in case (i), and of index 24 in case (ii). In the paper of Sun, Tan and
Zuo [25], the word “modularity” refers to this fact.

The third cohomology of each of the six rigid Calabi–Yau threefolds in
Theorem 1.1 (i) arises from a weight 4 modular form. In the articles of Saito and
Yui [17] and of Verrill in Yui [28], these forms were explicitly determined. Saito
and Yui use geometric structures; while Verrill uses point counting method, to
obtain the results.

More precisely, the following was proved for the natural models over Q of
these six rigid threefolds:

Theorem 1.2 (Saito and Yui [17] and Verrill in Yui [28]). For each of
the six rigid Calabi–Yau threefold over Q, the L-series of the third cohomol-
ogy coincides with the L-series arising from the cusp form of weight 4 of one
variable on the modular group in the Beauville’s list. Beauville’s list and the
corresponding cusp forms are given in Table 1.

It might be helpful to recall the six rigid Calabi–Yau threefolds in Theorem
1.2. These six rigid Calabi–Yau threefolds are obtained (by Schoen [18]; see
also Beauville [2]) as the self-fiber products of stable families of elliptic curves
admitting exactly four singular fibers. The base curve is a rational modular
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Table 1. Rigid Calabi–Yau threefolds and cusp forms

Group Number of components Cusp forms
Γ of singular fibers of weight 4

Γ(3) 3, 3, 3, 3 η(q3)8

Γ1(4) ∩ Γ(2) 4, 4, 2, 2 η(q2)4η(q4)4

Γ1(5) 5, 5, 1, 1 η(q)4η(q5)4

Γ1(6) 6, 3, 2, 1 η(q)2η(q2)2η(q3)2η(q6)2

Γ0(8) ∩ Γ1(4) 8, 2, 1, 1 η(q4)16η(q2)−4η(q8)−4

Γ0(9) ∩ Γ1(3) 9, 1, 1, 1 η(q3)8

Here η(q) denotes the Dedekind eta-function: η(q) = q1/24
∏

n≥1(1 − qn) with
q = e2πiτ .

curve and correspond to the torsion-free genus zero congruence subgroups Γ of
PSL(2, Z) in Table 1. Note that the 4-tuples of natural numbers appearing in
the second column add up to 12, which is the index of the modular group Γ in
PSL(2, Z).

In [25] the authors indicate one example for the non-rigid extremal case.
It is related to Γ(4), which is a torsion-free congruence subgroup of genus 0
and index 24 in PSL(2, Z). The list of torsion-free congruence subgroups of
genus 0 and index 24 in PSL(2, Z) is known (see Sebbar [19], and Table 2). In
this paper we will show that most of them give rise to a similar collection of
examples. In each of these cases we will compute the interesting part of the
L-series of the third cohomology of an appropriate natural model over Q in
terms of automorphic forms.

This paper is organized as follows. In Section 2, we use work of Sebbar [19]
to determine the groups Γ corresponding to case (ii) of Theorem 1.2. These
are subgroups of PSL(2, Z), and associated to each PSL(2, Z)-conjugacy class
there is a natural elliptic fibration over the base curve, defined over Q. The
total spaces of these fibrations are elliptic modular surfaces in the sense of
Shioda [21]. Moreover each is an extremal K3 surface (namely their Picard
number is 20, the maximum possible). We explain the relation between the
motive of their transcendental cycles, and specific CM forms of weight 3 using
a result of Livné on orthogonal rank 2 motives in [14].

Section 3 contains our main results: we construct our examples, verify the
required properties, and analyze the interesting part of their cohomology. (See
the final Remark 3(2) for the other parts.) Then in Section 4 we give explicit
formulas for the weight 3 cusp forms and defining equations for the elliptic
fibrations of Section 2.

The paper is supplemented by the article of Hulek and Verrill [7] where
they treat Kummar varieties, one of which is the case associated to the modular
group Γ1(7). This case differs from the examples considered in our paper with
the main difference being the fact that the 2-torsion points do not decompose
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into four sections, leading to non-semi-stable fibrations. But it still gives rise
to a Calabi–Yau threefold (Theorem 2.2 of Hulek and Verrill [7]), and the
modularity question can still be considered, and this is exactly what Hulek and
Verrill deals with in the supplement [7] to this article.

2. Extremal congruence K3 surfaces

The torsion-free genus zero congruence subgroups of PSL(2, Z) of index
24 were classified in Sebbar [19]. There are precisely nine conjugacy classes of
such congruence subgroups.

The second column in the following Table 2 gives the complete list of the
torsion-free congruence subgroups of PSL(2, Z) of index 24 up to conjugacy.
Each has precisely 6 cusps. The third column in the table gives the widths of
these cusps.

Table 2. Torsion-free congruence subgroups of index 24

# The group Γ Widths of the cusps
1 Γ(4) 4, 4, 4, 4, 4, 4
2 Γ0(3) ∩ Γ(2) 6, 6, 6, 2, 2, 2
3 Γ1(7) 7, 7, 7, 1, 1, 1
4 Γ1(8) 8, 8, 4, 2, 1, 1
5 Γ0(8) ∩ Γ(2) 8, 8, 2, 2, 2, 2
6 Γ1(8; 4, 1, 2) 8, 4, 4, 4, 2, 2
7 Γ0(12) 12, 4, 3, 3, 1, 1
8 Γ0(16) 16, 4, 1, 1, 1, 1
9 Γ1(16; 16, 2, 2) 16, 2, 2, 2, 1, 1

Here

Γ1(8; 4, 1, 2) :=
{
±

(
1 + 4a 2b

4c 1 + 4d

)
, a ≡ c (mod 2)

}

and

Γ1(16; 16, 2, 2) :=
{
±

(
1 + 4a b

8c 1 + 4d

)
, a ≡ c (mod 2)

}
.

