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\S 1. Introduction.

An oriented closed 3-manifold $M$ is called a homology lens space if its first
integral homology group $H_{1}(M;Z)$ is isomorphic to a finite cyclic group $Z/pZ$

for some $p\geqq 2$ . By Boyer [2], for any such $M$, simply connected toPological 4-
manifolds of second betti number 1 bounded by $M$ are classified by certain
equivalence classes of elements of $H_{1}(M;Z)$ together with the Kirby-Siebenmann
obstructions to smoothing (see \S 2). Then it arises the question which of these
topological 4-manifolds cannot be given any smooth structures. In this paper
we consider this question and give a partial answer. We mainly concern our-
selves with such 4-manifolds bounded by what is called Dehn surgered 3-mani-
fold.

Let $K$ be a smooth knot in $S^{3}$ . Then we denote by $M(K;p/q)$ the oriented
closed 3-manifold obtained by $p/q$-Dehn surgery on $K$, where $P$ and $q$ are in-
tegers with gcd $(p, q)=1$ and $q>0$ (see [18]). It is easy to see that the Dehn
surgered 3-manifold $M(K;p/q)$ is a homology lens space with $H_{1}(M(K;p/q);Z)$

isomorphic to $Z/pZ$. If $q=1$ , we can attach a 2-handle to the 4-ball $D^{4}$ along
$K$ with $P$ -framing and we denote the resulting handlebody by $V(K;p)$ . Note
that $V(K;p)$ is a simply connected smooth 4-manifold of second betti number 1
whose boundary $\partial V(K;p)$ is diffeomorphic to $M(K;p/1)$ . Then one of our
main results of this paper is the following.

COROLLARY 3.4. Let $K$ be a slice knot and $p>2$ an integer, where $P$ is even
or $p$ has some prjme factor $p’$ with $p’\equiv 3$ (mod4). SuppOse $V$ is a $\alpha mply$ con-
nected toPological $4$-mamfold of second betti number 1 bounded by the Dehn sur-
gered 3-manifold $M(K;p/1)$ . Then $V$ admits a smooth structure if and only if
it is homeomorPhic to the handlebody $V(K;p)$ .

We also show, using the topological classification due to Boyer, that there
do exist many simply connected topological 4-manifolds of second betti number

This research was partially supported by Grant-in-Aid for Encouragement of Young
Scientists (No. 6374008), Ministry of Education, Science and Culture.



594 $0$ . $s_{AEK1}$

1 bounded by $M(K;p/1)$ (see Corollary 3.11). Corollary 3.4 shows, however,
that among these there is only one 4-manifold that can admit a smooth struc-
ture.

For the proof of Corollary 3.4 we construct a smooth closed 4-manifold
whose certain 2-dimensional homology class is represented by a smoothly em-
bedded 2-sphere and then use results of Kuga [11] and Lawson [12]. Using
our techniques we also show in \S 5 that there exist infinitely many rational
numbers $p/q$ such that for any knot $K$ in $S^{3}$ the Dehn surgered 3-manifold
$M(K;p/q)$ bounds a simply connected topological 4-manifold of second betti
number 1 but never bounds a smooth one. Using this example we exhibit in-
finitely many homology lens spaces which, though their invariants defined by
Fukuhara [7] vanish, cannot be obtained from $S^{3}$ by integral Dehn surgery on
knots.

Throughout the paper all homology groups are with integral coefficients.
The author would like to express his sincere gratitude to Takashi Fukuda

for his helpful advice concerning number theoretic techniques.

\S 2. Topological classification.

DEFINITION 2.1. A compact orientable (topological) 4-manifold is said to be
a homotopy $S^{2}$ (or homology $S^{2}$ ) if it has the same homotopy type (resp. homo-
logy groups) as $S^{2}$ .

Note that a simply connected 4-manifold with a connected boundary is a
homotopy $S^{2}$ if and only if its second betti number is 1. Furthermore, if $V$ is
a homology $S^{2},$ $H_{1}(\partial V)\cong Z/pZ$ for some $p\geqq 0$ .

We have the following characterization of homology lens spaces which bound
topological homotopy $S^{2}$ .

PROPOSITION 2.2. Let $M$ be a homology lens space wzth $H_{1}(M)$ isomorphic
to $Z/pZ(p\geqq 2)$ . Then there exists a topOlOgjcal homotopy $S^{2}$ bounded by $M$ if
and only if there exists a homology class $\alpha\in H_{1}(M)$ such that lk $(\alpha, \alpha)=\pm 1/p$ ,
where lk: $H_{1}(M)\cross H_{1}(M)arrow Q/Z$ denotes the linking $tm$ ring of $M$.

