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Abstract

We consider a sufficient condition that a knot self-concordance
surgery introduced in [3] gives rise to the diffeomorphic manifolds. The
main theorem in the present paper is a certain generalization of Akbu-
lut’s result in [3] and author’s result in [6].

1. Introduction

Let C be a cusp neighborhood, which is an elliptic surface over D2 having
only one singular fiber as a cusp. R. Fintushel and R. Stern in [6] introduced
a knot surgery of C to construct infinitely many 4-manifolds which are home-
omorphic but non-diffeomorphic to C [4]. Let K be a classical knot in S3.
Their surgeries are defined by removing a neighborhood of a general fiber T
from C and gluing (S3− ν(K))×S1 to the boundary via a certain gluing map.
Through this paper, ν(M) or ν(f) stands for an open tubular neighborhood
either of a submanifold M or a submanifold embedded by a map f . We denote
the resulting manifold by CK . For a 4-manifold X that contains C, we con-
struct XK from X by replacing C with CK . We call this operation X → XK

Fintushel-Stern knot surgery. They showed that for some 4-manifold X, for
example K3 surface and so on, XK is non-diffeomorphic to X if the Alexander
polynomial ∆K of K is not 1, by computing Seiberg-Witten invariants of X
and XK .

Let ϕ̃ be any knot self-concordance S1 × I ↪→ S3 × I, which is defined
by a knot concordance such that for i ∈ {0, 1} = ∂I each image ϕ̃(S1 × {i})
represents the same knot K. We can construct a torus-embedding ϕ : S1×S1 ↪→
S3×S1 from ϕ̃ by identifying S3×{0} with S3×{1}. We define T as the set of
all isotopy classes of torus-embeddings in S3 × S1 such that the embedding is
obtained by using such an identification for a knot K. For a 4-manifold X that
contains C, removing an open neighborhood of a general fiber T from C ⊂ X
and gluing S3×S1−ν(ϕ) by a self-diffeomorphism f of the 3-dimensional torus
T 3 for any ϕ ∈ T we construct a 4-manifold.
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It is known that diffeomorphisms over T 3 are classified by the induced
homomorphisms on the fundamental group as elements in SL(3, Z). The gen-
erators of π1(∂[S3 × S1 − ν(ϕ)]) are induced from a longitude l, a meridian m
of K, and a loop n induced from ϕ(pt × S1). We identify ν(T ) with T ×D2,
where D2 is a 2-disk. The vanishing cycles l1, l2 around the cusp fiber generate
π1(T ). We fix a gluing map f : ∂[S3 × S1 − ν(ϕ)] → ∂(T ×D2) that satisfies
the following:

f(l) = pt× ∂D

f(m) = l1

f(n) = l2.

We denote the resulting manifold [X − ν(T )]∪f [S3×S1 − ν(ϕ)] by Xϕ. After
Selman Akbulut’s work [3] we call this operation X → Xϕ Akbulut surgery for
ϕ. Fintushel-Stern knot surgery is the case where ϕ(S1× t) = K for any t, that
is, Xϕ = XK .

Akbulut surgery might give rise to smooth structures other than the Fin-
tushel and Stern’s example, but for the present the author do not know whether
it occurs. The purpose of this paper is to give a sufficient condition for certain
two Akbulut surgeries to give the same 4-manifold. Here we say that a 2-knot
S ⊂ S4 is a ribbon 2-knot in a double position if (S4, S) is a double of a ribbon
disk (D4, D), i.e., which is represented by (S4, D∪Dmr), where Dmr is a mirror
image of D. The main theorem in this paper is as follows:

Theorem 1.1. For any ϕ1 ∈ T , we denote the image of ϕ1 by T1. We
consider a connected-sum T2 := T1#S or T1#S, where S is a ribbon 2-knot
in a double position. We denote by ϕ2 ∈ T an embedding whose image is T2.
Then for any 4-manifold X that contains C, Xϕ2 is diffeomorphic to Xϕ1 for
both the connected-sums.

