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Abstract. We study the fixed point subalgebra of a certain class of
lattice vertex operator algebras by an automorphism of order 3, which is a
lift of a fixed-point-free isometry of the underlying lattice. We classify the
irreducible modules for the subalgebra. Moreover, the rationality and the C2-
cofiniteness of the subalgebra are established. Our result contains the case of
the vertex operator algebra associated with the Leech lattice.

1. Introduction.

Let V be a vertex operator algebra. For an automorphism g of V of finite
order, the space V g = {v ∈ V | gv = v} of fixed points is a subalgebra of V

called an orbifold of the vertex operator algebra V . It is conjectured in [7] that
every irreducible V g-module is contained in some irreducible untwisted or twisted
V -module. It is also conjectured that if V is rational and C2-cofinite, then so is
V g. These conjectures have important meanings in the theory of vertex operator
algebras. However, it is difficult to investigate an orbifold in general, even if the
original vertex operator algebra V is well understood.

In the case where V is the lattice vertex operator algebra VΓ associated with
a positive definite even lattice Γ and the automorphism g is a canonical lift θ of
the −1 isometry α 7→ −α of the lattice Γ, the orbifold V θ

Γ = V +
Γ has been studied

extensively. In fact, the representation theory of V +
Γ , that is, the classification of

irreducible modules [3], [19] and the determination of fusion rules [1], [4], together
with the C2-cofiniteness [2], [38] of V +

Γ are established.
In this paper we study an orbifold of a certain class of lattice vertex operator

algebras by an automorphism of order 3. We start with a lattice L ∼=
√

2 (A2-
lattice) and a fixed-point-free isometry τ of L of order 3. There are 12 cosets of
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L in its dual lattice L⊥. Using an even Z2 × Z2-code C of length ` and a self-
orthogonal Z3-code D of the same length, we construct a positive definite even
lattice LC×D ⊂ (L⊥)⊕` of rank 2` from the 12 cosets of L in L⊥. We also consider
an action of τ on Z2 × Z2. The isometry τ induces a fixed-point-free isometry
(τ, . . . , τ) of LC×D provided that C is invariant under the corresponding action of
(τ, . . . , τ) on (Z2×Z2)`. For simplicity of notation, we denote (τ, . . . , τ) by τ also.

Our main concern is to classify the irreducible modules for the orbifold V τ
LC×D

of the lattice vertex operator algebra VLC×D
by an automorphism τ of order 3

which is a lift of the isometry τ of LC×D. The vertex operator algebra VLC×D

is simple, rational, C2-cofinite, and of CFT type. The dual lattice (LC×D)⊥ of
LC×D is equal to LC⊥×D⊥ , where C⊥ (resp. D⊥) is the dual code of C (resp.
D). Then VL(λ+C)×(γ+D) , λ + C ∈ C⊥/C, γ + D ∈ D⊥/D form a complete set
of representatives of equivalence classes of irreducible VLC×D

-modules. Such a
VL(λ+C)×(γ+D) is τ -stable if and only if λ ∈ C. One can also construct irreducible
τ i-twisted VLC×D

-modules V T,η
LC×D

(τ i), η ∈ D⊥ (mod D) for i = 1, 2 by the method
of [12], [29].

The orbifold V τ
LC×D

is a simple vertex operator algebra. The following is a
list of known irreducible V τ

LC×D
-modules. Let ζ3 = exp(2π

√−1/3).

(1) VLC×(γ+D)(ε) = {u ∈ VLC×(γ+D) | τu = ζε
3u}, γ + D ∈ D⊥/D, ε ∈ Z3.

(2) VL(λ+C)×(γ+D) , 0 6= λ + C ∈ (C⊥/C)≡τ
, γ + D ∈ D⊥/D, where (C⊥/C)≡τ

is
the set of τ -orbits in C⊥/C.

(3) V T,η
LC×D

(τ i)[ε] = {u ∈ V T,η
LC×D

(τ i) | τ iu = ζε
3u}, η ∈ D⊥ (mod D), ε ∈ Z3,

i = 1, 2.

These irreducible V τ
LC×D

-modules are inequivalent each other [20], [34]. The
above mentioned conjecture says that any irreducible V τ

LC×D
-module is isomorphic

to one of these.
In our argument we deal with not only simple current extension [13] but

also certain nonsimple current extension. Simple current extension is rather easy,
whereas nonsimple current extension is complicated and difficult to study. In
order to avoid the difficulty, we restrict ourselves to the special case where C is
a τ -invariant self-dual Z2 × Z2-code with minimum weight at least 4 and D is
a self-dual Z3-code. In this case the lattice LC×D is unimodular and there is
a unique irreducible VLC×D

-module, namely, VLC×D
itself. Likewise, there is a

unique irreducible τ i-twisted VLC×D
-module V T,0

LC×D
(τ i), i = 1, 2, where 0 is the

zero codeword. Under this hypothesis we have the following theorem (Theorem
7.10).

Theorem. Suppose C is a τ -invariant self-dual Z2×Z2-code with minimum
weight at least 4 and D is a self-dual Z3-code. Then the vertex operator algebra
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V τ
LC×D

is simple, rational, C2-cofinite, and of CFT type. Moreover, every irre-
ducible V τ

LC×D
-module is isomorphic to one of VLC×D

(ε), V T,0
LC×D

(τ i)[ε], ε ∈ Z3,
i = 1, 2.

One of the most important examples of orbifold is the fixed point subalgebra
V θ

Λ of the Leech lattice vertex operator algebra VΛ by the automorphism θ of order
2. This orbifold was first studied by I. Frenkel, J. Lepowsky and A. Meurman, and
in fact it was used for the construction of the moonshine vertex operator algebra
V \ [22]. We note that the Leech lattice Λ can be expressed as LC×D for some C

and D which satisfy the hypothesis of the theorem (Remark 7.11).
A remarkable property of V \ is that its automorphism group AutV \ is isomor-

phic to the Monster M. The construction of V \ in [22] is based on a 2B-element
of M. In [22, Introduction], it is suggested that an analogous construction may
be possible for some appropriate elements in M of order 3, 5, 7, and 13. The
classification of irreducible modules, the determination of fusion rules, the ratio-
nality and the C2-cofiniteness for the orbifold V g

Λ by such an element g should play
an important role in those expected construction. This is the motivation for the
present work.

The organization of the paper is as follows. Section 2 is devoted to the prelim-
inaries. In Section 2.1 we collect basic terminology for later use. In Section 2.2 we
introduce the lattice LC×D and study its properties. In Section 2.3 we introduce
a central extension L̂C×D of LC×D by a group 〈κ36〉 of order 36 and discuss an
action of a lift of the isometry τ of the lattice LC×D. In Section 2.4 we study the
vertex operator algebra VLC×D

and its irreducible modules. The automorphism τ

of L̂C×D naturally induces an automorphism of VLC×D
of order 3, which is again

denoted by τ .
In Section 3 we discuss in detail the irreducible τ i-twisted VLC×D

-modules
V T,η

LC×D
(τ i), i = 1, 2, which are obtained by the method of [12], [29]. We describe

those irreducible τ i-twisted VLC×D
-modules as modules for (V τ

L )⊗` (Theorem 3.13).
The classification of irreducible modules for the orbifold V τ

L was accomplished in
[36]. Our argument here is based on the result.

In Section 4 we determine certain fusion rules for V τ
L (Proposition 4.5), which

will be necessary in Section 5. In fact, these fusion rules are crucial for our argu-
ments.

The proof of the main theorem is divided into three steps. In Section 5 we be-
gin with the classification of irreducible modules for the orbifold V τ

L⊕` (Proposition
5.3). This is the case where both of C and D are the zero code. The rationality
and the C2-cofiniteness of V τ

L⊕` are also obtained. Moreover, some of the fusion
rules are computed (Proposition 5.7).

In Section 6 we classify the irreducible modules for V τ
L0×D

(Theorem 6.2),
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which is the case where C is the zero code {0}. In this case only simple current
extension is involved and the argument is relatively straightforward. The ratio-
nality and the C2-cofiniteness of V τ

L0×D
(Theorem 6.2), together with some of the

fusion rules are also obtained (Proposition 6.3).
Section 7 consists of two subsections. In Section 7.1 we use Zhu’s theory to

study the irreducible V τ
L⊕` -modules contained in a V τ

LC(µ)×0
-module, where C(µ)

is the Z2 × Z2-code generated by µ and τ(µ). The results obtained here will be
necessary in Section 7.2. We do not discuss the classification of irreducible modules
nor the rationality for the vertex operator algebra V τ

LC(µ)×0
. Note that V τ

LC(µ)×0
is

a nonsimple current extension of V τ
L⊕` .

In Section 7.2 we study the orbifold V τ
LC×D

and prove the main theorem
(Theorem 7.10) under the hypothesis that C is a τ -invariant self-dual Z2 × Z2-
code with minimum weight at least 4 and D is a self-dual Z3-code. We need to
assume that D is self-dual for the proof of Proposition 7.8. Our argument fails if
the minimum weight of C is 2 (Remark 7.2). The case LC×D

∼= E8-lattice is such
an example (Remark 7.12).

We should make a few remarks on the simplicity and the CFT type property.
Most of the vertex operator algebras discussed in this paper are clearly simple and
of CFT type. In such a case we omit the proof of these properties.

This paper is the detailed version of our paper [37].

2. Preliminaries.

Throughout this paper, ζn = exp(2π
√−1/n) is a primitive n-th root of unity

for a positive integer n. For simplicity, 0, 1 and 2 are sometimes understood to be
elements of Z3.

2.1. Basic terminology.
Let g be an automorphism of a vertex operator algebra (V, Y,1, ω) of finite

order T . Set V r = {v ∈ V | gv = ζr
T v}, so that V =

⊕
r∈Z/TZ V r.

For subsets A,B of V and a subset X of a weak g-twisted V -module M , set
A · B = spanC{unv | u ∈ A, v ∈ B,n ∈ Z} and A ·X = spanC{unw | u ∈ A,w ∈
X, n ∈ (1/T )Z}. Then it follows that (A · B) · X = A · (B · X) by [32, Lemma
3.12] and [36, Lemmas 2.5 and 2.6].

Let N be the set of nonnegative integers. A (1/T )N-graded weak g-twisted
V -module here is called an admissible g-twisted V -module in [14]. Without loss
we can shift the grading of a (1/T )N-graded weak g-twisted V -module M so that
M(0) 6= 0 if M 6= 0. We call such an M(0) the top level of M .

A vertex operator algebra V is said to be rational if every N-graded weak V -
module is a direct sum of irreducible N-graded weak V -modules. If the dimension
of the quotient space V/ spanC{u−2v | u, v ∈ V } is finite, V is said to be C2-
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cofinite [39]. If V =
⊕∞

n=0 Vn and V0 = C1, then V is said to be of CFT type.
Here Vn = {u ∈ V | ω1u = nu} is the homogeneous subspace of weight n. If V

is C2-cofinite and of CFT type, then the classification of irreducible V -modules
means the classification of irreducible weak V -modules [2, Proposition 5.6 and
Corollary 5.7].

For h ∈ AutV and a weak (resp. (1/T )N-graded weak) g-twisted V -module
(M, YM ), we define a weak (resp. (1/T )N-graded weak) h−1gh-twisted V -module
(M ◦ h, YM◦h) by M ◦ h = M as vector spaces and YM◦h(u, x) = Y (hu, x). If M

is irreducible, so is M ◦ h.
Let G be an automorphism group of V and V G the vertex operator subalgebra

of G-invariants of V . A set S of irreducible V -modules is said to be G-stable if for
any M ∈ S and h ∈ G there exists W ∈ S such that M ◦ h ∼= W . An irreducible
V -module M is said to be G-stable if M ◦ g ∼= M for all g ∈ G. It is shown in [17,
Theorem 4.4] that if V is simple and G is of finite order, then V G is simple.

We denote by IV

(
M3

M1 M2

)
the set of all intertwining operators of type

(
M3

M1 M2

)
[21]. Let M be the set of all irreducible V -modules up to isomorphism and ZM
be a free Z-module with basis M. For M1,M2 ∈M,

M1 ×M2 =
∑

M3∈M
dimC IV

(
M3

M1 M2

)
M3 ∈ ZM

is the fusion rule. We write
∑

M∈M SMM ≥ ∑
M∈M TMM when SM ≥ TM for

all M ∈M.

2.2. Lattice LC×D.
We follow the notation in [10], [24], [25], [36]. Let (L, 〈 · , · 〉) be

√
2 times

an ordinary root lattice of type A2 and let {β1, β2} be a Z-basis of L such that
〈β1, β1〉 = 〈β2, β2〉 = 4 and 〈β1, β2〉 = −2. Set β0 = −β1−β2. Let τ be an isometry
of L induced by the permutation β1 7→ β2 7→ β0 7→ β1. Then τ is fixed-point-free
and of order 3.

There are 12 cosets of L in its dual lattice L⊥ = {α ∈ Q⊗Z L | 〈α, L〉 ⊂ Z}.
These 12 cosets are parametrized by Z2×Z2 and Z3. Let (L⊥)⊕` be an orthogonal
sum of ` copies of L⊥. We shall construct a lattice LC×D in (L⊥)⊕` from those 12
cosets of L by using a Z2 × Z2-code C and a Z3-code D. We shall also introduce
certain isometry groups of (L⊥)⊕`.

First, τ can be extended to an isometry of L⊥. Let H` be a direct product
of ` copies of the group 〈τ〉 generated by τ . Each element g = (g1, . . . , g`) of
H` transforms α = α1 + · · · + α` ∈ (L⊥)⊕` as g(α) = g1(α1) + · · · + g`(α`),
where gs ∈ 〈τ〉 and αs is the s-th component of α. For convenience, we denote
(τ, . . . , τ) ∈ H` simply by τ also. A symmetric group S` of degree ` acts on (L⊥)⊕`
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by permuting the components. Let G` be an isometry group of (L⊥)⊕` generated
by H` and S`, which is a semidirect product H` oS` of H` by S`.

Now, we discuss a Z2 × Z2-code and a Z3-code. A Z2 × Z2-code of length
` means an additive subgroup of K`, where K = {0, a, b, c} ∼= Z2 × Z2 is Klein’s
four-group. We call it a K-code also. Note that b + c = a in K. For x, y ∈ K,
define

x · y =

{
1 if x 6= y, x 6= 0, y 6= 0,

0 otherwise.

We have

x · y ≡ m1n2 + m2n1 (mod 2Z) (2.1)

if x = m1c + m2b, y = n1c + n2b ∈ K with m1,m2, n1, n2 ∈ Z.
For λ = (λ1, . . . , λ`), µ = (µ1, . . . , µ`) ∈ K`, let 〈λ, µ〉K =

∑`
i=1 λi · µi ∈ Z2.

The orthogonal form (λ, µ) 7→ 〈λ, µ〉K on K` was used in [24], [27]. For a K-code
C of length `, we define its dual code by

C⊥ = {λ ∈ K` | 〈λ, µ〉K = 0 for all µ ∈ C}.

A K-code C is said to be self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥.
For λ = (λ1, . . . , λ`) ∈ K`, its support is defined to be suppK(λ) = {i | λi 6= 0}.
The cardinality of suppK(λ) is called the weight of λ. We denote the weight of λ

by wtK(λ). In the case ` = 1, we have wtK(x) = 0 or 1 according to x = 0 or
x ∈ {a, b, c}. A K-code C is said to be even if wtK(λ) is even for every λ ∈ C.

We consider an action of τ on K such that τ(0) = 0, τ(a) = b, τ(b) = c, and
τ(c) = a. Moreover, we consider a componentwise action of H` on K`, so that τ

acts on K` by τ(λ1, . . . , λ`) = (τ(λ1), . . . , τ(λ`)). Then G` acts on K` naturally.
We denote by (K`)≡τ

the set of all τ -orbits in K`. For simplicity of notation, we
sometimes denote a τ -orbit in K` by its representative λ ∈ K`.

The first assertion of the next lemma is [27, Lemma 2.8]. The second assertion
follows from the fact that 〈λ, τ(λ)〉K ≡ wtK(λ) (mod 2Z) for λ ∈ K`.

Lemma 2.1. Let C be a K-code of length `.

(1) If C is even, then C is self-orthogonal.
(2) If C is τ -invariant, then C is even if and only if C is self-orthogonal.

A Z3-code of length ` is a subspace of the vector space Z`
3. For γ =

(γ1, . . . , γ`), δ = (δ1, . . . , δ`) ∈ Z`
3, we consider the ordinary inner product

〈γ, δ〉Z3 =
∑`

i=1 γiδi ∈ Z3. The dual code D⊥ of a Z3-code D is defined to
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be

D⊥ = {γ ∈ Z`
3 | 〈γ, δ〉Z3 = 0 for all δ ∈ D}.

Then D is said to be self-orthogonal if D ⊂ D⊥ and self-dual if D = D⊥.
We define the support and the weight of γ = (γ1, . . . , γ`) ∈ Z`

3 in the same
way as before. Thus suppZ3

(γ) = {i | γi 6= 0} and wtZ3(γ) is the cardinality
of suppZ3

(γ). Note that wtZ3(γ) ≡ 〈γ, γ〉 (mod 3Z). Then the following lemma
holds.

Lemma 2.2. Let D be a self-orthogonal Z3-code of length `. Then wtZ3(δ
− γ) ≡ wtZ3(δ) (mod 3Z) for any γ ∈ D and δ ∈ D⊥.

We consider the trivial action of τ on Z3, that is, τ(j) = j for j ∈ Z3. Then
H` acts trivially on Z`

3 and G` acts on Z`
3 naturally.

Take a Z-basis β̃1 = β1/2, β̃2 = (β1 − β2)/6 of L⊥. Note that {2β̃1, 6β̃2} is a
Z-basis of L. For α = m1β̃1 + m2β̃2, β = n1β̃1 + n2β̃2 ∈ L⊥, we have

〈α, β〉 = m1n1 +
m1n2 + m2n1

2
+

m2n2

3
. (2.2)

We also have τ(β̃1) = β̃1 − 3β̃2 and τ(β̃2) = β̃1 − 2β̃2. We use the same notation
as in [10], [24], [25], [36] to denote the 12 cosets L(x,i), x ∈ K, i ∈ Z3 of L in its
dual lattice L⊥. For each x ∈ K we assign β(x) ∈ L⊥ by β(0) = 0, β(a) = β2/2,
β(b) = β0/2, and β(c) = β1/2. Then

L(x,i) = β(x) + i
−β1 + β2

3
+ L. (2.3)

Since β̃1 = β(c) ∈ L(c,0) and β̃2 = β(b) + (−β1 + β2)/3 + β1 ∈ L(b,1), we can
describe L(x,i) by using the basis {β̃1, β̃2} of L⊥.

Lemma 2.3. For x ∈ K and i ∈ Z3,

L(x,i) =
{
m1β̃1 + m2β̃2 ∈ L⊥ | x = m1c + m2b in K and i = m2 + 3Z

}
.

We also have the following lemma.

Lemma 2.4. Let α ∈ L(x,i) and β ∈ L(y,j) with x, y ∈ K, i, j ∈ Z3.

(1) 〈α, β〉 ≡ x · y/2 + ij/3 (mod Z).
(2) 〈α, α〉 ≡ wtK(x)− 2i2/3 (mod 2Z).
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For λ = (λ1, . . . , λ`) ∈ K` and γ = (γ1, . . . , γ`) ∈ Z`
3, let

L(λ,γ) = L(λ1,γ1) ⊕ · · · ⊕ L(λ`,γ`) ⊂ (L⊥)⊕`.

Moreover, for µ ∈ K`, δ ∈ Z`
3, P ⊂ K`, and Q ⊂ Z`

3, set

Lµ×Q =
⋃

γ∈Q

L(µ,γ), LP×δ =
⋃

λ∈P

L(λ,δ), LP×Q =
⋃

λ∈P,γ∈Q

L(λ,γ).

For a K-code C of length ` and a Z3-code D of the same length, LC×D is an
additive subgroup of (L⊥)⊕`. However, LC×D is not an integral lattice in general.
In the case where C = K` and D = Z`

3, LC×D coincides with (L⊥)⊕`. If C = {0}
and D = {0}, then L{0}×{0} = L(0,0) = L⊕`, where 0 = (0, . . . , 0). In the case
of ` = 1, we note that LK×0 = Zβ̃1 + Z(3β̃2), L0×Z3 = Z(2β̃1) + Z(2β̃2), and
L = L0×0 = Z(2β̃1) + Z(6β̃2).

Let (LC×D)⊥ = {α ∈ (Q⊗Z L)⊕` | 〈α, LC×D〉 ⊂ Z}. The following lemma is
a consequence of Lemma 2.4 (1).

Lemma 2.5. (LC×D)⊥ = LC⊥×D⊥ .

Thus LC×D is an integral lattice if and only if both of C and D are self-
orthogonal. The first assertion of the next lemma follows from Lemma 2.4 (2).
The second assertion is a special case of the above lemma (see also [24, Theorems
5.6, 5.7]).

Lemma 2.6. (1) If C is even and D is self-orthogonal, then LC×D is an
even lattice.

(2) If C and D are self-dual, then LC×D is a unimodular lattice.

2.3. Central extensions L̂C×D, L̂C×D,τ i , i = 1,2.
Suppose C is a τ -invariant even K-code of length ` and D is a self-orthogonal

Z3-code of the same length. Then LC×D is a positive definite even lattice by
Lemma 2.6. The isometry τ of L⊥ permutes the cosets L(x,i), x ∈ K, i ∈ Z3 of L

in L⊥. In fact, τ(L(x,i)) = L(τ(x),i) by our definition of the action of τ on L⊥, K
and Z3 introduced in Section 2.2. In particular, τ induces an isometry of LC×D,
for we are assuming that C is τ -invariant. Note that τ is fixed-point-free on LC×D.
We also have g(LC×D) = Lg(C)×g(D) for g ∈ G`.

For any positive integer n, let 〈κn〉 be a cyclic group of order n with generator
κn. We assume that κn

n/m = κm if m is a divisor of n. We shall construct three
central extensions L̂C×D and L̂C×D,τ i , i = 1, 2 of LC×D by 〈κ36〉 which will be
used in later sections. We realize each of these central extensions as a subgroup
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of a central extension of (L⊥)⊕` by 〈κ36〉.
Define Z-bilinear forms ε1, ε2, ε

′
2, c1, c2, c

′
2 : L⊥×L⊥ → Z/36Z as follows. For

α = m1β̃1 + m2β̃2, β = n1β̃1 + n2β̃2 ∈ L⊥, set

ε1(α, β) = 27m1n1 + 27m2n1 + 9m2n2 + 36Z, (2.4)

ε2(α, β) = 6m1n1 + 6m2n1 + 14m2n2 + 36Z, (2.5)

ε′2(α, β) = 6m1n1 + 15m1n2 + 27m2n1 + 14m2n2 + 36Z, (2.6)

and

c1(α, β) = ε1(α, β)− ε1(β, α) = 9m1n2 + 27m2n1 + 36Z, (2.7)

c2(α, β) = ε2(α, β)− ε2(β, α) = 30m1n2 + 6m2n1 + 36Z, (2.8)

c′2(α, β) = ε′2(α, β)− ε′2(β, α) = 24m1n2 + 12m2n1 + 36Z. (2.9)

We also set

c0(α, β) = 18〈α, β〉+ 36Z

= 18m1n1 + 9m1n2 + 9m2n1 + 6m2n2 + 36Z. (2.10)

All of these Z-bilinear forms are τ -invariant. Since ε1 is Z-bilinear, it is a
2-cocycle. Let L̂⊥ = 〈κ36〉 × L⊥. We simply write κp

36e
α for (κp

36, α) ∈ L̂⊥. In
particular, κp

36 = (κp
36, 0) and eα = (1, α). Define a multiplication on the set L̂⊥

by

(
κp

36e
α
) · (κq

36e
β
)

= κ
p+q+ε1(α,β)
36 eα+β . (2.11)

Take ε2 (resp. ε′2) in place of ε1. Then we obtain a multiplicative group L̂⊥τ

(resp. L̂⊥τ2). We use the same notation κp
36e

α to denote its element. As to its
multiplication, we write ×τ (resp. ×τ2) so that

(
κp

36e
α
)×τ

(
κq

36e
β
)

= κ
p+q+ε2(α,β)
36 eα+β , (2.12)

(
κp

36e
α
)×τ2

(
κq

36e
β
)

= κ
p+q+ε′2(α,β)
36 eα+β . (2.13)

For a, b ∈ L̂⊥ or L̂⊥τ i , i = 1, 2, we simply write ab for the product in the
group when there is no ambiguity. Define − : L̂⊥ → L⊥ (resp. L̂⊥τ i → L⊥) by
κp

36e
α = α. Then L̂⊥ (resp. L̂⊥τ , L̂⊥τ2) is a central extension of L⊥ by 〈κ36〉 with
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associated commutator map c1 (resp. c2, c′2) ([22, Sections 5.1, 5.2], [30, Section
6.4]).

