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Abstract

Braiding operators corresponding to the third Reidemeister move in the theory of
knots and links are realized in terms of parametrized unitary matrices for all dimensions.
Two distinct classes are considered. Their (nonlocal) unitary actions on separable pure
product states of three identical subsystems (i.e., the spin projections of three particles)
are explicitly evaluated for all dimensions. This, for our classes, is shown to generate
entangled superposition of four terms in the base space. The 3-body and 2-body en-
tanglements (in three 2-body subsystems), the 3 tangles, and 2 tangles are explicitly
evaluated for each class. For our matrices, these are parametrized. Varying parameters
they can be made to sweep over the domain (0, 1). Thus, braiding operators correspond-
ing to over- and undercrossings of three braids and, on closing ends, to topologically
entangled Borromean rings are shown, in another context, to generate quantum entan-
glements. For higher dimensions, starting with different initial triplets one can entangle
by turns, each state with all the rest. A specific coupling of three angular momenta is
briefly discussed to throw more light on three body entanglements.

2000 MSC: 86-08

1 Introduction (two faces of unitary braid matrices)

The third Reidemeister move in the theory of knots and links imposes equivalence between
two specific sequences of over- and undercrossing of three braids. Such sequences can be re-
peated and closing the ends of the braids one obtains topologically entangled Borromean
rings whose history reaches back far into the past (see [10, Figure 7]). Braid matrices,
“Baxterized” to depend on spectral (rapidity) parameters, satisfy an equation—the braid
equation—which corresponds precisely to the above-mentioned Reidemeister move. They
provide matricial representations of a particular type of topological entanglements. When
a braid matrix is also unitary, it can also be implemented to induce unitary transformations
in base spaces of corresponding dimensions representing possible quantum states of an object
(i.e., the spin projections of particles).

Let us make this more precise. Let R̂(θ) be a unitary N2 ×N2 matrix, I be the N ×N
unit matrix and

R̂12 = R̂⊗ I, R̂23 = I ⊗ R̂,
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where R̂12, R̂23 act on triple tensor products VN ⊗VN ⊗VN of N -dimensional vector spaces
VN . To be a braid matrix, R̂(θ) must satisfy

R̂12(θ)R̂23(θ + θ′)R̂12(θ′) = R̂23(θ′)R̂12(θ + θ′)R̂23(θ).

The indices (12), (23) correspond to successive crossings (braid 2 overcrossing braid 1
and undercrossing braid 3). The equality sign imposes the essential Reidemeister constraint
(the 3rd move). This will be the link of our matrices to topological entanglement. The role
of braid matrices satisfying unitarity:(

R̂(θ)
)+ = R̂(θ),

in quantum entanglements has been noted and discussed by Kauffman and Lomonaco [10]
in their paper “Braiding operators are universal quantum gates”. A large number of relevant
sources are cited in [10]. We have presented before two quite distinct classes of unitary
N2 × N2 braid matrices [2, 3], one real and for even N and the other complex, for all N .
There is no upper limit to N . [2, 3] cite other sources.

In the following sections, we will systematically, explicitly derive the measures of 2-body
and 3-body entanglements generated by the action of the braiding operator:

B̂ = R̂12(θ)R̂23(θ + θ′)R̂12(θ′)
(

= R̂23(θ′)R̂12(θ + θ′)R̂23(θ)
)
, (1.1)

acting on the pure separable product states:

|a〉 ⊗ |b〉 ⊗ |c〉 = |abc〉,

spanning the basis VN ⊗VN ⊗VN . One can then, if necessary, evaluate the following:

B̂

(∑
a,b,c

fabc|abc〉

)
.

The measures of 2 tangles and 3 tangles derived in [7] will be used throughout. Topological
and quantum entanglements, two domains of B̂, will thus be brought together. One essential
point must be noted: the unitary matrix R̂ is not locally unitary. R̂ cannot be expressed as
R̂1 ⊗ R̂2 acting on VN ⊗VN , where R̂1, R̂2 are each a unitary N ×N matrix acting on VN .
Such an R̂ would have been trivial in the context of braiding. Nor would they have induced
quantum entanglements acting on a product state |a〉 ⊗ |b〉 in V ⊗ V. Non-local unitarity
is crucial in the action of B̂. Local unitary transformations can however be used to classify
already entangled states, as has been done systematically by Carteret and Sulbery [4]. We
aim at generating quantum entanglements.

We close the introduction with some notations we will use throughout. For N = 2, V2 is
usually taken to be spanned by the spin projections of spin-1

2 particles:

(|+〉, |−〉) ≡ (|1〉, |0〉).

With passage to higher dimensions in mind, we will often use the state vectors:

|1〉 =
∣∣∣∣10
〉
, |1〉 =

∣∣∣∣01
〉
.
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Generalization is direct. Thus, for N = 4,

|1〉 =

∣∣∣∣∣∣∣∣
1
0
0
0

〉
, |2〉 =

∣∣∣∣∣∣∣∣
0
1
0
0

〉
, |2〉 =

∣∣∣∣∣∣∣∣
0
0
1
0

〉
, |1〉 =

∣∣∣∣∣∣∣∣
0
0
0
1

〉
.