Remark 1. If we are interested in conjugacy as Fuchsian groups (in

PSL(2, R)), Examples #1,#5, and #8 are conjugate (use the matrix
(

1 0
0 2

)
),

Examples #2 and #7 are conjugate (use the same matrix), and Examples #4,

#6, and #9 are conjugate (use the same matrix as well as
(

1 1
0 1

)
).

Proposition 2.1. Let Γ be one of the congruence subgroups in Table
2. Then Γ has an explicit congruence lift Γ̃ to SL(2, Z) with the following
properties:
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(1) Γ̃ has no elliptic elements. In particular −Id is not in Γ̃.
(2) Γ̃ contains no element of trace −2.

Proof. We let Γ̃ be the subgroup of SL(2, Z) consisting of the elements
above Γ. Indeed, the lifts Γ̃ are sometimes the same as the groups Γ them-
selves. In fact, for the cases #1, #2, #3, #4 and #5, the lifts are the same
and respectively given by: Γ(4), Γ0(3) ∩ Γ(2), Γ1(7), Γ1(8) and Γ0(8) ∩ Γ(2).
In the cases #6, #7, #8 and #9, the lifts are not unique, and we choose re-
spectively the following lifts: Γ′

1(8; 4, 1, 2), Γ0(12) ∩ Γ1(3), Γ0(16) ∩ Γ1(4) and
Γ′

1(16; 16, 2, 2). Here Γ′
1(8; 4, 1, 2) and Γ′

1(16; 16, 2, 2) are defined in the same
way as Γ1(8; 4, 1, 2) and Γ1(16; 16, 2, 2) but without the ±. Note that the widths
of the cusps are not affected by taking a lift as −Id is the only difference.

(We should remark that the lifts are not unique; for instance, in the case
#7, there are four lifts, but only one has no elements of trace −2, which is the
one given above.)

In fact, Proposition 2.1 has also been obtained by A. Sebbar in his unpub-
lished note.

Proposition 2.1 will pave a way to the definition of elliptic modular sur-
faces, which we will discuss next.

Elliptic Modular Surfaces: In [21] Shioda has shown how to associate to
any subgroup G of SL(2, Z) of finite index and not containing −Id an elliptic
fibration E(G), called the elliptic modular surface associated to G, over the
modular curve X(G) = G\H.

(Shioda’s construction requires that modular groups ought to be a sub-
group of SL(2, Z) (rather than a subgroup of PSL(2, Z)) that contains no
element of order 2. This is a reason we consider a lift Γ̃ of Γ in our discussion.)

Remark 2. It follows from Kodaira’s theory that when G contains no
elliptic elements and no elements of trace −2, all the singular fibers are above
the cusps and are of type In, where n is the width of the cusp. On the other
hand, elements of trace −2 give rise to I∗n-fibers above the cusps.

For the Γ̃’s of Proposition 2.1 the modular curve X(Γ̃) has genus 0, and,
since the sum of the widths of the cusps in Table 2 is always 24, each E(Γ̃)
is an extremal K3 surface. The space S3(Γ̃) of cusp forms of weight 3 for Γ̃
is therefore one-dimensional. Up to a square, the discriminant of the intersec-
tion form on the rank 2 motive of the transcendental cycles T := T (E(Γ̃)) =
H2(E(Γ̃), Q)/NS(E(Γ̃)) is given by

(2.1) δ = δk = −1,−3,−7,−2,−1,−2,−3,−1,−2

in cases k = 1, . . . , 9 respectively. To see this one computes the discriminant
of the (known) lattice NS(E(Γ̃)) and passes to the orthogonal complement in
H2(E(Γ̃), Q). For details, see e.g. Besser-Livné [3]. By [14] it follows that the
normalized newform g3,Γ generating S3(Γ̃) has CM by Q(

√
δ ).

To each of our 9 examples there is a naturally associated moduli problem
of classifying (generalized) elliptic curves with a given level structure (Katz
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650 Ron Livné and Noriko Yui

and Mazur [10]). Each of these moduli problems refines the respective moduli
problem Y1(M), of classifying elliptic curves with a point of order M , where
M is as above. Since M ≥ 4, these moduli problems are all represented by
universal families E(Γ̃)/X(Γ̃)/Z[1/M ] (see Katz–Mazur [10]). The geometric
fibers are geometrically connected in all these examples, and their compactified
fibers over C are the corresponding elliptic modular surfaces above.

We shall now compute the L-series L(T, s) of the transcendental cycles.
By the Eichler–Shimura Isomorphism, this is the parabolic cohomology

H̃ := H̃1(X(Γ̃) ×Z[1/M ] Q, R1(E(Γ̃) → X(Γ̃))).

Moreover, Deligne proved ([5]) the Eichler–Shimura congruence relation

Frobp + Frob′
p = Tp for any p � |M,

where Tp is the p-th Hecke operator on S3(Γ̃). This is the same as the p-th
Fourier coefficient of the normalized newform g3,Γ. Summarizing, we proved

L(T (X(Γ̃), s) = L(g3,Γ, s).

Explicit Weierstrass equations for the elliptic fibrations

E(Γ̃)/X(Γ̃)/Z[1/M ]

will be given in Section 4 below.

Remarks. (1) The list in Table 2 exhausts all of the families of semi-
stable elliptic K3 surfaces with exactly six singular fibers, which correspond
to torsion-free genus zero congruence subgroups of PSL2(Z) of index 24. The
6-tuples of natural numbers appearing in the third column add up to 24. There-
fore, the number of such 6-tuples is a priori finite. That this list is complete
was proved by Sebbar [19].