Note that

eαeβ = eα+β in L̂⊥ (2.14)

for α, β ∈ L0×Z3 = Z(2β̃1) + Z(2β̃2) by (2.11).
Define an automorphism of the group L̂⊥ (resp. L̂⊥τ i , i = 1, 2) of order 3 by

κ36 7→ κ36,

eα 7→ eτ(α)
(2.15)

for α ∈ L⊥. Since ε1 (resp. ε2, ε′2) is τ -invariant, the map is in fact an automor-
phism of the group L̂⊥ (resp. L̂⊥τ , L̂⊥τ2) of order 3. By abuse of notation, we
denote it by τ also.

Remark 2.7. In [11, Remark 2.2], three bilinear forms ε0, c0 and cν
0 were

considered. Apply [11, (2.9), (2.10), (2.13)] to L⊥ in place of L with ν = τ or τ2,
p = 3 and q = 36. Then the bilinear form c0 of [11, (2.9)] is identical with our c0.
Moreover, ε0 and cν

0 become

ε0(α, β) = 30〈α, τ(β)〉+ 36Z

= 21m1n1 + 21m2n1 + 31m2n2 + 36Z, (2.16)

ε′0(α, β) = 30〈α, τ2(β)〉+ 36Z

= 21m1n1 + 21m1n2 + 31m2n2 + 36Z, (2.17)

cτ
0(α, β) = 12〈τ(α) + 2τ2(α), β〉+ 36Z

= 18m1n1 + 30m1n2 + 24m2n1 + 30m2n2 + 36Z, (2.18)

cτ2

0 (α, β) = 12〈τ2(α) + 2τ4(α), β〉+ 36Z

= 18m1n1 + 24m1n2 + 30m2n1 + 30m2n2 + 36Z (2.19)

for α = m1β̃1 + m2β̃2, β = n1β̃1 + n2β̃2 ∈ L⊥. Here we write ε′0 for ε0 of [11,
(2.13)] in the case ν = τ2. Note that q of [11, Remark 2.2] should be a multiple of
12 by (2.10). We take q = 36 so that every coefficient of minj in (2.16) and (2.17)
is an integer. These bilinear forms are related to our ones as follows.
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ε0(α, β) = ε1(α, β)− ε2(α, β),

ε′0(α, β) = ε1(α, β)− ε′2(α, β),

c0(α, β) ≡ c1(α, β)− 36〈α, τ(β)〉 (mod 36Z),

cτ
0(α, β) ≡ c2(α, β) + 36〈α, τ(β)〉 (mod 36Z),

cτ2

0 (α, β) ≡ c′2(α, β) + 36〈α, τ(β)〉 (mod 36Z).

We extend the Z-bilinear forms ε1, ε2, ε
′
2, c1, c2, c

′
2, c0, ε0, ε

′
0, c

τ
0 , cτ2

0 on L⊥ to
(L⊥)⊕` naturally. For example,

ε1(α, β) =
∑̀
s=1

ε1(α(s), β(s))

for α =
∑`

s=1 α(s), β =
∑`

s=1 β(s) ∈ (L⊥)⊕`, where α(s) and β(s) are in the s-th
entry of (L⊥)⊕`. These Z-bilinear forms are all τ -invariant.

Remark 2.8. If 〈α, τ(β)〉 ∈ Z, then Remark 2.7 implies that c1(α, β) =
c0(α, β), c2(α, β) = cτ

0(α, β), c′2(α, β) = cτ2

0 (α, β) and

ε0(α, β)− ε0(β, α) = c0(α, β)− cτ
0(α, β),

ε′0(α, β)− ε′0(β, α) = c0(α, β)− cτ2

0 (α, β).
(2.20)

Let (L̂⊥)` be a direct product of ` copies of L̂⊥ and let T be a subgroup in
the center of (L̂⊥)` generated by κ

(r)
36 (κ(s)

36 )−1, 1 ≤ r, s ≤ `, where κ
(s)
36 denotes

κ36 ∈ L⊥ in the s-th entry of (L̂⊥)`. We consider (L̂⊥)`/T . For simplicity of
notation, we write eα1+···+α` for (eα1 , . . . , eα`)T and κp

36 for (κ(1)
36 )pT in (L̂⊥)`/T .

Then any element of (L̂⊥)`/T can be expressed uniquely in the form κp
36e

α with
p ∈ Z/36Z and α ∈ (L⊥)⊕`.

By (2.11) we have

eαeβ = κ
ε1(α,β)
36 eα+β (2.21)

in (L̂⊥)`/T . For κp
36e

α ∈ (L̂⊥)`/T , let κp
36e

α = α ∈ (L⊥)⊕`. Then

1 → 〈κ36〉 → (L̂⊥)`/T
−−→ (L⊥)⊕` → 1
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is a central extension of (L⊥)⊕` by 〈κ36〉 with associated commutator map c1. We
denote (L̂⊥)`/T by ̂(L⊥)⊕` also.

By (2.15), G` acts on the group ̂(L⊥)⊕` naturally. In particular, τ = (τ, . . . , τ)
acts on ̂(L⊥)⊕` as an automorphism of order 3. We have g(a) = g(ā) for g ∈ G`

and a ∈ ̂(L⊥)⊕`.
By (2.10) and Remark 2.7, we have

κ
c1(α,β)
36 = κ

c0(α,β)
36 = κ

〈α,β〉
2

if 〈α, τ(β)〉 is an integer. This is the case for α, β ∈ LC×D, since LC×D is a
τ -invariant integral lattice.

For any subset Q of (L⊥)⊕`, we set Q̂ = {a ∈ ̂(L⊥)⊕` | ā ∈ Q}. In particular,
L̂C×D = {a ∈ ̂(L⊥)⊕` | ā ∈ LC×D}. Then

1 → 〈κ36〉 → L̂C×D
−−→ LC×D → 1 (2.22)

is a central extension of LC×D by 〈κ36〉 with associated commutator map c1.
Replace L̂⊥ with L̂⊥τ (resp. L̂⊥τ2) and ε1 with ε2 (resp. ε′2) in the above argu-

ment. Then we obtain a central extension ̂(L⊥)⊕`
τ (resp. ̂(L⊥)⊕`

τ2) of (L⊥)⊕` by
〈κ36〉 with associated commutator map c2 (resp. c′2). We have eαeβ = κ

ε2(α,β)
36 eα+β

in ̂(L⊥)⊕`
τ by (2.12) (resp. eαeβ = κ

ε′2(α,β)
36 eα+β in ̂(L⊥)⊕`

τ2 by (2.13)) for

α, β ∈ (L⊥)⊕`. We also consider Q̂τ i = {a ∈ ̂(L⊥)⊕`
τ i | ā ∈ Q}, i = 1, 2

similarly for a subset Q of (L⊥)⊕`.
Note that τ induces an automorphism of L̂C×D of order 3. Let θ ∈ Aut L̂C×D

be a distinguished lift of the isometry −1 of LC×D defined by [22, (10.3.12)]

θ : L̂C×D → L̂C×D; a 7→ a−1κ
〈ā,ā〉/2
2 . (2.23)

Then θ2 = 1, θ(a) = −ā for a ∈ L̂C×D, and θ(κ36) = κ36. Moreover, θτ = τθ since
〈 · , · 〉 is τ -invariant. Thus we have obtained the following lemma.

Lemma 2.9. L̂C×D is a central extension of LC×D by 〈κ36〉 with commuta-
tion relation

ab = κ
〈ā,b̄〉
2 ba, a, b ∈ L̂C×D. (2.24)

Moreover, τ and θ are automorphisms of L̂C×D such that τ3 = θ2 = 1, τ(κ36) =
θ(κ36) = κ36, τ(a) = τ(ā), θ(a) = −ā for a ∈ L̂C×D, and θτ = τθ.
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The sublattice L0×D of LC×D has nice properties. For α, β ∈ L0×D, we have
eαeβ = eα+β by (2.14) and τ(eα) = eτ(α) by (2.15). Furthermore, θ(eα) = e−α by
(2.23), since 〈α, α〉 ∈ 4Z for α ∈ L0×D.

Now, set C{(L⊥)⊕`} = C[ ̂(L⊥)⊕`]/(κ36 − ζ36)C[ ̂(L⊥)⊕`], which is a twisted
group algebra of (L⊥)⊕`. By abuse of notation, we denote the image of eα ∈
̂(L⊥)⊕` in C{(L⊥)⊕`} by the same symbol eα for α ∈ (L⊥)⊕`. The automorphisms

τ and θ also induce automorphisms of C{(L⊥)⊕`}. We use the same symbols
τ and θ to denote those automorphisms. For any subset P of (L⊥)⊕`, we set
C{P} = spanC{eα | α ∈ P} ⊂ C{(L⊥)⊕l}.

The following lemma is a direct consequence of Lemma 2.9.

Lemma 2.10. C{LC×D} is a twisted group algebra of LC×D such that

eαeβ = (−1)〈α,β〉eβeα, α, β ∈ LC×D.

Moreover, τ and θ are automorphisms of C{LC×D} such that τ3 = θ2 = 1 and
θτ = τθ.

2.4. Vertex operator algebra VLC×D
.

We use the standard notation for the vertex operator algebra (VΓ, Y ( · , x))
associated with a positive definite even lattice Γ and its module VΓ⊥ ([22, Chapter
8], [30, Section 6.4]). Let C be a τ -invariant even K-code of length ` and D be
a self-orthogonal Z3-code of the same length. Thus the lattice LC×D is a τ -
invariant positive definite even lattice by Lemma 2.6. We use the twisted group
algebra C{LC×D} of Lemma 2.10 for the vertex operator algebra VLC×D

= M(1)⊗
C{LC×D}. We identify VL⊕` with V ⊗`

L and V(L⊥)⊕` with V ⊗`
L⊥ .

Recall the action of the group G` on (L⊥)⊕`, K` and Z`
3 discussed in Section

2.2. For g ∈ G`, define a linear isomorphism on V(L⊥)⊕` = M(1)⊗ C{(L⊥)⊕`} by

α1(−n1) · · ·αk(−nk)eβ 7→ (gα1)(−n1) · · · (gαk)(−nk)g(eβ).

For simplicity of notation, we denote it by g also. Then

g(Y(LC×D)⊥(u, x)v) = Y(Lg(C)×g(D))⊥(gu, x)gv

for u ∈ VLC×D
and v ∈ V(LC×D)⊥ . Hence g : VLC×D

7→ VLg(C)×g(D) is an isomor-
phism of vertex operator algebras. In particular, τ is an automorphism of VLC×D

.
Our purpose is the classification of irreducible modules for the fixed point subal-
gebra V τ

LC×D
= {u ∈ VLC×D

| τu = u} of VLC×D
by the automorphism τ .

We also note that
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g : VL(λ+C)×(γ+D) 7→ VL(g(λ)+g(C))×(g(γ)+g(D))

for λ ∈ C⊥ and γ ∈ D⊥ is a map from VLC×D
-modules to VLg(C)×g(D)-modules. In

the case where C and D are g-invariant, we have

VL(λ+C)×(γ+D) ◦ g ∼= g−1
(
VL(λ+C)×(γ+D)) = VL(g−1(λ)+C)×(g−1(γ)+D)

. (2.25)

By [8, Theorem 3.1] and Lemma 2.5, we have the following proposition.

Proposition 2.11. {VL(λ+C)×(γ+D) | λ + C ∈ C⊥/C, γ + D ∈ D⊥/D} is a
set of all irreducible VLC×D

-modules up to isomorphism.

The following lemma is a straightforward consequence of (2.25).

Lemma 2.12. We have VL(λ+C)×(γ+D) ◦τ ∼= VL(τ−1(λ)+C)×(γ+D)
. In particular,

VL(λ+C)×(γ+D) is τ -stable if and only if λ ∈ C.

For ε = 0, 1, 2, let VLC×(γ+D)(ε) = {u ∈ VLC×(γ+D) | τu = ζε
3u}. These are

irreducible V τ
LC×D

-modules.
The following proposition is clear.

Lemma 2.13. As (VL)⊗`-modules, we have

VL(λ+C)×(γ+D) =
⊕

µ∈λ+C,δ∈γ+D

VL(µ,δ) .

The fusion rules for VLC×D
are known by [11, Corollary 12.10].

Lemma 2.14. For λ1, λ2 ∈ C⊥ and γ1, γ2 ∈ D⊥, we have

VL(λ1+C)×(γ1+D)
× VL(λ2+C)×(γ2+D)

= VL(λ1+λ2+C)×(γ1+γ2+D)
.

3. Irreducible τ i-twisted VLC×D
-modules, i = 1,2.

As before, we assume that C is a τ -invariant even K-code of length ` and D is
a self-orthogonal Z3-code of the same length. We shall describe a decomposition
of every irreducible τ i-twisted VLC×D

-module constructed by the method of [12],
[29] into a direct sum of irreducible (V τ

L )⊗`-modules, i = 1, 2. The argument in
the τ2-twisted case is parallel to that in the τ -twisted case. Thus we deal with
mainly the τ -twisted ones.

By our construction L̂⊕` (resp. L̂⊕`
τ ) is a subgroup of L̂C×D (resp. L̂C×D,τ ).
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In [10], [36], we have considered irreducible τ -twisted VL-modules V
Tχj

L (τ), j =
0, 1, 2. In order to apply the results obtained in these previous papers, we need to
examine the relation between L̂ (resp. L̂τ ) of [10] and L̂⊕` (resp. L̂⊕`

τ ).
In [10, (2.1)], L̂ was a central extension of L by 〈κ6〉 with trivial associated

commutator map L × L → Z/6Z and a section L → L̂; α 7→ eα was chosen so
that eαeβ = eα+β and τ(eα) = eτ(α). In our case we have eαeβ = eα+β and
τ(eα) = eτ(α) in L̂⊥ for α, β ∈ L by (2.14) and (2.15). Thus for each 1 ≤ s ≤ `,
the map

κ6 7→ κ6
36 = κ6,

eα 7→ (1, . . . , eα, . . . , 1)T

is an injective group homomorphism of L̂ to L̂⊕`, where (1, . . . , eα, . . . , 1) is the
element of (L̂⊥)` whose s-th component is eα and the other components are 1.
This injective homomorphism is compatible with the action of τ .

The embedding of L̂ into L̂⊕` gives rise to an embedding v 7→ 1⊗· · ·⊗v⊗· · ·⊗1
of the vertex operator algebra VL into V ⊗`

L
∼= VL⊕` which maps VL isomorphically

to the s-th component of V ⊗`
L for each 1 ≤ s ≤ `. This embedding is again

compatible with the action of τ .
We denote the bilinear form ε0 on L of [10, (4.4)] by ε′ for a while. Thus

ε′(α, β) = 5〈τ2α, β〉 + 6Z. In [10], the multiplications a × b in L̂ and a ×τ b in
L̂τ are related as a × b = κ

ε′(ā,b̄)
6 a ×τ b. Since κ

ε0(α,β)
36 = κ

ε′(α,β)
6 for α, β ∈ L by

(2.16), it follows from (2.20) that the map κ6 7→ κ6
36 = κ6, eα 7→ eα for α ∈ L is

an injective group homomorphism of L̂τ to the s-th component of L̂⊕`
τ for each

1 ≤ s ≤ `.
Now, V ⊗`

L
∼= VL⊕` ⊂ VLC×D

. Since τ = (τ, . . . , τ) and since the irreducible

τ -twisted VL-modules V
Tχj

L (τ), j = 0, 1, 2 of [10], [36] were constructed by the
same method as in [12], [29], the above argument shows that the action of VL on

V
Tχj

L (τ) is realized in the action of the s-th component of V ⊗`
L on the irreducible

τ -twisted VLC×D
-modules V T,η

LC×D
(τ) constructed by (3.24) below.

We can verify the following properties of the Z-bilinear form c2. In fact, it is
sufficient to show the assertions for the case ` = 1. Note that Lemma 2.3 implies

LK`×0 =
{ l∑

s=1

(
m

(s)
1 β̃

(s)
1 + 3m

(s)
2 β̃

(s)
2

)∣∣∣∣m
(s)
1 ,m

(s)
2 ∈ Z

}
.

Lemma 3.1. (1) For α ∈ (L⊥)⊕`, we have c2(α, β) = 0 for all β ∈ L⊕` if
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and only if α ∈ LK`×0.
(2) For α =

∑`
s=1

(
m

(s)
1 β̃

(s)
1 + 3m

(s)
2 β̃

(s)
2

) ∈ LK`×0 and β ∈ L(0,γ) with γ ∈ Z`
3,

we have

c2(α, β) = 12〈(m(s)
1 )`

s=1, γ〉Z3 + 36Z.

(3) For α ∈ L(λ,0), β ∈ L(µ,0) with λ, µ ∈ K`, we have

c2(α, β) = 18〈λ, µ〉K + 36Z.

We now follow [29]. The commutator map C(α, β) of [29] is κ36
c2(α,β) in

our notation. Let h = C ⊗Z LC×D, so that h = (C ⊗Z L)⊕`. We extend τ to an
isometry of h linearly. Then τ is fixed-point-free on h and N of [29] is identical
with LC×D in our case.

Let R = {α ∈ LC×D | c2(α, β) = 0 for all β ∈ LC×D} be the radical of
the alternating Z-bilinear form c2 on LC×D, which is identical with the R of [29,
Section 6]. Since C is self-orthogonal, Lemma 3.1 implies the following assertion.

Lemma 3.2. The radical R of the alternating Z-bilinear form c2 on LC×D

consists of the elements

∑̀
s=1

(
m

(s)
1 β̃

(s)
1 + 3m

(s)
2 β̃

(s)
2

) ∈ LC×0

with m
(s)
1 ,m

(s)
2 ∈ Z such that (m(s)

1 + 3Z)`
s=1 ∈ D⊥.

By Lemma 3.1 we also have the following lemma. Thus we can choose LC×0

as the group A of [29, Proposition 6.2].

Lemma 3.3. LC×0 is a subgroup of LC×D which is maximal subject to the
condition that the alternating Z-bilinear form c2 is trivial on it.

We shall consider (1−τ)LC×D = ∪(λ,γ)∈C×D(1−τ)L(λ,γ), which corresponds
to the subgroup denoted by M in [29, Section 6]. For m1,m2 ∈ Z, we have

(1− τ)(m1β̃1 + m2β̃2) = −m2β̃1 + 3(m1 + m2)β̃2

and hence (1− τ)L⊥ = LK×0 and (1− τ)L = Z(6β̃1) + Z(6β̃2). More precisely,
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(1− τ)
(−β1 + β2

3

)
= 2β̃1 − 6β̃2,

(1− τ)(β(a)) = β(c) + 2β̃1 − 6β̃2,

(1− τ)(β(b)) = β(a) + 2β̃1 − 6β̃1 + 6β̃2,

(1− τ)(β(c)) = β(b) + 2β̃1.

Then we see from (2.3) that

(1− τ)L(x,i) = wtK(x)(β(τ2(x)) + 2β̃1) + 2iβ̃1 + Z(6β̃1) + Z(6β̃2) (3.1)

for x ∈ K and i ∈ Z3, where wtK(x) = 1 if x ∈ {a, b, c} and 0 otherwise. Thus,

(1− τ)L(λ,γ) =
∑̀
s=1

(
wtK(λs)

(
β(τ2(λs)) + 2β̃

(s)
1

)

+ 2γsβ̃
(s)
1 + Z

(
6β̃

(s)
1

)
+ Z

(
6β̃

(s)
2

))
(3.2)

for λ = (λs)`
s=1 ∈ K` and γ = (γs)`

s=1 ∈ Z`
3. We also note that

L(τ2(x),0) = (1− τ)L(x,0) ∪ (1− τ)L(x,1) ∪ (1− τ)L(x,2) (3.3)

is a disjoint union for x ∈ K by (2.3) and (3.1). Thus,

LC×0 =
⋃

λ∈C
γ∈Z`

3

(1− τ)L(λ,γ); disjoint. (3.4)

Define a Z-linear map ϕ : L⊥ → Z3 by

ϕ(m1β̃1 + m2β̃2) = m1 + 3Z (3.5)

for m1,m2 ∈ Z. We can verify that ϕ(β(τ2(x)) + 2β̃1) = 0 if x ∈ {a, b, c}. Hence
(3.1) implies the following lemma.

Lemma 3.4. ϕ((1− τ)L(x,i)) = {2i} for x ∈ K, i ∈ Z3.

We extend ϕ : L⊥ → Z3 to a homomorphism of additive groups ϕ : (L⊥)⊕` →
Z`

3 componentwise, so that it maps the s-th component L⊥ to Z3 by (3.5). Set
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M0 = (1 − τ)LC×0 and M = (1 − τ)LC×D. By Lemma 3.4, we have ϕ((1 −
τ)L(λ,γ)) = {2γ} for λ ∈ K` and γ ∈ Z`

3. Thus the following lemma holds by (3.4)
and Lemma 3.2.

Lemma 3.5. The restriction ϕ|LC×0 : LC×0 → Z`
3 of ϕ to LC×0 is a surjec-

tive homomorphism and its kernel is M0. Moreover, ϕ(M) = D and ϕ(R) = D⊥.
That is, ϕ gives the following surjections.

M0 ⊂ M ⊂ R ⊂ LC×0

ϕ : ↓ ↓ ↓ ↓
{0} ⊂ D ⊂ D⊥ ⊂ Z`

3.

(3.6)

Since 6β̃
(s)
1 = 3β

(s)
1 and 6β̃

(s)
2 = β

(s)
1 −β

(s)
2 , M0 contains β

(s)
1 −β

(s)
2 , β

(s)
2 −β

(s)
0

and 3β
(s)
i , i = 0, 1, 2 by (3.2). Let γ = (γ1, . . . , γ`) ∈ Z`

3. Then the inverse image of
{2γ} under ϕ|LC×0 is

∑`
s=1 γsβ

(s)
i +M0. By Lemma 3.5, ϕ induces an isomorphism

LC×0/M0
∼= Z`

3. Taking the inverse image of D, D⊥ and Z`
3, respectively, we have

the following coset decompositions.

M =
⋃

γ∈D

(
γ1β

(1)
i + · · ·+ γ`β

(`)
i + M0

)
, (3.7)

R =
⋃

γ∈D⊥

(
γ1β

(1)
i + · · ·+ γ`β

(`)
i + M0

)
, (3.8)

LC×0 =
⋃

γ∈Z`
3

(
γ1β

(1)
i + · · ·+ γ`β

(`)
i + M0

)
. (3.9)

Recall that Q̂τ denotes the inverse image of Q under the homomorphism
L̂C×D, τ

−−→ LC×D for a subset Q of LC×D. Lemma 3.3 implies that the inverse
image L̂C×0, τ of LC×0 is isomorphic to LC×0×〈κ36〉, which is a maximal abelian
subgroup of L̂C×D, τ . The inverse image R̂τ of R is the center of the group L̂C×D, τ .

A central subgroup K defined in [12, Remark 4.2] is crucial for the con-
struction of a certain class of irreducible L̂C×D, τ -modules (see also [22, Section
7.4], [29, Section 6]). Let K = {aτ(a)−1 | a ∈ L̂C×D, τ}. Then K is a sub-
group of the center R̂τ of L̂C×D, τ and K ∩ 〈κ36〉 = 1 [12, Remark 4.2]. Indeed,
aτ(a)−1 = a− τ(a) ∈ M . If aτ(a)−1 ∈ 〈κ36〉, then a = τ(a) and so a = 0. Hence
a ∈ 〈κ36〉 and aτ(a)−1 = 1. Thus K ∩ 〈κ36〉 = 1. Since K lies in R̂τ , bτ(b)−1

commutes with τ(a)−1 for a, b ∈ L̂C×D, τ and

aτ(a)−1bτ(b)−1 = abτ(b)−1τ(a)−1 = abτ(ab)−1. (3.10)
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Thus K is a group. Now the inverse image M̂τ of M in L̂C×D, τ is K × 〈κ36〉 ∼=
M×〈κ36〉. Clearly, K is τ -invariant. Moreover, K is θ-invariant since θ commutes
with τ .