For all N ,

i = N + 1− i, i = N + 1− i = i.

For convenience, we will continue to use the terminology of spin projections. But the
indices above can also correspond to other suitably enumerated quantum states of a system.

2 Unitary braid matrices and their actions

2.1 Real, unitary, and even-dimensional braid matrices

A class of real, unitary, (2n)2×(2n)2 dimensional braid matrices [3] is given by the following:(
R̂(z)

)±1 =
1√

1 + z2
(I ⊗ I ± zK ⊗ J),

where z = tanh θ and (K,J) are (2n)× (2n) matrices given by the following:

J =
n∑
i=1

(
(−1)i(ii) + (−1)i(ii)

)
, K =

n∑
i=1

(
(ii) + (ii)

)
(2.1)

with i = 2n+1− i and I is the (2n)× (2n) unit matrix. We always denote by (ij) the matrix
with a single nonzero element, unity on row i and column j. A detailed study of this class
can be found in [3]. An equivalent construction, without explicit introduction of the tensor
product structure (K ⊗ J), can be found in [12]. From (2.1):

JK = −KJ =
n∑
i=1

(
(−1)i(ii) + (−1)i(ii)

)
, K2 = −J2 = I. (2.2)

Denoting (tanh θ, tanh θ′, tanh(θ + θ′)) = (z, z′, z′′) with z′′ = z+z′

1+zz′ and using (2.2), one
obtains unitarity:(

R̂(z)
)+ = R̂(z)−1

and the explicit evaluation:

B̂ = R̂12(z)R̂23(z′′)R̂12(z′) = R̂23(z′)R̂12(z′′)R̂23(z)

=
1√(

1 + z2
)(

1 + z′2
)(

1 + z′′2
)

×
(
(1−zz′)I ⊗ I ⊗ I+(z+z′)(I ⊗K ⊗ J+K ⊗ J ⊗ I)+z′′(z′−z)(K ⊗KJ ⊗ J)

)
.

(A misprint in the overall factor in [3, (2.16)] is corrected above. We have also set z′′(1+zz′) =
(z + z′) in the second term there.) We now consider the action of B̂ on basis states:

|abc〉 = |a〉 ⊗ |b〉 ⊗ |c〉, (2.3)
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where (a, b, c) each span the (2n) dimensional V2n in V2n ⊗V2n ⊗V2n with for

a = i, a = 2n+ 1− a = i, a = i, a = 2n+ 1− a = i, (i = 1, . . . , n). (2.4)

Similarly (b, c) can be (j, j), (k, k), respectively, over the same domain. The notations (2.3),
(2.4) make the formalism much more compact.

Using (2.1)–(2.4), one obtains the following:

B̂|abc〉 = f0|abc〉+ f1|abc〉+ f2|abc〉+ f3|abc〉 (2.5)

with

(f0, f1, f2, f3) =
1√(

1 + z2
)(

1 + z′2
)(

1 + z′′2
)

×
(
(1− zz′), (−1)c(z + z′), (−1)b(z + z′), (−1)b+cz′′(z′ − z)

)
.

(2.6)

Noting that

(1− zz′)2 + (z + z′)2 = (1 + z2)(1 + z′2),

(z + z′)2 + z′′2(z′ − z)2 = z′′2(1 + z2)(1 + z′2),
(2.7)

one immediately verifies that, consistently with unitarity of B̂,

f2
0 + f2

1 + f2
2 + f2

3 = 1.

On the left of (2.5), |abc〉 is by definition a separable product of pure states, hence
unentangled. One the right, the superposition can be shown to imply entanglement. On
assuming it can be expressed as a product (

∑
xi|xi〉) ⊗ (

∑
yi|yi〉) ⊗ (

∑
zi|zi〉), one runs

into contradictions. In Section 3, we will go much further. We will obtain explicitly the
intrinsic 3-body entanglement (3 tangles) and the 2-body entanglements (2 tangles) of the
three subsystems. They will be expressed in terms of (f0, f1, f2, f3) of (2.6).

2.2 Complex, even-dimensional, multiparameter unitary braid matrices

In a series of papers (some of which are cited in [2]), we have constructed a class multipa-
rameter braid matrices, the number of such parameters increasing as N2 with the dimension
N2 ×N2 of the matrix for both even and odd dimensions (N = 2, 3, 4, 5, 6, . . .). It was then
noted [2, 3] that for all these parameters pure imaginary, this class corresponds to unitary
braid matrices. (One may also consider real parameters with θ imaginary.) In this subsection,
we restrict our considerations to even-dimensional matrices. For N odd special features arise
which are best treated separately in Section 4. The even-dimensional, unitary (2n)2 × (2n)2

matrix is given by the following:

R̂(θ) =
∑
ε

∑
i,j

em
(ε)
ij θ
(
P

(ε)
ij + P

(ε)

ij̄

)
, (2.8)

the definitions of the projectors being

P
(ε)
ab =

1
2
{

(aa)⊗ (bb) + (āā)⊗ (b̄b̄) + ε
[
(aā)⊗ (bb̄) + (āa)⊗ (b̄b)

]}
, (2.9)



Unitary braid matrices 5

where a = (i, i), b = (j, j) runs over 2n values and a = 2n + 1 − a and b = 2n + 1 − b.
The explicit forms of R̂(θ) for N = (2, 4) are given in [2] where the transition to unitarity is
formulated in Section 3 (m(ε)

ij −→ im(ε)
ij , with the coefficient i =

√
−1).