Akbulut’s Theorem 2.3 of [3] is the case where T1 is a torus obtained from
a trivial concordance of an unknot and S is spun trefoil 2-knot. The main
theorem in [6] is the case where T1 is the same torus as Akbulut’s case and S
is any spun 2-knot.

Remark 1.1. In the 3-dimensional case (S2×S1, S0)#(S3, K) is always
isotopic to (S2 × S1, S0) for any classical knot K where S0 = pt× S1. On the
other hand in our case (S3 × S1, T1) �= (S3 × S1, T2) in general.

In Section 2 we will describe an exterior of any ribbon 2-knot in a double
position by Kirby calculus, and in Section 3 prove the main theorem. We will
also prove more generalized theorem by means of the main theorem’s proof.

2. The Kirby diagram of the exterior of any ribbon 2-knot in a
double position

A method to describe any surface exterior in any 4-manifold by a Kirby
diagram have been studied in Chapter 6 in [5]. By using this method, level
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picture description, we describe the exterior of any ribbon 2-knot in a double
position concretely. We describe the 0-framed 2-handle corresponding to a 1-
handle of 2-knot by an arc as from Fig. 3 to Fig. 4. The way how the 2-handle
winds around two 1-handles is expressed by two arrows as in Fig. 5. We call
such an arc with two arrows a simplified 2-handle. When the 2-handle has k
half twists as the right in Fig. 6, we put the integer k to a side of the simplified
2-handle as the left in Fig. 6. We call this integer the twisting of the simplified
2-handle. For example the level picture Fig. 1 corresponds to the diagram
Fig. 4.

Figure 1. Level picture.

Any ribbon 2-knot in a double position has a symmetric level picture, in
fact, the upper half is the copy of the lower half with the level upside down. In
the lower half part of the 2-knot, there is no 2-handle of the 2-knot. Thus, in
a handle decomposition of the exterior of such a 2-knot 1-handles {αi}i∈I and
3-handles {αi}i∈I appear in pairs and 2-handles appear in pairs of simplified
2-handles {βj}j∈J and its meridian {βj}j∈J with 0-framing. Such pairs are
derived from gluing D4 − ν(D) = 0-handle ∪i αi ∪j βj and the symmetric copy
∪jβj∪iαi∪4-handle. Each αi (or βj) is called a dual 3-handle (or dual 2-handle)
to the handle αi (or βj respectively).

Figure 2. Double level picture.

For example the combination of Fig. 1 and Fig. 2 is a level picture of a
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0

Figure 3.

0

β

Figure 4.

ribbon 2-knot in a double position. The Kirby diagram of the surface exterior
corresponding to this combined level picture is Fig. 7, where two dual 3-handles
and one 4-handle are abbreviated.

The Kirby diagram of the exterior of any ribbon 2-knot in a double position
can be characterized as follows.

Proposition 2.1. The twistings of all simplified 2-handles in the Kirby
diagram of the exterior of any ribbon 2-knot in a double position depend only
on parities of the twistings. Namely the Kirby diagram of such a ribbon 2-knot
exterior can be described by using 1-handles, simplified 2-handles with arrows,
their dual 2-handles, and dual 3-handles.

Figure 5. The definition of arrows.

Proof. Since any ribbon 2-knot in a double position has a symmetric level
picture, the exterior of the 2-knot can be described by using several 1-handles,
simplified 2-handles, and the dual 2- and 3-handles according to the level pic-
ture. Sliding any simplified 2-handle, after changing it back to the ordinary
2-handle, over the corresponding dual 2-handle as in Fig. 8, we can change the
twisting by ±2. By applying this operation to all simplified 2-handles finitely
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Figure 6. Twisting.
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0
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Figure 7.

many times we can reduce their twistings to 0 or 1. If the twisting is 1 it
can be changed into 0 by suitably turning one of the two arrows associated
with the simplified 2-handle to the counter side and sliding if necessary. Hence
the twistings of simplified 2-handles can be represented as the direction of the
arrows.

Figure 8.

From now on, in the Kirby diagrams of such ribbon 2-knots, we adjust
the twistings of the simplified 2-handles into 0, and we omit writing 0 near the
components.
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Figure 9. 3-handles

0

3-handle attaching surface

Figure 10. Canceling 2-, 3-handle.