We shall construct an irreducible L̂C×D, τ -module Tψ as in [29, Proposition
6.2]. Since M̂τ = K ×〈κ36〉, there is a unique group homomorphism ρ : M̂τ → C×
such that ρ(κ36) = ζ36 and ρ(a) = 1 for a ∈ K. Note that (1 + τ + τ2)α = 0
for α ∈ LC×D. Thus ρ is the homomorphism denoted by τ in [29, Proposition
6.1]. Let χ : R̂τ → C× be a homomorphism extending ρ and ψ : L̂C×0, τ → C×
be a homomorphism extending χ. Then ψ(κ36) = ζ36 and ψ is 1 on K. Such an
extension ψ exists, since in the central extension

1 → 〈κ36〉 → L̂C×D, τ/K → LC×D/M → 1

with associated commutator map c2 defined by c2(α + M, β + M) = c2(α, β), the
subgroup L̂C×0, τ/K splits by Lemma 3.3. That is, L̂C×0, τ/K ∼= (LC×0/M) ×
〈κ36〉 and R̂τ/K ∼= (R/M)× 〈κ36〉. Let Cψ be a one dimensional L̂C×0, τ -module
with character ψ and Tψ = C[L̂C×D, τ ] ⊗C[L̂C×0, τ ] Cψ be the L̂C×D, τ -module
induced from Cψ.

We need to know ψ and Tψ in detail. For this purpose, set K0 = {aτ(a)−1 |
a ∈ L̂C×0, τ}. Then K0 is a subgroup of K with M̂0,τ = K0 × 〈κ36〉, where M̂0,τ

denotes the inverse image of M0 in L̂C×D, τ . Moreover, K0 is θ- and τ -invariant.
We shall describe the group L̂C×D, τ/K0 explicitly.

We can verify that ε2(α, τ(α)) = ε2(α, α) and eατ(eα)−1 = e(1−τ)α in L̂⊥τ

for α ∈ L⊥ by (2.5), (2.12) and (2.15). Hence

eβτ(eβ)−1 = e(1−τ)β in ̂(L⊥)⊕`
τ (3.11)

for β ∈ (L⊥)⊕`. In the case of β = −β
(s)
1 + β

(s)
2 , we have

e−β
(s)
1 +β

(s)
2 τ

(
e−β

(s)
1 +β

(s)
2

)−1 = e3β
(s)
2 in L̂C×D, τ . (3.12)

For γ = (γ1, . . . , γ`) ∈ D, set

a(γ) =
∑̀
s=1

js
−β

(s)
1 + β

(s)
2

3
∈ L0×D, (3.13)

where js = 0, 1, 2 such that γs = js + 3Z. These a(γ), γ ∈ D form a complete set
of coset representatives of LC×0 in LC×D, and so
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L̂C×D, τ =
⋃

γ∈D

ea(γ)L̂C×0, τ . (3.14)

Then using (3.10) we see that

K =
⋃

γ∈D

ea(γ)τ(ea(γ))−1K0. (3.15)

Moreover, it follows from (3.11) that

ea(γ)τ(ea(γ))−1 = e
P`

s=1 jsβ
(s)
2 in L̂C×D, τ . (3.16)

Now, using (2.5) and (2.12) we can verify that

(eβi)m = κ
m(m−1)
3 emβi in L̂⊥τ (3.17)

for m ∈ Z, i = 0, 1, 2.
By (2.15), (3.12) and (3.17), we have the following lemma.

Lemma 3.6. The following assertions hold in L̂C×D, τ for 1 ≤ s ≤ `.

(1) eβ
(s)
1 ≡ eβ

(s)
2 ≡ eβ

(s)
0 (mod K0).

(2) (κ3e
β

(s)
i )3 = e3β

(s)
i ∈ K0, i = 0, 1, 2.

(3) (κ3e
β

(s)
i )−1 = κ3e

−β
(s)
i , i = 0, 1, 2.

By (3.17), (κ3e
β

(s)
i )m = κm2

3 emβ
(s)
i in L̂C×D, τ for any integer m. Now, let

ms ∈ Z, 1 ≤ s ≤ `. Then e
P`

s=1 msβ
(s)
i = em1β

(1)
i · · · em`β

(`)
i in L̂C×D, τ , since

ε2(β
(s)
i , β

(t)
i ) = 0 if s 6= t. Thus

(
κ3e

β
(1)
i

)m1 · · · (κ3e
β

(`)
i

)m` = κ
P`

s=1 m2
s

3 e
P`

s=1 msβ
(s)
i in L̂C×D, τ (3.18)

for any (m1, . . . , m`) ∈ Z`. The above lemma implies that (κ3β
(s)
i )mK0 and

emβ
(s)
i K0 depend only on m (mod 3Z). Hence (3.18) is reduced to

(
κ3e

β
(1)
i

)γ1 · · · (κ3e
β

(`)
i

)γ`K0 = κ
〈γ,γ〉Z3
3 e

P`
s=1 γsβ

(s)
i K0 (3.19)

modulo K0 for γ = (γ1, . . . , γ`) ∈ Z`
3. If γ ∈ D, then 〈γ, γ〉Z3 = 0 since D is

self-orthogonal. Therefore, (3.15) and (3.16) give that
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K =
⋃

γ∈D

(
κ3e

β
(1)
i

)γ1 · · · (κ3e
β

(`)
i

)γ`K0. (3.20)

Motivated by the above result, we set

K1 =
⋃

γ∈D⊥

(
κ3e

β
(1)
i

)γ1 · · · (κ3e
β

(`)
i

)γ`K0, (3.21)

K2 =
⋃

γ∈Z`
3

(
κ3e

β
(1)
i

)γ1 · · · (κ3e
β

(`)
i

)γ`K0 (3.22)

with γ = (γ1, . . . , γ`). Then the following lemma holds.

Lemma 3.7. (1) K2 is a subgroup of L̂C×0, τ such that K2 ∩ 〈κ36〉 = 1 and
L̂C×0, τ = K2 × 〈κ36〉. Moreover,

K2/K0 =
〈
κ3e

β
(1)
i K0/K0

〉× · · · × 〈
κ3e

β
(`)
i K0/K0

〉
,

which is isomorphic to LC×0/M0
∼= Z`

3.
(2) K1 is a subgroup of K2 such that R̂τ = K1 × 〈κ36〉. Moreover, K1/K0 is

isomorphic to R/M0
∼= D⊥.

Let ψ : L̂C×0, τ → C× be a homomorphism of abelian groups such that
ψ(κ36) = ζ36 and ψ(a) = 1 for a ∈ K0. Then ψ(κ3e

β
(s)
i ) = ζηs

3 , 1 ≤ s ≤ `

for some η = (η1, . . . , η`) ∈ Z`
3 by Lemma 3.7. We denote such a homomorphism

ψ by ψη. In fact, η 7→ ψη is an isomorphism of the additive group Z`
3 onto the

multiplicative group of all homomorphisms ψ : L̂C×0, τ → C× with ψ(κ36) = ζ36

and ψ(a) = 1 for a ∈ K0. The homomorphism ψη is determined by the three
conditions (i) ψη(κ36) = ζ36, (ii) ψη is 1 on K0, and (iii) ψη(κ3e

β
(s)
i ) = ζηs

3 .

Remark 3.8. The conditions (i), (ii), and (iii) for ψη are consistent with
the conditions for χj in [10, Section 4].

As before, let Cψη be a one dimensional L̂C×0, τ -module affording the char-
acter ψη and Tψη

= C[L̂C×D, τ ] ⊗C[L̂C×0, τ ] Cψη
be the L̂C×D, τ -module induced

from Cψη . It follows from (3.14) that {ea(γ) ⊗ 1η | γ ∈ D} is a basis of Tψη ,
where 1η denotes a fixed nonzero vector in Cψη

. For b ∈ L̂C×0, τ , we have

bea(γ) = κ
c2(b,a(γ))
36 ea(γ)b and the action of b on ea(γ) ⊗ 1η is

b · (ea(γ) ⊗ 1η) = ζ
c2(b,a(γ))
36 ψη(b)(ea(γ) ⊗ 1η).
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For δ ∈ D, we have ea(δ)ea(γ) ∈ ea(δ+γ)L̂C×0, τ by (2.12) since a(δ) + a(γ) ≡
a(δ+γ) (mod L⊕`). Then Tψη

is an irreducible L̂C×D, τ -module and the following
lemma holds.

Lemma 3.9. (1) κ36 and K0 act on Tψη
as ζ36 and 1, respectively. Moreover,

K (resp. K1) acts on Tψη
as 1 if and only if η ∈ D⊥ (resp. η ∈ D).

(2) For η, η′ ∈ Z`
3, the L̂C×D, τ -modules Tψη

and Tψη′ are equivalent if and
only if η ≡ η′ (mod D), which is also equivalent to the condition that ψη and ψη′

agree on K1.
(3) The action of κ3e

±β
(s)
i on ea(γ) ⊗ 1η is such that

κ3e
±β

(s)
i · (ea(γ) ⊗ 1η) = ζ

±(ηs−γs)
3 ea(γ) ⊗ 1η.

That is, Cea(γ) ⊗ 1η is a one dimensional L̂C×0, τ -module with character ψη−γ .

By the above lemma, e±β
(s)
i acts on ea(γ) ⊗ 1η ∈ Tψη

as

e±β
(s)
i · (ea(γ) ⊗ 1η) = ζ

−1±(ηs−γs)
3 ea(γ) ⊗ 1η. (3.23)

Remark 3.10. Tψη
, η ∈ D⊥ are exactly the modules T of [29, Proposition

6.2] in our case.

Recall that h = C⊗Z LC×D = (C⊗Z L)⊕`. As before, we use α(s) to denote
the element α ∈ C⊗Z L in the s-th entry of (C⊗Z L)⊕`. Let

h
(s)
1 =

1
3
(
β

(s)
1 + ζ2

3β
(s)
2 + ζ3β

(s)
0

)
, h

(s)
2 =

1
3
(
β

(s)
1 + ζ3β

(s)
2 + ζ2

3β
(s)
0

)
.

Then τh
(s)
j = ζj

3h
(s)
j , 〈h(s)

j , h
(t)
j 〉 = 0, and 〈h(s)

1 , h
(t)
2 〉 = 2δs,t. Set

h(n) = {α ∈ h | τα = ζn
3 α}

for n ∈ Z. The index n of h(n) is considered to be modulo 3. Then h(0) = 0 and
h = h(1) ⊕ h(2) with h(n) = Ch

(1)
n ⊕ · · · ⊕ Ch

(`)
n , n = 1, 2. If α ∈ h, we write α(n)

for the component of α in h(n). In this notation we have (β(s)
i )(1) = ζi−1

3 h
(s)
1 and

(β(s)
i )(2) = ζ

2(i−1)
3 h

(s)
2 , i = 0, 1, 2.

The τ -twisted affine Lie algebra ĥ[τ ] is defined to be
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ĥ[τ ] =
( ⊕

n∈Z
h(n) ⊗ tn/3

)
⊕ Cc

with the bracket

[x⊗ tm, y ⊗ tn] = m〈x, y〉δm+n,0c

for x ∈ h(3m), y ∈ h(3n), m, n ∈ (1/3)Z and [c, ĥ[τ ]] = 0. The isometry τ acts on
ĥ[τ ] by τ(x⊗ tn/3) = ζn

3 x⊗ tn/3 and τ(c) = c. Set

ĥ[τ ]+ =
⊕
n>0

h(n) ⊗ tn/3, ĥ[τ ]− =
⊕
n<0

h(n) ⊗ tn/3, ĥ[τ ]0 = Cc

and consider the ĥ[τ ]-module

S[τ ] = U(ĥ[τ ])⊗U(ĥ[τ ]+⊕ĥ[τ ]0) C

induced from the ĥ[τ ]+⊕ ĥ[τ ]0-module C, where ĥ[τ ]+ acts as 0 and ĥ[τ ]0 acts as 1
on C. The weight gradation on S[τ ] is given by wt(x⊗ tn) = −n and wt(1) = `/9
for n ∈ (1/3)Z and x ∈ h(3n) [12, (4.6), (4.10)]. For α ∈ h and n ∈ (1/3)Z, we
write α(n) for the operator on S[τ ] induced by the action of α(3n)⊗tn. The weight
of the operator h

(s)
i (i/3 + n) is −i/3− n. The group H` acts as

(τ j1 , . . . , τ j`)
(

h
(s)
i

(
i

3
+ n

))
= ζjsi

3 h
(s)
i

(
i

3
+ n

)
.

Set

V T,η
LC×D

(τ) = S[τ ]⊗ Tψη
(3.24)

for η ∈ D⊥. By [12, Theorem 7.1] and [29, Proposition 6.2], we can de-
fine a τ -twisted vertex operator Y τ ( · , x) : VLC×D

→ End(V T,η
LC×D

(τ)){x} so that

(V T,η
LC×D

(τ), Y τ ), η ∈ D⊥ is an irreducible τ -twisted VLC×D
-module. The weight of

any element in Tψη is defined to be 0. Hence the weight of elements in V T,η
LC×D

(τ)
is given by wt(u⊗ v) = wt(u) for u ∈ S[τ ] and v ∈ Tψη

.
We define an action of H` on Cea(γ) ⊗ 1η by

(τ j1 , . . . , τ j`)(ea(γ) ⊗ 1η) = ζ
2〈(js)`

s=1,η−γ〉Z3
3 ea(γ) ⊗ 1η
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and extend to Tψη
= ⊕γ∈DCea(γ) ⊗ 1η by linearity. Note that Lemma 2.2 implies

τ(ea(γ) ⊗ 1η) = ζ
2 wtZ3 (η)
3 ea(γ) ⊗ 1η for γ ∈ D. Thus τ acts on Tψη

as a scalar

ζ
2 wtZ3 (η)
3 , which depends only on the coset η + D ∈ D⊥/D. The group H` acts on

the vector space V T,η
LC×D

(τ) by

g(u⊗ v) = g(u)⊗ g(v) (3.25)

for g ∈ H`, u ∈ S[τ ] and v ∈ Tψη
. Then, τ(Y τ (u, x)w) = Y τ (τu, x)τw for

u ∈ VLC×D
and w ∈ V T,η

LC×D
(τ) by [11, Section 4].

We have discussed only irreducible τ -twisted VLC×D
-modules so far. Now, we

deal with irreducible τ2-twisted ones. Actually, we can construct |D⊥/D| inequiv-
alent irreducible τ2-twisted VLC×D

-modules (V T,η
LC×D

(τ2), Y τ2
), η ∈ D⊥ (mod D)

similarly. Indeed, replace τ with τ2 in the above argument and proceed in the
same way. We can construct a class of irreducible L̂C×D,τ2-modules T ′ψη

, η ∈ D⊥.

Let h
′(s)
1 = h

(s)
2 and h

′(s)
2 = h

(s)
1 , 1 ≤ s ≤ `. Set h′(n) = {α ∈ h | τ2α = ζn

3 α}
for n ∈ Z (see [10, Section 4.3]). Take h

′(s)
1 and h

′(s)
2 instead of h

(s)
1 and h

(s)
2 ,

respectively and consider S[τ2]. Then

V T,η
LC×D

(τ2) = S[τ2]⊗ T ′ψη
.

We define an action of H` on Cea(γ) ⊗ 1η by

(τ j1 , . . . , τ j`)(ea(γ) ⊗ 1η) = ζ
〈(js)`

s=1,η−γ〉Z3
3 ea(γ) ⊗ 1η

and extend to T ′ψη
= ⊕γ∈DCea(γ) ⊗ 1η by linearity. Thus τ2(v) = ζ

2 wtZ3 (η)
3 v for

v ∈ T ′ψη
. Now, H` acts on the vector space V T,η

LC×D
(τ2) by

g(u⊗ v) = g(u)⊗ g(v) (3.26)

for g ∈ H`, u ∈ S[τ2] and v ∈ T ′ψη
. We have τ(Y τ2

(u, x)w) = Y τ2
(τu, x)τw for

u ∈ VLC×D
and w ∈ V T,η

LC×D
(τ2).

Since VLC×D
is rational and C2-cofinite, the number of irreducible τ i-twisted

VLC×D
-modules is bounded above by the number of τ -stable irreducible VLC×D

-
modules by [15, Theorem 10.2] for each i = 1, 2. Now, {VLC×(η+D) | η ∈ D⊥

(mod D)} is the set of all τ -stable irreducible VLC×D
-modules up to isomorphism.

Hence we have the following theorem.
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Theorem 3.11. For i = 1, 2, there are exactly |D⊥/D| inequivalent ir-
reducible τ i-twisted VLC×D

-modules. They are represented by (V T,η
LC×D

(τ i), Y τ i

),
η ∈ D⊥ (mod D).

The map L̂⊕`
τ → L̂C×0,τ/K0; a 7→ aK0 is surjective by (3.9) and (3.11). For

α ∈ LK×0, note that α ∈ L if (1− τ)α ∈ L. Then

{a×τ τ(a)−1 | a ∈ L̂K×0,τ} ∩ L̂τ = {a×τ τ(a)−1 | a ∈ L̂τ}

and the following lemma holds.

Lemma 3.12. The map L̂⊕`
τ → L̂C×0,τ ; a 7→ a induces an isomorphism

L̂⊕`
τ/{a×τ τ(a)−1 | a ∈ L̂⊕`

τ} ∼= L̂C×0,τ/K0.

For i = 1, 2 and ε ∈ Z3, set

V T,η
LC×D

(τ i)[ε] =
{
u ∈ V T,η

LC×D
(τ i) | τ iu = ζε

3u
}
.

These are irreducible V τ
LC×D

-modules.
In the case where ` = 1 with C = {0} and D = {0}, V T,η

LC×D
(τ i)[ε] reduces

to V T,j
L (τ i)[ε], j = 0, 1, 2. The relation between our V T,j

L (τ i)[ε] and V
Tχj

L (τ)(ε),

V
Tχ′

j

L (τ2)(ε) in [10], [36] is as follows (see [36, (1-1)] also).

V T,0
L (τ)[ε] = V

Tχ0
L (τ)(ε),

V T,0
L (τ2)[ε] = V

Tχ′0
L (τ2)(ε),

V T,j
L (τ)[ε] = V

Tχj

L (τ)(ε + 1), j = 1, 2,

V T,j
L (τ2)[ε] = V

Tχ′
j

L (τ2)(ε + 1), j = 1, 2

for ε ∈ Z3. Recall that the action of τ on Tχj
and Tχ′j was defined to be 1 in

[10], [36], while τ acts on Tψη
(resp. T ′ψη

) as ζ
2 wtZ3 (η)
3 (resp. ζ

wtZ3 (η)
3 ). The new

notation is suitable for the description of the fusion rules in later sections.
Since VL⊕` = V ⊗`

L is a vertex operator subalgebra of VLC×D
, V T,η

LC×D
(τ) is

a τ -twisted VL⊕` -module and for each γ ∈ D, S[τ ] ⊗ (ea(γ) ⊗ 1η) is a τ -twisted
VL⊕` -submodule of V T,η

LC×D
(τ). By Lemma 3.9 (3) and Lemma 3.12, the L̂C×0,τ -

module Cea(γ) ⊗ 1η is isomorphic to Cψη−γ
as L̂⊕`

τ -modules. This implies that
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S[τ ]⊗ (ea(γ) ⊗ 1η) ∼= V T,η−γ
L⊕` (τ) as τ -twisted VL⊕` -modules. Thus,

V T,η
LC×D

(τ) ∼=
⊕

γ∈D

V T,η−γ
L⊕` (τ) (3.27)

as τ -twisted VL⊕` -modules. For ρ = (ρ1, . . . , ρ`) ∈ Z`
3, H` acts on V T,ρ

L⊕`(τ). Note
that H` is an automorphism group of VL⊕` and g(Y τ (u, x)w) = Y τ (gu, x)gw for
g ∈ H`, u ∈ VL⊕` and w ∈ V T,ρ

L⊕`(τ) by the definition of (V T,ρ
L⊕`(τ), Y τ ). Thus,

V T,ρ
L⊕`(τ) ◦ g ∼= g−1(V T,ρ

L⊕`(τ)) = V T,ρ
L⊕`(τ) for g ∈ H`. Note that (VL⊕`)H` = (V τ

L )⊗`.
We have the following decomposition of V T,ρ

L⊕`(τ) into a direct sum of irreducible
(V τ

L )⊗`-modules.

V T,ρ
L⊕`(τ) ∼=

⊕

(ε1,...,ε`)∈Z`
3

V T,ρ1
L (τ)[ε1]⊗ · · · ⊗ V T,ρ`

L (τ)[ε`]. (3.28)

It follows from [34, Theorem 2] that V T,ρ1
L (τ)[ε1]⊗· · ·⊗V T,ρ`

L (τ)[ε`], (ε1, . . . , ε`) ∈
Z`

3 in (3.28) are all inequivalent irreducible (V τ
L )⊗`-modules.

The corresponding results for τ2-twisted VLC×D
-modules can be verified by a

similar argument as above. Thus we have obtained the following theorem.

Theorem 3.13. For i = 1, 2 and η = (η1, . . . , η`) ∈ D⊥ (mod D), the
irreducible τ i-twisted VLC×D

-module (V T,η
LC×D

(τ i), Y τ i

) is decomposed into a direct
sum of irreducible (V τ

L )⊗`-modules as follows.

V T,η
LC×D

(τ i) ∼=
⊕

(γ1,...,γ`)∈D

⊕

(ε1,...,ε`)∈Z`
3

V T,η1−iγ1
L (τ i)[ε1]⊗ · · · ⊗ V T,η`−iγ`

L (τ i)[ε`].

Moreover, for the irreducible V τ
LC×D

-module V T,η
LC×D

(τ i)[r], r = 0, 1, 2 we have

V T,η
LC×D

(τ i)[r]

∼=
⊕

(γ1,...,γ`)∈D

⊕

ε1+···+ε`≡r (mod 3)

V T,η1−iγ1
L (τ i)[ε1]⊗ · · · ⊗ V T,η`−iγ`

L (τ i)[ε`].

4. Modules of V τ
L .

In this section we recall the classification of irreducible V τ
L -modules in [36]

and compute some fusion rules for V τ
L .
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Proposition 4.1 ([36]). V τ
L is a simple, rational, C2-cofinite, and CFT

type vertex operator algebra. There are exactly 30 inequivalent irreducible V τ
L -

modules. Their representatives are VL(0,j)(ε), VL(c,j) and V T,k
L (τ i)[ε] for i = 1, 2

and j, k, ε = 0, 1, 2.

We need the structure of each irreducible V τ
L -module to compute certain fusion

rules. Let M i
k,W i

k,M j
t ,W j

t ,M0
k (ε) and W 0

k (ε) be as in [10], [36]. Then M0
k ,M0

k (0)
and M0

t are simple vertex operator algebras. Set M0 = M0
k (0) ⊗M0

t and W 0 =
W 0

k (0)⊗W 0
t . Then V τ

L = M0 ⊕W 0 and

VL(0,j)(ε) ∼= M0
k (ε)⊗M j

t ⊕W 0
k (ε)⊗W j

t ,

VL(c,j) ∼= M c
k ⊗M j

t ⊕W c
k ⊗W j

t , j, ε = 0, 1, 2 (4.1)

as M0-modules [36, Section 4].
Moreover, let MT (τ i),WT (τ i),MT (τ i)(ε) and WT (τ i)(ε) be as in [10], [36].

Then, for j, ε ∈ Z3,

V T,j
L (τ)[ε] ∼= MT (τ)(ε)⊗M−j

t ⊕WT (τ)(ε)⊗W−j
t ,

V T,j
L (τ2)[ε] ∼= MT (τ2)(ε)⊗M j

t ⊕WT (τ2)(ε)⊗W j
t (4.2)

as M0-modules [36, Section 4].

Proposition 4.2 ([10]). M0
k (0) is a simple, rational, C2-cofinite, and

CFT type vertex operator algebra. There are exactly 20 inequivalent irreducible
M0

k (0)-modules. Their representatives are M0
k (ε),W 0

k (ε),M c
k ,W c

k ,MT (τ i)(ε), and
WT (τ i)(ε) for ε = 0, 1, 2 and i = 1, 2.

Proposition 4.3 ([33]). M0
t is a simple, rational, C2-cofinite, and CFT

type vertex operator algebra. There are exactly 6 inequivalent irreducible M0
t -

modules. Their representatives are M j
t and W j

t for j = 0, 1, 2. The fusion rules
for M0

t are as follows.

