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Abstract. We correct the proof of Theorem 1.1 in our previous paper
specially in the non-irreducible case.

In this paper we correct the proof of Theorem 1.1 in our previous paper [4], which
was not complete. The proof works well if the Hermitian symmetric space is irreducible.
On the other hand, the proof does not partly work well if the Hermitian symmetric
space is not irreducible. We partly divide the proof into two cases where the Hermitian
symmetric space is irreducible and non-irreducible and give a complete proof of antipodal
property of the intersection of two real forms.

Theorem 1.1 ([4]). Let M be a Hermitian symmetric space of compact type. If
two real forms L1 and L2 in M intersect transversally, then L1 ∩ L2 is an antipodal set
of L1 and L2.

We adopt the notational conventions in Section 2, [4]. We prepare the following
lemma for the proof of Theorem 1.1.

Lemma. Let M be a compact Riemannian symmetric space. If M is cubic
(Definition 3.2 in [4]), then so ExpH = ExpH for any vertex H of S̄.

Proof. If M is cubic, 2H ∈ Γ(A) for any vertex H of S̄. Thus we have Exp(2H) =
o and so ExpH = Exp(−H) = ExpH.

Proof of Theorem 1.1. We partly divide the proof into two cases where M is
irreducible and non-irreducible, however our argument starts with any Hermitian sym-
metric space M of compact type.

The holomorphic sectional curvature of M is positive, so L1 ∩L2 6= ∅ by Theorem 1
in [1] or Lemma 3.1 in [6]. Because of the transitive action of the group of holomorphic
isometries we may assume the origin o of M is contained in L1 ∩ L2 without loss of
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generality. It is sufficient to prove that o and p are antipodal in L1 and in L2 for any
point p in L1 ∩ L2 − {o}.

Let Ai be a maximal torus of Li (i = 1, 2) which contains o and p. Let ai be the
maximal abelian subspace corresponding to Ai (i = 1, 2). We take a maximal torus
A′i of M containing Ai and denote the corresponding maximal abelian subspace by a′i
(i = 1, 2). Let

Expo tH2 (H2 ∈ a2, 0 ≤ t ≤ 1)

be a shortest geodesic in A2 joining o to p. In particular, p = Expo H2. Since A2 is
geodesically convex in A′2 by Quast-Tanaka [2], Expo tH2 is also a shortest geodesic in
A′2 joining o to p. Hence we can take a fundamental system Π2 of the restricted root
system with respect to a′2 such that H2 ∈ S̄2, where

S2 = {H ∈ a′2 | 〈α, H〉 > 0 (α ∈ Π2), 〈δi,H〉 < π (δi ∈ R#
2 )}.

Since S̄2 is decomposed

S̄2 =
⋃

∆⊂Π#
2

S∆
2

as a disjoint union, there exists ∆2 ⊂ Π#
2 such that H2 ∈ S∆2

2 . Lemma 3.6 in [4] implies
p ∈ Expo S∆2

2 ⊂ A′1 ∩A′2.
It is known that a Hermitian symmetric space of compact type is cubic. We express

a′2 = {(x1, . . . , xr)}

with respect to a canonical coordinate of A′2 (see Definition 3.2 in [4]). Proposition 3.4
in [4] implies that there exists an involutive permutation λ of {1, . . . , r} satisfying

a2 = {(x1, . . . , xr) | xi = xλ(i) (1 ≤ i ≤ r)}. (∗)

S∆2
2 is described as

S∆2
2 = {H ∈ a′2 |〈α, H〉 > 0 (α ∈ Π2 ∩∆2), 〈β, H〉 = 0 (β ∈ Π2 −∆2),

〈δi,H〉 < π (δi ∈ R#
2 ∩∆2), 〈δj ,H〉 = π (δj ∈ R#

2 −∆2)}.

Since H2 ∈ S∆2
2 , we have

∆2 = {α ∈ Π2 | 〈α, H2〉 > 0} ∪ {δi ∈ R#
2 | 〈δi,H2〉 < π}.