Consider again the action of

B̂ = R̂12(θ)R̂23(θ + θ′)R̂12(θ′).

One obtains (compare (2.5), (2.6)):

B̂|abc〉 = f0|abc〉+ f1|abc〉+ f2|abc〉+ f3|abc〉, (2.10)

but now with coefficients defined below. Set

λ± = m
(±)
ab (θ + θ′), µ± = m

(±)
bc (θ + θ′) (2.11)

with only the sum (θ + θ′) as factor above (in contrast to tanh θ, tanh θ′, tanh(θ + θ′) all
playing roles in the previous case). In terms of (λ, µ), one has

f0 =
1
4
(
eiλ+ + eiλ−

)(
eiµ+ + eiµ−

)
, f1 =

1
4
(
eiλ+ + eiλ−

)(
eiµ+ − eiµ−

)
,

f2 =
1
4
(
eiλ+ − eiλ−

)(
eiµ+ − eiµ−

)
, f3 =

1
4
(
eiλ+ − eiλ−

)(
eiµ+ + eiµ−

)
,

(2.12)

satisfying the unitarity constraints:

f0f
+
0 + f1f

+
1 + f2f

+
2 + f3f

+
3 = 1.

Again, one can easily verify that the right side of (2.10) represents an entangled state (as
for (2.5)). We will obtain explicitly the 3-tangle and the 2-tangle in Section 3.

Repeated actions of B̂ with different parameters will modify the coefficients as follows:

B̂′B̂|abc〉 = B̂′
(
f0|abc〉+ f1|abc〉+ f2|abc〉+ f3|abc〉

)
= g0|abc〉+ g1|abc〉+ g2|abc〉+ g3|abc〉

with

g0 =
(
f0f
′
0 + f1f

′
1 + f2f

′
2 + f3f

′
3

)
, g1 =

(
f0f
′
1 + f1f

′
0 + f2f

′
3 + f3f

′
2

)
,

g2 =
(
f0f
′
2 + f1f

′
3 + f2f

′
0 + f3f

′
1

)
, g3 =

(
f0f
′
3 + f1f

′
2 + f2f

′
1 + f3f

′
0

)
.

Here, (f ′0, f
′
1, f
′
2, f
′
3) are coefficients due to the action of B̂′ alone. This set may belong to the

same class as (f0, f1, f2, f3) or to the other one of our two classes (see (2.6) and (2.12)). The
process can be repeated remaining always in the closed subspace (|abc〉, |abc〉, |abc〉, |abc〉).
(Starting with the same |a〉 but with different |b′〉, |c′〉, e.g., and continuing thus one can
entangle each individual state with all the others successively in the total base space. See
the relevant remarks in Section 6.) The essential features of the aspects that interest us
principally (analyzed in Section 3) can be shown to be conserved under iterations indicated
above. For that reason, and also for simplicity, we will restrict our study (Section 3) to the
two sets of coefficients (2.6) and (2.12).
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3 Computation of quantum entanglements

We now extract from (2.5), (2.6), (2.10), and (2.12), respectively, the quantum entanglements
generated by B̂ acting on the pure product state |abc〉, where |abc〉 can be any triplet selected
from the N3 dimensional base space. For spin 1

2 particles,

|a〉 ∈
(
|+〉, |−〉

)
≡
(
|1〉, |0〉

)
.

For higher spins (with |a〉 now written as | − a〉),

|a〉 ∈
(
|N〉, |N − 1〉, . . . , |1−N〉, | −N〉

)
,

and similarly for (|b〉, |c〉). Under the action of the braiding operator B̂ (defined in (1.1) with
|a〉 = |N − a+ 1〉 ≡ | − a〉),

B̂|abc〉 = f0|abc〉+ f1|abc〉+ f2|abc〉+ f3|abc〉, (3.1)

where (f0, f1, f2, f3) are given by (2.6) and (2.12) for our two classes, respectively. For spin
1
2 , one has two subsets:(

|111〉, |100〉, |010〉, |001〉
)
,
(
|000〉, |011〉, |101〉, |110〉

)
.

For higher spin, as noted before, one can start with the same |a〉 but (|b〉, |c〉) chosen from
all the other possibilities. But for each initial choice, one remains, under the action B̂, in the
subspace given by the right hand of (3.1). This is the very special, fundamental, property
of our unitary matrices. This allows us, even for higher spins, to implement systematically
the formalism and concepts of Coffman, Kundu, and Wootters (CKW) concerning 3-particle
entanglements (and corresponding 2-particle ones for the three subsystems) in [7]. This we
now proceed to do.