M i
t ×M j

t = M i+j
t ,

M i
t ×W j

t = W i+j
t ,

W i
t ×W j

t = M i+j
t + W i+j

t (4.3)

for i, j = 0, 1, 2.
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We compute some fusion rules for V τ
L .

Lemma 4.4. Let ε, ε1, ε2, j, j1, j2, k ∈ Z3 and i = 1, 2. Then

VL(0,j1)(ε1)× VL(0,j2)(ε2) ≤ VL(0,j1+j2)(ε1 + ε2), (4.4)

VL(0,j1)(ε)× VL(c,j2) ≤ VL(c,j1+j2) , (4.5)

VL(c,j1) × VL(c,j2) ≤
2∑

ρ=0

VL(0,j1+j2)(ρ) + 2VL(c,j1+j2) , (4.6)

VL(0,j)(ε1)× V T,k
L (τ i)[ε2] ≤ V T,k−ij

L (τ i)[iε1 + ε2], (4.7)

VL(c,j) × V T,k
L (τ i)[ε] ≤

2∑
ρ=0

V T,k−ij
L (τ i)[ρ]. (4.8)

Proof. We have the following fusion rules of irreducible M0
k (0)-modules.

M0
k (ε1)×M0

k (ε2) = M0
k (ε1 + ε2),

M0
k (ε)×M c

k = M c
k ,

M c
k ×M c

k =
2∑

ρ=0

M0
k (ρ) + 2M c

k ,

M0
k (ε1)×MT (τ i)(ε2) ≤ MT (τ i)(iε1 + ε2),

M c
k ×MT (τ i)(ε) ≤

2∑
ρ=0

MT (τ i)(ρ). (4.9)

The first three fusion rules can be found in [35, Theorem 4] and we can show
the last two formulas by applying the same method used there. We shall sketch
the proof. In [35], M0

k (0) and M0
k (ε) are denoted by W and M

0(ε)
k , respectively,

and Ma
k is used instead of M c

k . Let A(M0
k (0)) be the Zhu algebra of M0

k (0) and
let A(M0

k (ε1)), A(M c
k) be the A(M0

k (0))-bimodules introduced in [23]. In [10], it
is shown that A(M0

k (0)) is generated by two elements [ω] and [J ]. Their action on
the top level of every irreducible M0

k (0)-module are also computed there. Using
these data and [31, Proposition 2.10], the same argument as in [35, Theorem 4]
shows the last two formulas in (4.9).

By (4.3), (4.9), and [18, Proposition 2.10], we have fusion rules for M0 as
follows.
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M0
k (ε1)⊗Mk1

t ×M0
k (ε2)⊗Mk2

t = M0
k (ε1 + ε2)⊗Mk1+k2

t ,

M0
k (ε)⊗Mk1

t ×M c
k ⊗Mk2

t = M c
k ⊗Mk1+k2

t ,

M c
k ⊗Mk1

t ×M c
k ⊗Mk2

t =
2∑

ρ=0

M0
k (ρ)⊗Mk1+k2

t + 2M c
k ⊗Mk1+k2

t ,

M0
k (ε1)⊗Mk1

t ×MT (τ i)(ε2)⊗Mk2
t ≤ MT (τ i)(iε1 + ε2)⊗Mk1+k2

t ,

M c
k ⊗Mk1

t ×MT (τ i)(ε)⊗Mk2
t ≤

2∑
ρ=0

MT (τ i)(ρ)⊗Mk1+k2
t , (4.10)

where k1, k2 ∈ Z3. Let N be an irreducible V τ
L -module. By Propositions 4.1–4.3,

(4.1), (4.2), and [36, (3.25)], there exist irreducible M0-modules MN and WN such
that

N = MN ⊕WN ,

W 0 ×MN = WN ,

W 0 ×WN = MN + WN

as M0-modules. These MN and WN are uniquely determined by N .
For V τ

L -modules N1, N2 and N3,

dimC IV τ
L

(
N3

N1 N2

)
≤ dimC IM0

(
N3

MN1 MN2

)
(4.11)

by [11, Proposition 11.9] and

IM0

(
N3

MN1 MN2

)
∼= IM0

(
MN3

MN1 MN2

)
⊕ IM0

(
WN3

MN1 MN2

)
(4.12)

as vector spaces. The assertion follows from (4.1), (4.2), (4.10), (4.11), and (4.12).
¤

For µ ∈ K`, C(µ) denotes the K-code generated by µ and τ(µ). Note that
C(µ) is τ -invariant since µ + τ(µ) + τ2(µ) = 0, where 0 = (0, . . . , 0). For γ ∈ Z`

3,
D(γ) denotes the Z3-code generated by γ. These symbols will be used in this
section, Sections 5, and 7.

Proposition 4.5. Let ε, ε1, ε2, j, j1, j2, k ∈ Z3 and i = 1, 2. Then
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VL(0,j1)(ε1)× VL(0,j2)(ε2) = VL(0,j1+j2)(ε1 + ε2), (4.13)

VL(0,j1)(ε)× VL(c,j2) = VL(c,j1+j2) , (4.14)

VL(c,j1) × VL(c,j2) =
2∑

ρ=0

VL(0,j1+j2)(ρ) + 2VL(c,j1+j2) , (4.15)

VL(0,j)(ε1)× V T,k
L (τ i)[ε2] = V T,k−ij

L (τ i)[iε1 + ε2], (4.16)

VL(c,j) × V T,k
L (τ i)[ε] =

2∑
ρ=0

V T,k−ij
L (τ i)[ρ]. (4.17)

Proof. Restricting intertwining operators for VL in Lemma 2.14 to V τ
L -

modules, we have

VL(0,j1)(ε1)× VL(0,j2)(ε2) ≥ VL(0,j1+j2)(ε1 + ε2),

VL(0,j1)(ε)× VL(c,j2) ≥ VL(c,j1+j2) ,

VL(c,j1) × VL(c,j2) ≥
2∑

ρ=0

VL(0,j1+j2)(ρ) + 2VL(c,j1+j2) , (4.18)

where dimC IV τ
L

( V
L(c,j1+j2)

V
L(c,j1) V

L(c,j2)

) ≥ 2 follows from the same arguments as in the

proof of [35, Lemma 6 (2)]. By Lemma 4.4 and (4.18), we have (4.13)–(4.15).
We shall show (4.16) and (4.17) for i = 1. Note that L0×D(16) and

LC(c6)×D(16) are even lattices by Lemma 2.6, where (c6) = (c, c, c, c, c, c) ∈ K6 and
(16) = (1, 1, 1, 1, 1, 1) ∈ Z6

3. We use the lattice vertex operator algebras VL0×D(16)

and VLC(c6)×D(16)
instead of VL0×D(1) and VLC(c)×D(1) since the lattices L0×D(1) and

LC(c)×D(1) are not even. By Theorem 3.13,

V T,0
L0×D(16)

(τ) ∼=
2⊕

k=0

⊕

(ρ1,...,ρ6)∈Z6
3

6⊗
s=1

V T,−k
L (τ)[ρs]. (4.19)

For j, k, ε1, ε2 ∈ Z3,

VL(0,j)(ε1)⊗6 · V T,k
L (τ)[ε2]⊗6 ⊂ V T,k−j

L (τ)[ε1 + ε2]⊗6

in V T,0
L0×D(16)

(τ) by (4.7) and (4.19). Since V T,0
L0×D(16)

(τ) is irreducible, we have

VL0×D(16)
· V T,k

L (τ)[ε2]⊗6 = V T,0
L0×D(16)

(τ) and
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VL(0,j)(ε1)⊗6 · V T,k
L (τ)[ε2]⊗6 = V T,k−j

L (τ)[ε1 + ε2]⊗6 (4.20)

in V T,0
L0×D(16)

(τ). Let pr : V T,0
L0×D(16)

(τ) → V T,k−j
L (τ)[ε1 + ε2]⊗6 be a projection.

For u ∈ VL(0,j)(ε1)⊗6, v ∈ V T,k
L (τ)[ε2]⊗6, set f(u, x)v = prYV T,0

L
0×D(16)

(τ)(u, x)v.

Then f(·, x) is a nonzero intertwining operator of type
( V T,k−j

L (τ)[ε1+ε2]
⊗6

V
L(0,j) (ε1)⊗6 V T,k

L (τ)[ε2]⊗6

)

for (V τ
L )⊗6 by (4.20). It follows from [11, Proposition 11.9] and [18, Proposition

2.10] that (4.16) holds for i = 1.
By Theorem 3.13,

V T,0
LC(c6)×D(16)

(τ) ∼=
2⊕

k=0

⊕

(ρ1,...,ρ6)∈Z6
3

6⊗
m=1

V T,−k
L (τ)[ρm]. (4.21)

Since VLC(c6)×D(16)
is simple, it follows from Lemma 2.13 and (4.5) that

( 6⊗
m=1

VL(0,0)(νm)
)
· V ⊗6

L(c,j) = V ⊗6
L(c,j)

in VLC(c6)×D(16)
for ν1, . . . , ν6 ∈ Z3. Therefore,

V ⊗6
L(c,j) · V T,k

L (τ)[ε]⊗6 =
(( 6⊗

m=1

VL(0,0)(νm)
)
· V ⊗6

L(c,j)

)
· V T,k

L (τ)[ε]⊗6

=
( 6⊗

m=1

VL(0,0)(νm)
)
· (V ⊗6

L(c,j) · V T,k
L (τ)[ε]⊗6

)
(4.22)

in V T,0
LC(c6)×D(16)

(τ). For j, k, ε ∈ Z3, (4.8) and (4.21) imply

V ⊗6
L(c,j) · V T,k

L (τ)[ε]⊗6 ⊂
⊕

(ρ1,...,ρ6)∈Z6
3

6⊗
m=1

V T,k−j
L (τ)[ρm] (4.23)

and for ν1, . . . , ν6, ρ1, . . . , ρ6 ∈ Z3, (4.7) implies

( 6⊗
m=1

VL(0,0)(νm)
)
·
( 6⊗

m=1

V T,k−j
L (τ)[ρm]

)
⊂

6⊗
m=1

V T,k−j
L (τ)[νm + ρm] (4.24)
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in V T,0
LC(c6)×D(16)

(τ). Since V T,0
LC(c6)×D(16)

(τ) is irreducible, V ⊗6
L(c,j) · V T,k

L (τ)[ε]⊗6 is a

nonzero (V τ
L )⊗6-module. Since

⊗6
m=1 V T,k−j

L (τ)[ρm], (ρ1, . . . , ρ6) ∈ Z6
3, are all in-

equivalent irreducible (V τ
L )⊗6(= VL(0,0)(0)⊗6)-modules, there exists (ρ′1, . . . , ρ

′
6) ∈

Z6
3 such that

V ⊗6
L(c,j) · V T,k

L (τ)[ε]⊗6 ⊃
6⊗

m=1

V T,k−j
L (τ)[ρ′m]

by (4.23). By (4.22) and (4.24), we have

V ⊗6
L(c,j) · V T,k

L (τ)[ε]⊗6 =
⊕

(ρ1,...,ρ6)∈Z6
3

6⊗
m=1

V T,k−j
L (τ)[ρm]. (4.25)

For ρ = (ρ1, . . . , ρ6) ∈ Z6
3, let prρ : V T,0

LC(c6)×D(16)
(τ) → ⊗6

m=1 V T,k−j
L (τ)[ρm]

be a projection. For u ∈ V ⊗6
L(c,j) , v ∈ V T,k

L (τ)[ε]⊗6, set fρ(u, x)v =
prρ YV T,0

L
C(c6)×D(16)

(τ)(u, x)v. Then fρ(·, x) is a nonzero intertwining operator

fρ(·, x) : V ⊗6
L(c,j) → HomC

(
V T,k

L (τ)[ε]⊗6,
6⊗

m=1

V T,k−j
L (τ)[ρm]

)
{x}

for (V τ
L )⊗6 by (4.25). Thus,

VL(c,j) × V T,k
L (τ)[ε] ≥

2∑
ρ=0

V T,k−j
L (τ)[ρ]

holds by [11, Proposition 11.9] and [18, Proposition 2.10] and hence (4.17) holds
by (4.8). We can show (4.16) and (4.17) for i = 2 similarly. ¤

Remark 4.6. We can show that the equalities hold in the last two formulas
in (4.9) by using (4.2), (4.10), Proposition 4.5 and [11, Proposition 11.9].

5. Modules of V τ
L⊕` .

Let ` be a positive integer. In this section we discuss V τ
L⊕` -modules, namely

the case C = {0} and D = {0}. We shall determine some fusion rules for V τ
L⊕` .

In view of Proposition 4.5, we introduce a new index set K̃ = {0, 1, 2, a, b, c}
and define a new commutative binary operation on K̃ by
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i + j = i + j (mod 3) for i, j = 0, 1, 2,

j + x = x for j = 0, 1, 2, x = a, b, c,

x + x = 0 for x = a, b, c,

a + b = c, b + c = a, c + a = b.

Then, K̃ contains Z3 and K. Note that this binary operation is not associative.
We use K̃ to describe fusion rules for (V τ

L )⊗` in (5.4). Define an action of τ on K̃
by τ(a) = b, τ(b) = c, τ(c) = a, and τ(j) = j, j = 0, 1, 2, which is compatible with
the action of τ on Z3 and K. This action of τ preserves the binary operation on K̃.
The set of τ -orbits on K̃ is {0, 1, 2, c}. We consider the componentwise action of
H` on K̃` and the componentwise binary operation on K̃`. The symmetric group
S` acts on K̃` by permuting the components and so G` acts on K̃` naturally. For
λ = (λ1, . . . , λ`) ∈ K̃`, its support is defined to be suppK̃(λ) = {i | λi ∈ {a, b, c}}.
The cardinality of suppK̃(λ) is called the weight of λ. We denote the weight of λ

by wtK̃(λ). For λ1, λ2 ∈ K̃`, we write λ1 ≡τ λ2 if λ1 and λ2 belong to the same
orbit of τ = (τ, . . . , τ) in K̃`. We denote by (K̃`)≡τ the set of all orbits of τ in K̃`.
For a τ -invariant subset P of K̃`, P≡τ

denotes the set of all orbits of τ in P .
By Proposition 4.1 and [18, Proposition 2.7], (V τ

L )⊗` is a rational and C2-
cofinite vertex operator algebra. Moreover,

{U1 ⊗ · · · ⊗ U ` | U1, . . . , U ` are irreducible V τ
L -modules} (5.1)

is a complete list of irreducible (V τ
L )⊗`-modules up to isomorphism. Set

P0 = {U1 ⊗ · · · ⊗ U ` | U1, . . . , U ` ∈ {VL(0,j)(ε), VL(c,j) | j, ε ∈ Z3}},
P1 =

{
U1 ⊗ · · · ⊗ U ` | U1, . . . , U ` ∈ {

V T,k
L⊕`(τ)[ε] | k, ε ∈ Z3

}}
,

P2 =
{
U1 ⊗ · · · ⊗ U ` | U1, . . . , U ` ∈ {

V T,k
L⊕`(τ2)[ε] | k, ε ∈ Z3

}}
,

P = P0 ∪ P1 ∪ P2. (5.2)

Set H̄` = {(τ i1 , . . . , τ i`−1 , 1) ∈ H` | i1, . . . , i`−1 ∈ Z}. Then H̄` acts on V τ
L⊕`

naturally and (V τ
L⊕`)H̄` = (V τ

L )⊗`.
For i ∈ K̃ and j = 0, 1, 2, set

Xi,j =

{
VL(0,j)(i) if i = 0, 1, 2,

VL(i,j) if i = a, b, c.
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For ξ = (ξ1, . . . , ξ`) ∈ K̃` and γ = (γ1, . . . , γ`) ∈ Z`
3, set

Xξ,γ =
⊗̀

i=1

Xξi,γi
.

Then, for λ ∈ K` and γ ∈ Z`
3 Lemma 2.13 implies that VL(λ,γ) =

⊕
ξ Xξ,γ and

VL(g(λ),γ) =
⊕

ξ

Xg(ξ),γ , (5.3)

where g ∈ H` and ξ runs over the set {ξ = (ξ1, . . . , ξ`) ∈ K̃` | ξk = λk for all k ∈
suppK(λ)}. This observation will be used in the argument just after (5.36).

We have Xξ,γ
∼= Xg(ξ),γ as (V τ

L )⊗`-modules for g ∈ H` since VL(τi(c),j)
∼= VL(c,j)

as V τ
L -modules for i, j ∈ Z3. Thus, we can choose ξ to be an element of {0, 1, 2, c}`

when we deal with Xξ,γ as (V τ
L )⊗`-modules. Using this notation, we can describe

some fusion rules for (V τ
L )⊗` by Proposition 4.5 and [18, Proposition 2.10] as

follows:

Xρ,γ1 ×Xξ,γ2 = Xρ+ξ,γ1+γ2 , (5.4)

for ρ ∈ Z`
3, ξ ∈ {0, 1, 2, c}`, and γ1, γ2 ∈ Z`

3.
For any 0 6= λ ∈ K`, γ ∈ Z`

3, and ε = 0, 1, 2, set

P (VL(0,γ)(ε)) =
{

ξ = (ξk) ∈ Z`
3

∣∣∣∣
∑̀

k=1

ξk ≡ ε (mod 3)
}

,

P (VL(λ,γ)) = {ξ ∈ {0, 1, 2, c}` | suppK̃(ξ) = suppK(λ)}. (5.5)

Then, Lemma 2.13 implies that

VL(0,γ)(ε) ∼=
⊕

ξ∈P (VL(0,γ) (ε))

Xξ,γ ,

VL(λ,γ)
∼=

⊕

ξ∈P (VL(λ,γ) )

Xξ,γ (5.6)

as (V τ
L )⊗`-modules. In particular, we have
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V τ
L⊕`

∼=
⊕

ρ=(ρi)∈Z`
3

ρ1+···+ρ`=0

Xρ,0 (5.7)

as (V τ
L )⊗`-modules.
We have already seen in (2.25) and Section 3 that for λ ∈ K`, γ ∈ Z`

3, η ∈ Z`
3,

and g ∈ H`

VL(λ,γ) ◦ g ∼= g−1
(
VL(λ,γ)

)
= VL(g−1(λ),γ)

,

V T,η
L⊕`(τ i) ◦ g ∼= g−1

(
V T,η

L⊕`(τ i)
)

= V T,η
L⊕`(τ i) (5.8)

as VL⊕` -modules or τ i-twisted VL⊕` -modules. Hence for any 0 6= λ ∈ K`, γ ∈ Z`
3,

ε = 0, 1, 2, and g ∈ H̄`,

VL(0,γ)(ε) ◦ g ∼= VL(0,γ)(ε), VL(λ,γ) ◦ g ∼= VL(g−1(λ),γ)
,

V T,η
L⊕`(τ i)[ε] ◦ g ∼= V T,η

L⊕`(τ i)[ε] (5.9)

as V τ
L⊕` -modules.

Lemma 5.1. Let N be an N-graded weak V τ
L⊕`-module. Then any irreducible

(V τ
L )⊗`-submodule of N is isomorphic to an element of P as defined in (5.2).

Proof. Let U be an irreducible (V τ
L )⊗`-submodule of N . By (5.1), there are

irreducible V τ
L -modules U1, . . . , U ` such that U ∼= U1⊗· · ·⊗U `. Set S = V τ

L⊕` ·U .
For the same reason as in [36, Proof of Lemma 5.2], S is an ordinary V τ

L⊕` -module.
Moreover, YN (v, x)U 6= 0 for any nonzero v ∈ V τ

L⊕` .
Set

Q0 = {i ∈ {1, . . . , `} | U i ∈ {VL(0,j)(ε), VL(c,j) | j, ε ∈ Z3}},
Q1 =

{
i ∈ {1, . . . , `} | U i ∈ {

V T,k
L⊕`(τ)[ε] | k, ε ∈ Z3

}}
,

Q2 =
{
i ∈ {1, . . . , `} | U i ∈ {

V T,k
L⊕`(τ2)[ε] | k, ε ∈ Z3

}}
.

Let ωL be the Virasoro element of V τ
L . By [36, Section 4], the eigenvalues of

(ωL)1 on the top levels of irreducible V τ
L -modules are

0 for VL(0,0)(0),

1 for VL(0,0)(ε), ε = 1, 2,
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2/3 for VL(0,j)(ε), j = 1, 2, ε = 0, 1, 2,

1/2 for VL(c,0) ,

1/6 for VL(c,j) , j = 1, 2, (5.10)

1/9 for V T,0
L (τ i)[0] and V T,j

L (τ i)[2], i = 1, 2, j = 1, 2,

4/9 for V T,0
L (τ i)[2] and V T,j

L (τ i)[1], i = 1, 2, j = 1, 2,

7/9 for V T,0
L (τ i)[1] and V T,j

L (τ i)[0], i = 1, 2, j = 1, 2.

Let W 1 be an irreducible V τ
L -module and let W 1,r, r = 0, 1, 2 be the ir-

reducible V τ
L -module determined by the fusion rule VL(0,0)(r) × W 1 = W 1,r in

Proposition 4.5. Let λ1 and λ1,r be the eigenvalues of (ωL)1 on the top levels of
W 1 and W 1,r, respectively. By (5.10), we have

λ1,r − λ1 ≡





0 if W 1 ∈ {VL(0,j)(ε), VL(c,j) | j, ε = 0, 1, 2},
2r/3 if W 1 ∈ {

V T,j
L (τ)[ε] | j, ε = 0, 1, 2

}
,

r/3 if W 1 ∈ {
V T,j

L (τ2)[ε] | j, ε = 0, 1, 2
}
.

(mod Z) (5.11)

Let ω be the Virasoro element of V τ
L⊕` . Assume that Qs, Qt 6= ∅, s 6= t. Take

is ∈ Qs and it ∈ Qt and define ρ = (ρi) ∈ Z`
3 by

ρi =





1 if i = is,

2 if i = it,

0 otherwise.

By (5.7), Xρ,0 is an irreducible (V τ
L )⊗`-submodule of V τ

L⊕` . Using (5.11), Proposi-
tion 4.5, and [18, Proposition 2.10], one can show that S has a (V τ

L )⊗`-submodule
W such that the difference of the minimal eigenvalues of ω1 in W and in U is not
an integer since 0 6= Xρ,0 · U ⊂ S. This is a contradiction. Hence the assertion
holds. ¤

Lemma 5.2. Let N be an N-graded weak V τ
L⊕`-module. Let M be an irre-

ducible (V τ
L )⊗`-submodule of N and N1 the V τ

L⊕`-submodule of N generated by
M . Then N1 is isomorphic to one of the following inequivalent irreducible V τ

L⊕`-
modules.

(1) VL(0,γ)(ε), γ ∈ Z`
3, ε = 0, 1, 2.

(2) VL(λ,γ) , 0 6= λ ∈ (K`)≡τ , γ ∈ Z`
3.

(3) V T,η
L⊕`(τ i)[ε], η ∈ Z`

3, i = 1, 2, ε = 0, 1, 2.
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Proof. By (5.8), we have

VL(0,γ) ◦ τ ∼= VL(0,γ) , VL(λ,γ) ◦ τ ∼= VL(τ−1(λ),γ)
6∼= VL(λ,γ)

as VL⊕` -modules for 0 6= λ ∈ K` and γ ∈ Z`
3 and

V T,η
L⊕`(τ i) ◦ τ ∼= τ−1

(
V T,η

L⊕`(τ i)
)

= V T,η
L⊕`(τ i)

as τ i-twisted VL⊕` -modules for η ∈ Z`
3. It follows from [34, Theorem 2] that the

V τ
L⊕` -modules in the above list are irreducible and inequivalent.

By Lemma 5.1, M is an element of P in (5.2). Suppose M ∈ P0, that is,
M ∼= Xξ,γ , ξ ∈ {0, 1, 2, c}`, γ ∈ Z`

3. Set Ξ = {ρ + ξ ∈ {0, 1, 2, c}` | ρ = (ρi) ∈ Z`
3,∑`

i=1 ρi = 0}. Since (V τ
L )⊗` is a rational vertex operator algebra, N1 is a direct

sum of (V τ
L )⊗`-modules. By (5.4) and (5.7), we can write N1 = ⊕j∈JM j where

each M j is isomorphic to Xνj ,γ , νj ∈ Ξ. We can take M j1 = M for some j1 ∈ J .
Let prj : N1 → M j , j ∈ J be projections. For any j ∈ J , u ∈ Xρ,0 ⊂ V τ

L⊕` ,

v ∈ M , define fj(u, x)v = prj(YN (u, x)v). Then fj ∈ I(V τ
L )⊗`

(
Mj

Xρ,0 M

)
. For each

ν ∈ Ξ, we see from (5.4) that there is at most one j ∈ J such that M j ∼= Xν,γ (cf.
[36, Proof of Lemma 5.6]).