(2) Miranda and Persson [16] studied all possible configurations of In fibers
on elliptic K3 surfaces. In the case of exactly six singular fibers, they obtained
112 possible configurations including the above nine cases. All these K3 sur-
faces have the maximal possible Picard number 20. It should be emphasized
that the exactly nine configurations correspond to genus zero congruence sub-
groups of PSL2(Z) of index 24.

(3) The theory of Miranda and Persson had been extended to prove the
uniqueness (over C) of K3 surfaces having each of these types of singular fibers
by Artal-Bartolo, Tokunaga and Zhang [1]. Confer also the article of Shimada
and Zhang [20] for a useful table of extremal elliptic K3 surfaces.

3. The non-rigid examples

Let Y = E(Γ̃) be one of the K3 surfaces of the previous Section, and let
gY = g3,Γ denote the corresponding cusp form of level 3. If Γ̃ contains Γ1(M)
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(in Table 2 this happens in cases #3, #4, #7, #8, and #9), and M = MY is
the maximal possible, then M is the level of gY , and the newtype of gY is the
Dirichlet character

(3.1) ε = εY ,

of conductor M , so that gY is in S3(Γ0(M), εY ). Notice that ε is odd (namely
ε(−1) = −1). Moreover, since the coefficients of gY are integers, ε must be
quadratic. (We will determine ε for our examples in Proposition 4.1.)

Let E be an elliptic curve. We view the product Y × E as a family of
abelian surfaces over X(Γ̃). The fiber At = AΓ,t over each point t ∈ X(Γ̃) is
the product of the fiber EΓ,t of E(Γ̃) with E. Then we obtain the following
results.

Theorem 3.1. (1) The product Y × E has the Hodge numbers

h0,3(Y × E) = 1, h1,0(Y × E) = 1 and B3(Y × E) = 44

(so that Y × E is not a Calabi–Yau threefold).
(2) The motive T (Y ×E) = T (Y )×H1(E) is a submotive of H3(Y ×E).

If E and Y are defined over Q, this submotive is modular, in the sense that its
L-series is associated to a cusp form gY on GL(2, Q(

√
δ )).

Let gE be the cusp form of weight 2 associated to E by Wiles et al. ([27]).
Let A(p) (respectively B(p)) be the pth Fourier coefficient of gE (respectively of
gY ), and let εY be the newtype character of gY (see Section 3). Then for any
good prime p, the local Euler factor Lp(s) of the L-series L(T (Y × E), s) =
L(gE ⊗ gY , s) is

1 − A(p)B(p)p−s + (B(p)2 + εY (p)pA(p)2 − 2p2εY (p))p1−2s

−A(p)B(p)εY (p)p3−3s + p6−4s.

Proof. The statements about the Hodge and Betti numbers follow from
the Künneth formula. Since T (Y ) is a factor of H2(Y ), it follows again from
the Künneth formula that T (Y ) × H1(E) is a factor of H3(Y × E).

For the second part, we know that gY is a CM form. Hence it is in-
duced from an algebraic Hecke character χ = χY of the imaginary quadratic
field F = Ki. Let χG be the compatible system of 1-dimensional �-adic rep-
resentations of GF = Gal(Q/F ) corresponding to χ. Then the 2-dimensional
Galois representation associated to T (Y ) is indGQ

GF
χG. Hence we obtain the

4-dimensional Galois representation

ρE ⊗ indGQ

GF
χG � indGQ

GF
(χG ⊗ ResGQ

GF
ρE),

where ρE is the Galois representation associated to H1(E). The operation of
restricting ρE to GF and of twisting by characters have automorphic analogs.
Let πE be the automorphic representation associated to E. Then π′ = χ⊗
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ResQ
F πE makes sense as an automorphic cuspidal irreducible representation of

GL(2, F ), and we have the characterizing relationship

L(π′, s) = L(indQ
F π′, s) = L(πE ⊗ indQ

F χ, s) = L(gE ⊗ gY , s).

For the last part, write the pth Euler factors of gE and gY respectively as

(1 − αpp
−s)(1 − α′

pp
−s) = 1 − A(p)p−s + p1−2s

and

(1 − βpp
−s)(1 − β′

pp
−s) = 1 − B(p)p−s + εY (p)p2−2s.

Then the Euler factor Lp is defined as

Lp(s) = (1 − αpβpp
−s)(1 − α′

pβpp
−s)(1 − αpβ

′
pp

−s)(1 − α′
pβ

′
pp

−s),

and the claim follows by a direct calculation.

Remark. If a K3 surface has the Picard number 19 or 18, the mod-
ularity question for the product Y × E is still open. However, if the Picard
number is 19, one knows at least that the rank 3 motive T (Y ) of the transcen-
dental cycles is self dual orthogonal via the cup product. (For explicit examples
of K3 surfaces with Picard number 19, see e.g. Besser and Livné [3].) Thus
one can use a result of Tate to lift each �-adic representation to the associated
spin cover, which is the multiplicative group of some quaternion algebra over
Q. If the spin representation is modular (which should always be the case),
then it is associated to a cusp form h of weight 2 on GL(2), so that Symm2h
realizes T (Y ). Let gE be again the weight 2 cusp form associated with E. It
follows, by work of Gelbart and Jacquet, that T (Y ) is realized by an auto-
morphic representation on GL(3, Q). Hence, by the work of Kim and Shahidi
([11]), T (Y )×E is realized by an automorphic form on GL(6, Q). In particular,
L(Symm2h ⊗ gE , s) has the expected analytic properties.

