Correction to: "The intersection of two real forms in Hermitian symmetric spaces of compact type"

By Makiko Sumi Tanaka and Hiroyuki Tasaki

[The original paper is in this journal Vol. 64 (2012), 1297-1332]
(Received Dec. 17, 2012)
(Revised Nov. 11, 2013)

Abstract

We correct the proof of Theorem 1.1 in our previous paper specially in the non-irreducible case.

In this paper we correct the proof of Theorem 1.1 in our previous paper [4], which was not complete. The proof works well if the Hermitian symmetric space is irreducible. On the other hand, the proof does not partly work well if the Hermitian symmetric space is not irreducible. We partly divide the proof into two cases where the Hermitian symmetric space is irreducible and non-irreducible and give a complete proof of antipodal property of the intersection of two real forms.

Theorem 1.1 ([4]). Let M be a Hermitian symmetric space of compact type. If two real forms L_{1} and L_{2} in M intersect transversally, then $L_{1} \cap L_{2}$ is an antipodal set of L_{1} and L_{2}.

We adopt the notational conventions in Section 2, [4]. We prepare the following lemma for the proof of Theorem 1.1.

Lemma. Let M be a compact Riemannian symmetric space. If M is cubic (Definition 3.2 in [4]), then $s_{o} \operatorname{Exp} H=\operatorname{Exp} H$ for any vertex H of \bar{S}.

Proof. If M is cubic, $2 H \in \Gamma(A)$ for any vertex H of \bar{S}. Thus we have $\operatorname{Exp}(2 H)=$ o and $s_{o} \operatorname{Exp} H=\operatorname{Exp}(-H)=\operatorname{Exp} H$.

Proof of Theorem 1.1. We partly divide the proof into two cases where M is irreducible and non-irreducible, however our argument starts with any Hermitian symmetric space M of compact type.

The holomorphic sectional curvature of M is positive, so $L_{1} \cap L_{2} \neq \emptyset$ by Theorem 1 in [1] or Lemma 3.1 in [6]. Because of the transitive action of the group of holomorphic isometries we may assume the origin of M is contained in $L_{1} \cap L_{2}$ without loss of

[^0]generality. It is sufficient to prove that o and p are antipodal in L_{1} and in L_{2} for any point p in $L_{1} \cap L_{2}-\{o\}$.

Let A_{i} be a maximal torus of $L_{i}(i=1,2)$ which contains o and p. Let \mathfrak{a}_{i} be the maximal abelian subspace corresponding to $A_{i}(i=1,2)$. We take a maximal torus A_{i}^{\prime} of M containing A_{i} and denote the corresponding maximal abelian subspace by $\mathfrak{a}_{i}^{\prime}$ ($i=1,2$). Let

$$
\operatorname{Exp}_{o} t H_{2} \quad\left(H_{2} \in \mathfrak{a}_{2}, 0 \leq t \leq 1\right)
$$

be a shortest geodesic in A_{2} joining o to p. In particular, $p=\operatorname{Exp}_{o} H_{2}$. Since A_{2} is geodesically convex in A_{2}^{\prime} by Quast-Tanaka [2], $\operatorname{Exp}_{o} t H_{2}$ is also a shortest geodesic in A_{2}^{\prime} joining o to p. Hence we can take a fundamental system Π_{2} of the restricted root system with respect to $\mathfrak{a}_{2}^{\prime}$ such that $H_{2} \in \bar{S}_{2}$, where

$$
S_{2}=\left\{H \in \mathfrak{a}_{2}^{\prime} \mid\langle\alpha, H\rangle>0\left(\alpha \in \Pi_{2}\right),\left\langle\delta_{i}, H\right\rangle<\pi\left(\delta_{i} \in R_{2}^{\#}\right)\right\} .
$$

Since \bar{S}_{2} is decomposed

$$
\bar{S}_{2}=\bigcup_{\Delta \subset \Pi_{2}^{\#}} S_{2}^{\Delta}
$$

as a disjoint union, there exists $\Delta_{2} \subset \Pi_{2}^{\#}$ such that $H_{2} \in S_{2}^{\Delta_{2}}$. Lemma 3.6 in [4] implies $p \in \operatorname{Exp}_{o} S_{2}^{\Delta_{2}} \subset A_{1}^{\prime} \cap A_{2}^{\prime}$.