Assume that Xρ,0 ·M = 0 for Xρ,0 ⊂ V τ
L⊕` . Then

0 = V τ
L⊕` · (Xρ,0 ·M) =

(
V τ

L⊕` ·Xρ,0

) ·M
= V τ

L⊕` ·M ⊃ M

since V τ
L⊕` is simple. This is a contradiction. Hence 0 6= Xρ,0 ·M , and consequently

Xρ,0 ·M ∼= Xρ+ξ,γ as (V τ
L )⊗`-modules. Therefore, we have

N1 ∼=
⊕

ν∈Ξ

Xν,γ (5.12)

as (V τ
L )⊗`-modules. Applying the above arguments to V τ

L⊕` -module N1, we con-
clude that N1 is irreducible.

By [20, Theorem 6.14], if two irreducible V τ
L⊕` -modules W 1,W 2 have an

isomorphic irreducible (V τ
L )⊗`-submodule, then there exists g ∈ H̄` such that

W 1 ◦ g ∼= W 2. Hence by (5.6) and (5.9), N1 is isomorphic to VL(0,γ)(ε), ε ∈ Z3 or
VL(λ,γ) , 0 6= λ ∈ K`.

For i = 1, 2, we see from Theorem 3.13 that every irreducible (V τ
L )⊗`-module

in Pi appears in the irreducible V τ
L⊕` -modules listed in (3). Hence one can show

that if M ∈ Pi, then N1 ∼= V T,η
L⊕`(τ i)[ε], η ∈ Z`

3, ε ∈ Z3 similarly. ¤
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Proposition 5.3. V τ
L⊕` is a simple, rational, C2-cofinite, and CFT type

vertex operator algebra. The following is a complete set of representatives of equiv-
alence classes of irreducible V τ

L⊕`-modules.

(1) VL(0,γ)(ε), γ ∈ Z`
3, ε = 0, 1, 2.

(2) VL(λ,γ) , 0 6= λ ∈ (K`)≡τ , γ ∈ Z`
3.

(3) V T,η
L⊕`(τ i)[ε], η ∈ Z`

3, i = 1, 2, ε = 0, 1, 2.

Proof. By (5.7) and [5], V τ
L⊕` is a C2-cofinite vertex operator algebra. The

classification of irreducible V τ
L⊕` -modules follows from Lemma 5.2. Since (V τ

L )⊗`

is rational, the rationality of V τ
L⊕` follows from Lemma 5.2. ¤

The following lemma gives lower bounds for some fusion rules for V τ
L⊕` .

Lemma 5.4. Let λ, λ1, λ2 be nonzero elements of K` such that λ1 6≡τ λ2,
γ, γ1, γ2, η ∈ Z`

3, i = 1, 2, and ε, ε1, ε2 = 0, 1, 2. Then

VL(0,γ1)
(ε1)× VL(0,γ2)

(ε2) ≥ VL(0,γ1+γ2)
(ε1 + ε2), (5.13)

VL(0,γ1)
(ε)× VL(λ,γ2)

≥ VL(λ,γ1+γ2)
, (5.14)

VL(λ1,γ1)
× VL(λ2,γ2)

≥
2∑

j=0

VL(λ1+τj(λ2),γ1+γ2)
, (5.15)

VL(λ,γ1)
× VL(λ,γ2)

≥
2∑

ρ=0

VL(0,γ1+γ2)
(ρ) + 2VL(λ,γ1+γ2)

, (5.16)

VL(0,γ)(ε1)× V T,η
L⊕`(τ i)[ε2] ≥ V T,η−iγ

L⊕` (τ i)[iε1 + ε2], (5.17)

VL(λ,γ) × V T,η
L⊕`(τ i)[ε] ≥

2∑
ρ=0

V T,η−iγ
L⊕` (τ i)[ρ]. (5.18)

Proof. Restricting intertwining operators for VL⊕` in Lemma 2.14 to V τ
L⊕` -

modules, we have (5.13)–(5.16), where dimC IV τ

L⊕`

( VL(λ,γ1+γ2)
VL(λ,γ1)

VL(λ,γ2)

) ≥ 2 follows

from the same arguments as in the proof of [35, Lemma 6 (2)].
We shall show (5.18) for i = 1. (5.17) and (5.18) for i = 2 can be proved by

a similar argument. It is easy to see that

IV τ

L⊕`

(
M

VL(λ,γ) V T,η
L⊕`(τ)[ε]

)
= 0 (5.19)
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for all M 6∼= V T,η−γ
L⊕` (τ)[r], r = 0, 1, 2, by Proposition 4.5 and [18, Proposition 2.10].

Set λ̃ = (λ, λ, λ, λ, λ, λ) ∈ K6` and γ̃ = (γ, γ, γ, γ, γ, γ) ∈ Z6`
3 . Recall that C(λ̃)

is the K-code generated by λ̃ and τ(λ̃) and that D(γ̃) is the Z3-code generated
by γ̃ (cf. Section 4). Lemma 2.6 implies LC(λ̃)×D(γ̃) is a τ -invariant even lattice.
To obtain (5.18), we use the lattice vertex operator algebra VLC(λ̃)×D(γ̃)

instead of
VL(λ,γ) since the lattice L(λ,γ) is not even. Let η ∈ Z`

3 and set η̃ = (η, η, η, η, η, η) ∈
Z6`

3 . Consider a τ -twisted VLC(λ̃)×D(γ̃)
-module V T,η̃

LC(λ̃)×D(γ̃)
(τ). It follows from (3.27)

that

V T,η̃
LC(λ̃)×D(γ̃)

(τ) ∼=
2⊕

j=0

V T,η̃−jγ̃
L⊕6` (τ) (5.20)

as τ -twisted VL⊕6` -modules. We have

V T,η̃
LC(λ̃)×D(γ̃)

(τ) ∼=
2⊕

j=0

⊕

ρ1,...,ρ6∈Z3

6⊗

i=1

V T,η−jγ
L⊕` (τ)[ρi] (5.21)

as (V τ
L⊕`)⊗6-modules by the same argument as was used in the proof of Theorem

3.13 by replacing VL, VL⊕` , C, D, and η by VL⊕` , VL⊕6` , C(λ̃), D(γ̃), and η̃,
respectively. Since VLC(λ̃)×D(γ̃)

is simple, it follows from Lemma 2.13 and (4.14)
that

( 6⊗
m=1

VL(0,0)(νm)
)
· V ⊗6

L(λ,γ)
= V ⊗6

L(λ,γ)

in VLC(λ̃)×D(γ̃)
for ν1, . . . , ν6 ∈ Z3. Therefore,

V ⊗6
L(λ,γ)

· V T,η
L⊕`(τ)[ε]⊗6 =

(( 6⊗
m=1

VL(0,0)(νm)
)
· V ⊗6

L(λ,γ)

)
· V T,η

L⊕`(τ)[ε]⊗6

=
( 6⊗

m=1

VL(0,0)(νm)
)
· (V ⊗6

L(λ,γ)
· V T,η

L⊕`(τ)[ε]⊗6
)

(5.22)

in V T,η̃
LC(λ̃)×D(γ̃)

(τ). By Proposition 4.5 and (5.21),

V ⊗6
L(λ,γ)

· (V T,η
L⊕`(τ)[ε]

)⊗6 ⊂
⊕

ρ1,...,ρ6∈Z3

6⊗
m=1

V T,η−γ
L⊕` (τ)[ρm]
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and for ν1, . . . , ν6, ρ1, . . . , ρ6 ∈ Z3,

( 6⊗
m=1

VL(0,0)(νm)
)
·
( 6⊗

m=1

V T,η−γ
L⊕` (τ)[ρm]

)
⊂

6⊗
m=1

V T,η−γ
L⊕` (τ)[νm + ρm] (5.23)

in V T,η̃
LC(λ̃)×D(γ̃)

(τ). Since V T,η̃
LC(λ̃)×D(γ̃)

(τ) is a τ -twisted irreducible VLC(λ̃)×D(γ̃)
-

module, V ⊗6
L(λ,γ)

· (
V T,η

L⊕`(τ)[ε]
)⊗6 is a nonzero (V τ

L⊕`)⊗6-module. Since
⊗6

m=1 V T,η−γ
L⊕` (τ)[ρm], (ρ1, . . . , ρ6) ∈ Z6

3, are all inequivalent irreducible (V τ
L⊕`)⊗6-

modules, there exists (ρ′1, . . . , ρ
′
6) ∈ Z6

3 such that

V ⊗6
L(λ,γ)

· (V T,η
L⊕`(τ)[ε]

)⊗6 ⊃
6⊗

i=1

V T,η−γ
L⊕` (τ)[ρ′i]. (5.24)

By (5.22)–(5.24), we have

V ⊗6
L(λ,γ)

· V T,η
L⊕`(τ)[ε]⊗6 =

⊕

ρ1,...,ρ6∈Z3

6⊗

i=1

V T,η−γ
L⊕` (τ)[ρi]. (5.25)

Using the same argument as in the proof of (4.17), we have (5.18). ¤

We want to use the results in [20] and [35]. We follow the notation of [20].
Note that we can take all 2-cocyles in [20] to be trivial in our setting. Let S
be a finite H̄`-stable set of irreducible V τ

L⊕` -modules (cf. Section 2.1). Set M =
⊕M∈SM . Note that H̄` acts on M by (2.25), (3.25), and (3.26). Define a vector
space CS = ⊕M∈Se(M) with formal basis e(M), M ∈ S. The space CS is an
associative algebra under the product e(M)e(N) = δM,Ne(M). Define the vector
space A(H̄`,S) = C[H̄`]⊗ CS with basis g ⊗ e(M) for g ∈ H̄` and M ∈ S, and a
multiplication on it by:

g ⊗ e(M) · h⊗ e(N) = gh⊗ e(h−1(M))e(N).

Then A(H̄`,S) is an associative algebra with the identity element
∑

M∈S 1⊗e(M).
We define an action of A(H̄`,S) on M as follows: For M, N ∈ S, w ∈ N and
g ∈ H̄`, we set

g ⊗ e(M) · w = δM,Ngw. (5.26)

For M ∈ S, define a subgroup (H̄`)M = {g ∈ H̄` | g(M) = M} of H̄`
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and define subalgebras s(M) = spanC{g ⊗ e(M) | g ∈ (H̄`)M} and D(M) =
spanC{g⊗e(M) | g ∈ H̄`} of A(H̄`,S). Note that s(M) is isomorphic to the group
algebra of (H̄`)M . Decompose S into a disjoint union of H̄`-orbits S = ∪j∈JOj .
Let M (j) be a representative of Oj .

We shall compute some fusion rules for V τ
L⊕` in Proposition 5.7 by using

[35, Theorem 2]. We need the following result which gives a complete set of
representatives of isomorphism classes of irreducible A(H̄`,S)-modules.

Theorem 5.5 ([20, Theorem 3.6]). A(H̄`,S) is semisimple and the irre-
ducible A(H̄`,S)-modules are precisely D(M (j)) ⊗s(M(j)) U , where U ranges over
the irreducible s(M (j))-modules and j ∈ J .

Note that H̄` acts on (K`)≡τ . Let 0 6= λ ∈ {0, c}` and γ ∈ Z`
3 and set Rλ be

the H̄`-orbit in (K`)≡τ containing λ. Then

Sλ,γ = {VL(µ,γ) | µ ∈ Rλ} (5.27)

is an H̄`-stable set. We shall describe the irreducible A(H̄`,Sλ,γ)-modules in
Proposition 5.6. Theorem 5.5 implies that the irreducible A(H̄`,Sλ,γ)-modules
are obtained by the irreducible s(VL(λ,γ))-modules. In order to classify the irre-
ducible s(VL(λ,γ))-modules, we first investigate the action of s(VL(λ,γ)) on VL(λ,γ) .
We recall the decomposition VL(λ,γ) = ⊕ξ∈P (VL(λ,γ) )

Xξ,γ in (5.6), where P (VL(λ,γ))

is given in (5.5). For g ∈ H̄`, g is an element in (H̄`)VL(λ,γ)
if and only if gλ ≡τ λ.

Thus, (H̄`)VL(λ,γ)
consists of the elements

(τ j1 , . . . , τ j`)(τ, . . . , τ)−j` ∈ H̄` (5.28)

with jk = 0 for all k ∈ suppK(λ). Note that |(H̄`)VL(λ,γ)
| = |P (VL(λ,γ))| =

3`−wtK(λ). We have

gu = (τ j1 , . . . , τ j`)(τ, . . . , τ)−j`u

= ζ
P

k jkξk

3 (τ, . . . , τ)−j`u ∈ (τ, . . . , τ)−j`(Xξ,γ)

for ξ = (ξi) ∈ P (VL(λ,γ)), u ∈ Xξ,γ and g ∈ (H̄`)VL(λ,γ)
of the form (5.28), where

we define 0c = 0 in the sum
∑

k jkξk. Note that the linear map Xξ,γ 3 u 7→
(τ, . . . , τ)−j`u ∈ (τ, . . . , τ)−j`(Xξ,γ) is an isomorphism of (V τ

L )⊗`-modules induced
by the isomorphism (τ, . . . , τ)−j` : VL(λ,γ) → VL

(τ−j` (λ),γ)
of V τ

L⊕` -modules.

For ξ = (ξi) ∈ {0, 1, 2, c}`, Ce(ξ) denotes a vector space with formal basis
e(ξ). In view of the above observation, we define an action of s(VL(λ,γ)) on Ce(ξ)
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by setting

g ⊗ e(VL(λ,γ)) · e(ξ) = ζ
P

k jkξk

3 e(ξ)

for g ∈ (H̄`)VL(λ,γ)
of the form (5.28) and ξ ∈ P (VL(λ,γ)), where we define 0c = 0

in the sum
∑

k jkξk.
Let γ ∈ Z`

3 and ε ∈ Z3. Then {VL(0,γ)(ε)} is an H̄`-stable set. For the same
reason as in the case of Sλ,γ discussed above, we define an action of s(VL(0,γ)(ε))
on Ce(ξ) by setting

g ⊗ e(VL(0,γ)(ε)) · e(ξ) = ζ
P

k jkξk

3 e(ξ)

for g = (τ j1 , . . . , τ j`−1 , 1) ∈ (H̄`)VL(0,γ) (ε)
= H̄` and ξ ∈ P (VL(0,γ)(ε)).

We have the following result.

Lemma 5.6. With the above notation, the following assertions hold.
(1) 3`−wtK(λ) inequivalent irreducible s(VL(λ,γ))-modules Ce(ξ), ξ ∈

P (VL(λ,γ)), form a complete set of irreducible s(VL(λ,γ))-modules up to isomor-
phism and for nonzero u ∈ Xξ,γ , Cu ∼= Ce(ξ) as s(VL(λ,γ))-modules. Moreover,

{
D(VL(λ,γ))⊗s(VL(λ,γ) )

Ce(ξ) | ξ ∈ P (VL(λ,γ))
}

(5.29)

is a complete set of irreducible A(H̄`,Sλ,γ)-modules up to isomorphism and

dimCD(VL(λ,γ))⊗s(VL(λ,γ) )
Ce(ξ) = |Rλ| = 3wtK(λ)−1 (5.30)

for ξ ∈ P (VL(λ,γ)).
(2) 3`−1 inequivalent irreducible s(VL(0,γ)(ε))-modules Ce(ξ), ξ ∈

P (VL(0,γ)(ε)), form a complete set of irreducible s(VL(0,γ)(ε))-modules up to iso-
morphism and for nonzero u ∈ Xξ,γ , Cu ∼= Ce(ξ) as s(VL(0,γ)(ε))-modules. More-
over,

{
D(VL(0,γ)(ε))⊗s(VL(0,γ) (ε))

Ce(ξ) | ξ ∈ P (VL(0,γ)(ε))
}

(5.31)

is a complete set of irreducible A(H̄`, {VL(0,γ)(ε)})-modules up to isomorphism and

D(VL(0,γ)(ε))⊗s(VL(0,γ) (ε))
Ce(ξ) ∼= Ce(ξ) (5.32)

as vector spaces for ξ ∈ P (VL(0,γ)(ε)).
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Proof. We show the first assertion. The argument just before the lemma
shows that Cu ∼= Ce(ξ) as s(VL(λ,γ))-modules for nonzero u ∈ Xξ,γ . It is clear
that |Rλ| = 3wtK(λ)−1. We have (5.30) since |H̄`| = 3`−1 and |(H̄`)VL(λ,γ)

| =

3`−wtK(λ). It follows from |P (VL(λ,γ))| = 3`−wtK(λ) that {Ce(ξ) | ξ ∈ P (VL(λ,γ))}
is a complete set of irreducible s(VL(λ,γ))-modules up to isomorphism. It follows
from Theorem 5.5 that (5.29) is a complete set of irreducible A(H̄`,Sλ,γ)-modules
up to isomorphism.

The second assertion can be obtained by a similar argument. ¤

We want to use the result [35, Theorem 2] in Proposition 5.7. Let λ, λ1, λ2

be nonzero elements of K` such that λ1 6≡τ λ2 and let γ1, γ2 be elements of Z`
3.

Set γ3 = γ1 + γ2, Ri = Rλi , and Si = Sλi,γi for i = 1, 2 (cf. (5.27)). For i = 1, 2,
set ξi = (ξi

j) ∈ {0, c}` by

ξi
j =

{
0 if λi

j = 0,

c if λi
j = a, b, c.

(5.33)

Note that ξi ∈ Ri and Ri = {µ ∈ (K`)≡τ
| suppK(µ) = suppK(λi)} for i = 1, 2.

Set S3 = {VL(µ,γ3)
, VL(0,γ3)

(ε) | 0 6= µ ∈ (K`)≡τ
, ε = 0, 1, 2}. For each i = 1, 2, 3,

Si is an H̄`-stable set. Set Ti = {VL(ξi,γi)
}, i = 1, 2 and T3 = {VL(0,γ3)

(ε) | ε =
0, 1, 2} ∪ {VL(µ,γ3)

| 0 6= µ ∈ {0, c}`}. Then, Ti is a complete set of representatives
of H̄`-orbits in Si for i = 1, 2, 3. We simply write Pi = P (VL(ξi,γi)

), i = 1, 2 (cf.
(5.5)). Let P3 = {0, 1, 2, c}`.

We note that

2⋃
ε=0

{
D(VL(0,γ3)(ε)

)⊗s(VL(0,γ3)(ε)) Ce(ξ) | ξ ∈ P (VL(0,γ3)
(ε))

}

∪
⋃

0 6=λ∈{0,c}`

{
D(VL(λ,γ3)

)⊗s(VL(λ,γ3)
) Ce(ξ) | ξ ∈ P (VL(λ,γ3)

)
}

(5.34)

is a complete set of representatives of isomorphism classes of irreducible A(H̄`,S3)-
modules by Theorem 5.5 and

{0, 1, 2, c}` =
2⋃

ε=0

P
(
VL(0,γ3)

(ε)
) ∪

⋃

0 6=λ∈{0,c}`

P
(
VL(λ,γ3)

)
; disjoint.

Set Mi = ⊕M∈Si
M for i = 1, 2, 3. For i = 1, 2, 3, we write Wi,ξ for an
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irreducible A(H̄`,Si)-module D(M)⊗s(M)Ce(ξ) in (5.29), (5.31), and (5.34) since
they are parametrized by ξ ∈ Pi. In (5.30) and (5.32), we have already seen

dimCWi,ξ = 3max{0,wtK̃(ξ)−1}. (5.35)

For i = 1, 2 and ξ ∈ Pi, we note that suppK̃(ξ) = suppK(λi) and dimCWi,ξ = |Ri|.
We have

Mi =
⊕

ξ∈Pi

Wi,ξ ⊗HomA(H̄`,Si)(Wi,ξ,Mi)

as anA(H̄`,Si)⊗C(V τ
L )⊗`-module for i = 1, 2, 3. Then HomA(H̄`,Si)(Wi,ξ,Mi), ξ ∈

Pi are nonzero inequivalent irreducible (V τ
L )⊗`-modules by [20, Theorem 6.14]. For

any V τ
L⊕` -module M in Ti and any nonzero u ∈ Xξ,γi , ξ ∈ Pi, in the decomposition

(5.6) of M , the A(H̄`,Si)-submodule of Mi generated by u is isomorphic to Wi,ξ

since Ce(ξ) ∼= Cu as s(M)-modules by Lemma 5.6. Hence there exists a unique
fv ∈ HomA(H̄`,Si)(Wi,ξ,Mi) such that fv(1⊗ e(ξ)) = v. In fact, the map v 7→ fv

is a linear isomorphism. Therefore we identify HomA(H̄`,Si)(Wi,ξ,Mi) with Xξ,γi

and we write

Mi =
⊕

ξ∈Pi

Wi,ξ ⊗Xξ,γi . (5.36)

For any ξ ∈ Pi and any nonzero vξ ∈ Xξ,γi , we can take a basis {wij |
j = 1, . . . ,dimCWi,ξ} of Wi,ξ such that for j = 1, . . . ,dimCWi,ξ, wij ⊗ vξ is an
element of an irreducible V τ

L⊕` -module in Si and if dimCWi,ξ ≥ 2, which implies
ξ 6= 0, then for j 6= k, wij ⊗ vξ and wik ⊗ vξ belong to different irreducible
V τ

L⊕` -modules by (5.3). For i = 1, 2, since dimCWi,ξ = |Ri| by (5.35), there
exists a bijection {1, . . . ,dimCWi,ξ} 3 j 7→ µi

j ∈ Ri where µi
j is determined by

wij ⊗ vξ ∈ VL(µi
j

,γi)
∈ Si.

To see the above situation, we describe the case of i = 1 as an example. Let
{h1, . . . , hr} be a complete set of coset representatives of (H̄`)VL(λ1,γ1)

= {g ∈ H̄` |
g(λ1) ≡τ λ1} in H̄` where r = |H̄`/(H̄`)VL(λ1,γ1)

|. We recall r = |R1| = dimCW1,ξ

for ξ ∈ P1. By (5.3), we have

M1 =
⊕

µ∈R1

VL(µ,γ1)
=

r⊕

j=1

VL(hj(λ1),γ1)
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=
r⊕

j=1

⊕

ξ∈P1

Xhj(ξ),γ1 =
⊕

ξ∈P1

r⊕

j=1

Xhj(ξ),γ1

=
⊕

ξ∈P1

W1,ξ ⊗Xξ,γ1 ,

where we identify
⊕r

j=1 Xhj(ξ),γ1 with W1,ξ⊗Xξ,γ1 . Let ξ be an element of P1 and
vξ a nonzero element of Xξ,γ1 . For j = 1, . . . , r, we can take hj(vξ) ∈ Xhj(ξ),γ1 ⊂
VL(hj(λ1),γ1)

as w1j ⊗ vξ in the argument above.
Set

I =
⊕

(M1,M2,M3)∈S1×S2×S3

IV τ

L⊕`

(
M3

M1 M2

)
⊗C M1 ⊗C M2. (5.37)

Let M i ∈ Si for i = 1, 2, 3. For f ∈ IV τ

L⊕`

(
M3

M1 M2

)
and g ∈ H̄`, we define

gf ∈ IV τ

L⊕`

(
g(M3)

g(M1) g(M2)

)
as follows: For u ∈ g(M1), v ∈ g(M2), set

gf(u, x)v = g(f(g−1u, x)g−1(v)).

We define an action of A(H̄`,S3) on I as follows: Let M i ∈ Si for i = 1, 2, 3. For
g ⊗ e(M) ∈ A(H̄`,S3), v ∈ M1, w ∈ M2, and f ∈ IV τ

L⊕`

(
M3

M1 M2

)
, set

(g ⊗ e(M)) · (f ⊗ v ⊗ w) = δM,M3 · gf ⊗ g(v)⊗ g(w)

∈ IV τ

L⊕`

(
g(M3)

g(M1) g(M2)

)
⊗C g(M1)⊗C g(M2).