3. Proofs of the main theorem and a generalized theorem derived
from it

In this paper we use Kirby diagrams and Kirby calculus that contain 3-
handles or 4-handles. We describe a 3-handle as a surface attaching the 3-
handle in the boundary of 0-handle and in ordinary calculus only with 1- and
2-handles. In order to distinguish 3-handle from 1-handles and 2-handles we
describe two back slashes per a 3-handle, see Fig. 9. The two back slashes are
described on the boundary of the surface projected on the plane. For example
Fig. 10 is a diagram where a 3-handle runs through a 0-framed 2-handle once,
thus the pair of two handles can be canceled. The right picture in Fig. 10 is the
closeup illustration. Any 4-handle is described by drawing a hatched region on
a place attaching the 3-sphere on the boundary of 0-handle.

We consider the connected-sum of two separated surfaces S1 and S2 em-
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bedded in a 4-manifold X. Here the separateness means that there exist a
4-disk D4 in X such that either S1 ⊂ D4 and S2 ∩ D4 = ∅ or S2 ⊂ D4 and
S1 ∩D4 = ∅ is satisfied. We describe X − ν(S1)− ν(S2) from level picture de-
scription. Since S1, and S2 are connected, we can move 1-handles and 3-handles
as the top picture in Fig. 11 by an isotopy of the Kirby diagram. The choices
of such two 1- and 3-handles are arbitrary as long as these handles are attached
by the level pictures. As a result connected-sum operation of embedded two
surfaces can be described as follows.

Figure 11. The construction of exteriors of connected-sums S1#S2 and S1#S2.

Lemma 3.1. Kirby diagram of the exterior of a connected-sum of two
separated surfaces S1 and S2 in a 4-manifolds X is obtained as follows. First,
one move the Kirby diagram of X − ν(S1) − ν(S2) in the form of Fig. 11.
Secondly one attaches 0-framed 2-handle a, whose attaching circle is unknot-
ted and separated from other attaching spheres. Next, one exchanges each 3-
handle b1 and b2 in S1 and S2 for new 3-handles c1 and c2 that run through
a once. Finally one attach a simplified 2-handle d according to the orienta-
tions of connected-sum operation. Namely that connected-sum operation is as
in Fig. 11.

Proof. From the level picture description of the connected-sum of S1 and
S2 the attachment of a, d and reattachment of c1, c2 in place of b1, b2 is obvious.
The simplified 2-handle d is connected to each 1-handle in Si (i = 1, 2). The
attachment of d has an ambiguity of the twisting and arrows. Since a is the
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dual 2-handle of d, the ways to attach d are two kinds by the operation of
Fig. 8. Therefore if the bottom-left of Fig. 11 is S1#S2, then the bottom-right
is S1#S2, where S2 is S2 with the reversed-orientation.

Here we prove the main theorem by using Lemma 3.1.

Proof of the main theorem. In the connected-sum operation there exist
two choices as above up to the move in Fig. 8, at the direction of the arrow of the
simplified 2-handle. We choose one of connected-sum of T1 and S arbitrarily.

Applying the above construction to T1 in C and S in S4, the diagram
of Cϕ2 is obtained by attaching two −1-framed 2-handles along the positions
m, n to the exterior. We can move the 2-handle γ which is attached along m,
to a meridian of any 1-handle of the S-part by finitely many handle slides as
in Fig. 12. Here S-part indicates all 1-, 2-, and 3-handles induced from the
exterior of S according to the level picture of S. Then we slide a simplified
2-handle in the S-part to γ as in Fig. 13 (a) and slide γ to the dual 2-handle
as in Fig. 13 (b) to obtain Fig. 13 (c). We also reduce the twistings of the
simplified 2-handles by the move in Fig. 8. By these slides we can change any
crossing between the simplified 2-handles and the 1-handles in the S-part. In
order to remove all the crossings we perform the procedures finitely many times.
Thus we can change the S-part to a linearly-arranged diagram as the upper
part in Fig. 14. Note that we do not have to consider all arrows associated to
any simplified 2-handle since the S-part can be rotated in the direction of the
arrow in Fig. 14. The dual 2-handles in the S-part are canceled with the dual
3-handles, and the simplified 2-handles are canceled with 1-handles. Therefore
the resulting diagram is given as the lower part in Fig. 14. This diagram is that
of Cϕ1 . By carrying out these operations in X, Xϕ1 = Xϕ2 is obtained.