It is known that a Hermitian symmetric space of compact type is cubic. We express

$$
\mathfrak{a}_{2}^{\prime}=\left\{\left(x_{1}, \ldots, x_{r}\right)\right\}
$$

with respect to a canonical coordinate of A_{2}^{\prime} (see Definition 3.2 in [4]). Proposition 3.4 in [4] implies that there exists an involutive permutation λ of $\{1, \ldots, r\}$ satisfying

$$
\begin{equation*}
\mathfrak{a}_{2}=\left\{\left(x_{1}, \ldots, x_{r}\right) \mid x_{i}=x_{\lambda(i)}(1 \leq i \leq r)\right\} . \tag{*}
\end{equation*}
$$

$S_{2}^{\Delta_{2}}$ is described as

$$
\begin{aligned}
S_{2}^{\Delta_{2}}=\left\{H \in \mathfrak{a}_{2}^{\prime} \mid\langle\alpha, H\rangle>0\left(\alpha \in \Pi_{2} \cap \Delta_{2}\right),\langle\beta, H\rangle=0\left(\beta \in \Pi_{2}-\Delta_{2}\right)\right. \\
\left.\left\langle\delta_{i}, H\right\rangle<\pi\left(\delta_{i} \in R_{2}^{\#} \cap \Delta_{2}\right),\left\langle\delta_{j}, H\right\rangle=\pi\left(\delta_{j} \in R_{2}^{\#}-\Delta_{2}\right)\right\}
\end{aligned}
$$

Since $H_{2} \in S_{2}^{\Delta_{2}}$, we have

$$
\Delta_{2}=\left\{\alpha \in \Pi_{2} \mid\left\langle\alpha, H_{2}\right\rangle>0\right\} \cup\left\{\delta_{i} \in R_{2}^{\#} \mid\left\langle\delta_{i}, H_{2}\right\rangle<\pi\right\} .
$$

From now on we divide the argument into two cases where M is irreducible and non-irreducible.

If M is irreducible, there exists $\Pi_{2}^{\prime} \subset \Pi_{2}$ such that

$$
\mathfrak{a}_{2}=\left\{H \in \mathfrak{a}_{2}^{\prime} \mid\langle\alpha, H\rangle=0\left(\alpha \in \Pi_{2}^{\prime}\right)\right\}
$$

by the expression $(*)$ of \mathfrak{a}_{2}. In fact, the restricted root system of irreducible Hermitian symmetric space of compact type is of type $B C$ or type C and $\Pi_{2}^{\#}=\left\{x_{1}-x_{2}, x_{2}-\right.$ $\left.x_{3}, \ldots, x_{r-1}-x_{r}, x_{r}, 2 x_{1}\right\}$ for type $B C$ and $\Pi_{2}^{\#}=\left\{x_{1}-x_{2}, x_{2}-x_{3}, \ldots, x_{r-1}-x_{r}, 2 x_{r}, 2 x_{1}\right\}$ for type C. In both cases x_{i} is a canonical coordinate and S_{2} is described as

$$
S_{2}=\left\{H \in \mathfrak{a}_{2}^{\prime} \left\lvert\, \frac{\pi}{2}>x_{1}(H)>\cdots>x_{r}(H)>0\right.\right\}
$$

Hence by $(*)$ we have $\Pi_{2}^{\prime} \subset \Pi_{2}$ such that $H \in \mathfrak{a}_{2}^{\prime}$ belongs to \mathfrak{a}_{2} if and only if $\langle\alpha, H\rangle=0$ for any $\alpha \in \Pi_{2}^{\prime}$.

We show $\operatorname{Exp}_{o} S_{2}^{\Delta_{2}} \subset A_{2}$. Since Π_{2} is a basis of $\mathfrak{a}_{2}^{\prime}$, we can take a basis $\left\{u_{\alpha} \mid \alpha \in \Pi_{2}\right\}$ of $\mathfrak{a}_{2}^{\prime}$ satisfying

$$
\left\langle\alpha, u_{\beta}\right\rangle= \begin{cases}1 & (\alpha=\beta) \\ 0 & (\alpha \neq \beta)\end{cases}
$$