Let ξi ∈ Pi for i = 1, 2. Fix a nonzero vi0 ∈ Xξi,γi . Set

I(ξ1, ξ2) = spanC
{
f ⊗w1⊗ v10⊗w2⊗ v20 ∈ I | w1 ∈ W1,ξ1 , w2 ∈ W2,ξ2

}
, (5.38)

which is an A(H̄`,S3)-submodule of I. It follows from the comments right after
(5.36) that

dimC I(ξ1, ξ2) =
∑

µ1∈R1,µ2∈R2

∑

M3∈S3

dimC IV τ

L⊕`

(
M3

VL(µ1,γ1)
VL(µ2,γ2)

)
. (5.39)

We have the following decomposition of I(ξ1, ξ2) as an A(H̄`,S3)-module.
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I(ξ1, ξ2) =
⊕

ξ∈P3

W3,ξ ⊗HomA(H̄`,S3)(W3,ξ, I(ξ1, ξ2)). (5.40)

By [35, Theorem 2], we have

dimCHomA(H̄`,S3)(W3,ξ, I(ξ1, ξ2)) ≤ dimC I(V τ
L )⊗`

(
Xξ,γ3

Xξ1,γ1 Xξ2,γ2

)
(5.41)

for ξ ∈ P3.
Now we compute some fusion rules for V τ

L⊕` .

Proposition 5.7. Let λ, λ1, λ2 be nonzero elements of K` such that λ1 6≡τ

λ2, γ, γ1, γ2, η ∈ Z`
3, i = 1, 2, and ε, ε1, ε2 = 0, 1, 2. Then

VL(0,γ1)
(ε1)× VL(0,γ2)

(ε2) = VL(0,γ1+γ2)
(ε1 + ε2), (5.42)

VL(0,γ1)
(ε)× VL(λ,γ2)

= VL(λ,γ1+γ2)
, (5.43)

VL(λ1,γ1)
× VL(λ2,γ2)

=
2∑

j=0

VL(λ1+τj(λ2),γ1+γ2)
, (5.44)

VL(λ,γ1)
× VL(λ,γ2)

=
2∑

ρ=0

VL(0,γ1+γ2)
(ρ) + 2VL(λ,γ1+γ2)

, (5.45)

VL(0,γ)(ε1)× V T,η
L⊕`(τ i)[ε2] = V T,η−iγ

L⊕` (τ i)[iε1 + ε2], (5.46)

VL(λ,γ) × V T,η
L⊕`(τ i)[ε] =

2∑
ρ=0

V T,η−iγ
L⊕` (τ i)[ρ]. (5.47)

Proof. We shall show (5.44) and (5.45). We put λ = λ1 in (5.45) to deal
with (5.44) and (5.45) simultaneously. For λi, i = 1, 2, define ξi = (ξi

j) ∈ {0, c}`

by (5.33). By (5.6), Xξi,γi is a (V τ
L )⊗`-submodule of VL(λi,γi)

and

I(V τ
L )⊗`

(
VL(0,γ)(r)

Xξ1,γ1 Xξ2,γ2

)
∼=

⊕

ξ=(ξj)∈Z`
3

ξ1+···+ξ`=r

I(V τ
L )⊗`

(
Xξ,γ

Xξ1,γ1 Xξ2,γ2

)

for γ ∈ Z`
3 and r ∈ Z3. For ξ ∈ Z`

3 and γ ∈ Z`
3 such that γ1 + γ2 6= γ, it follows

from Proposition 4.5 and [18, Proposition 2.10] that
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I(V τ
L )⊗`

(
Xξ,γ

Xξ1,γ1 Xξ2,γ2

)
= 0.

By [11, Proposition 11.9], we obtain

dimC IV τ

L⊕`

(
VL(0,γ)(r)

VL(λ1,γ1)
VL(λ2,γ2)

)
≤ dimC I(V τ

L )⊗`

(
VL(0,γ)(r)

Xξ1,γ1 Xξ2,γ2

)

=
∑

ξ=(ξj)∈Z`
3

ξ1+···+ξ`=r

dimC I(V τ
L )⊗`

(
Xξ,γ

Xξ1,γ1 Xξ2,γ2

)
= 0.

For the same reason, we can show easily that

IV τ

L⊕`

(
M

VL(λ1,γ1)
VL(λ2,γ2)

)
= 0 (5.48)

for M 6∈ {VL(λ,γ1+γ2)
, VL(0,γ1+γ2)

(r) | 0 6= λ ∈ (K`)≡τ , r = 0, 1, 2}.
From now on, we use the notation in the preparation just before this propo-

sition. For example, γ3 = γ1 + γ2, Ri = {h(λi) ∈ (K`)≡τ
| h ∈ H̄`}, and

Si = {VL(µi,γi)
| µi ∈ Ri} for i = 1, 2. The following symbols are used to describe

the fusion rules for (V τ
L )⊗`: Set

Ξ(ξ1, ξ2) =
{

ξ = (ξj) ∈ {0, 1, 2, c}`

∣∣∣∣
ξj = ξ1

j + ξ2
j

for all j 6∈ {k | ξ1
k = ξ2

k = c}

}

and

Ξ(ξ1, ξ2)k = {ξ = (ξj) ∈ Ξ(ξ1, ξ2) | |{j | ξ1
j = ξ2

j = ξj = c}| = k}

for nonnegative integers k. For example, if ξ1 = (0, c, 1, c) and ξ2 = (1, c, c, 2) in
{0, 1, 2, c}4, then

Ξ(ξ1, ξ2) = {(1, 0, c, c), (1, 1, c, c), (1, 2, c, c), (1, c, c, c)}

and Ξ(ξ1, ξ2)1 ={(1, c, c, c)}. Note that |Ξ(ξ1, ξ2)k|=
(|{j|ξ1

j =ξ2
j =c}|

k

)
3|{j|ξ

1
j =ξ2

j =c}|−k

and for ξ ∈ Ξ(ξ1, ξ2)k,

wtK̃(ξ) = wtK̃(ξ1) + wtK̃(ξ2)− 2|{j | ξ1
j = ξ2

j = c}|+ k. (5.49)
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By Proposition 4.5 and [18, Proposition 2.10], we have

dimC I(V τ
L )⊗`

(
Xξ,γ3

Xξ1,γ1 Xξ2,γ2

)
=

{
2k if ξ ∈ Ξ(ξ1, ξ2)k,

0 if ξ 6∈ Ξ(ξ1, ξ2)
(5.50)

for ξ ∈ {0, 1, 2, c}`.
By Lemma 5.4, we have

VL(µ1,γ1)
× VL(µ2,γ2)

≥
2∑

j=0

VL(µ1+τj(µ2),γ3)
, (5.51)

VL(µ,γ1)
× VL(µ,γ2)

≥
2∑

ρ=0

VL(0,γ3)
(ρ) + 2VL(µ,γ3)

(5.52)

for µ, µ1 ∈ R1 and µ2 ∈ R2. We shall compute the dimension of I(ξ1, ξ2) in two
ways using (5.38) and (5.40).

Case 1: We deal with the case suppK(λ1) 6= suppK(λ2). Note that g1(λ1) 6≡τ

g2(λ2) for all g1, g2 ∈ H̄` and wtK̃(ξ) > 0 for all ξ ∈ Ξ(ξ1, ξ2). We recall that
dimCWi,ξi = |Ri| = 3wtK̃(ξi)−1 for i = 1, 2 by (5.35). By (5.39) and (5.51), we
have

dimC I(ξ1, ξ2) ≥ 3|R1||R2| = 3wtK̃(ξ1)+wtK̃(ξ2)−1. (5.53)

On the other hand, we have

dimC I(ξ1, ξ2) =
∑

ξ∈P3

dimCW3,ξ dimCHomA(H̄`,S3)(W3,ξ, I(ξ1, ξ2))

≤
∑

ξ∈Ξ(ξ1,ξ2)

3wtK̃(ξ)−1 dimC I(V τ
L )⊗`

(
Xξ,γ3

Xξ1,γ1 Xξ2,γ2

)

=
|{j|ξ1

j =ξ2
j =c}|∑

k=0

∑

ξ∈Ξ(ξ1,ξ2)k

3wtK̃(ξ1)+wtK̃(ξ2)−2|{j|ξ1
j =ξ2

j =c}|+k−12k

=
|{j|ξ1

j =ξ2
j =c}|∑

k=0

(|{j | ξ1
j = ξ2

j = c}|
k

)
3|{j|ξ

1
j =ξ2

j =c}|−k

× 3wtK̃(ξ1)+wtK̃(ξ2)−2|{j|ξ1
j =ξ2

j =c}|+k−12k
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=
|{j|ξ1

j =ξ2
j =c}|∑

k=0

(|{j | ξ1
j =ξ2

j = c}|
k

)
3wtK̃(ξ1)+wtK̃(ξ2)−|{j|ξ1

j =ξ2
j =c}|−12k

= 3wtK̃(ξ1)+wtK̃(ξ2)−1 (5.54)

by (5.40), (5.41), (5.49) and (5.50). By (5.53) and (5.54), we have

dimC I(ξ1, ξ2) =
∑

M3∈S3

∑

µ1∈R1,µ2∈R2

dimC IV τ

L⊕`

(
M3

VL(µ1,γ1)
VL(µ2,γ2)

)

= 3wtK̃(ξ1)+wtK̃(ξ2)−1,

and thus it follows from (5.48) that the equality holds in (5.51). Setting µ1 = λ1

and µ2 = λ2 in (5.51), we have (5.44).

Case 2: We deal with the case suppK(λ1) = suppK(λ2). Note that R1 = R2,
|{(µ1, µ2) ∈ R1 ×R1 | µ1 6≡τ µ2}| = |R1|(|R1| − 1) and ξ1 = ξ2 in this case. By
(5.39), (5.51), and (5.52), we have

dimC I(ξ1, ξ1) ≥ 5|R1|+ 3|R1|(|R1| − 1)

= 32 wtK̃(ξ1)−1 + 2 · 3wtK̃(ξ1)−1. (5.55)

On the other hand, we have

dimC I(ξ1, ξ1) =
∑

ξ∈P3

dimCW3,ξ dimCHomA(H̄`,S3)(W3,ξ, I(ξ1, ξ1))

≤
∑

ξ∈P3

3max{0,wtK̃(ξ)−1} dimC I(V τ
L )⊗`

(
Xξ,γ3

Xξ1,γ1 Xξ1,γ2

)

=
∑

ξ∈Ξ(ξ1,ξ1),
wtK̃(ξ) 6=0

3wtK̃(ξ)−1 dimC I(V τ
L )⊗`

(
Xξ,γ3

Xξ1,γ1 Xξ1,γ2

)

+
∑

ξ∈Ξ(ξ1,ξ1),
wtK̃(ξ)=0

dimC I(V τ
L )⊗`

(
Xξ,γ3

Xξ1,γ1 Xξ1,γ2

)

=
wtK̃(ξ1)∑

k=1

∑

ξ∈Ξ(ξ1,ξ1)k

3k−12k + 3wtK̃(ξ1)
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=
wtK̃(ξ1)∑

k=1

(
wtK̃(ξ1)

k

)
3wtK̃(ξ1)−k3k−12k + 3wtK̃(ξ1)

= 32 wtK̃(ξ1)−1 + 2 · 3wtK̃(ξ1)−1 (5.56)

by (5.40), (5.41), (5.49), and (5.50). By (5.55) and (5.56), we have

dimC I(ξ1, ξ1) =
∑

M3∈S3

∑

µ1,µ2∈R1

dimC IV τ

L⊕`

(
M3

VL(µ1,γ1)
VL(µ2,γ2)

)

= 32 wtK̃(ξ1)−1 + 2 · 3wtK̃(ξ1)−1

and thus it follows from (5.48) that the equality holds in (5.51) and (5.52). Setting
µ1 = λ1, µ2 = λ2 in (5.51) and µ = λ1 = λ in (5.52), we have (5.44) and (5.45).

The same argument as above shows (5.47). We shall sketch the proof of (5.47)
for i = 1. By Proposition 4.5, we can show easily that

IV τ

L⊕`

(
M

VL(λ,γ) V T,η
L⊕`(τ)[ε]

)
= 0

for M 6∈ {V T,η−γ
L⊕` (τ)[ρ] | ρ = 0, 1, 2}. Take H̄`-stable sets ST

2 = {V T,η
L⊕`(τ)[ε]} and

ST
3 = {V T,η−γ

L⊕` (τ)[ρ] | ρ = 0, 1, 2} and set MT
i = ⊕M∈ST

i
M, i = 2, 3. Note that for

M ∈ ST
i , (H̄`)M = {g ∈ H̄` | g(M) = M} equals H̄`. For ξ ∈ {0, 1, 2}`, define an

action of D(M), M ∈ ST
i on Ce(ξ) as follows: For g = (τ i1 , . . . , τ i`−1 , 1) ∈ H̄`, set

g ⊗ e(M) · e(ξ) = ζ
〈(i1,...,i`−1,0),ξ〉Z3
3 e(ξ).

Denote the D(M)-module Ce(ξ) by WT
i,ξ. Set

P
(
V T,η

L⊕`(τ)[ρ]
)

= P
(
V T,η−γ

L⊕` (τ)[ρ]
)

=
{

ξ = (ξk) ∈ {0, 1, 2}`

∣∣∣∣
∑̀

k=1

ξk ≡ ρ (mod 3)
}

for ρ = 0, 1, 2. Note that

{0, 1, 2}` =
2⋃

ρ=0

P
(
V T,η−γ

L⊕` (τ)[ρ]
)
; disjoint.
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Set PT
2 = P (V T,η

L⊕`(τ)[ε]) and PT
3 = {0, 1, 2}`. Then {WT

i,ξ | ξ ∈ PT
i } is a complete

list of irreducible A(H̄`,ST
i )-modules by Theorem 5.5 for i = 2, 3. For ξ = (ξk),

γ = (γk) ∈ {0, 1, 2}`, set

XT
ξ,γ =

⊗̀

k=1

V T,γk

L (τ)[ξk].

For the same reason as in the proof of (5.36), we have

MT
2 =

⊕

ξ∈P T
2

WT
2,ξ ⊗XT

ξ,η, MT
3 =

⊕

ξ∈P T
3

WT
3,ξ ⊗XT

ξ,η−γ

as an A(H̄`,ST
2 )- and A(H̄`,ST

3 )-module, respectively. Set

IT =
⊕

(M1,M2,M3)∈S1×ST
2 ×ST

3

IV τ

L⊕`

(
M3

M1 M2

)
⊗C M1 ⊗C M2.

Let ξ1 ∈ P1 = P (VL(λ,γ)) and ξ2 ∈ PT
2 . Fix nonzero elements v10 ∈ Xξ1,γ and

vT,20 ∈ XT
ξ2,η. Set

IT (ξ1, ξ2) = spanC
{
f ⊗ w1 ⊗ v10 ⊗ w2 ⊗ vT,20 ∈ IT | w1 ∈ W1,ξ1 , w2 ∈ WT

2,ξ2

}
.

Applying the same arguments as in the case of (5.44) and (5.45), we have

dimC IT (ξ1, ξ2) = 3wtK̃(ξ1).

Therefore, (5.47) holds.
The other formulas can be proved similarly. ¤

6. Modules of V τ
L0×D

.

Let D be a self-orthogonal Z3-code of length `. In this section we dis-
cuss V τ

L0×D
-modules. Note that V τ

L0×D
= ⊕γ∈DVL(0,γ)(0) as V τ

L⊕` -modules. Let
γ(1), . . . , γ(`) be a basis of Z`

3 such that γ(1), . . . , γ(d) form a basis of D.
For j = 1, . . . , `, define a linear transformation χj on V(L⊥)⊕` = ⊕δ∈Z`

3
VLK`×δ

by χj(u) = ζ
pj

3 u for δ =
∑`

k=1 pkγ(k) ∈ Z`
3 and u ∈ VLK`×δ

. The restriction of χj to
VL0×D

is an automorphism of VL0×D
for j = 1, . . . , `. Let ΦD be the automorphism

group of VL0×D
generated by χ1, . . . , χd. Since τ commutes with ΦD, ΦD induces
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an automorphism group of V τ
L0×D

. Note that (V τ
L0×D

)ΦD = VL(0,0)(0) = V τ
L⊕` .

For j = 1, . . . , d, λ ∈ K`, and γ ∈ Z`
3, VLλ×(γ+D) is χj-invariant and

VLλ×(γ+D) =
⊕

δ∈D

VL(λ,γ+δ) (6.1)

is an eigenspace decomposition for ΦD. We also have

VL0×(γ+D)(ε) =
⊕

δ∈D

VL(0,γ+δ)(ε), ε ∈ Z3, γ ∈ Z`
3,

VLλ×(γ+D) =
⊕

δ∈D

VL(λ,γ+δ) , λ ∈ K`, γ ∈ Z`
3 (6.2)

as V τ
L⊕` -modules.
For j = 1, . . . , d, λ ∈ K`, γ ∈ D⊥, u ∈ VL0×D

, and v ∈ VLλ×(γ+D) , we have

YVLλ×(γ+D)
(χju, x)χjv = χj

(
YVLλ×(γ+D)

(u, x)v
)
.

Hence VLλ×(γ+D) ◦ χj
∼= χ−1

j (VLλ×(γ+D)) = VLλ×(γ+D) as VL0×D
-modules and

VL0×(γ+D)(ε) ◦ χj
∼= χ−1

j

(
VL0×(γ+D)(ε)

)
= VL0×(γ+D)(ε), γ ∈ D⊥, ε ∈ Z3,

VLλ×(γ+D) ◦ χj
∼= χ−1

j

(
VLλ×(γ+D)

)
= VLλ×(γ+D) , 0 6= λ ∈ K`, γ ∈ D⊥

as V τ
L0×D

-modules.
It follows from (3.27) and the corresponding formula for τ2-twisted modules

that for η ∈ D⊥, i = 1, 2, and r ∈ Z3,

V T,η
L0×D

(τ i)[r] ∼=
⊕

γ∈D

V T,η−iγ
L⊕` (τ i)[r] (6.3)

as V τ
L⊕` -modules. Using (6.3), we define an action of χj on V T,η

L0×D
(τ i)[r] for j =

1, . . . , ` by setting χj(v) = ζ
−ipj

3 v for δ =
∑`

k=1 pkγ(k) ∈ Z`
3 and v ∈ V T,δ

L⊕`(τ i)[r]
and extending χj for arbitrary v ∈ V T,η

L0×D
(τ i)[r] by (6.3) and linearity.

By Proposition 5.7, we have

YV T,η
L0×D

(τ i)[r](χju, x)χjv = χj

(
YV T,η

L0×D
(τ i)[r](u, x)v

)
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for u ∈ VL0×D
and v ∈ V T,η

L0×D
(τ i)[r]. Hence

V T,η
L0×D

(τ i)[r] ◦ χj
∼= χ−1

j

(
V T,η

L0×D
(τ i)[r]

)
= V T,η

L0×D
(τ i)[r]

and so we can define an action of ΦD on V T,η
L0×D

(τ i)[r]. Then it is clear that (6.3)

is also an eigenspace decomposition of V T,η
L0×D

(τ i)[r] for ΦD.

Lemma 6.1. Let N be an N-graded weak V τ
L0×D

-module and let M be an
irreducible V τ

L⊕`-submodule of N . If M is isomorphic to VL(0,γ)(ε), γ ∈ Z`
3, ε ∈ Z3

or VL(λ,γ) , 0 6= λ ∈ K`, γ ∈ Z`
3, then γ ∈ D⊥. If M is isomorphic to V T,η

L⊕`(τ i)[ε],
i = 1, 2, ε ∈ Z3, η ∈ Z`

3, then η ∈ D⊥.

Proof. Let ωL be the Virasoro element of V τ
L . For i = 1, 2 and j, k, ε ∈

{0, 1, 2}, let (W 1,W 2) be one of (VL(0,j)(ε), VL(0,j+k)(ε)), (VL(c,j) , VL(c,j+k)), or
(V T,j

L (τ i)[ε], V T,j+k
L (τ i)[ε]). Let λs be the eigenvalue of (ωL)1 on the top level

of W s for s = 1, 2. Note that

VL(0,−k)(0)×W 1 = W 2 if (W 1,W 2) =
(
V T,j

L (τ)[ε], V T,j+k
L (τ)[ε]

)
,

VL(0,k)(0)×W 1 = W 2 otherwise

by Proposition 4.5 and that λ2 − λ1 ≡ (jk + 2k2)/3 (mod Z) by (5.10). We have
already obtained a decomposition of every irreducible V τ

L⊕` -module as a (V τ
L )⊗`-

module in Theorem 3.13 and (5.6).
Now the proof is similar to that of Lemma 5.1 since VL(0,γ1)(0) ⊗ · · · ⊗

VL(0,γ`)(0) ⊂ V τ
L0×D

for γ = (γs)`
s=1 ∈ D and D is self-orthogonal. ¤

Using the same arguments as in the proofs of Lemma 5.2 and Proposition 5.3,
we can show the following theorem. Indeed, we argue for V τ

L0×D
, V τ

L⊕` , and ΦD in
place of V τ

L⊕` , (V τ
L )⊗`, and H̄` in Section 5, respectively.

Theorem 6.2. Let D be a self-orthogonal Z3-code of length `. Then V τ
L0×D

is a simple, rational, C2-cofinite, and CFT type vertex operator algebra. Let
D⊥/D =

⋃m
j=1(ρ

j + D) be a coset decomposition. The following is a complete
set of representatives of equivalence classes of irreducible V τ

L0×D
-modules.

(1) VL0×(ρj+D)
(ε), j = 1, . . . , m, ε = 0, 1, 2.

(2) VLλ×(ρj+D)
, 0 6= λ ∈ (K`)≡τ

, j = 1, . . . , m.

(3) V T,ρj

L0×D
(τ i)[ε], i = 1, 2, j = 1, . . . , m, ε = 0, 1, 2.

We compute some fusion rules for V τ
L0×D

which will be used in Section 7.2.



1222 K. Tanabe and H. Yamada

Proposition 6.3. Let λ, λ1, λ2 be nonzero elements of K` such that λ1 6≡τ

λ2, γ, γ1, γ2, η ∈ D⊥, i = 1, 2, and ε, ε1, ε2 = 0, 1, 2. Then

VL0×(γ1+D)
(ε1)× VL0×(γ2+D)

(ε2) = VL0×(γ1+γ2+D)
(ε1 + ε2), (6.4)

VL0×(γ1+D)
(ε)× VLλ×(γ2+D)

= VLλ×(γ1+γ2+D)
, (6.5)

VLλ1×(γ1+D)
× VLλ2×(γ2+D)

=
2∑

j=0

VL(λ1+τj(λ2))×(γ1+γ2+D)
, (6.6)

VLλ×(γ1+D)
× VLλ×(γ2+D)

=
2∑

ρ=0

VL0×(γ1+γ2+D)
(ρ) + 2VLλ×(γ1+γ2+D)

, (6.7)

VL0×(γ+D)(ε1)× V T,η
L0×D

(τ i)[ε2] = V T,η−iγ
L0×D

(τ i)[iε1 + ε2], (6.8)

VLλ×(γ+D) × V T,η
L0×D

(τ i)[ε] =
2∑

ρ=0

V T,η−iγ
L0×D

(τ i)[ρ]. (6.9)

Proof. We shall show (6.6). Restricting intertwining operators for VL0×D

in Lemma 2.14 to V τ
L0×D

-modules, we have

VLλ1×(γ1+D)
× VLλ2×(γ2+D)

≥
2∑

j=0

VL(λ1+τj(λ2))×(γ1+γ2+D)
. (6.10)

For k = 1, 2, r ∈ Z3, 0 6= λ3 ∈ K`, and γ3 ∈ Z`
3,

IV τ

L⊕`

(
VL0×(γ3+D)

(r)
VL(λ1,γ1)

VL(λ2,γ2)

)
∼=

⊕

δ∈D

IV τ

L⊕`

(
VL(0,γ3+δ)

(r)
VL(λ1,γ1)

VL(λ2,γ2)

)
,

IV τ

L⊕`

(
VLλ3×(γ3+D)

VL(λ1,γ1)
VL(λ2,γ2)

)
∼=

⊕

δ∈D

IV τ

L⊕`

(
VL(λ3,γ3+δ)

VL(λ1,γ1)
VL(λ2,γ2)

)
,

IV τ

L⊕`

(
V T,γ3

L0×D
(τk)[r]

VL(λ1,γ1)
VL(λ2,γ2)

)
∼=

⊕

δ∈D

IV τ

L⊕`

(
V T,γ3−δ

L⊕` (τk)[r]
VL(λ1,γ1)

VL(λ2,γ2)

)

as vector spaces by (6.2) and (6.3). By [11, Proposition 11.9] and Proposition 5.7,
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dimC IV τ
L0×D

(
VL(λ1+τj(λ2))×(γ1+γ2+D)

VLλ1×(γ1+D)
VLλ2×(γ2+D)

)
≤ dimC IV τ

L⊕`

(
VL(λ1+τj(λ2))×(γ1+γ2+D)

VL(λ1,γ1)
VL(λ2,γ2)

)

=
∑

δ∈D

dimC IV τ

L⊕`

(
VL(λ1+τj(λ2),γ1+γ2+δ)

VL(λ1,γ1)
VL(λ2,γ2)

)
= 1 (6.11)

for j = 0, 1, 2 and

dimC IV τ
L0×D

(
W

VLλ1×(γ1+D)
VLλ2×(γ2+D)

)

≤ dimC IV τ

L⊕`

(
W

VL(λ1,γ1)
VL(λ2,γ2)

)
= 0 (6.12)

for any irreducible V τ
L0×D

-module W 6∼= VL(λ1+τj(λ2))×(γ1+γ2+D)
, j = 0, 1, 2. By

(6.10)–(6.12), we obtain (6.6).
The other formulas can be proved similarly. ¤

7. Modules of V τ
LC×D

.