The density matrix corresponding (3.1) is as follows:

ρ123 =
(
f0|abc〉+ f1|abc〉+ f2|abc〉+ f3|abc〉

)(
f+

0 〈cba|+ f+
1 〈cba|+ f+

2 〈cba|+ f+
3 〈cba|

)
.

Tracing out c, one obtains

ρ12 = f0f
+
0 |ab〉〈ba|+ f0f

+
3 |ab〉〈ba|+ f1f

+
1 |ab〉〈ba|+ f1f

+
2 |ab〉〈ba|

+ f2f
+
2 |ab〉〈ba|+ f2f

+
1 |ab〉〈ba|+ f3f

+
3 |ab〉〈ba|+ f3f

+
0 |ab〉〈ba|.

(3.2)

Tracing out b in ρ12, one obtains a diagonal:

ρ1 =
(
f0f

+
0 + f1f

+
1

)
|a〉〈a|+

(
f2f

+
2 + f3f

+
3

)
|a〉〈a|. (3.3)

One can write down (ρ13, ρ13), (ρ2, ρ3) from symmetry. Thus, for example,

ρ2 =
(
f0f

+
0 + f2f

+
2

)
|b〉〈b|+

(
f3f

+
3 + f1f

+
1

)
|b〉〈b|,

and so on.
The spin-flipped matrix:

ρ̃AB =
∣∣∣∣0 −i
i 0

∣∣∣∣⊗ ∣∣∣∣0 −i
i 0

∣∣∣∣ ρ+
AB

∣∣∣∣0 −i
i 0

∣∣∣∣⊗ ∣∣∣∣0 −i
i 0

∣∣∣∣
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can now be obtained for (ρ12, ρ23, ρ13) and then the products (ρAB ρ̃AB). Thus,

ρ12ρ̃12 = 2

∣∣∣∣∣∣∣∣∣∣

f0f
+
0 f3f

+
3 0 0 f2

0 f
+
0 f

+
3

0 f1f
+
1 f2f

+
2 f2

1 f
+
1 f

+
2 0

0 f2
2 f

+
1 f

+
2 f1f

+
1 f2f

+
2 0

f2
3 f

+
0 f

+
3 0 0 f0f

+
0 f3f

+
3

∣∣∣∣∣∣∣∣∣∣
.

The products (ρ13ρ̃13), (ρ23ρ̃23) are related to the result above through evident permutations

of the indices (1, 2, 3). The eigenstates can be read off as
∣∣∣∣ f0/f30

0
±1

〉
,
∣∣∣∣ 0
f1/f2
±1
0

〉
. The eigenvalues

of (ρ12ρ̃12) are as follows:(
λ2

1, λ
2
2, λ

2
3, λ

2
4

)
= 4
(
f0f

+
0 f3f

+
3 , f1f

+
1 f2f

+
2 , 0, 0

)
.

(The ordering of the first two roots depends on values of the parameters in B̂.)
Taking square roots, the “concurrence” is as follows:

C12 = 2
∣∣(f0f

+
0 f3f

+
3

)1/2 − (f1f
+
1 f2f

+
2

)1/2∣∣. (3.4)

Similarly,

C23 = 2
∣∣(f0f

+
0 f1f

+
1

)1/2 − (f2f
+
2 f3f

+
3

)1/2∣∣, (3.5)

C13 = 2
∣∣(f0f

+
0 f2f

+
2

)1/2 − (f1f
+
1 f3f

+
3

)1/2∣∣. (3.6)

Note that the product (λ1λ2) is the same for the three subsystems. Thus, from equations
(17) and (24) of CKW [7], the 3-tangle is as follows:

τ123 = 16
(
f0f

+
0 f1f

+
1 f2f

+
2 f3f

+
3

)1/2
. (3.7)

The invariance of τ123 under permutations of the particles (1, 2, 3) (i.e., (a, b, c)) is evident
above. Having obtained the results in terms of (f0, f1, f2, f3), we proceed below to study them
for our two classes implementing (2.6) and (2.12). We start with τ123 since the crucial role
of B̂ is to entangle 3 particles.

(I). From (2.6) for real (θ, θ′),

τ123 = 16
(
f0f

+
0 f1f

+
1 f2f

+
2 f3f

+
3

)1/2 = 16
(
f0f1f2f3

)
= 16

(1− zz′)(z + z′)2z′′|z − z′|((
1 + z2

)(
1 + z′2

)(
1 + z′′2

))2 (3.8)

Here, z = tanh θ, z′ = tanh θ′, z′′ = tanh(θ + θ′), and 1 ≥ t(z, z′, z′′) ≥ 0. Special points:

(1) (z = z′): the difference |z−z′| in (3.8) arises from anticommutativity of (J,K) in (2.2).
For z = z′, f3 = 0 and hence τ123 = 0 in (3.7). From (3.4), (3.5), (3.6), one has nonzero
2 tangles. We exclude this point, being particulary interested in 3 tangles.