From now on we divide the argument into two cases where M is irreducible and
non-irreducible.
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If M is irreducible, there exists Π′2 ⊂ Π2 such that

a2 = {H ∈ a′2 | 〈α, H〉 = 0 (α ∈ Π′2)}

by the expression (∗) of a2. In fact, the restricted root system of irreducible Hermitian
symmetric space of compact type is of type BC or type C and Π#

2 = {x1 − x2, x2 −
x3, . . . , xr−1−xr, xr, 2x1} for type BC and Π#

2 = {x1−x2, x2−x3, . . . , xr−1−xr, 2xr, 2x1}
for type C. In both cases xi is a canonical coordinate and S2 is described as

S2 =
{

H ∈ a′2

∣∣∣∣
π

2
> x1(H) > · · · > xr(H) > 0

}
.

Hence by (∗) we have Π′2 ⊂ Π2 such that H ∈ a′2 belongs to a2 if and only if 〈α, H〉 = 0
for any α ∈ Π′2.

We show Expo S∆2
2 ⊂ A2. Since Π2 is a basis of a′2, we can take a basis {uα | α ∈ Π2}

of a′2 satisfying

〈α, uβ〉 =

{
1 (α = β),

0 (α 6= β).

Let

H2 =
∑

α∈Π2

hαuα (hα ∈ R).

Since H2 ∈ S̄2, we have

0 ≤ 〈α, H2〉 = hα

for any α ∈ Π2. Moreover, we have

Π2 ∩∆2 = {α ∈ Π2 | hα > 0},

and Π′2 ∩∆2 = ∅ because H2 ∈ a2. Let H ∈ S∆2
2 , then 〈β, H〉 = 0 for any β ∈ Π2 −∆2.

Since Π′2 ⊂ Π2 −∆2, we have H ∈ a2. Hence we have S∆2
2 ⊂ a2, which implies

Expo S∆2
2 ⊂ A2.

In order to see that we have a similar situation in a′1, we show that there exists
∆1 ⊂ Π1 such that

Expo S∆2
2 = Expo S∆1

1

for a fundamental cell S1 corresponding to a fundamental system of the restricted root
system with respect to a′1. Since p ∈ A1 ∩A2, there exists H1 ∈ a1 such that
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Expo tH1 (0 ≤ t ≤ 1)

is a shortest geodesic in A1 joining o to p. Since A1 is geodesically convex in A′1, Expo tH1

is also a shortest geodesic in A′1 joining o to p. By the conjugacy of maximal tori, there
exists k1 ∈ K such that Ad(k1)a′1 = a′2, where K denotes the isotropy subgroup at o.
Then

Expo tAd(k1)H1 (0 ≤ t ≤ 1)

is a shortest geodesic in A′2 joining o to k1p. Hence there exists k2 ∈ NK(a′2) such that

Ad(k2)Ad(k1)H1 = Ad(k2k1)H1 ∈ S̄2.

So there exists ∆′
2 ⊂ Π#

2 which satisfies Ad(k2k1)H1 ∈ S
∆′2
2 . Put k = k2k1 ∈ K. Since

we have

k−1 Expo(Ad(k)H1) = Expo H1 = Expo H2,

there exists w ∈ W̄S2 such that

wS
∆′2
2 = S∆2

2 ,

∀H ∈ S
∆′2
2 , k−1 Expo H = Expo wH,

wAd(k)H1 = H2

by Takeuchi’s result (Lemma 1.7 in [3] or see Lemma 2.1 in [4]). Since a Hermitian
symmetric space of compact type is simply connected, we have W̄S2 = {1} by Lemma
1.3 (2) in [3] and so w = 1. Or we know it by π1(M) ∼= W̄S2 (Theorem 2.1 in [3]). Hence
we rewrite the above as follows:

S
∆′2
2 = S∆2

2 ,

∀H ∈ S∆2
2 , k−1 Expo H = Expo H,

Ad(k)H1 = H2.

Moreover, we have k−1 Expo S∆2
2 = Expo S∆2

2 . Since Ad(k)a′1 = a′2, the restricted root
system R1 with respect to a′1 satisfies R1 = R2 ◦ Ad(k) and there exist a fundamental
root system Π1 of R1 and ∆1 ⊂ Π#

1 satisfying Ad(k)−1S∆2
2 = S∆1

1 3 H1. Thus

Expo S∆2
2 = k−1 Expo S∆2

2 = Expo Ad(k)−1S∆2
2 = Expo S∆1

1 .