In this section we shall study V τ
LC×D

-modules for an arbitrary τ -invariant self-
dual K-code C with minimum weight at least 4 and an arbitrary self-dual Z3-code
D.

Let N be an N-graded weak V τ
LC×D

-module. Since N is a V τ
L⊕` -module, N is a

direct sum of irreducible V τ
L⊕` -modules listed in Proposition 5.3. If N contains an

irreducible V τ
L⊕` -module which is isomorphic to VL(λ,γ) for a nonzero λ ∈ K` and

γ ∈ Z`
3, then Theorem 6.2 implies that N also contains an irreducible V τ

L⊕` -module
which is isomorphic to VL(λ,0) since N is a V τ

L0×D
-module and D is self-dual. This

observation is important in the proof of Proposition 7.8. Thus, it is necessary to
assume D is self-dual.

Recall that for µ ∈ K`, C(µ) is the K-code generated by µ and τ(µ) (cf.
Section 4). If µ ∈ K` has positive even weight, then

V τ
LC(µ)×0

∼= V τ
L⊕` ⊕ VL(µ,0) (7.1)

as V τ
L⊕` -modules. Since N is also a V τ

LC(µ)×0
-module for each µ ∈ C, using [39,

Theorem 2.1.2], (7.1), and the fusion rules for V τ
L⊕` in Proposition 5.7, we can ob-

tain information about irreducible V τ
L⊕` -modules contained in N (See Proposition

7.5 and Proposition 7.8 below). Thus, we first study N-graded weak V τ
LC(µ)×0

-
modules with some conditions for µ ∈ K` of positive even weight in Section 7.1.
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Next, we shall classify the irreducible V τ
LC×D

-modules and establish the rationality
of V τ

LC×D
in Theorem 7.10 in Section 7.2.

7.1. Properties of V τ
LC(µ)×0

-modules.
Throughout this subsection, ` and m are fixed even positive integers with

2 ≤ m ≤ `. In this subsection we study N-graded weak V τ
LC(µ)×0

-modules with
some conditions for µ ∈ K` of positive even weight. We deal with the case µ =
(cm0`−m) = (c, . . . , c, 0, . . . , 0) until Lemma 7.4. We have

V τ
L

C(cm0`−m)×0

∼= V τ
L⊕` ⊕ VL((cm0`−m),0)

(7.2)

as V τ
L⊕` -modules. We shall fix the following notation. Let W 0 = ⊕∞i=0W

0(i) be an
N-graded weak V τ

L
C(cm0`−m)×0

-module. Let M0 = ⊕∞i=0M
0(i) be a V τ

L⊕` -submodule

of W 0 such that M0(0) ⊂ W 0(0). Assume that M0 is isomorphic to VL(∆,0) for
some nonzero ∆ = (∆1, . . . ,∆`) ∈ K`.

In Lemma 7.1 we shall describe the action of o(u◦v) (see [39, Definition 2.1.1])
on the top level of M0 for some elements u, v ∈ VL((cm0`−m),0)

⊂ V τ
L

C(cm0`−m)×0
in

the decomposition (7.2). Since o(u ◦ v)w = 0 for all elements w in the top level of
M0, we shall obtain the relations (7.5) and (7.6) below, which play an important
role to get information about ∆ in Lemma 7.4. With the help of the action of G`,
Lemma 7.4 immediately induces Proposition 7.5.

For S ⊂ {1, . . . , `}, set

S∗ = {i ∈ {1, . . . , m}| i 6∈ S}. (7.3)

Recall that for each x ∈ K we assign β(x) ∈ L⊥ by β(0) = 0, β(a) = β2/2,
β(b) = β0/2, and β(c) = β1/2. For j ∈ K, we use β(s)(j) to denote the element
β(j) ∈ L⊥ in the s-th entry of (L⊥)⊕`. For p = (pi) ∈ K` and ε = (εi) ∈ {1,−1}`,
set β(p; ε) =

∑`
i=1 εiβ

(i)(pi). For example,

m∑

i=1

εiβ
(i)
1 /2 =

m∑

i=1

εiβ
(i)(c) = β((cm0`−m); ε).

We simply write β(p) for β(p; (1, . . . , 1)). For α ∈ (L⊥)⊕`, set e(α) = eα. Set

Sj(∆) = {i ∈ {1, . . . , m} | ∆i = j}

for j = a, b, c.
For a formal Laurent series p(x) =

∑
n∈Z pnxn in one variable x and i ∈ Z, set
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p(x)|xi = pi. For p(x, y) =
∑

n,m∈Z pnmxnym and i, j ∈ Z, set p(x, y)|xi,yj = pij

similarly. For homogeneous u, v ∈ V , we shall use the following expression:

o(u ◦ v) =
wt u∑
r=0

(
wt u

r

)
YM (Y (u, x)v, y)w

∣∣
x1−r,y−wt u−wt v+r−1 . (7.4)

The following lemma is the key result in this section.

Lemma 7.1. (1) Let S be a subset of {1, . . . , m} with 1 ≤ |S| ≤ m/2. If
∆ 6≡τ (cm0`−m) or |S| ≤ m/2− 2, then for j = 0, 1, 2 and ε = (εi) ∈ {1,−1}`, we
have

δ〈Pi∈S εiβ
(i)
j /2,β(∆)〉,−|S|

(〈∑m
i=1 εiβ

(i)
j /2, β(∆)〉+ m/2

m− 2|S|+ 1

)
= 0. (7.5)

(2) Suppose ∆ 6≡τ (cm0`−m) or m ≥ 4. Then, for ε = (εi) ∈ {1,−1}` we have

2∑

j=0

(〈∑m
i=1 εiβ

(i)
j /2, β(∆)〉+ m/2
m + 1

)
= 0. (7.6)

Proof. Let S be a subset of {1, . . . , m} and set s = |S|. Let

u =
2∑

j=0

e
( m∑

i=1

β
(i)
j

2

)
, v =

2∑

j=0

e
( ∑

i∈S

β
(i)
j

2
+

∑

i∈S∗

−β
(i)
j

2

)
.

Then

u =
2∑

j=0

τ je
( m∑

i=1

β
(i)
1

2

)
, v =

2∑

j=0

τ je
( ∑

i∈S

β
(i)
1

2
+

∑

i∈S∗

−β
(i)
1

2

)

by (2.15) and hence u and v are elements of V τ
L

C(cm0`−m)×0
of weight m/2. We

shall describe the action of

o(u ◦ v) =
m/2∑
r=0

(
m/2

r

)
YW 0(Y (u, x)v, y)

∣∣
x1−r,y−m+r−1 (7.7)

on the top level of M0 (cf. (7.4)). For j = 0, 1, 2, set
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Ω1j = ζ9m+18s
36 x−m+2s exp

( ∞∑

k=1

(
∑m

i=1 β
(i)
j /2)(−k)
k

xk

)
e
( ∑

i∈S

β
(i)
j

)
,

Ω2j = ζ9m+18s
36 x(m−2s)/2 exp

( ∞∑

k=1

(
∑m

i=1 β
(i)
j+1/2)(−k)
k

xk

)

× e
( ∑

i∈S

−β
(i)
j

2
+

∑

i∈S∗

β
(i)
j+1 − β

(i)
j+2

2

)

+ ζ18m
36 x(m−2s)/2 exp

( ∞∑

k=1

(
∑m

i=1 β
(i)
j+2/2)(−k)
k

xk

)

× e
( ∑

i∈S

−β
(i)
j

2
+

∑

i∈S∗

β
(i)
j+2 − β

(i)
j+1

2

)
. (7.8)

Using (2.11) we have

Y (u, x)v =
2∑

j=0

(Ω1j + Ω2j) (7.9)

and hence

o(u ◦ v) =
2∑

j=0

m/2∑
r=0

(
m/2

r

)
YW 0

(
Ω1j , y

)∣∣
x1−r,y−m+r−1

+
2∑

j=0

m/2∑
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1 . (7.10)

In the decomposition (7.2) we have Ω10 + Ω11 + Ω12 ∈ V τ
L⊕`((x)) and Ω20 + Ω21 +

Ω22 ∈ VL((cm0`−m),0)
((x)) since (βj+1 − βj+2)/2 = βj/2 + βj+1, j = 0, 1, 2.

By [36, Section 4], we see that the top level of M0 is spanned by {e(∆; ε) |
ε ∈ {1,−1}`}. We shall compute

∑m/2
r=0

(
m/2

r

)
YW 0

(
Ω1j , y

)∣∣
x1−r,y−m+r−1e(∆; ε),

j = 0, 1, 2. A similar computation as [22, (8.6.9)] shows the following formula:
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YW 0

(
Ω1j , y

)
e(∆; ε)

= ζ9m+18s
36 YW 0

(
x−m+2s exp

( ∞∑

k=1

(
∑m

i=1 β
(i)
j /2)(−k)
k

xk

)
e
( ∑

i∈S

β
(i)
j

)
, y

)
e(∆; ε)

= ζ9m+18s
36 x−m+2sy〈

P
i∈S β

(i)
j ,β(∆;ε)〉

(
1 +

x

y

)〈Pm
i=1 β

(i)
j /2,β(∆;ε)〉

× exp
( ∞∑

k=1

(
∑

i∈S β
(i)
j )(−k)
k

yk

)

× exp
( ∞∑

k=1

(( m∑

i=1

β
(i)
j

2k

)
(−k)(y + x)k −

( m∑

i=1

β
(i)
j

2k

)
(−k)yk

))

× e
( ∑

i∈S

β
(i)
j

)
e(∆; ε). (7.11)

Setting

Ψ = ζ9m+18s
36 exp

( ∞∑
m=1

(
∑

i∈S β
(i)
j )(−m)
m

ym

)

× exp
( ∞∑

k=1

(( m∑

i=1

β
(i)
j

2k

)
(−k)(y + x)k −

( m∑

i=1

β
(i)
j

2k

)
(−k)yj

))
,

we have

YW 0

(
Ω1j , y

)
e(∆; ε)

=
∞∑

t=0

(〈∑m
i=1 β

(i)
j /2, β(∆; ε)〉

t

)
x−m+2s+ty−t+〈Pi∈S β

(i)
j ,β(∆;ε)〉

×Ψe
( ∑

i∈S

β
(i)
j

)
e(∆; ε). (7.12)

Let r be an integer with 0 ≤ r ≤ m/2. To describe the first term of (7.10),
we need to investigate the coefficient of x1−ry−m+r−1 in (7.12). First, we shall
discuss the case that there is a nonnegative integer t such that 1−r ≥ −m+2s+ t

and −m+r−1 ≥ −t+ 〈∑i∈S β
(i)
j , β(∆; ε)〉. Note that if no such t exists, then the

coefficient of x1−ry−m+r−1 in (7.12) is equal to zero since Ψe(
∑

i∈S β
(i)
j )e(∆; ε) ∈
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W 0[[x, y]]. Since 〈±βi/2,±βj/2〉 ∈ {±1,±1/2} for 0 ≤ i, j ≤ 2, we have 2s +
〈∑i∈S β

(i)
j , β(∆; ε)〉 ≥ 0 and hence

−m + r − 1 ≥ −t +
〈 ∑

i∈S

β
(i)
j , β(∆; ε)

〉

≥ −m + 2s− 1 + r +
〈 ∑

i∈S

β
(i)
j , β(∆; ε)

〉

≥ −m + r − 1.

This implies that 2s + 〈∑i∈S β
(i)
j , β(∆; ε)〉 = 0, t = m − 2s − r + 1, and the

coefficient of x1−ry−m+r−1 in (7.12) is

ζ9m+18s
36 δ〈Pi∈S β

(i)
j /2,β(∆;ε)〉,−s

(〈∑m
i=1 β

(i)
j /2, β(∆; ε)〉

m− 2s− r + 1

)
e
( ∑

i∈S

β
(i)
j

)
e(∆; ε).

(7.13)

Next, we shall discuss the case that 1−r < −m+2s+ t or −m+r−1 < −t+
〈∑i∈S β

(i)
j , β(∆; ε)〉 for all nonnegative integer t. Since Ψe(

∑
i∈S β

(i)
j )e(∆; ε) ∈

W 0[[x, y]], the coefficient of x1−ry−m+r−1 in (7.12) is equal to 0. If m−2s−r+1 ≥
0, then by setting t0 = m− 2s− r + 1, we have 1− r ≥ −m + 2s + t0 and hence

−m + r − 1 < −t0 +
〈 ∑

i∈S

β
(i)
j , β(∆; ε)

〉

= −m + 2s + r − 1 +
〈 ∑

i∈S

β
(i)
j , β(∆; ε)

〉
.

Thus, in this case 2s + 〈∑i∈S β
(i)
j , β(∆; ε)〉 6= 0 and hence the coefficient of

x1−ry−m+r−1 in (7.12) is also given by (7.13). By (7.13) and 〈β(λ1), β(λ2; ε)〉 =
〈β(λ1; ε), β(λ2)〉 for λ1, λ2 ∈ Km, we have obtained

m/2∑
r=0

(
m/2

r

)
YW 0(Ω1j , y)|x1−r,y−m+r−1e(∆; ε)

= ζ9m+18s
36 δ〈Pi∈S εiβ

(i)
j ,β(∆)〉,−s

×
m/2∑
r=0

(
m/2

r

)(〈∑m
i=1 β

(i)
j /2, β(∆; ε)〉

m− 2s− r + 1

)
e
( ∑

i∈S

β
(i)
j

)
e(∆; ε)
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= ζ9m+18s
36 δ〈Pi∈S εiβ

(i)
j ,β(∆)〉,−s

×
(〈∑m

i=1 εiβ
(i)
j /2, β(∆)〉+ m/2

m− 2s + 1

)
e
( ∑

i∈S

β
(i)
j

)
e(∆; ε) (7.14)

for j = 0, 1, 2.
We next investigate

∑m/2
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1e(∆; ε) for j =

0, 1, 2. We expand Ω2j as

Ω2j = ζ9m+18s
36 x(m−2s)/2

(
1 +

( m∑

i=1

β
(i)
j+1

2

)
(−1)x + · · ·

)

× e
( ∑

i∈S

−β
(i)
j

2
+

∑

i∈S∗

β
(i)
j+1 − β

(i)
j+2

2

)

+ ζ18m
36 x(m−2s)/2

(
1 +

( m∑

i=1

β
(i)
j+2

2

)
(−1)x + · · ·

)

× e
( ∑

i∈S

−β
(i)
j

2
+

∑

i∈S∗

β
(i)
j+2 − β

(i)
j+1

2

)
.

If 0 ≤ s ≤ m/2− 2, then (m− 2s)/2 ≥ 2 and hence Ω2j ∈ x2W [[x]]. This tells us
that

m/2∑
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1e(∆; ε) = 0. (7.15)

In the case of s = m/2 − 1, m/2, we do not need explicit expressions of∑m/2
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1e(∆; ε) to obtain (7.5) and (7.6).

Let prM0 : W 0 → M0 be a projection. By (7.4), (7.9), (7.14), (7.15) and [39,
Theorem 2.1.2], in the case of 0 ≤ s ≤ m/2− 2, we have

0 = prM0 o(u ◦ v)e(∆; ε)

= ζ9m+18s
36

2∑

j=0

δ〈Pi∈S εiβ
(i)
j /2,β(∆)〉,−s

(〈∑m
i=1 εiβ

(i)
j /2, β(∆)〉+ m/2

m− 2s + 1

)

× e
( ∑

i∈S

β
(i)
j

)
e(∆; ε). (7.16)
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In the case of s = m/2− 1, we have

0 = prM0 o(u ◦ v)e(∆; ε)

= ζ9m+18s
36

2∑

j=0

δ〈Pi∈S εiβ
(i)
j /2,β(∆)〉,−m/2+1

(〈∑m
i=1 εiβ

(i)
j /2, β(∆)〉+ m/2

3

)

× e
( ∑

i∈S

β
(i)
j

)
e(∆; ε)

+ prM0

2∑

j=0

m/2∑
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1e(∆; ε). (7.17)

In the case of s = m/2, we have

0 = prM0 o(u ◦ v)e(∆; ε)

= ζ9m+18s
36

2∑

j=0

δ〈Pi∈S εiβ
(i)
j /2,β(∆)〉,−m/2

(〈 m∑

i=1

εiβ
(i)
j

2
, β(∆)

〉
+ m/2

)

× e
( ∑

i∈S

β
(i)
j

)
e(∆; ε)

+ prM0

2∑

j=0

m/2∑
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1e(∆; ε). (7.18)

If 1 ≤ s ≤ m/2 − 2, then (7.5) follows from (7.16) since e(
∑

i∈S β
(i)
0 )e(∆; ε),

e(
∑

i∈S β
(i)
1 )e(∆; ε), e(

∑
i∈S β

(i)
2 )e(∆; ε) are linearly independent. If m ≥ 4, then

(7.6) follows by taking S = ∅ in (7.16).
The map f(·, x) defined by f(u, x)w = prM0(YW 0(u, x)w) for u ∈

VL((cm0`−m),0)
in (7.2) and w ∈ VL(∆,0) is an element of IV τ

L⊕`

( VL(∆,0)
VL

((cm0`−m),0)
VL(∆,0)

)
.

Suppose ∆ 6≡τ (cm0`−m). Then, by (5.44) we have

dimC IV τ

L⊕`

(
VL(∆,0)

VL((cm0`−m),0)
VL(∆,0)

)
= 0

and hence in (7.17) and (7.18) the second terms are zero:
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prM0

2∑

j=0

m/2∑
r=0

(
m/2

r

)
YW 0

(
Ω2j , y

)∣∣
x1−r,y−m+r−1e(∆; ε) = 0.

Moreover, if 1 ≤ s ≤ m/2, then (7.5) follows from (7.16)–(7.18). Taking S = ∅ in
(7.16)–(7.18), we have (7.6). ¤

Remark 7.2. In the case of ` = m = 2, consider the vertex operator algebra
VLC((c,c))×0

. We see that VLC((c,c))×0
(1) = {u ∈ VLC((c,c))×0

| τu = ζ3u} is an
irreducible V τ

LC((c,c))×0
-module and that

VLC((c,c))×0
(1) ∼= VL(0,0)(1)⊕ VL((c,c),0)

as V τ
L⊕2-modules. Note that the top level of VL((c,c),0) is a subspace of the top level

of VLC((c,c))×0
(1) and is a subspaces of (VLC((c,c))×0

)1. However, we have

2∑

j=0

(〈β(1)
j /2 + β

(2)
j /2, β((c, c))〉+ 2/2

2 + 1

)

=
(〈β(1)

1 /2 + β
(2)
1 /2, β

(1)
1 /2 + β

(2)
1 /2〉+ 1

3

)

+
∑

j=0,2

(〈β(1)
j /2 + β

(2)
j /2, β

(1)
1 /2 + β

(2)
1 /2〉+ 1

3

)

=
(

2 + 1
3

)
+ 2

(−1 + 1
3

)

= 1 6= 0.

Hence formula (7.6) does not hold in this case.

Lemma 7.3. Assume that ∆ 6≡τ (cm0`−m). For j = a, b, c, the following
assertions hold.

(1) If m/2 ≤ |Sj(∆)| ≤ m, then |Sj(∆)| = m/2, |Sk(∆)| = 0 for all k 6= j,
and |Sj(∆)| is an even integer. In particular, 〈(km0`−m),∆〉K = 0 for all
k = a, b, c.

(2) If 1 ≤ |Sj(∆)| ≤ m/2, then
∑

k∈{a,b,c},k 6=j |Sk(∆)| is an even integer. In
particular, 〈(jm0`−m),∆〉K = 0.

Proof. Suppose m/2 ≤ |Sj(∆)| ≤ m. We use the notation defined just
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after (7.3). Take S ⊂ Sj(∆) such that |S| = m/2 and set ε = (εi) ∈ {1,−1}` by

εi =

{−1 if i ∈ Sj(∆),

1 otherwise.
(7.19)

Then, 〈∑i∈S εiβ
(i)(j), β(∆)〉 = −|S| and by (7.5),

0 =
(〈β((jm0`−m); ε), β(∆)〉+ m/2

m− 2|S|+ 1

)

=
(−|Sj(∆)| −∑

k∈{a,b,c},k 6=j |Sk(∆)|/2 + m/2
m− 2 ·m/2 + 1

)

= −|Sj(∆)| −
∑

k∈{a,b,c},k 6=j

|Sk(∆)|/2 + m/2

≤ −m/2−
∑

k∈{a,b,c},k 6=j

|Sk(∆)|/2 + m/2

= −
∑

k∈{a,b,c},k 6=j

|Sk(∆)|/2 ≤ 0.

Thus |Sj(∆)| = m/2 and |Sk(∆)| = 0 for all k ∈ {a, b, c}, k 6= j. By (7.6),

0 =
∑

k=a,b,c

(〈β((km0`−m); ε), β(∆)〉+ m/2
m + 1

)

=
(−|Sj(∆)|+ m/2

m + 1

)
+

∑

k∈{a,b,c},k 6=j

(|Sj(∆)|/2 + m/2
m + 1

)

=
(

0
m + 1

)
+ 2

(
m/4 + m/2

m + 1

)

= 2
(

3m/4
m + 1

)
.

Hence |Sj(∆)| = m/2 is even. In particular, 〈(km0`−m),∆〉K = 0 for k = a, b, c.
Therefore, (1) holds.

Suppose 1 ≤ |Sj(∆)| ≤ m/2. Set ε = (εi) ∈ {−1, 1}` by (7.19). Then
〈∑i∈Sj(∆) εiβ

(i)(j), β(∆)〉 = −|Sj(∆)|. By (7.5), we have
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0 =
(〈β((jm0`−m); ε), β(∆)〉+ m/2

m− 2|Sj(∆)|+ 1

)

=
(−|Sj(∆)| −∑

k∈{a,b,c},k 6=j |Sk(∆)|/2 + m/2
m− 2|Sj(∆)|+ 1

)
.

Since |Sj(∆)| ≤ m/2,
∑

k∈{a,b,c},k 6=j |Sk(∆)| is an even integer. Hence
〈(jm0`−m),∆〉K = 0. This proves (2). ¤

Lemma 7.4. (1) 〈(cm0`−m),∆〉K = 0.
(2) If m ≥ 4, then | suppK(∆) ∩ {1, . . . , m}| < m.

Proof. We may assume suppK(∆) ∩ {1, . . . , m} 6= ∅. First, we shall show
that 〈(cm0`−m),∆〉K = 0. If ∆ ≡τ (cm0`−m), then the assertion is clear from
the definition of 〈 · , · 〉K. Assume that ∆ 6≡τ (cm0`−m). We may also assume
that |Sc(∆)| = 0 and 0 ≤ |Sa(∆)|, |Sb(∆)| ≤ m/2 by Lemma 7.3. If 1 ≤
|Sa(∆)|, |Sb(∆)|, then |Sb(∆)| = |Sb(∆)|+|Sc(∆)| and |Sa(∆)| = |Sa(∆)|+|Sc(∆)|
are even integers by Lemma 7.3 (2). Hence, we have 〈(cm0`−m),∆〉K = 0 in this
case. Suppose |Sa(∆)| = 0. Then |Sb(∆)| > 0 since suppK(∆) ∩ {1, . . . , m} 6= ∅.
Set ε = (εi) ∈ {−1, 1}` by (7.19) with j = b. Note that

(−|Sb(∆)|+m/2
m+1

)
= 0 since

1 ≤ |Sb(∆)| ≤ m/2. By (7.6),

0 =
∑

j=a,b,c

(〈β((jm0`−m); ε), β(∆)〉+ m/2
m + 1

)

=
(−|Sb(∆)|+ m/2

m + 1

)
+

∑

j=a,c

(|Sb(∆)|/2 + m/2
m + 1

)

= 2
(|Sb(∆)|/2 + m/2

m + 1

)
.