PROOF. Let $V$ be a homotopy $S^{2}$ bounded by $M$ and let $\gamma\in H_{2}(V, \partial V)\cong Z$

be a generator. Then $\partial\gamma\in H_{1}(M)$ satisfies lk $(\partial\gamma, \partial\gamma)=\pm 1/p$, where $\partial:H_{2}(V, \partial V)$

$arrow H_{1}(\partial V)(=H_{1}(M))$ is the boundary homomorphism (see, for example, [8]).
Conversely, suppose the existence of $\alpha\in H_{1}(M)$ with lk $(\alpha, \alpha)=\pm 1/p$. Then

by Proposition 2.5 below, $M$ bounds a homotopy $S^{2}$ . Alternatively, Fukuhara
[7] shows that $M$ is obtained by an integral surgery on a knot in some homo-
logy 3-sphere. By Freedman [6], every homology 3-sphere bounds a contractible
4-manifold; hence, $M$ bounds a 4-manifold $V$ obtained by attaching a 2-handle
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to a contractible 4-manifold. Obviously, $V$ is a homotopy $S^{2}$ . $\square$

EXAMPLE 2.3. Let $K$ be a knot in $S^{s}$ and consider the Dehn surgered 3-
manifold $M=M(K;p/q)$. Let $\alpha\in H_{1}(M)$ be the homology class represented by
a meridian of $K$ (Figure 1). Then we have lk $(\alpha, \alpha)=-q/p$ . (Here we adopt
the same sign convention as in [8].) Thus by Proposition 2.2, $M(K;p/q)$ bounds
a topological homotopy $S^{2}$ if and only if $\pm q$ is a quadratic residue mod $p$ .

$M$ :

Figure 1.

Now we recall the classification of topological homotopy $S^{2}$ bounded by a
homology lens space due to Boyer [2].

DEFINITION 2.4. Let $V$ be a homology $S^{2}$ bounded by a homology lens
space $M$ and let $\gamma\in H_{2}(V, \partial V)\cong Z$ be a generator. Then we define the homo-
logy class $\beta(V)\in H_{1}(M)$ by $\beta(V)=\partial\gamma$ , where $\partial;H_{2}(V, \partial V)arrow H_{1}(\partial V)(=H_{1}(M))$ is
the boundary homomorphism. We call $\beta(V)$ the boundary class of $V$ , which is
well-defined up to a multiple of $\pm 1$ .

PROPOSITION 2.5 (Boyer [2]). Let $M$ be a homology lens space with $H_{1}(M)$

isomorphic to $Z/pZ(p>2)$ . Then the following holds.
(1) For every $\beta\in H_{1}(M)$ with lk $(\beta, \beta)=\pm 1/p,$ $M$ bounds a topol0gical homo-

topy $S^{2}$ whose boundary class is equal to $\pm\beta$ . If $p$ is even, such a 4-manifold is
umque. If $p$ is odd, there are exactly two such 4-mamfolds, which are distin-
guished by their Kirby-Siebenmann obstructions.

(2) Let $V$ and $V’$ be topol0gical homotopy $S^{2}$ bounded by M. Then $V$ and
$V’$ are homeomorphic if and only if there exists a homeomorphusm $h:Marrow M$ such
that $h_{*}(\beta(V))=\pm\beta(V’)$ (and the Kirby-Siebenmann obstructions of $V$ and $V’$ agree
if $p$ is odd).

REMARK 2.6. For $p=2$ , we have a slightly different classification.

REMARK 2.7. In Proposition 2.5 (2), we do not consider the orientations of
$V$ and $V’$ . If they are given orientations compatible with that of $M$ and we
consider their oriented homeomorphism types, then the homeomorphism $h$ above
should be orientation preserving.
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EXAMPLE 2.8. Consider the lens space $L(p, q)$ with $p\geqq 2$ even. Suppose $q$

is a quadratic residue mod $p$ . Then homeomorphism classes of topological homo-
topy $S^{2}$ bounded by $L(p, q)$ are in one-to-one correspondence with elements of
$\{n\in(Z/pz)^{\cross} ; n^{2}q\equiv\pm 1\}/\{\pm 1\}$ (if $q^{2}\not\equiv\pm 1(mod p)$ ) or $\{n\in(Z/pZ)^{\cross} ; n^{2}q\equiv\pm 1\}/$

$\{\pm 1, \pm q\}$ (if $q^{2}\equiv\pm 1(mod p)$). Here, for a commutative ring $R,$ $R^{\cross}$ denotes the
group consisting of all units in $R$ . For details see [2]. Note that we can com-
pute the number of elements in these sets as in Corollary 3.11 below. See also
Remark 3.12.