We prove the same theorem as the main theorem in slightly general con-
dition in the rest of this section.

Definition 3.1. Let S ⊂ X be an embedded sphere in any 4-manifold
X and ϕ a self-diffeomorphism of S2 × S1. We denote [X − ν(S)] ∪ϕ S2 ×D2

by XS,ϕ. We call XS,ϕ a Gluck-surgery of X with respect to (S, ϕ).
In particular if ϕ is non-isotopic to the identity, then the regluing is non-

trivial, thus this construction is called a non-trivial Gluck-surgery.

Some of non-trivial Gluck-surgeries can construct exotic 4-manifolds, for
example as in [1]. The non-trivial Gluck-surgeries of S4 give rise to homo-
topy S4. But for the present the author does not know whether the resulting
manifold is exotic or not in general.

Let S an embedded sphere in S4 (which is not necessarily in a double
position). Gluck-surgery along S is to attach a 2-handle γ along a meridian of
any 1-handle of S4−ν(S) and a 4-handle. Note that γ is isotopic to a meridian
of any 1-handle of S4 − ν(S) by Fig. 12 and that the framing of γ depends
only on the parity because of sliding γ over all 1-handles (this slidings is also
written in [2]). The framing of trivial Gluck-surgery is 0, since the framings
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Figure 12.

Figure 13.
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Figure 14.

of 2-handles, including the original 2-handles of simplified 2-handles, are all 0.
We summarize it as follows:

Lemma 3.2. Suppose that a Kirby diagram of the exterior of an em-
bedded 2-sphere S in S4 is obtained from the level picture of S by the Kirby’s
method. The non-trivial Gluck-surgery along S is to attach a −1-framed 2-
handle along the meridian of any 1-handle and a 4-handle.

Here we generalize the main theorem as follows.

Theorem 3.1. Let S be a 2-knot in S4 whose non-trivial Gluck-surgery
is diffeomorphic to the standard 4-sphere. For any ϕ1 ∈ T we define ϕ2 as an
embedding corresponding to a connected-sum of the image of ϕ1 and S. Then
for any 4-manifold X that contains C, Xϕ2 is diffeomorphic to Xϕ1 .

Figure 15.

Proof. Cϕ1 is constructed by attaching two −1-framed 2-handles along
the positions m, n on ∂[S3×S1− ν(ϕ2)]. The −1-framed 2-handle γ attached
along m can be moved to a meridian of a 1-handle of the S-part as in the proof
of Theorem 1.1. We can describe the −1-framed 2-handle as the right picture in
Fig. 15. Thus we slide the simplified 2-handle over the −1-framed 2-handle as in
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Figure 16.

0

γ ∼= D4

Figure 17.
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Fig. 15. We attach the pair of canceling 3-, 4-handle as in Fig. 16 (b), and slide
the left 3-handle to the right 3-handle to obtain Fig. 16 (c). On the other hand
the manifold in the left picture Fig. 17 contained in the diagram of Fig. 16 (c)
is diffeomorphic to (S4−ν(S))∪2-handle. From the assumption, this manifold
is diffeomorphic to D4. Exchanging this part for the empty diagram (it is also
D4) without changing the other parts of the diagram, we obtain the diagram
in Fig. 16 (d). Since the diffeomorphism of S3 can be extended to D4 uniquely,
the manifolds which represent (c) and (d) are diffeomorphic. Therefore Cϕ2 is
diffeomorphic to Cϕ1 , as a consequence Xϕ2 is diffeomorphic to Xϕ1 .

From Theorem 3.1, if 4-dimensional smooth Poincaré conjecture holds,
Theorem 1.1 is true in the case where S is any 2-knot.
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