To construct our promised examples, let X = XΓ → X(Γ̃) be the associ-
ated Kummer family, in which we divide each fiber At of Y (Γ̃)×E by ±1 and
then blow up the locus of points of order 2. We now have the following result.

Theorem 3.2. In the Examples #1, #2, #5, and #6 of Table 2 the
resulting X is a smooth Calabi–Yau threefold. It is non-rigid, and the given
fibration f : X → X(Γ̃) is semi-stable, with vanishing (iterated) Kodaira–
Spencer mapping. We have

deg f∗ωX/P1 = 2 =
1
2

degΩ1
P1(logS),

In other words, X reaches the (stronger) Arakelov–Yau bound.

Remark. For the first case in Table 2 (Γ̃ = Γ(4)) this example is indi-
cated in [25].
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Proof. The Examples we chose are those in which Γ̃ is a subgroup of
Γ(2). (This is because otherwise, the points of order 2of X(Γ) coincide (over
the cusps).) Thus the 2-torsion points (of Et and hence of At) are distinct for
all t ∈ X(Γ̃). It follows that the locus A[2] of 2-torsion points is smooth, and
hence so is the blow-up X. We have Hi(X) = Hi(Y (Γ̃) × E)<±1>. But ±1
acts as ±1 on both the non-trivial holomorphic 1-form ω1 of E and on the non-
trivial holomorphic 2-form ω2 of Y (Γ̃). Hence ω1∧ω2 descends to a holomorphic
3-form ω3 on X. Its divisor can only be supported on the proper transform F
of A[2]; however F intersects each fiber f−1(t) in sixteen (−2)-curves, which do
not contribute to the canonical class, so that ω3 is indeed nowhere-vanishing.
The Künneth formula gives that

H1(X) = H1(Y )<±1> = H1(E)<±1> = 0,

and

H2,0(X) = H2,0(Y × E)<±1> = H2(Y )<±1> = 0.

Thus X is indeed a smooth Calabi–Yau threefold. It is non-rigid, because
T (Y × E) descends to X and each of its Hodge pieces Hp,q(T (Y × E)) is 1-
dimensional.

To compute the monodromy around each singular fiber, we notice that for
a generic fiber Xt = f−1(t) the Kummer structure gives a canonical decompo-
sition

H2(Xt, Q) = (H2(At, Q) ⊕ QAt[2])<±1>.

Our examples were chosen so that the action of ±1 on At[2] = EΓ,t[2] × Et[2]
is trivial. Moreover, in the Künneth decomposition

H2(At) = H2(E) ⊕ (H1(E) ⊗ H1(EΓ,t)) ⊕ H2(EΓ,t)

the ±1 action is trivial on the first and last factors, is trivial on H1(E) and is
unipotent on H1(EΓ, t) around each singular fiber of f (namely the cusps of
Γ). Thus the monodromy of the fibration f is unipotent as well.

To compute the Kodaira–Spencer map Θ(f) for our f we embed it into the
Kodaira–Spencer map for Y × E → X(Γ̃). This map is the cup product with
the Kodaira–Spencer class Θ which itself is ΘY/X(Γ̃)⊗ΘX(Γ̃)×E/X(Γ̃). Since the
Kodaira–Spencer class of a trivial fibration vanishes, it follows that Θ(f) = 0.

Our examples all have 6 singular fibers. Hence

1
2

deg Ω1
P1(log S) =

1
2

degOP1(−2 + 6) = 2.

On the other hand, since X is a Calabi–Yau variety we have

ωX/P1 = ωX ⊗ (f∗ωP1)−1 = (f∗ωP1)−1.

Hence

(3.2) f∗ωX/P1 = f∗f∗(ωP1)−1 = (f∗f∗ωP1)−1 = ω−1
P1 ,

whose degree is 2 as well, concluding the proof of Theorem 3.2.
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Remark 3. (1) In the other cases in Table 2 the monodromy on the
points of order 2 of At[2] is non-trivial, and the calculation gives that the
monodromy of f around the cusps is not unipotent. We know by Remark
1, the groups #1, #5 and #8 are in the same PSL(2, R)-conjugacy class.
However, this group theoretic property does not guarantee isomorphisms of
the corresponding Calabi–Yau threefolds, since the fiber structures are not
preserved. Similarly, the groups #4, #6 and #9 are PSL(2, R)-conjugate, but
geometric structures are different (as the fibers over the cusps are different).
The same applies to Examples #2 and #7. Therefore, Examples #4, #7, #8
and #9 are not covered by our examples. Also we do not know how to construct
examples corresponding to Example #3 in Table 2, for which Γ̃ = Γ1(7). We
also do not know whether our examples are the only ones.

(2) It is an interesting exercise to compute the full L-series of our examples.
The results are as follows: Let N+ (respectively N−) be the motive of algebraic
cycles on Y invariant (respectively anti-invariant) by ±1 acting on the elliptic
fibrations of Y . Let n± be the rank of N±. Then n+ + n− = 20, and if
we let χδ′ denote the quadratic character cut by Q(

√
δ′ ) (not necessarily the

same quadratic field pre-determined by the modular group corresponding to
the surface), then N+ = Z(1)n′

+ ⊕Z(χδ′(1))n′′
+ and N− = Z(1)n′

− ⊕Z(χ′
δ(1))n′′

− .
Here n′

+ (resp. n′′
+) denotes the number of cycles defined over Q (resp. Q(δ′))

and similarly for n′
− (resp. n′′

−). We have n± = (n′ + n′′)±. Then we have

L(H0, s) = L(Z, s) = ζ(s)
L(H1, s) = 1
L(H2, s) = L(H2(P1 × P1), s)L(Z(1), s)L(N+, s)

= ζ(s − 1)16ζ(s − 1)1+n′
+L(Q ⊗ χδ′ , s − 1)n′′

+

L(H3, s) = L(T (Y ) ⊗ H1(E), s)L(N− × H1(E), s)

= L(g3 ⊗ g2, s)L(E, s − 1)n′
−

∏
δ′

L(E ⊗ χδ′ , s − 1)n′′
−

(The higher cohomologies are determined by Poincaré duality.)