Let

$$
H_{2}=\sum_{\alpha \in \Pi_{2}} h_{\alpha} u_{\alpha} \quad\left(h_{\alpha} \in \mathbb{R}\right) .
$$

Since $H_{2} \in \bar{S}_{2}$, we have

$$
0 \leq\left\langle\alpha, H_{2}\right\rangle=h_{\alpha}
$$

for any $\alpha \in \Pi_{2}$. Moreover, we have

$$
\Pi_{2} \cap \Delta_{2}=\left\{\alpha \in \Pi_{2} \mid h_{\alpha}>0\right\}
$$

and $\Pi_{2}^{\prime} \cap \Delta_{2}=\emptyset$ because $H_{2} \in \mathfrak{a}_{2}$. Let $H \in S_{2}^{\Delta_{2}}$, then $\langle\beta, H\rangle=0$ for any $\beta \in \Pi_{2}-\Delta_{2}$. Since $\Pi_{2}^{\prime} \subset \Pi_{2}-\Delta_{2}$, we have $H \in \mathfrak{a}_{2}$. Hence we have $S_{2}^{\Delta_{2}} \subset \mathfrak{a}_{2}$, which implies

$$
\operatorname{Exp}_{o} S_{2}^{\Delta_{2}} \subset A_{2}
$$

In order to see that we have a similar situation in $\mathfrak{a}_{1}^{\prime}$, we show that there exists $\Delta_{1} \subset \Pi_{1}$ such that

$$
\operatorname{Exp}_{o} S_{2}^{\Delta_{2}}=\operatorname{Exp}_{o} S_{1}^{\Delta_{1}}
$$

for a fundamental cell S_{1} corresponding to a fundamental system of the restricted root system with respect to $\mathfrak{a}_{1}^{\prime}$. Since $p \in A_{1} \cap A_{2}$, there exists $H_{1} \in \mathfrak{a}_{1}$ such that

$$
\operatorname{Exp}_{o} t H_{1} \quad(0 \leq t \leq 1)
$$

is a shortest geodesic in A_{1} joining o to p. Since A_{1} is geodesically convex in $A_{1}^{\prime}, \operatorname{Exp}_{o} t H_{1}$ is also a shortest geodesic in A_{1}^{\prime} joining o to p. By the conjugacy of maximal tori, there exists $k_{1} \in K$ such that $\operatorname{Ad}\left(k_{1}\right) \mathfrak{a}_{1}^{\prime}=\mathfrak{a}_{2}^{\prime}$, where K denotes the isotropy subgroup at o. Then

$$
\operatorname{Exp}_{o} t \operatorname{Ad}\left(k_{1}\right) H_{1} \quad(0 \leq t \leq 1)
$$

is a shortest geodesic in A_{2}^{\prime} joining o to $k_{1} p$. Hence there exists $k_{2} \in N_{K}\left(\mathfrak{a}_{2}^{\prime}\right)$ such that

$$
\operatorname{Ad}\left(k_{2}\right) \operatorname{Ad}\left(k_{1}\right) H_{1}=\operatorname{Ad}\left(k_{2} k_{1}\right) H_{1} \in \bar{S}_{2} .
$$

So there exists $\Delta_{2}^{\prime} \subset \Pi_{2}^{\#}$ which satisfies $\operatorname{Ad}\left(k_{2} k_{1}\right) H_{1} \in S_{2}^{\Delta^{\prime}}$. Put $k=k_{2} k_{1} \in K$. Since we have

$$
k^{-1} \operatorname{Exp}_{o}\left(\operatorname{Ad}(k) H_{1}\right)=\operatorname{Exp}_{o} H_{1}=\operatorname{Exp}_{o} H_{2}
$$

there exists $w \in \bar{W}_{S_{2}}$ such that

$$
\begin{gathered}
w S_{2}^{\Delta_{2}^{\prime}}=S_{2}^{\Delta_{2}} \\
{ }^{\forall} H \in S_{2}^{\Delta_{2}^{\prime}}, k^{-1} \operatorname{Exp}_{o} H=\operatorname{Exp}_{o} w H, \\
w \operatorname{Ad}(k) H_{1}=H_{2}
\end{gathered}
$$