(2) (z = −z′): now z′′ = 0, that is, (θ + θ′) = 0. This is a trivial point. Now, in(1.1),

B̂ = R̂12(θ)R̂23(0)R̂12(−θ) = R̂23(−θ)R̂12(0)R̂23(θ), (3.9)
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where(
R̂23(0), R̂12(0)

)
= I ⊗ I ⊗ I, (3.10)

and due to unitarity,

R̂12(θ)R̂12(−θ) = R̂23(θ)R̂23(−θ) = I ⊗ I ⊗ I. (3.11)

We exclude also this point.
(3) (z = 1, z′ = 0), (z = 0, z′ = 1): for both points, z′′ = 1. These limiting cases provide

the maximal value τ123 = 1. They correspond to the following:

f0 = f1 = f2 = f3 =
1
2
, B|abc〉 =

1
2
(
|abc〉+ |abc〉+ |abc〉+ |abc〉

)
.

The overall factor 1
2 contributes 1

24 to cancel exactly the factor 16 in (3.8), which arose
from the fact that our B̂ acting on a product state |abc〉 gives a superposition of 4
states leading to entanglements.

Away from such points, for the generic case, keeping in mind (2.7), we define

x =
(1− zz′)
(z + z′)

, y =
z′′|z − z′|
(z + z′)

,

and write

τ123 =
16xy(

x2 + y2 + 2
)2 < 4xy

(xy + 1)2
=
((

(xy)1/2 + (xy)−1/2
)

2

)−2

< 1. (3.12)

From (2.6), (3.4), (3.5), (3.6), the 2-particle concurrences are

C12 = 2
∣∣f0f3 − f1f2

∣∣ =
4z′′z′(

1 + z′2
)(

1 + z′′2
) , (for |z − z′| = z − z′),

and

C12 =
4z′′z(

1 + z2
)(

1 + z′′2
) , (for |z − z′| = z′ − z),

C23 = C13 =2
∣∣f1

(
f0−f3

)∣∣= 2(z+z′)
(
1−z2

)(
1+z2

)(
1+z′′2

)
(1+zz′)

, (for |z−z′|=z−z′),

and

C23 = C13 =
2(z + z′)

(
1− z′2

)(
1 + z′2

)(
1 + z′′2

)
(1 + zz′)

, (for |z − z′| = z′ − z).

For (z = 1, z′ = 0, z′′ = 1) and also for (z = 0, z′ = 1, z′′ = 1) C12 = C23 = C13 = 0, while
τ123 = 1 attaining the maximum. It is the situation one finds in GHZ state though that is
quite different otherwise. (We refer to the comments below equation (24) of CKW [7]). One
can also compare a Borromean ring (e.g., [10, Section 8.3]). If any one of the three entangled
braids is cut, the remaining two fall apart, they are no longer entangled.
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(II). We now obtain the quantum entanglements induced by the action of B̂ in a product
state |abc〉 for our complex, multiparameter, unitary braid operator. From (2.12),

f0f
+
0 =

(
cos
(
λ+ − λ−

2

)
cos
(
µ+ − µ−

2

))2

,

f1f
+
1 =

(
cos
(
λ+ − λ−

2

)
sin
(
µ+ − µ−

2

))2

,

f2f
+
2 =

(
sin
(
λ+ − λ−

2

)
sin
(
µ+ − µ−

2

))2

,

f3f
+
3 =

(
sin
(
λ+ − λ−

2

)
cos
(
µ+ − µ−

2

))2

,

satisfying

f0f
+
0 + f1f

+
1 + f2f

+
2 + f3f

+
3 = 1.

Here, from (2.11),

λ+ − λ− =
(
m

(+)
ab −m

(−)
ab

)
(θ + θ′), µ+ − µ− =

(
m

(+)
bc −m

(−)
bc

)
(θ + θ′). (3.13)

The 3-tangle is now from (3.7), along with (3.13),

τ123 = 16
(
f0f

+
0 f1f

+
1 f2f

+
2 f3f

+
3

)1/2 =
(

sin
(
λ+ − λ−

)
sin
(
µ+ − µ−

))2
. (3.14)

From (3.4), (3.5), (3.6), the 2 tangles are

C12 =
∣∣ sin (λ+−λ−

)
cos
(
µ+−µ−

)∣∣, C23 =
∣∣ cos

(
λ+−λ−

)
sin
(
µ+−µ−

)∣∣, C13 =0.

Let us take a closer look at these results.

(1) The vanishing of C13 is related to the fact that in the action of B̂ on |abc〉, the terms
involving m(±)

ab act on |ab〉 and those involving m(±)
bc on |bc〉. Thus, |b〉 is acted on by

both parts while |a〉 and |c〉 are decoupled in the above sense. One can alter the actions
on them independently by varying the two sets of parameters. One the other hand, the
presence of |b〉 generates a coupling with |a〉 on one hand and with |c〉 on the other. A
parallel feature was absent for our class (I). There apart from (θ, θ′) there are no free
parameters (like the m’s for class (II)). And z′′ = (z + z′)(1 + zz′)−1 combines (z, z′)
nonlinearly.