Lemma 3.1. In cases #1, #2, #5, and #6 in Table 2, we have n+ = 14
and n− = 6 (so n+ − n− = 2 + 6 = 8). Furthermore, we have

(n′
+, n′′

+) =




(12, 2) for #1
(14, 0) for #2
(13, 1) for #5, #6

and

(n′
−, n′′

−) =




(3, 3) for #1
(6, 0) for #2
(5, 1) for #5, #6

In case #3, n+ = 11 and n− = 9. (Forthe last case, confer the article of Hulek
and Verrill [7] for more detailed discussion.)
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For the computations of n+ and n−, confer Proposition 2.4 of Hulek and
Verrill [7]. The Proof of Lemma 3.1 will be given at the end of Section 4.

4. Explicit formulas

We shall now give explicit formulas for the weight 3 forms gY = g3,Γ for
the examples in Table 2. We will denote the weight 3 form in the ith case by
hi. By Remark 1 it suffices to compute hi for i = 8, 7, 3, 4, and then h8(τ ) =
h5(τ/2) = h1(τ/4), h7(τ ) = h2(τ/2), and h6(τ ) = h9(τ/2) = h4(τ/2 − 1/2).
Two kinds of formulas suggest themselves for the hi’s: as a product of η-
functions or as inverse Mellin transforms of the Dirichlet series attached to
Hecke characters. The second method is always possible since the gY ’s are
CM forms. In [15] Martin determined which modular forms on Γ1(N) can
be expressed as a product of η-functions. This applies to cases #8, #7, #3,
and #4 in Table 2. Hence the same is also true for the #6 and #9 cases.
For cases #3, #7, and #8 the corresponding spaces of cusp forms of weight 3
are 1-dimensional, hence the conditions in [15] are satisfied and Martin gives
the corresponding forms as h3 = η(q)3η(q7)3 and h7 = η(q2)3η(q6)3. The
modular form in case #1 is classically known to be h1 = η(q)6, which implies
h8 = η(q4)6. Lastly h2 = η(q)3η(q3)3, and h5 = η(q2)6. For #4, we have
h4(q) = η(q)2η(q2)η(q4)η(q8)2. We will prove the following results.

Proposition 4.1. Let χi be the Hecke character for which L(hi, s) =
L(χi, s) (so that the inverse Mellin transform of L(χi, s) is hi). Let ap(hi)
be the pth Fourier coefficient of hi, and let Ki = Q(

√
δi). Then we have the

following:
(1) The infinite component of χi : A×

Ki
→ C is given by χi,∞(z) = z−2.

Moreover χi is the unique such Hecke character of conductor ciOKi
, where

ci = 2, 2, 1, 1 ∈ OKi
for i = 8, 7, 3, 4 respectively.

(2) For each rational prime p which is prime to the level of the corre-
sponding Γ, we have ap(hi) = 0 if p is inert in Ki. Otherwise, there are a, b,
which are integers in case #8 and half integers in the three other cases, so that
p = a2 + dib

2, where di = 4, 3, 7, 2 for i = 8, 7, 3, 4 respectively. Then a and b
are unique up to signs, and ap(hi) = (a2 − dib

2)/2.
(3) The newtype of hi (see (3.1)) is the character defining Ki, namely

p �→
(

δi

p

)
.

Proof. See e.g. [14] for the generalities (in particular regarding the ∞-
component of χi), as well as the following formula: the conductors of χi and
of hi are related by

cond(hi) = NmKi

Q cond(χi)Disc(Ki).

Since the level of hi is respectively M = 16, 12, 7, and 8 in cases #8, #7, #3,
and #4 of Table 2, we get the asserted value of the ci’s, and since all the fields
Ki involved have class number 1 we have

(4.1) A×
Ki

= (K×
i × Ui × C×)/µ(Ki)
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where Ui is the maximal compact subgroup Ô×
Ki

of the finite idèles of Ki, and
µ(Ki) is the group of roots of unity of Ki, acting diagonally (we view C as the
infinite completion of Ki). The existence and the uniqueness of χi are then
verified in each case by a straightforward calculation (compare [13]).

For the second part, the vanishing of ap(hi) for p inert in Ki is a general
property of CM forms. For a split p (prime to cond(hi)), write p = a2 + dib

2 =
NmKi

Q π. Here π is a prime element of OKi
, so a and b are half integers. We

verify that, up to multiplying π by a unit, we can guarantee that a and b are
integers for i = 8. In all cases, the a’s and the b’s are unique up to signs.
Next one verifies that π ≡ ±1 (mod ciOKi

). Let ℘ be the ideal generated by π
(notice that changing the sign of b replaces ℘ by its conjugate). Let tr denote
the trace from Ki to Q. By the general theory, we have that

ap(hi) = trχ℘(π) = tr χ∞(π)−1 = trπ2 = 2(a2 − dib
2),

where the second equality holds since the finite components of χ other than π
are now 1.

For the third part we notice that the restriction of χi to Ui in the decom-
position (4.1) above gives a Dirichlet character ε′i on OKi

of conductor ciOKi
.