Hence |Sb(∆)| is an even integer. In particular, 〈(cm0`−m),∆〉K = 0. In the case
of |Sb(∆)| = 0, we can show that 〈(cm0`−m),∆〉K = 0 similarly.

Next, we shall show that if m ≥ 4 then | suppK(∆)∩{1, . . . , m}| < m. Suppose
by contradiction that | suppK(∆)∩{1, . . . , m}| = |Sa(∆)|+ |Sb(∆)|+ |Sc(∆)| = m.

Case 1: Suppose |Sk(∆)| = m for some k ∈ {a, b, c}. Setting ε = (1, . . . , 1) in
(7.6), we have
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0 =
∑

j=a,b,c

(〈β((jm0`−m)), β(∆)〉+ m/2
m + 1

)

=
(〈β((km0`−m)), β(∆)〉+ m/2

m + 1

)
+

∑

j 6=k

(〈β((jm0`−m)), β(∆)〉+ m/2
m + 1

)

=
(

m + m/2
m + 1

)
+ 2

(−m/2 + m/2
m + 1

)

=
(

m + m/2
m + 1

)
6= 0.

This is a contradiction.

Case 2: Suppose |Sk(∆)| < m for all k = a, b, c. Note that (cm0`−m) 6≡τ ∆
in this case. There exists j ∈ {a, b, c} such that 1 ≤ |Sj(∆)| ≤ m/2 since
suppK(∆) ∩ {1, . . . , m} 6= ∅. Set ε = (εi) ∈ {−1, 1}` by (7.19). Then
〈∑i∈Sj(∆) εiβ

(i)(j), β(∆)〉 = −|Sj(∆)|. By (7.5), we have

0 =
(〈β((jm0`−m); ε), β(∆)〉+ m/2

m− 2|Sj(∆)|+ 1

)

=
(−|Sj(∆)| −∑

k∈{a,b,c},k 6=j |Sk(∆)|/2 + m/2
m− 2|Sj(∆)|+ 1

)

=
(−|Sj(∆)| − (m− |Sj(∆)|)/2 + m/2

m− 2|Sj(∆)|+ 1

)

=
( −|Sj(∆)|/2

m− 2|Sj(∆)|+ 1

)
6= 0.

This is a contradiction. Therefore, we conclude that wtK(∆) < m. ¤

Proposition 7.5. Let µ = (µk) be a nonzero element of K` such that
wtK(µ) is even and wtK(µ) ≥ 4. Let W = ⊕∞i=0W (i) be an N-graded weak
V τ

LC(µ)×0
-module. Let M = ⊕∞i=0M(i) be an irreducible V τ

L⊕`-submodule of W such
that M(0) ⊂ W (0). Assume that M is isomorphic to VL(∆,0) for some nonzero
∆ = (∆k) ∈ K`. Then 〈µ,∆〉K = 0 and | suppK(µ) ∩ suppK(∆)| < wtK(µ).

Proof. There exists g ∈ G` such that g(µ) = (cm0`−m), where m =
wtK(µ). Consider a vertex operator algebra V τ

LC(g(µ))×0
and a V τ

LC(g(µ))×0
-module

W ◦g−1 defined by W ◦g−1 = W as vector spaces and YW◦g−1(u, x) = YW (g−1u, x)
for u ∈ V τ

LC(g(µ))×0
. Note that M ◦ g−1 is a V τ

L⊕` -submodule of W ◦ g−1 which is
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isomorphic to VL(g(∆),0) . Since g is an automorphism of K`, it is sufficient to show
that 〈g(µ), g(∆)〉K = 〈(cm0`−m), g(∆)〉K = 0 and | suppK(g(∆))∩{1, . . . , m}| < m

for V τ
Lg(C(µ))×0

and a V τ
Lg(C(µ))×0

-module W ◦ g−1. These results hold by Lemma
7.4. ¤

7.2. Modules of V τ
LC×D

.
In this subsection we shall classify the irreducible V τ

LC×D
-modules and estab-

lish the rationality of V τ
LC×D

for arbitrary τ -invariant self-dual K-code C with
minimum weight at least 4 and arbitrary self-dual Z3-code D.

For any nonzero µ ∈ K` of even weight and any self-orthogonal Z3-code D,
we have

V τ
LC(µ)×D

∼= VL0×D
(0)⊕ VLµ×D

(7.20)

as V τ
L0×D

-modules. The following lemma will be used in Lemma 7.7 and Proposi-
tion 7.9.

Lemma 7.6. For any nonzero µ ∈ K` of even weight and any self-orthogonal
Z3-code D, we have VLµ×D

· VLµ×D
= V τ

LC(µ)×D
in (7.20).

Proof. We may assume that µ = (cm0`−m), m > 0 by the action of G`

(see Proof of Proposition 7.5). Then the assertion follows from (7.9). ¤

For the remainder of this paper, C is a τ -invariant self-dual K-code of length
` with minimum weight at least 4 and D is a self-dual Z3-code of the same length.
Let C≡τ be the set of all orbits of τ in C. Note that

VLC×D
(ε) ∼= VL0×D

(ε)⊕
⊕

0 6=λ∈C≡τ

VLλ×D
, ε = 0, 1, 2

as V τ
L0×D

-modules by Lemma 2.13.
By Proposition 6.3 and Lemma 7.6, the same argument as in the proof of [26,

Theorem 5.4] shows the following lemma.

Lemma 7.7. Let (N1, Y 1) and (N2, Y 2) be irreducible V τ
LC×D

-modules and
let ε ∈ Z3. Suppose for each i = 1, 2, there is a V τ

L⊕`-submodule of N i which is
isomorphic to VL(0,0)(ε). Then, N1 and N2 are isomorphic V τ

LC×D
-modules.

As it was mentioned at the beginning of this section, we need to assume that
D is self-dual to show the following proposition.

Proposition 7.8. Let N be an N-graded weak V τ
LC×D

-module which has a
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V τ
L⊕`-submodule isomorphic to VL(λ,γ) for some nonzero λ ∈ K` and γ ∈ Z`

3. Then
there exists a V τ

L⊕`-submodule M of N which is isomorphic to VL(0,0)(ε) for some
ε ∈ Z3. Consequently, there exists a V τ

L0×D
-submodule of N which is isomorphic to

VL0×D
(ε). The V τ

LC×D
-submodule of N generated by M is isomorphic to VLC×D

(ε).

Proof. Let W 1 be an irreducible V τ
L⊕` -submodule of N which is isomorphic

to VL(λ,γ) for a nonzero λ ∈ K` and γ ∈ Z`
3. Since N is a V τ

L0×D
-module, γ ∈ D⊥ =

D by Theorem 6.2 and consequently, there exists a V τ
L⊕` -submodule W 2 of N which

is isomorphic to VL(λ,0) .
Suppose for any ε ∈ Z3, there is no V τ

L⊕` -submodule of N which is isomorphic
to VL(0,0)(ε). Let N1 = ⊕∞n=0N

1(n) be the V τ
LC×0

-submodule of N generated by
W 2. Note that every irreducible V τ

L⊕` -submodule of N1 is isomorphic to VL(λ1,0)

for a nonzero λ1 ∈ K` by Proposition 6.3 and the assumption. Let M = ⊕∞n=0M(n)
be an irreducible V τ

L⊕` -submodule of N1 such that M(0) ⊂ N1(0). There exists a
nonzero ∆ ∈ K` such that M is isomorphic to VL(∆,0) as V τ

L⊕` -modules. Since N1 is
a V τ

LC(µ)×0
-module for all µ ∈ C, we have 〈µ,∆〉K = 0 by Proposition 7.5 and hence

∆ ∈ C⊥ = C. By Proposition 7.5 again, wtK(∆) = | suppK(∆) ∩ suppK(∆)| <

wtK(∆). This is a contradiction. Thus, there exists an irreducible V τ
L⊕` -module

M isomorphic to VL(0,0)(ε) for some ε ∈ Z3. By Proposition 5.3 and Theorem 6.2,
the V τ

L0×D
-submodule of N generated by M is isomorphic to VL0×D

(ε).
Let N2 be the V τ

LC×D
-submodule of N generated by M . By Proposition 6.3,

N2 ∼= VL0×D
(ε)⊕

⊕

0 6=λ∈C≡τ

VLλ×D

as V τ
L0×D

-modules (cf. Proof of Lemma 5.2). Since any nonzero V τ
LC×D

-submodule
of N2 must contain VL0×D

(ε) by the argument above, N2 is irreducible. By Lemma
7.7, N2 is isomorphic to VLC×D

(ε) as V τ
LC×D

-modules. ¤

Proposition 7.9. Let N be an N-graded weak V τ
LC×D

-module. Suppose N

has a V τ
L⊕`-submodule M which is isomorphic to V T,η

L⊕`(τ i)[ε] for some η ∈ Z`
3 and

ε ∈ Z3. Then M is a V τ
LC×D

-submodule of N which is isomorphic to V T,0
LC×D

(τ i)[ε].

Proof. Note that the V τ
L0×D

-submodule of N generated by M is isomorphic
to V T,0

L0×D
(τ i)[ε] by Theorem 6.2. Take any nonzero λ ∈ C and consider a vertex

operator subalgebra V τ
LC(λ)×D

of V τ
LC×D

. Let N1 be the V τ
LC(λ)×D

-submodule of N

generated by M . Note that for ε1 ∈ Z3 with ε1 6= ε, the difference of the minimal
eigenvalues of ω1 in V T,0

L0×D
(τ i)[ε1] and in V T,0

L0×D
(τ i)[ε] is not an integer, where ω

is the Virasoro element of V τ
LC(λ)×D

. By Theorem 6.2 and Proposition 6.3, N1 is

a direct sum of V τ
L0×D

-modules, each of which is isomorphic to V T,0
L0×D

(τ i)[ε]. We
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write N1 = ⊕j∈JM j , M j ∼= V T,0
L0×D

(τ i)[ε]. We can take M j1 = M for some j1 ∈ J .

For each j ∈ J , let ϕj : M j → V T,0
L0×D

(τ i)[ε] be an isomorphism of V τ
L0×D

-modules
and let prj : N1 → M j be a projection.

We want to show that |J | = 1. Suppose J contains at least two elements
and take j2 ∈ J , j2 6= j1. For any j ∈ J , v ∈ VLλ×D

, and w ∈ M , define

fj(v, x)w = ϕj(prj(YN (v, x)w)). Then, fj ∈ IV τ
L0×D

(
V T,0

L0×D
(τ i)[ε]

VLλ×D
V T,0

L0×D
(τ i)[ε]

)
. Note

that at most one fj is not zero since dimC IV τ
L0×D

(
V T,0

L0×D
(τ i)[ε]

VLλ×D
V T,0

L0×D
(τ i)[ε]

)
= 1 (cf. [36,

Proof of Lemma 5.6]). Since N1 is generated by M , we have fj2 6= 0. Consequently,
J = {j1, j2} and fj1 = 0. Namely,

N1 = M j1 ⊕M j2

and VLλ×D
· M j1 = M j2 . For any k = 1, 2, v ∈ VLλ×D

, and w ∈ M j2 , define

f2,jk
(v, x)w = ϕjk

(prjk
(YN (v, x)w)). Then, f2,jk

∈ IV τ
L0×D

(
V T,0

L0×D
(τ i)[ε]

VLλ×D
V T,0

L0×D
(τ i)[ε]

)
.

By Lemma 7.6, we have

VLλ×D
·M j2 = VLλ×D

· (VLλ×D
·M j1) = (VLλ×D

· VLλ×D
) ·M j1

= (V τ
L0×D

⊕ VLλ×D
) ·M j1 = M j1 ⊕M j2 .

Hence f2,j1 and f2,j2 are linearly independent (cf. [36, Proof of Lemma 5.6]). This

contradicts the fact that dimC IV τ
L0×D

(
V T,0

L0×D
(τ i)[ε]

VLλ×D
V T,0

L0×D
(τ i)[ε]

)
= 1.

Therefore, M is a V τ
LC×D

-submodule of N . By Theorems 3.13 and 6.2,
V T,0

LC×D
(τ i)[ε] ∼= V T,0

L0×D
(τ i)[ε] as V τ

L0×D
-modules. The same arguments as in [28,

Lemma C.2] can show that any irreducible V τ
LC×D

-module which is isomorphic to
V T,0

L0×D
(τ i)[ε] as V τ

L0×D
-modules must be isomorphic to V T,0

LC×D
(τ i)[ε]. Hence the

assertion holds. ¤

Theorem 7.10. Let C be a τ -invariant self-dual K-code of length ` with
minimum weight at least 4 and let D be a self-dual Z3-code of the same length.
Then V τ

LC×D
is a simple, rational, C2-cofinite, and CFT type vertex operator al-

gebra. There are exactly 9 equivalence classes of irreducible V τ
LC×D

-modules which
are represented by the following ones.

(1) VLC×D
(ε), ε = 0, 1, 2.

(2) V T,0
LC×D

(τ i)[ε], i = 1, 2, ε = 0, 1, 2.
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Proof. The simplicity of V τ
LC×D

is a consequence of [17, Theorem 4.4].
Since V τ

LC×D
is a direct sum of finitely many irreducible V τ

L0×D
-modules, V τ

LC×D

is C2-cofinite by [5]. The classification of irreducible V τ
LC×D

-modules follows from
Propositions 7.8 and 7.9.

We shall show that V τ
LC×D

is rational. Let N be an N-graded weak V τ
LC×D

-
module. Let M be the sum of irreducible V τ

L0×D
-submodules of N , each of which

is isomorphic to any of VL0×D
(ε), V T,0

L0×D
(τ i)[ε], ε ∈ Z3, i = 1, 2. We denote by

W the V τ
LC×D

-submodule of N generated by M . By Propositions 7.8 and 7.9, W

is a completely reducible V τ
LC×D

-module. If the V τ
LC×D

-module N/W is not zero,
then N/W has a V τ

L0×D
-submodule isomorphic to one of VL0×D

(ε), V T,0
L0×D

(τ i)[ε],
ε ∈ Z3, i = 1, 2 by Propositions 7.8 and 7.9. This contradicts our choice of W .
Hence N = W . This implies that V τ

LC×D
is rational. ¤

Remark 7.11. In [24], it is shown that there exist a K-code C of length
12 and a Z3-code D of the same length, which satisfy the conditions in Theorem
7.10, and such that LC×D is isomorphic to the Leech lattice Λ. In this case τ

corresponds to a unique fixed-point-free isometry of Λ of order 3 up to conjugacy
(cf. [6]). Hence, as a special case of Theorem 7.10, we obtain the classification of
irreducible modules, the rationality, and the C2-cofiniteness for V τ

Λ .

Remark 7.12. For ` = 4, let C and D be a K-code and a Z3-code with
generating matrices




a a 0 0
b b 0 0
0 0 a a
0 0 b b


 ,

(
1 1 1 0
1 −1 0 1

)
,

respectively. It is clear that C is τ -invariant self-dual and D is self-dual. The
lattice L0×D is a

√
2 (E8-lattice) and LC×D is an E8-lattice. Note that D is the

[4, 2, 3] ternary tetra code.
We can not apply Theorem 7.10 to VLC×D

since the minimum weight of C

equals 2.

8. List of Notations.

ζn exp(2π
√−1/n).

〈 · , · 〉 the ordinary inner product of the Euclidean space R`.
L

√
2(A2-lattice).

L⊥ the dual lattice of L.
β1, β2 a Z-basis of L such that 〈β1, β1〉 = 〈β2, β2〉 = 4 and 〈β1, β2〉 = −2.
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β0 β0 = −β1 − β2.
β̃1, β̃2 the basis of L⊥ defined by β̃1 = β1/2 and β̃2 = (β1 − β2)/6.
τ an isometry of L induced by the permutation β1 7→ β2 7→ β0 7→ β1.
H` the direct product of ` copies of the group 〈τ〉 generated by τ .
τ τ = (τ, . . . , τ) ∈ H` (For simplicity of notation, we denote

(τ, . . . , τ) by τ also).
H̄` {(τ i1 , . . . , τ i`−1, 1) ∈ H` | i1, . . . , i`−1 ∈ Z}.
G` H` oS`, where S` is the symmetric group of degree `.
K K = {0, a, b, c} ∼= Z2 × Z2 is the Klein’s four-group.
C a code over K.
D a code over Z3.
suppK(λ) suppK(λ) = {i | λi 6= 0} where λ = (λ1, . . . , λ`) ∈ K`.
suppZ3

(γ) suppZ3
(γ) = {i | γi 6= 0} where γ = (γ1, . . . , γ`) ∈ Z`

3.
wtK(λ) the cardinality of suppK(λ).
wtZ3(γ) the cardinality of suppZ3

(γ).
〈λ, µ〉K 〈λ, µ〉K =

∑`
i=1 λiµi ∈ K where λ = (λi), µ = (µi) ∈ K`.

〈γ, δ〉Z3 〈γ, δ〉Z3 =
∑`

i=1 γiδi ∈ Z3 where γ = (γi), δ = (δi) ∈ Z`
3.

C(λ) the K-code generated by λ ∈ K` and τ(λ).
D(γ) the Z3-code generated by γ ∈ Z`

3.
β(x) β(0) = 0, β(a) = β2/2, β(b) = β0/2, β(c) = β1/2.
L(x,i) L(x,i) = β(x) + i(−β1 + β2)/3 + L where x ∈ K and i ∈ Z3.
L(λ,γ) L(λ,γ) = L(λ1,γ1) ⊕ · · · ⊕ L(λ`,γ`) ⊂ (L⊥)⊕` where λ ∈ K` and

γ ∈ Z`
3.

LP×Q LP×Q = ∪λ∈P,γ∈QL(λ,γ).

T a subgroup in the center of (L̂⊥)` generated by κ
(r)
36 (κ(s)

36 )−1, 1 ≤
r, s ≤ `, where κ

(s)
36 denotes κ36 in the s-th entry of (L̂⊥)`.

K0 K0 = {a×τ τ(a)−1 | a ∈ L̂C×0, τ}.
K K = {a×τ τ(a)−1 | a ∈ L̂C×D,τ}.
V T,η

LC×D
(τ i) irreducible τ i-twisted VLC×D

-module where η ∈ D⊥ and i = 1, 2.
K̃ K̃ = {0, 1, 2, a, b, c} (cf. Section 5).
suppK̃(λ) suppK̃(λ) = {i | λi ∈ {a, b, c}} where λ = (λ1, . . . , λ`) ∈ K̃`.
wtK̃(λ) the cardinality of suppK̃(λ).

Xi,j Xi,j =

{
VL(0,j)(i) if i = 0, 1, 2,

VL(i,j) if i = a, b, c.

Xξ,γ Xξ,γ = ⊗`
i=1Xξi,γi

where ξ = (ξ1, . . . , ξ`) ∈ K̃` and γ =
(γ1, . . . , γ`) ∈ Z`

3.
P (VL(0,γ)(ε)) P (VL(0,γ)(ε)) = {ξ = (ξk) ∈ Z`

3 |
∑`

k=1 ξk ≡ ε (mod 3)} where
γ ∈ Z`

3 and ε ∈ Z3.
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P (VL(λ,γ)) P (VL(λ,γ)) = {ξ ∈ {0, 1, 2, c}` | suppK̃(ξ) = suppK(λ)} where
0 6= λ ∈ K` and γ ∈ Z`

3.
β(i)(j) β(i)(j) denotes β(j) ∈ L⊥ in the i-th entry of (L⊥)` where j =

a, b, c.
β(p; ε) β(p; ε) =

∑`
i=1 εiβ

(i)(pi) where p = (pi) ∈ K` and ε = (εi) ∈
{1,−1}`.

β(p) β(p) = β(p; (1, . . . , 1)).
e(α) e(α) = eα where α ∈ (L⊥)⊕`.
S∗ S∗ = {i ∈ {1, . . . , m} | i 6∈ S} where S is a subset of {1, . . . , `}.
Sj(λ) Sj(λ) = {k ∈ {1, . . . , m} | λk = j} where λ ∈ K` and j = a, b, c.
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[12] C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, J.

Pure Appl. Algebra, 110 (1996), 259–295.

[13] C. Dong, H. S. Li and G. Mason, Simple currents and extensions of vertex operator

algebras, Comm. Math. Phys., 180 (1996), 671–707.

[14] C. Dong, H. S. Li and G. Mason, Twisted representations of vertex operator algebras,

Math. Ann., 310 (1998), 571–600.

[15] C. Dong, H. S. Li and G. Mason, Modular-invariance of trace functions in orbifold theory

and generalized moonshine, Comm. Math. Phys., 214 (2000), 1–56.

[16] C. Dong, H. S. Li, G. Mason and S. P. Norton, Associative subalgebras of the Griess

algebra and related topics, In: The Monster and Lie Algebras, The Ohio State University,

1996, (ed. J. Ferrar and K. Harada), Ohio State Univ. Math. Res. Inst. Publ., 7, Walter

de Gruyter, Berlin, 1998, pp. 27–42.

[17] C. Dong and G. Mason, On quantum Galois theory, Duke Math. J., 86 (1997), 305–321.

http://dx.doi.org/10.1006/jabr.2001.8838
http://dx.doi.org/10.1090/S0002-9947-03-03413-5
http://dx.doi.org/10.1016/j.jalgebra.2003.09.043
http://dx.doi.org/10.1007/s00220-004-1132-5
http://dx.doi.org/10.1016/S0021-8693(02)00056-X
http://dx.doi.org/10.1007/BF01238812
http://dx.doi.org/10.1006/jabr.1993.1217
http://dx.doi.org/10.1006/jabr.1994.1099
http://dx.doi.org/10.2140/pjm.2004.215.245
http://dx.doi.org/10.1016/0022-4049(95)00095-X
http://dx.doi.org/10.1007/BF02099628
http://dx.doi.org/10.1007/s002080050161
http://dx.doi.org/10.1007/s002200000242
http://dx.doi.org/10.1215/S0012-7094-97-08609-9


Fixed point subalgebras of lattice vertex operator algebras 1241

[18] C. Dong, G. Mason and Y. Zhu, Discrete series of the Virasoro algebra and the moonshine

module, Proc. Sympos. Pure Math., 56 (1994), 295–316.

[19] C. Dong and K. Nagatomo, Representations of vertex operator algebra V +
L for rank one

lattice L, Comm. Math. Phys., 202 (1999), 169–195.

[20] C. Dong and G. Yamskulna, Vertex operator algebras, generalized doubles and dual pairs,

Math. Z., 241 (2002), 397–423.

[21] I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator

Algebras and Modules, Mem. Amer. Math. Soc., 104, 1993.

[22] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster,

Pure Appl. Math., 134, Academic Press, Boston, MA, 1988.

[23] I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine

and Virasoro algebras, Duke Math. J., 66 (1992), 123–168.

[24] M. Kitazume, C. H. Lam and H. Yamada, Decomposition of the moonshine vertex oper-

ator algebra as Virasoro modules, J. Algebra, 226 (2000), 893–919.

[25] M. Kitazume, C. H. Lam and H. Yamada, 3-state Potts model, moonshine vertex operator

algebra, and 3A elements of the monster group, Int. Math. Res. Not., 2003 (2003), 1269–

1303.

[26] M. Kitazume, M. Miyamoto and H. Yamada, Ternary codes and vertex operator algebras,

J. Algebra, 223 (2000), 379–395.

[27] C. H. Lam and H. Yamada, Z2 × Z2 codes and vertex operator algebras, J. Algebra, 224

(2000), 268–291.

[28] C. H. Lam, H. Yamada and H. Yamauchi, McKay’s observation and vertex operator

algebras generated by two conformal vectors of central charge 1/2, IMRP Int. Math. Res.

Pap., 2005 (2005), 117–181.

[29] J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A., 82 (1985),

8295–8299.

[30] J. Lepowsky and H. S. Li, Introduction to Vertex Operator Algebras and Their Repre-

sentations, Progr. Math., 227, Birkhäuser Boston, Inc., Boston, MA, 2004.
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