(2) Here, the presence of the sum (θ+θ′) in (3.13) makes zero entanglements for (θ+θ′) = 0
evident. Compare the discussion related to (3.9)–(3.11).

(3) The domain 0 ≤ τ123 ≤ 1 is evident from (3.14). Compare the discussion leading to
(3.12).

(4) If the ratio (for +1 or −1 below),(
m

(+)
ab −m

(−)
ab

m
(+)
bc −m

(−)
bc

)±1

= 1, 3, 5, . . .

an odd integer the upper limit (τ123 = 1) is attained periodically in the space of
rapidities as the sum (θ + θ′) is varied. If the ratio on the right is incommensurable,
one can have quasiperiodicity. Varying the parameters (m(±)

ab ,m
(±)
bc ), one can sweep

through different possibilities.
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(5) For spin 1
2 (R̂ a 4×4 matrix), there is only one set m(±)

11 (m(±)
bc = m

(±)
ab = m

(±)
11 ). Hence,

in (3.14):

τ123 =
(

sin
((
m

(+)
11 −m

(−)
11

)
(θ + θ′)

))4
.

This is always periodic in (θ + θ′).

4 Odd dimensions

The real matrices ([2, equation (2.1)]), our class (I), have no odd dimensional counterparts.
The complex, multiparameter matrices (2.8), (2.9) are not thus restricted. In fact, the odd
dimensional sequences based on “nested sequences of projectors” were the first to be con-
structed. The lowest odd dimensional (9× 9) case, with imaginary parameters for unitarity,
is explicitly presented in [3, Section 11]. The crucial difference with N = 2n is that for
N = (2n− 1), (n = 2, 3, . . .) i = (2n− 1)− i+ 1 = 2n− i and hence

n = 2n− n = n.

For N = 2n, i 6= i for each i. Correspondingly in (2.9), now (for (a, b) 6= n)

P (ε)
an = P

(ε)
an =

1
2
{

(aa) + (āā) + ε
[
(aā) + (āa)

]}
⊗ (nn), (4.1)

P
(ε)
nb =

1
2

(nn)⊗
{

(bb) + (b̄b̄) + ε
[
(bb̄) + (b̄b)

]}
, (4.2)

Pnn = (nn)⊗ (nn). (4.3)

If in (2.10)

(a, b, c) 6= n,

the results of Section 3 can be formally carried over unchanged. But for

|abc〉 =
(
|nbc〉, |anc〉, |abn〉, |nnc〉, |nbn〉, |ann〉, |nnn〉

)
, (4.4)

fairly evident modifications are necessary. Some indications are given in [3]. Odd dimensional
R̂ is necessary in dealing with particles of integer spins. If in a 3-photon state, each one is
in a state of polarization |±〉 (i.e., | ± 1〉), there being no |0〉 states the results of Section 2.2
can be used.

Consider now the action of B̂ on the states (4.4). From (4.1), (4.2), (4.3),

P
(ε)
nb |nb〉 =

1
2
|n〉 ⊗

(
|b〉+ ε|b〉

)
=

1
2
(
|nb〉+ ε|nb〉

)
,

P (ε)
an |an〉 =

1
2
(
|a〉+ ε|a〉

)
⊗ |n〉 =

1
2
(
|an〉+ ε|an〉

)
,

P (ε)
nn |nn〉 = |nn〉.

The action of B̂ on the states (4.4) can now be studied. From our point of view (links with
quantum entanglements), not only |nnn〉 but also (|nnc〉,|nbn〉,|ann〉) are trivial since one
obtains under action of B̂ superposition of states |nn〉 ⊗ (|c〉, |c〉) and so on. Only one spin
is affected. Entanglement is not produced. The states (|nbc〉, |abn〉) can also be set aside,
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under the action of B̂ the state |n〉 remains a bystander to 2-particle entanglements of |bc〉
and |ab〉.

The state |anc〉 deserves a closer look. One obtains the following:

B̂|anc〉 = f0|anc〉+ f1|anc〉+ f2|anc〉+ f3|anc〉.

The coefficients (f0, f1, f2, f3) are obtained by setting, in (2.11), (2.12),

λ± = m(±)
an (θ + θ′), µ± = m(±)

nc (θ + θ′).

But now tracing out indices (with n = n) leads to differences. As compared to (3.2), now
(with b = b = n):

ρ12 =
(
f0f

+
0 + f1f

+
1

)
|an〉〈na|+

(
f0f

+
3 + f1f

+
2

)
|an〉〈na|

+
(
f3f

+
0 + f2f

+
1

)
|an〉〈na|+

(
f2f

+
2 + f3f

+
3

)
|an〉〈na|.