The newtype Dirichlet character εi (on Z) is then the product χKi
by the re-

striction of ε′i to Z. However, the conductors ciOKi
of χi are all 1 or 2, and the

only character of Z of conductor 1 or 2 is trivial. Hence the newtype character
of hi is Ki, concluding the proof of Proposition 4.1.

Defining equations for extremal K3 surfaces: We now discuss how
to determine defining equations for the extremal K3 surfaces in Theorem 3.2.
This problem has been getting a considerable attention lately, for instance,
Shioda [Sh3] and (independently and by a different method by Y. Iron [8])
have determined a defining equation for the semi-stable elliptic K3 surface
with singular fibers of type I1, I1, I1, I1, I1, I19 whose existence was established
in Miranda and Persson [16] (this is given as #1 in their list). As we shall see,
our examples can be determined by a more classical method.

There are several cases where defining equations can be found in the liter-
ature, i.e., Example #1 in Table 2 is the classical Jacobi quartic corresponding
to Γ(4),

(4.2) y2 = (1 − σ2x2)(1 − x2σ−2)

where σ is a parameter for X(4). A Legendre form is given by

(4.3) Y 2 = X(X − 1)(X − λ) with λ =
1
4
(σ + σ−1)2

(see e.g. Shioda [22]). One checks that the singular fibers, all of type I4, occur
at the cusps σ = 0,∞,±1,±√−1. Moreover the j-invariant is given by

j = 24 (1 + 14σ2 + σ4)3

σ4(σ4 − 1)4
.
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For the remaining cases, we can find defining equations using a method due
to Tate. Since we could not find Tate’s method in the literature, we sketch it
here. (Actually, we found out after completing the paper that there are several
papers dealing with this exact issue, e.g., Kubert [12] and his arguments were
reproduced in Howe–Leprévost–Poonen [6]. Also, the paper of Billing and
Mahler [4] dealt with the same problem.)

A method of Tate to calculate E1(N) : Let Y1(N) be the modular
curve, and let E0

1(N) → Y1(N), with N ≥ 4, be the universal family of elliptic
curves having a point (or section) P = PN of order N . Tate’s method gives
a defining equation for this family over Z[1/N ]. We start with the general
Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a1x
2 + a4x + a6.

Let P = (x, y) ∈ E be a rational point and assume that P, 2P, 3P �= 0. Chang-
ing coordinates, we may put P at (x, y) = (0, 0). So we may assume a6 = 0.
Since P does not have order 2, the tangent line at (0, 0) cannot be the y-
axis (i.e., x = 0), which implies that a3 cannot vanish. We can therefore
change coordinates again to obtain a4 = 0 and the equation takes the form:
y2+a1xy+a3y = x3+a2x

2. By making a dilation, we furthermore get a2 = a3.
Therefore, E has a Weierstrass equation of the form:

(∗) y2 + axy + by = x3 + bx2 with b �= 0.

To get a defining equation for E0
1(N), we need to find the relations on a and

b that arise if P has order N . The coordinates of P,−P, 2P,−2P are easily
checked to be

P = (0, 0), −P = (−0,−b), 2P = (−b, (a − 1)b), −2P = (−b, 0).

We will also determine the coordinates of 3P and of 4P . At −2P the tangent
line is:

y =
b

1 − a
(x + b).

Substituting this to the equation (*) to get

4P =
(

b

1 − a
+

b2

(1 − a)2
,

b2

1 − a

(
1 +

b

(1 − a)2
+

1
1 − a

))
.

Likewise, the line x + y + b = 0 intersects E at −P , −2P and 3P , giving
3P = (1 − a, a − 1 − b). We will give Weierstrass equations for E1(N) when
N = 4, 6, 8, or 7:

E1(4) Here we get a = 1, giving the equation

y2 + xy + ty = x3 + tx2
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(we replaced b by t). Here X1(4) is the t-line. By a direct calculation or from
Shioda’s result (see also Remark 5), we see that the singular fibers are over the
three cusps, of types, I∗1 , I1, and I4.

E1(6) The equation x(4P ) = x(−2P ) readily gives b = −(a − 1)(a− 2),
giving us the equation for E1(6):

E1(6) : y2 + axy − (a − 1)(a − 2)y = x3 − (a − 1)(a − 2)x2.

Here a is a parameter (Hauptmodul) on X1(6). There are four cusps, and as
before one gets from Remark 2 or by a direct computation that the types are
I1, I2, I3, and I6, matching the widths of the cusps given in the third column
of Table 2.

E1(8) The equation y(4P ) = y(−4P ) is equivalent to ax(4P ) + b =
−2y(4P ). Expanding, cancelling b, and clearing denominators gives

ab(1 − a) + (1 − a)2 = −2b ((1 − a)(2 − a) + b) .

Substituting b = k(a − 1) gives

(a, b) =
(−2k2 + 4k − 1

k
, −2k2 + 3k − 1

)
,

Thus k is a parameter on X1(8) and E1(8) (Example #4) is given by

(4.4) y2 +
−2k2 + 4k − 1

k
xy + (−2k2 + 3k − 1)y = x3 + (−2k2 + 3k − 1)x2.

The fibers above the cusps are found as before to have types I1, I1, I2, I4, I8,
and I8.

E1(7) In a similar way one gets the equation for E1(7) (Example #3);
the result is (see for instance, Silverman [24, Example 13.4])

y2 + (1 + t − t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2.

Three singular fibers have type I1, and three have type I7.