Since H1 ∈ S∆1
1 ∩ a1, we conclude S∆1

1 ⊂ a1 and Expo S∆1
1 ⊂ A1. Hence we obtain

Expo S∆1
1 = Expo S∆2

2 ⊂ A1 ∩A2.
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Since p ∈ Expo S∆2
2 ⊂ A1 ∩ A2, it contradicts the assumption that L1 and L2

intersect transversally if dimS∆2
2 ≥ 1. Therefore dim S∆2

2 = 0 and S∆2
2 is a vertex of S̄2.

By Lemma p is an antipodal point of o in M . Therefore o and p are antipodal both in L1

and in L2, which completes the proof of Theorem 1.1 in the case where M is irreducible.
Next we consider the case where M is not irreducible. In order to prove Theorem 1.1

in this case, we prepare the following special real forms. Let M1 and M2 be Hermitian
symmetric spaces of compact type and τ : M1 → M2 be an anti-holomorphic isometric
map. We denote

Dτ (M1) = {(x, τ(x)) | x ∈ M1} ⊂ M1 ×M2.

Dτ (M1) is a real form in M1 × M2 and we call it a diagonal real form. For more
information on diagonal real forms see our sequent paper [5]. We use the following
theorem in [5] in order to prove Theorem 1.1.

Theorem 2.7 ([5]). Let M be a Hermitian symmetric space of compact type and

M = M1 × · · · ×Mm

be a decomposition of M into irreducible factors. Then two real forms L1 and L2 in M

are decomposed as

L1 = L1,1 × · · · × L1,n, L2 = L2,1 × · · · × L2,n

and for each a (1 ≤ a ≤ n) the pair of L1,a and L2,a is one of the following.

(1) Two real forms in Mi for some i (1 ≤ i ≤ m).
(2) After renumbering irreducible factors of M if necessary,

N1 ×Dτ2(M2)×Dτ4(M4)× · · · ×Dτ2s
(M2s)

and

Dτ1(M1)×Dτ3(M3)× · · · ×Dτ2s−1(M2s−1)×N2s+1,

where τi : Mi → Mi+1 (1 ≤ i ≤ 2s) is an anti-holomorphic isometric map which
determines Dτi(Mi) and N1 ⊂ M1 and N2s+1 ⊂ M2s+1 are real forms. The inter-
section of these two real forms is

{(x, τ1(x), τ2τ1(x), . . . , τ2s · · · τ1(x)) | x ∈ N1 ∩ (τ2s · · · τ1)−1(N2s+1)}.

Here (τ2s · · · τ1)−1(N2s+1) is a real form in M1 and the intersection of the two real
forms mentioned above is homothetic to the intersection of two real forms N1 and
(τ2s · · · τ1)−1(N2s+1) in M1.

(3) After renumbering irreducible factors of M if necessary,
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N1 ×Dτ2(M2)×Dτ4(M4)× · · · ×Dτ2s−2(M2s−2)×N2s

and

Dτ1(M1)×Dτ3(M3)× · · · ×Dτ2s−3(M2s−3)×Dτ2s−1(M2s−1),

where τi : Mi → Mi+1 (1 ≤ i ≤ 2s− 1) is an anti-holomorphic isometric map which
determines Dτi(Mi) and N1 ⊂ M1 and N2s ⊂ M2s are real forms. The intersection
of these two real forms is

{(x, τ1(x), τ2τ1(x), . . . , τ2s−1 · · · τ1(x)) | x ∈ N1 ∩ (τ2s−1 · · · τ1)−1(N2s)}.

Here (τ2s−1 · · · τ1)−1(N2s) is a real form in M1 and the intersection of the two real
forms mentioned above is homothetic to the intersection of two real forms N1 and
(τ2s−1 · · · τ1)−1(N2s) in M1.

(4) After renumbering irreducible factors of M if necessary,

Dτ1(M1)×Dτ3(M3)× · · · ×Dτ2s−1(M2s−1)

and

Dτ2(M2)×Dτ4(M4)× · · · ×Dτ2s
(M2s),

where τi : Mi → Mi+1 (1 ≤ i ≤ 2s − 1) and τ2s : M2s → M1 are anti-holomorphic
isometric maps which determine Dτi

(Mi) (1 ≤ i ≤ 2s). The intersection of these
two real forms is

{(x, τ1(x), τ2τ1(x), . . . , τ2s−1 · · · τ1(x)) | (x, τ−1
2s (x)) ∈ Dτ2s−1···τ1(M1) ∩Dτ−1

2s
(M1)}.