by Takeuchi's result (Lemma 1.7 in [3] or see Lemma 2.1 in [4]). Since a Hermitian symmetric space of compact type is simply connected, we have $\bar{W}_{S_{2}}=\{1\}$ by Lemma $1.3(2)$ in $[\mathbf{3}]$ and so $w=1$. Or we know it by $\pi_{1}(M) \cong \bar{W}_{S_{2}}$ (Theorem 2.1 in [3]). Hence we rewrite the above as follows:

$$
\begin{gathered}
S_{2}^{\Delta_{2}^{\prime}}=S_{2}^{\Delta_{2}}, \\
{ }^{\forall} H \in S_{2}^{\Delta_{2}}, k^{-1} \operatorname{Exp}_{o} H=\operatorname{Exp}_{o} H, \\
\operatorname{Ad}(k) H_{1}=H_{2} .
\end{gathered}
$$

Moreover, we have $k^{-1} \operatorname{Exp}_{o} S_{2}^{\Delta_{2}}=\operatorname{Exp}_{o} S_{2}^{\Delta_{2}}$. Since $\operatorname{Ad}(k) \mathfrak{a}_{1}^{\prime}=\mathfrak{a}_{2}^{\prime}$, the restricted root system R_{1} with respect to $\mathfrak{a}_{1}^{\prime}$ satisfies $R_{1}=R_{2} \circ \operatorname{Ad}(k)$ and there exist a fundamental root system Π_{1} of R_{1} and $\Delta_{1} \subset \Pi_{1}^{\#}$ satisfying $\operatorname{Ad}(k)^{-1} S_{2}^{\Delta_{2}}=S_{1}^{\Delta_{1}} \ni H_{1}$. Thus

$$
\operatorname{Exp}_{o} S_{2}^{\Delta_{2}}=k^{-1} \operatorname{Exp}_{o} S_{2}^{\Delta_{2}}=\operatorname{Exp}_{o} \operatorname{Ad}(k)^{-1} S_{2}^{\Delta_{2}}=\operatorname{Exp}_{o} S_{1}^{\Delta_{1}}
$$

Since $H_{1} \in S_{1}^{\Delta_{1}} \cap \mathfrak{a}_{1}$, we conclude $S_{1}^{\Delta_{1}} \subset \mathfrak{a}_{1}$ and $\operatorname{Exp}_{o} S_{1}^{\Delta_{1}} \subset A_{1}$. Hence we obtain

$$
\operatorname{Exp}_{o} S_{1}^{\Delta_{1}}=\operatorname{Exp}_{o} S_{2}^{\Delta_{2}} \subset A_{1} \cap A_{2}
$$

Since $p \in \operatorname{Exp}_{o} S_{2}^{\Delta_{2}} \subset A_{1} \cap A_{2}$, it contradicts the assumption that L_{1} and L_{2} intersect transversally if $\operatorname{dim} S_{2}^{\Delta_{2}} \geq 1$. Therefore $\operatorname{dim} S_{2}^{\Delta_{2}}=0$ and $S_{2}^{\Delta_{2}}$ is a vertex of \bar{S}_{2}. By Lemma p is an antipodal point of o in M. Therefore o and p are antipodal both in L_{1} and in L_{2}, which completes the proof of Theorem 1.1 in the case where M is irreducible.

Next we consider the case where M is not irreducible. In order to prove Theorem 1.1 in this case, we prepare the following special real forms. Let M_{1} and M_{2} be Hermitian symmetric spaces of compact type and $\tau: M_{1} \rightarrow M_{2}$ be an anti-holomorphic isometric map. We denote

$$
D_{\tau}\left(M_{1}\right)=\left\{(x, \tau(x)) \mid x \in M_{1}\right\} \subset M_{1} \times M_{2}
$$

$D_{\tau}\left(M_{1}\right)$ is a real form in $M_{1} \times M_{2}$ and we call it a diagonal real form. For more information on diagonal real forms see our sequent paper [5]. We use the following theorem in [5] in order to prove Theorem 1.1.