E(6, 2) Returning to our cases, we now handle Example #2 in Table 2,

corresponding to Γ̃ = Γ0(3) ∩ Γ(2), whose associated modular curve is

X(6, 2) = X1(6) ×X1(2) X(2)

by pulling E1(6) back to X(6, 2). To do this we cannot use Tate’s method
directly, since the moduli problems associated to Y (2) and to Y1(2) are not
representable. However X(2) is the Legendre λ-line, and any elliptic curve
with Γ(2)-level structure can always be written in Legendre form

y2 = x(x − 1)(x − λ) = x(x2 + (−1 − λ)x + λ).
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Likewise, given an elliptic curve E with a point P of order 2 (over Z[12 ]), write
E in Weierstrass form y2 = x(x2 + cx + d) where P = (0, 0). This form is
unique up to homothety, and hence c2/d is a parameter on X0(2). The natural
map X(2) → X0(2) is therefore given by u = (1+λ)2

λ . Hence the fibred product
for E(6, 2) above is given by equating

(1 + λ)2

λ
=

(4 − 3a2)2

16(a − 1)3
.

A computation gives that

ξ =
32(a − 1)3

(4 − 3a2)(a − 2)2

(
λ + 1 − (4 − 3a2)2

32(a − 1)3

)

is a parameter on X(6, 2) such that the map to X1(6) is given by

a =
2ξ2 − 10
ξ2 − 9

.

Under a base change of ramification index b an Ia fiber pulls back to an Iab

fiber (and an I∗a fiber pulls back to an I∗ab fiber if a ≥ 1, and b is odd). From
this or again by Remark 5 the fiber types are as expected from Table 2, namely,
three I6 and three I2 fibers.

Remark. Even though we do not need the following example here, we
mention that a parameter for X0(12) can be computed in the same way via the
natural map X0(12) → X0(6) = X1(6). By pull-back this will give a family
of elliptic curves over X0(12), which will turn out to be Γ0(12) case (Example
#7) in Table 2. For this we let t be the parameter for X0(4) = X1(4) as before,
and let a be the parameter from before on X0(6). Then X0(12) is the fibred
product

X1(4) ×X1(2) X1(6).

To compute the natural “forgetting” maps of X1(4) and of X1(6) to X1(2) we
again bring both E1(4) and E1(6) to the form y2 = x(x2 + ax + b):

E1(4) : w2 = v

(
v2 +

(
1
4
− 2b

)
v + b2

)

(here we completed the square and set w = y + (x + b)/2 and v = x + b).

E1(6) : w2 = v

(
v2 +

4 − 3a2

4
v + (a − 1)3

)
.

By the above, the fibred product is given by equating

( 1
4 − 2b)2

b2
=

(4 − 3a2)2

16(a − 1)3
.
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Thus a − 1 is a square, say a = u2 + 1, where u is a parameter on X0(12) and
the pulled-back family is given by

y2 + (u2 + 1)xy − u2(u2 − 1)y = x3 − u2(u2 − 1)x2.

One again routinely verifies that the bad fibers are as expected. (Notice, how-
ever, that the pull-back of the universal family from X1(4) has I∗a fibers!)

E(8, 2) Next we handle Example #5 in Table 2, whose associated modu-
lar curve is X(8, 2). As was explained in Remark 1, we can take as a parameter
the same σ as for X(4) above. However to get the right family, we will divide
the universal elliptic curve by a section s of order 2. This changes the type
of the singular fibers E(4)c at a cusp c from I4 to I8 if s meets E(4)c at the
same component as the identity section, and to type I2 otherwise. The singular
fibers obtained in this way are as expected from Table 2.

To get the new family, recall that if an elliptic curve is given in Weierstrass
form

y2 = x(x2 + ax + b),

then the quotient by the two-torsion point (0, 0) is given by the similar equation

(4.5) y2 = x(x2 − 2ax + a2 − 4b).

In particular, for a curve given in Legendre form y2 = x(x − 1)(x − λ) the
resulting quotient is y2 = x(x2 + 2(1 + λ)x + (1 − λ)2). Applying this to the
Legendre form (4.3) of the Jacobi quartic gives the quotient family in the form

y2 = x

(
x2 +

(
2 +

1
2
(σ + σ−1)2

)
x +

1
16

(σ − σ−1)4
)

.

As before one sees that the singular fibers have types I8, I8, I4, I4, I4, and I2.

E(8; 4, 1, 2) To handle Example #6 in Table 2 we proceed in the same
way, dividing the family E1(8) by its section of order 2. The cusps of Γ1(8)
are N\G/N , where N is the upper unipotent subgroup of G=SL(2, Z/8Z)/ <

± Id >. Explicitly the cusps are
[
0
1

]
,

[
0
3

]
,

[
1
2

]
,

[
1
4

]
,

[
1
0

]
, and

[
3
0

]
. The

corresponding widths are 1,1,2,4,8, and 8 respectively. We identify the torsion

sections of the universal family E1(8) → X1(8) with the subgroup
(∗

0

)
∈

(Z/8Z)2. Let s =
(

4
0

)
be the section of order 2 of this elliptic fibration. Then

s belongs to the connected component of the 0-section at a cusp
[
a
b

]
, if and

only if it is in the subgroup generated by
(

a
b

)
. This happens at the first four

cusps above but not at the last two.
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The Kodaira type of the fibers of the quotient family E1(8)/(s) → X1(8)
(which is our E(Γ) of Example #6) are accordingly multiplied by 2 at the first
four cusps, and divided by 2 at the last two cusps. This results in fiber types
I8, I4, I4, I4, I2, and I2, in agreement with Table 2.

Starting with our equation (4.4) for E1(8) we set

Y = 8k3 y

(
y +

−2k2 + 4k − 1
2k

x +
−2k2 + 3k − 1

2

)

and

X = 4k2(x − k + k2).