Here Dτ2s−1···τ1(M1) and Dτ−1
2s

(M1) are diagonal real forms in M1 × M2s and the
intersection of the two real forms mentioned above is homothetic to the intersection
of these two diagonal real forms.

In a case where a compact Riemannian symmetric space X is the product of compact
Riemannian symmetric spaces X1 and X2, two points p = (p1, p2) and q = (q1, q2) in X

are antipodal if and only if pi and qi are antipodal in Xi for i = 1, 2. Hence, to prove
the intersection of two real forms is antipodal it suffices to consider the cases (1) to (4)
in Theorem 2.7.

(1) is essentially the irreducible case and we have already proved the statement. In
cases of (2) and (3) the intersection of two real forms is described by that of two real
forms in an irreducible Hermitian symmetric space of compact type and its antipodal
property follows from that in the case of (1).

For (4) we use a similar method to the irreducible case. We consider the inter-
section of two diagonal real forms Dσ(M1) and Dτ (M1) in M1 × M2 determined by
anti-holomorphic isometric maps σ, τ : M1 → M2. We regard L1 = Dσ(M1) and
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L2 = Dτ (M1) and use the notation defined above in this proof. Since Dτ (M1) is a
real form in M1 ×M2, we can decompose S2,Π

#
2 and ∆2 as

S2 = S2,1 × S2,2, Π#
2 = Π#

2,1 ∪Π#
2,2, ∆2 = ∆2,1 ∪∆2,2,

where ∆2,j = ∆2 ∩ Π#
2,j (j = 1, 2). Since M1 and M2 are isomorphic, their fundamental

systems are isomorphic and we obtain

S∆2
2 ∩ a2 = {(X, dτo(X)) | X ∈ S

∆2,1
2,1 }

and Expo(S
∆2
2 ∩ a2) ⊂ A2. In a way similar to that in the irreducible case we can take a

canonical coordinate yj of A′2 and we have

S2 =
{

H ∈ a′2

∣∣∣∣
π

2
> y1(H) > · · · > yn(H) > 0,

π

2
> yn+1(H) > · · · > y2n(H) > 0

}
.

Therefore

S∆2
2 ∩ a2 = {H ∈ a′2 | H ∈ S∆2

2 , yi(H) = yn+i(H) (1 ≤ i ≤ n)}.

Similarly if we take a suitable canonical coordinate xi of A′1, we obtain

S∆1
1 ∩ a1 = {H ∈ a′1 | H ∈ S∆1

1 , xi(H) = xn+i(H) (1 ≤ i ≤ n)}

and

Ad(k)(S∆1
1 ∩ a1)

= Ad(k){H ∈ a′1 | H ∈ S∆1
1 , xi(H) = xn+i(H) (1 ≤ i ≤ n)}

= {H ∈ a′2 | H ∈ S∆2
2 , xi(Ad(k)−1H) = xn+i(Ad(k)−1H) (1 ≤ i ≤ n)}

= S∆2
2 ∩ a2.

Hence we have

Expo(S
∆2
2 ∩ a2) = k−1 Expo(S

∆2
2 ∩ a2) = k−1 Expo(Ad(k)(S∆1

1 ∩ a1))

= Expo(S
∆1
1 ∩ a1)

and

A2 ⊃ Expo(S
∆2
2 ∩ a2) = Expo(S

∆1
1 ∩ a1) ⊂ A1.

Since p ∈ Expo(S
∆2
2 ∩ a2) ⊂ A1 ∩A2, it contradicts the assumption that L1 and L2

intersect transversally if dimS
∆2,1
2,1 = dim(S∆2

2 ∩ a2) ≥ 1. Therefore dimS
∆2,1
2,1 = 0 and
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S
∆2,1
2,1 is a vertex of S̄2,1. By Lemma p is an antipodal point of o in M . Therefore o and

p are antipodal both in L1 and in L2, which completes the proof of Theorem 1.1 in the
case where M is not irreducible.

The authors would like to thank the referee, whose comments improved the manu-
script.
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