Theorem 2.7 ([5]). Let M be a Hermitian symmetric space of compact type and

$$
M=M_{1} \times \cdots \times M_{m}
$$

be a decomposition of M into irreducible factors. Then two real forms L_{1} and L_{2} in M are decomposed as

$$
L_{1}=L_{1,1} \times \cdots \times L_{1, n}, \quad L_{2}=L_{2,1} \times \cdots \times L_{2, n}
$$

and for each $a(1 \leq a \leq n)$ the pair of $L_{1, a}$ and $L_{2, a}$ is one of the following.
(1) Two real forms in M_{i} for some $i(1 \leq i \leq m)$.
(2) After renumbering irreducible factors of M if necessary,

$$
N_{1} \times D_{\tau_{2}}\left(M_{2}\right) \times D_{\tau_{4}}\left(M_{4}\right) \times \cdots \times D_{\tau_{2 s}}\left(M_{2 s}\right)
$$

and

$$
D_{\tau_{1}}\left(M_{1}\right) \times D_{\tau_{3}}\left(M_{3}\right) \times \cdots \times D_{\tau_{2 s-1}}\left(M_{2 s-1}\right) \times N_{2 s+1}
$$

where $\tau_{i}: M_{i} \rightarrow M_{i+1}(1 \leq i \leq 2 s)$ is an anti-holomorphic isometric map which determines $D_{\tau_{i}}\left(M_{i}\right)$ and $N_{1} \subset M_{1}$ and $N_{2 s+1} \subset M_{2 s+1}$ are real forms. The intersection of these two real forms is

$$
\left\{\left(x, \tau_{1}(x), \tau_{2} \tau_{1}(x), \ldots, \tau_{2 s} \cdots \tau_{1}(x)\right) \mid x \in N_{1} \cap\left(\tau_{2 s} \cdots \tau_{1}\right)^{-1}\left(N_{2 s+1}\right)\right\}
$$

Here $\left(\tau_{2 s} \cdots \tau_{1}\right)^{-1}\left(N_{2 s+1}\right)$ is a real form in M_{1} and the intersection of the two real forms mentioned above is homothetic to the intersection of two real forms N_{1} and $\left(\tau_{2 s} \cdots \tau_{1}\right)^{-1}\left(N_{2 s+1}\right)$ in M_{1}.
(3) After renumbering irreducible factors of M if necessary,

$$
N_{1} \times D_{\tau_{2}}\left(M_{2}\right) \times D_{\tau_{4}}\left(M_{4}\right) \times \cdots \times D_{\tau_{2 s-2}}\left(M_{2 s-2}\right) \times N_{2 s}
$$

and

$$
D_{\tau_{1}}\left(M_{1}\right) \times D_{\tau_{3}}\left(M_{3}\right) \times \cdots \times D_{\tau_{2 s-3}}\left(M_{2 s-3}\right) \times D_{\tau_{2 s-1}}\left(M_{2 s-1}\right),
$$

where $\tau_{i}: M_{i} \rightarrow M_{i+1}(1 \leq i \leq 2 s-1)$ is an anti-holomorphic isometric map which determines $D_{\tau_{i}}\left(M_{i}\right)$ and $N_{1} \subset M_{1}$ and $N_{2 s} \subset M_{2 s}$ are real forms. The intersection of these two real forms is

$$
\left\{\left(x, \tau_{1}(x), \tau_{2} \tau_{1}(x), \ldots, \tau_{2 s-1} \cdots \tau_{1}(x)\right) \mid x \in N_{1} \cap\left(\tau_{2 s-1} \cdots \tau_{1}\right)^{-1}\left(N_{2 s}\right)\right\}
$$

Here $\left(\tau_{2 s-1} \cdots \tau_{1}\right)^{-1}\left(N_{2 s}\right)$ is a real form in M_{1} and the intersection of the two real forms mentioned above is homothetic to the intersection of two real forms N_{1} and $\left(\tau_{2 s-1} \cdots \tau_{1}\right)^{-1}\left(N_{2 s}\right)$ in M_{1}.
(4) After renumbering irreducible factors of M if necessary,

$$
D_{\tau_{1}}\left(M_{1}\right) \times D_{\tau_{3}}\left(M_{3}\right) \times \cdots \times D_{\tau_{2 s-1}}\left(M_{2 s-1}\right)
$$

and

$$
D_{\tau_{2}}\left(M_{2}\right) \times D_{\tau_{4}}\left(M_{4}\right) \times \cdots \times D_{\tau_{2 s}}\left(M_{2 s}\right),
$$