A straightforward computation then gives for E1(8) the form

Y 2 = X(X2 + (8k4 − 16k3 + 16k2 − 8k + 1)X + (2k(k − 1))4).

By formula (4.5), the quotient family E1(8)/(s) is given by

y2 = x(x2 − 2(8k4 − 16k3 + 16k2 − 8k + 1)x + (8k2 − 8k + 1)(2k − 1)4).

Proof of Lemma 3.1. We will use the arguments due to Klaus Hulek
and Matthias Schütt for the calculation of n+ and n−. The Galois action on
NS(Y ) is computed as follows. Tensoring with Q, NS(Y ) ⊗ Q has for basis
the (classes of the) general fiber, the 0-section and those components of the
singular fibers which do not meet the identity component (the section). The
Galois action clearly preserves the fiber class and the 0-section. The action of
±1 on each fiber of type In is given as follows. A fiber In contributes n−1 to the
cohomology. If we enumerate the components e1, e2, . . . , en−1 cyclically, then
ej will be sent to e−j . If n is even, n/2 cycles, en/2, ej + e−j (1 ≤ j < n/2) are
fixed contributing to n+; while ej − e−j (1 ≤ j < n/2) contributing to n−. If n
is odd, (n−1)/2 cycles are fixed contributing to n+, and equally (n−1)/2 cycles
to n−. Further, the fields of definition of the components ej will determine n′

±
and n′′

±.
In Example #1, the cusps (singularities) are t = 0,±1, ∞ and ±√−1. Put

i =
√−1. Then N+ is spanned by the zero-section, the fiber and the following

divisors: et,2, et,1 + et,3 where t = 0,±1,±i,∞. When t ∈ Q or t = ∞, these
divisors are defined over Q, giving 10 divisors out of 14. Over t = ±i, we
see that ei,2 + e−i,2 and (ei,1 + ei,3) + (e−i,1 + e−i,3) are fixed by complex
conjugation, so that these are defined over Q contributing to n′

+. Hence, as
Galois representations, we get

N+ = Z(1)12 ⊕ Z(χi(1))2

so that n′
+ = 12, and n′′

+ = 2.
On the other hand, the space N− is simply spanned by et,1 − et,3 for

the six cusps t. Over t = ±1, both are defined over Q, contributing to n′
−.

Over t = 0,∞, et,1 and et,3 are conjugate, so the difference is not fixed under
complex conjugation, so it contributes to n′′

−. Over t = ±i, we have two divisors
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(ei,1−ei,3)±(e−i,1−e−i,3). One of these is fixed by complex conjugation, while
the other is not. Thus, as Galois representation,

N− = Z(1)3 ⊕ Z(χi(1))3

and reading off the ranks, we get n′
− = 3 and n′′

− = 3.
In Example #2, the cusps are all defined over Q, the torsion sections

meet all the components of the fibers (this can be seen either from the moduli
viewpoint or from the equations in the previous section). Then N+ is spanned
by the zero-section, the fiber and the divisors et,1 + et,5, et,2 + et,4 and et,3 for
I6 type singular fibers and et,1 for I2 type singular fibers. Thus we compute
that n+ = 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 = 14. For the space N− is spanned by
et,1 − et,5, et,2 − et,4 for I6 type singular fibers. Thus we have n− = 2+2+2+
0 + 0 + 0 = 6. Since all divisors are defined over Q, all these algebraic cycles
are also defined over Q, and we have

N+ = Z(1)14 and N− = Z(1)6.

(In particular, this implies that n′′
± = 0 in this case.)

For the other two cases, #5 and #6, we use the above argument to compute
n±. In fact, for Example #5 (resp. #6),

n+ = 4+4+1+1+1+1+1+1+1 = 14 (resp. 4+2+2+2+1+1+1+1 = 14),

and

n− = 3 + 3 = 6 for both cases.

Thus n+ = 14 and n− = 6. However, for these examples, not all algebraic cycles
are defined over Q. In fact, we use the fact that each of these K3 surfaces is
realized as a quadratic base change of a rational modular elliptic surface (see
Top and Yui [26] for detailed argument).

In the case of Example #5, this surface is obtained as a pull-back of a
rational elliptic modular surface with 4 singular fibers of type I4 over
infty, I4 over 0, I2 over 1 and I2 over −1. All cusps of the pull-back over ∞, 0
and 1 are defined over Q. However, the two cusps of the pull-back above −1
are defined only over Q(

√−1). Put
√−1 = i. Then the divisor ei,1 + e−i,1 is

invariant under complex conjugation, while the divisor ei,1−e−i,1 is not. Thus,
we get

N+ = Z(1)13 ⊕ Z(χi(1))

so that (n′
+, n′′

+) = (13, 1). On the other hand, all algebraic cycles spanning N−
are defined over Q so that N− = Z(1)6 and n− = n′

− = 6.
For Example #6, the cusps are t = 0, ∞, ±1 and ±√

2. But the pull-back
of the components e0,1 and e0,3 are conjugate over Q(i). This gives

N+ = Z(1)13 ⊕ Z(χ2(1))

so that n′
+ = 13 and n′′

+ = 1. While

N− = Z(1)5 ⊕ Z(χi(1))
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so that n′
− = 5 and n−′′ = 1.

Remark. For #3, the singular fibers are of type I7 and I1 (3 copies
each). Hulek and Verrill [7]compute that n+ = 11 and n− = 9, and show
that all cycles are defined over Q. This example does not admit semi-stable
fibrations, but still gives rise to a non-rigid Calabi–Yau threefold defined over
Q, and one can still look into the modularity question for the L-series associated
to the third cohomology group. This is exactly what is done in the article of
Hulek and Verrill [7] supplementing this paper.
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