One has 2× 2 matrix now. However, tracing out n in ρ12,

ρ1 =
(
f0f

+
0 + f1f

+
1

)
|a〉〈a|+

(
f0f

+
3 + f1f

+
2

)
|a〉〈a|

+
(
f3f

+
0 + f2f

+
1

)
|a〉〈a|+

(
f2f

+
2 + f3f

+
3

)
|a〉〈a|.

This is no longer diagonal-like (3.3).
We will not analyze such cases further in this paper. For N = 2n, at the center of the

matrix, R̂ is the square lattice with corners, which can be denoted as (nn, nn, nn, nn). For
N = 2n − 1, (since n = n) this reduces to the point (nn) common to the diagonal and the
antidiagonal. This is the source of difference. When this common point is not involved in
|abc〉, the results correspond for even and odd dimensions.

5 Entanglement via a special coupling of 3 spins

This section is a brief digression. We restrict our remarks here to 3 spin 1
2 particles. For this

case, in the study of entanglements, basic roles are usually attributed to the states:

|GHZ〉 =
1√
2

(
|000〉+ |111〉

)
, (5.1)

|W 〉 =
1√
3

(
|001〉+ |010〉+ |100〉

)
, (5.2)

|W̃ 〉 =
1√
3

(
|110〉+ |101〉+ |011〉

)
. (5.3)

(See [9] and sources cited there.) Their local unitary transformations can also be consid-
ered [4].

Our approach via the braiding operator B̂ led to states of the type (f0|000〉 + f1|011〉 +
f2|101〉 + f3|110〉) and (g0|111〉 + g1|100〉 + g2|010〉 + g3|001〉) with normalized coefficients
(with parameter dependence):

f0f
+
0 + f1f

+
1 + f2f

+
2 + f3f

+
3 = 1, g0g

+
0 + g1g

+
1 + g2g

+
2 + g3g

+
3 = 1,

given in Section 2. The states |000〉 and |111〉 of |GHZ〉 are separately superposed, respec-
tively, with those of |W̃ 〉, |W 〉, respectively, and these 4 terms in the superpositions have
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been thoroughly studied in the preceding sections. Though we are particularly interested
in such cases, it is interesting to point out the direct relations of |GHZ〉, |W̃ 〉 and |W 〉 to
a coupling of 3 angular momenta (

−→
J 1,
−→
J 2,
−→
J 3) to obtain eigenstates of the following:

Z = (
−→
J 1 ×

−→
J 2) ·

−→
J 3.

These also, of course, eigenstates of
−→
J 2 =

−→
J 2

1 +
−→
J 2

2 +
−→
J 2

3

and J0 = J0
1 + J0

2 + J0
3 . J0 being the third component in the circular ones (J+, J−, J0).

Such a coupling was proposed by A. Chakrabarti long ago [6]. It was also proposed by
J. M. Lévy-Leblond and M. Nahas [11]. From all the results of [6], concerning states |jmζ〉
(j(j+1),m, ζ) denoting eigenvalues of ((

−→
J 2, J0, Z), resp.), we mention one. For the maximal

value, j = j1 + j2 + j3 always ζ = 0. For j1 = j2 = j3 = 1
2 and j = 3

2 ,

1√
2

(∣∣∣∣32 3
2

0
〉
±
∣∣∣∣32 − 3

2
0
〉)

=
1√
2

(
|000〉±|111〉

)
,

∣∣∣∣32 1
2

0
〉

= |W 〉,
∣∣∣∣32 − 1

2
0
〉

= |W̃ 〉.

(The states on the right, unlike those on the left, are those of (5.1), (5.2), (5.3).) For j = 1
2 ,

one has nonzero ζ. From (A.13) of [6] (with ζ = ±
√

3
4 ),∣∣∣∣12 1

2
±
√

3
4

〉
=

1√
3

(
e±i 2π

3 |011〉+ e∓i 2π
3 |101〉+ |110〉

)
,∣∣∣∣12 − 1

2
±
√

3
4

〉
=

1√
3

(
e∓i 2π

3 |100〉+ e±i 2π
3 |010〉+ |001〉

)
.

We conclude by noting the following.

(1) This coupling was proposed due to its symmetries under the permutations of the spins
(
−→
J 1,
−→
J 2,
−→
J 3). Such symmetries are notoriously lacking for the standard 2-step coupling

via C. G. coefficients, where permutations are related to 6-j symbols. One has to label
the intermediate step additionally with (j1, j2), (j1, j3), or (j2, j3). Reduction under
the rotation group implementing Z gives simultaneous reduction, without additional
effort, under S3 the group of permutations of the 3 particles.

(2) Here are see how this formalism leads directly to states famous in the study of quantum
entanglements.