where $\tau_{i}: M_{i} \rightarrow M_{i+1}(1 \leq i \leq 2 s-1)$ and $\tau_{2 s}: M_{2 s} \rightarrow M_{1}$ are anti-holomorphic isometric maps which determine $D_{\tau_{i}}\left(M_{i}\right)(1 \leq i \leq 2 s)$. The intersection of these two real forms is
$\left\{\left(x, \tau_{1}(x), \tau_{2} \tau_{1}(x), \ldots, \tau_{2 s-1} \cdots \tau_{1}(x)\right) \mid\left(x, \tau_{2 s}^{-1}(x)\right) \in D_{\tau_{2 s-1} \cdots \tau_{1}}\left(M_{1}\right) \cap D_{\tau_{2 s}^{-1}}\left(M_{1}\right)\right\}$.
Here $D_{\tau_{2 s-1} \cdots \tau_{1}}\left(M_{1}\right)$ and $D_{\tau_{2 s}^{-1}}\left(M_{1}\right)$ are diagonal real forms in $M_{1} \times M_{2 s}$ and the intersection of the two real forms mentioned above is homothetic to the intersection of these two diagonal real forms.

In a case where a compact Riemannian symmetric space X is the product of compact Riemannian symmetric spaces X_{1} and X_{2}, two points $p=\left(p_{1}, p_{2}\right)$ and $q=\left(q_{1}, q_{2}\right)$ in X are antipodal if and only if p_{i} and q_{i} are antipodal in X_{i} for $i=1,2$. Hence, to prove the intersection of two real forms is antipodal it suffices to consider the cases (1) to (4) in Theorem 2.7.
(1) is essentially the irreducible case and we have already proved the statement. In cases of (2) and (3) the intersection of two real forms is described by that of two real forms in an irreducible Hermitian symmetric space of compact type and its antipodal property follows from that in the case of (1).

For (4) we use a similar method to the irreducible case. We consider the intersection of two diagonal real forms $D_{\sigma}\left(M_{1}\right)$ and $D_{\tau}\left(M_{1}\right)$ in $M_{1} \times M_{2}$ determined by anti-holomorphic isometric maps $\sigma, \tau: M_{1} \rightarrow M_{2}$. We regard $L_{1}=D_{\sigma}\left(M_{1}\right)$ and
$L_{2}=D_{\tau}\left(M_{1}\right)$ and use the notation defined above in this proof. Since $D_{\tau}\left(M_{1}\right)$ is a real form in $M_{1} \times M_{2}$, we can decompose $S_{2}, \Pi_{2}^{\#}$ and Δ_{2} as

$$
S_{2}=S_{2,1} \times S_{2,2}, \quad \Pi_{2}^{\#}=\Pi_{2,1}^{\#} \cup \Pi_{2,2}^{\#}, \quad \Delta_{2}=\Delta_{2,1} \cup \Delta_{2,2}
$$

where $\Delta_{2, j}=\Delta_{2} \cap \Pi_{2, j}^{\#}(j=1,2)$. Since M_{1} and M_{2} are isomorphic, their fundamental systems are isomorphic and we obtain

$$
S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}=\left\{\left(X, d \tau_{o}(X)\right) \mid X \in S_{2,1}^{\Delta_{2,1}}\right\}
$$

and $\operatorname{Exp}_{o}\left(S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}\right) \subset A_{2}$. In a way similar to that in the irreducible case we can take a canonical coordinate y_{j} of A_{2}^{\prime} and we have

$$
S_{2}=\left\{H \in \mathfrak{a}_{2}^{\prime} \left\lvert\, \frac{\pi}{2}>y_{1}(H)>\cdots>y_{n}(H)>0\right., \frac{\pi}{2}>y_{n+1}(H)>\cdots>y_{2 n}(H)>0\right\}
$$

Therefore

$$
S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}=\left\{H \in \mathfrak{a}_{2}^{\prime} \mid H \in S_{2}^{\Delta_{2}}, y_{i}(H)=y_{n+i}(H)(1 \leq i \leq n)\right\} .
$$

Similarly if we take a suitable canonical coordinate x_{i} of A_{1}^{\prime}, we obtain

$$
S_{1}^{\Delta_{1}} \cap \mathfrak{a}_{1}=\left\{H \in \mathfrak{a}_{1}^{\prime} \mid H \in S_{1}^{\Delta_{1}}, x_{i}(H)=x_{n+i}(H)(1 \leq i \leq n)\right\}
$$

and

$$
\begin{aligned}
\operatorname{Ad} & (k)\left(S_{1}^{\Delta_{1}} \cap \mathfrak{a}_{1}\right) \\
\quad= & \operatorname{Ad}(k)\left\{H \in \mathfrak{a}_{1}^{\prime} \mid H \in S_{1}^{\Delta_{1}}, x_{i}(H)=x_{n+i}(H)(1 \leq i \leq n)\right\} \\
& =\left\{H \in \mathfrak{a}_{2}^{\prime} \mid H \in S_{2}^{\Delta_{2}}, x_{i}\left(\operatorname{Ad}(k)^{-1} H\right)=x_{n+i}\left(\operatorname{Ad}(k)^{-1} H\right)(1 \leq i \leq n)\right\} \\
& =S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\operatorname{Exp}_{o}\left(S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}\right) & =k^{-1} \operatorname{Exp}_{o}\left(S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}\right)=k^{-1} \operatorname{Exp}_{o}\left(\operatorname{Ad}(k)\left(S_{1}^{\Delta_{1}} \cap \mathfrak{a}_{1}\right)\right) \\
& =\operatorname{Exp}_{o}\left(S_{1}^{\Delta_{1}} \cap \mathfrak{a}_{1}\right)
\end{aligned}
$$

and

$$
A_{2} \supset \operatorname{Exp}_{o}\left(S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}\right)=\operatorname{Exp}_{o}\left(S_{1}^{\Delta_{1}} \cap \mathfrak{a}_{1}\right) \subset A_{1}
$$

Since $p \in \operatorname{Exp}_{o}\left(S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}\right) \subset A_{1} \cap A_{2}$, it contradicts the assumption that L_{1} and L_{2} intersect transversally if $\operatorname{dim} S_{2,1}^{\Delta_{2,1}}=\operatorname{dim}\left(S_{2}^{\Delta_{2}} \cap \mathfrak{a}_{2}\right) \geq 1$. Therefore $\operatorname{dim} S_{2,1}^{\Delta_{2,1}}=0$ and
$S_{2,1}^{\Delta_{2,1}}$ is a vertex of $\bar{S}_{2,1}$. By Lemma p is an antipodal point of o in M. Therefore o and p are antipodal both in L_{1} and in L_{2}, which completes the proof of Theorem 1.1 in the case where M is not irreducible.

The authors would like to thank the referee, whose comments improved the manuscript.

References

[1] X. Cheng, The totally geodesic coisotropic submanifolds in Kähler manifolds, Geom. Dedicata, 90 (2002), 115-125.
[2] P. Quast and M. S. Tanaka, Convexity of reflective submanifolds in symmetric R-spaces, Tohoku Math. J., 64 (2012), 607-616.
[3] M. Takeuchi, On conjugate loci and cut loci of compact symmetric spaces I, Tsukuba J. Math., 2 (1978), 35-68.
[4] M. S. Tanaka and H. Tasaki, The intersection of two real forms in Hermitian symmetric spaces of compact type, J. Math. Soc. Japan, 64 (2012), 1297-1332.
[5] M. S. Tanaka and H. Tasaki, The intersection of two real forms in Hermitian symmetric spaces of compact type II, J. Math. Soc. Japan, 67 (2015), 275-291.
[6] H. Tasaki, The intersection of two real forms in the complex hyperquadric, Tohoku Math. J., 62 (2010), 375-382.

Makiko Sumi Tanaka
Faculty of Science and Technology
Tokyo University of Science
Noda
Chiba 278-8510, Japan
E-mail: tanaka_makiko@ma.noda.tus.ac.jp

Hiroyuki Tasaki
Division of Mathematics
Faculty of Pure and Applied Sciences
University of Tsukuba
Tsukuba
Ibaraki 305-8571, Japan
E-mail: tasaki@math.tsukuba.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary, 53C40; Secondary, 53D12.
 Key Words and Phrases. real form, Hermitian symmetric space, antipodal set.
 The first author was partly supported by the Grant-in-Aid for Science Research (C) 2011 (No. 21540108), Japan Society for the Promotion of Science.

 The second author was partly supported by the Grant-in-Aid for Science Research (C) 2012 (No. 24540064), Japan Society for the Promotion of Science.