6 Discussions

We want to emphasize how in larger dimensions each object (i.e., spin states of component
particles) is seen to be entangled with all the others through a full exploitation of our
formalism. Since our approach is via the braiding operator B̂ (defined in (1.1)), we start by
picking out a triplet:

|a〉 ⊗ |b〉 ⊗ |c〉 ≡ |abc〉,

where (a, b, c) is any element among the basis states spanning VN ⊗ VN ⊗ VN and obtain
the entangled superpositions studied (Section 3):

B̂|abc〉 = f0|abc〉+ f1|abc〉+ f2|abc〉+ f3|abc〉, (6.1)
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where |a〉 = |N − a+ 1〉, and so on. The states (|a〉, |a〉), (|b〉, |b〉), (|c〉, |c〉) of the subsystems
are involved above. But now one can start again with any triplet |ab′c′〉, |a′′bc′′〉, . . . , (b′ 6= b
or b, and so on) covering thus systematically all possible choices in VN ⊗VN ⊗VN and then
implement the action of B̂. Thus, at the end each, |a〉 will be entangled with each |b〉 and
each |c〉. At each step a quadruplet (|abc〉, |abc〉, |abc〉, |abc〉) will be involved, this being the
essential property of both classes of unitary braid matrices we propose (with nonzero terms
on the diagonal and the antidiagonal only).

Consider the simplest nontrivial case. For three spin half particles, the two quadruplets
will be (|000〉, |011〉, |101〉, |110〉) (|111〉, |100〉, |010〉, |001〉). But already it is evident that
starting by turns with, say (|000〉, |001〉) finally |a〉 = |0〉 will be entangled with |bc〉 =
(|00〉, |01〉, |10〉, |11〉), i.e., with all possible states of |b〉 and |c〉. This is a general feature.

In Section 5, we have contrasted our typical superposition (6.1), to the prominent roles in
the study of 3-particle entanglements of the states (|GHZ〉, |W 〉, |W̃ 〉) given in (5.1)–(5.3).
It is implicit in our formalism that the maximum 3-tangle is obtained for the following:

f0 = f1 = f2 = f3 =
1
2
,

namely, 1
2(|111〉+ |100〉+ |010〉+ |001〉) and 1

2(|000〉+ |011〉+ |101〉+ |110〉). The (d1, d2, d3)
defined in equation (21) of CKW [7] are for both the cases above:

d1 = 0, d2 = 0, d3 =
1
16
, (6.2)

and hence (see equations (22)–(24) of CKW [7]):

τ123 = 4
∣∣d1 − 2d2 + 4d3

∣∣ = 1.

The value (6.2) are the same as for |GHZ〉. For the maximal superposition (normalized sum
of the quadruplets with all coefficients equal) 1√

8
(|000〉+ |011〉+ |101〉+ |111〉+ |100〉+ |010〉+

|001〉), there is a striking change. Now,(
d1, d2, d3

)
=

1
26

(4, 6, 2), τ123 =
1
26

(4− 2 · 6 + 4 · 2) = 0.

One reaches now the lower bound. CKW [7] notes below equation (25) “It would be very
interesting to know which of the results of this paper generalize to larger objects or to larger
collections of objects”. Our formalism furnishes one possible approach to many component
objects and their collections. We have not answered the question whether the entanglement
in larger dimensions can be formulated in a systematically hierarchical fashion, involving
simultaneously more and more objects. Our motivation has been “entangling topological and
quantum entanglements” via the braiding operator B̂ corresponding to third Reidemeister
move. Having constructed unitary classes B̂, we were able to implement them to generate
quantum entanglements.

Three particle entanglements were emphasized before [8]. We have studied, for our cases,
the permutation invariant measures of entanglement of [7]. The crucial feature of our treat-
ment is the study of B̂ acting on V × V × V rather than R̂ acting on V × V . The treatment
starting in Section 2.2 displays one aspect of the multiple possibilities inherent in our mul-
tiparameter models. This can be put side by side with their role (for real parameters) in
statistical models [1]. At the end of Section 3, we briefly evoke possible periodicity in the
space of parameters. Introducing a magnetic field (and a simple generalization of the formal-
ism of [5]), one would obtain periodicity in time of our entangled 3-particle states. This will
be studied elsewhere.



14 B. Abdesselam and A. Chakrabarti

References

[1] B. Abdesselam and A. Chakrabarti. Multiparameter statistical models from N2 × N2 braid
matrices: Explicit eigenvalues of transfer matrices T(r), spin chains, factorizable scatterings for
all N . Submitted to J. Phys. A: Math. Theor..

[2] B. Abdesselam, A. Chakrabarti, V. K. Dobrev, and S. G. Mihov. Higher dimensional multipa-
rameter unitary and nonunitary braid matrices: even dimensions. J. Math. Phys., 48 (2007),
103505.

[3] . Higher dimensional unitary braid matrices: Construction, associated structures, and en-
tanglements. J. Math. Phys., 48 (2007), 053508.

[4] H. A. Cartret and A. Sudbery. Local symmetry properties of pure three-qubit states. J. Phys.
A: Math. Gen., 33 (2000), 4981–5002.

[5] A. Chakrabarti. Entangled states, Lorentz transformations and spin precession in magnetic
fields. J. Phys. A: Math. Theor., 42 (2009), 245205.

[6] . On the coupling of 3 angular momenta. Ann. Inst. H. Poincaré, 1 (1964), 301–327.
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