\S 3. Main results.

In this section we state our main theorem (Theorem 3.3) and show some
of its consequences. The proof of Theorem 3.3 will be given in \S 4.

DEFINITION 3.1. Let $M_{0}$ and $M_{1}$ be oriented closed 3-manifolds. Then $M_{0}$

and $M_{1}$ are homology cobordant if there exists a smooth oriented 4-manifold $W$

such that $\partial W=M_{0}\cup(-M_{1})$ and the inclusions induce isomorphisms $H_{*}(M_{i})arrow$

$H_{*}(W)(i=0,1)$ .

DEFINITION 3.2. Let $M$ be a homology lens space homology cobordant to
$L(p, 1)$ . Note that $L(p, 1)$ is homeomorphic to the Dehn surgered 3-manifold
$M(K;p/1)$ , where $K$ is the trivial knot. Let $\alpha\in H_{1}(L(p, 1))$ be the homology
class represented by a meridian of $K$. Then we define $\alpha(M)\in H_{1}(M)$ to be the
homology class corresponding to $\alpha\in H_{1}(L(p, 1))$ through a homology cobordism.
We call $\alpha(M)$ a canonical generator of $H_{1}(M)$ . Note that lk $(\alpha(M), \alpha(M))=-1/p$ .

Note that $\alpha(M)$ possibly depends on the choice of a homology cobordism.
In the following, $\alpha(M)$ will be a canonical generator with respect to a fixed
homology cobordism. (In fact, $\alpha(M)$ is unique in our situation. See Remark 3.9.)

THEOREM 3.3. Let $M$ be a homology lens space homology cobordant to $L(p, 1)$ .
Supp0se $V$ is a topol0gical homology $S^{2}$ bounded by $M$ such that $\beta(V)\neq\pm\alpha(M)$ (and

lk $(\beta(V), \beta(V))=1k(\alpha(M), \alpha(M))$ if $p$ is odd), where $\beta(V)$ is the boundary class of
V. Then $V$ cannot admit any smooth structures.

A smooth knot $K$ in $S^{3}(=\partial D^{4})$ is called slice if it bounds a smoothly em-
bedded 2-disk in $D^{4}$ . As a corollary to Theorem 3.3, we have the following.

COROLLARY 3.4. Let $K$ be a slice knot and $p>2$ an integer, where $p$ is even
or $p$ has some”: pnme factor $p’$ with $p’\equiv 3(mod 4)$ . Supp0se $V$ is a top0l0gical
homotopy $S^{2}$ bounded by the Dehn surgered 3-manifold $M(K;p/1)$ . Then $V$ admits
a smooth structure if and only if it is homeomorphic to the handlebody $V(K;p)$ .

REMARK 3.5. Corollary 3.4 and Corollary 3.11 below hold in general for
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pseudo-P-shake-slice knots defined by Boyer [1].

PROOF OF COROLLARY 3.4. Since $K$ is slice, a generator of $H_{2}(V(K;p))\cong Z$

is represented by a smoothly embedded 2-sphere $S$ . Set $W=V(K; p)$–Int $N(S)$ ,
where $N(S)$ denotes a tubular neighborhood of $S$ . Then it is easy to see that
$W$ is a homology cobordism between $M=M(K;p/1)$ and $L(p, 1)$ . Furthermore
the boundary class $\beta(V(K;p))$ coincides with the canonical generator $\alpha(M)$ of $M$.

Next we show that there is no $\beta\in H_{1}(M)$ with lk $(\beta, \beta)=-1k(\alpha(M), \alpha(M))$

$=1/p$ if $P$ is odd. Suppose $\beta$ is such a homology class. Since $\alpha(M)$ is a
generator of $H_{1}(M),$ $\beta=r\alpha(M)$ for some $r\in Z$. Then $1/p\equiv 1k(\beta, \beta)\equiv r^{2}1k(\alpha(M)$ ,
$\alpha(M))\equiv-r^{2}/p(mod Z)$ ; hence, we have $r^{2}\equiv-1(mod p)$ . However, there is no
such $r$ if $P$ has some prime factor $P’$ with $p’\equiv 3(mod 4)$ (for details see the
proof of Corollary 3.11 below).

Now suppose $V$ is a smooth homotopy $S^{2}$ bounded by $M(K;P/1)$ . Then by
Theorem 3.3, we have $\beta(V)=\pm\alpha(M)$ . Hence $V$ is homeomorphic to the handle-
body $V(K;p)$ by Proposition 2.5. $\square$

REMARK 3.6. In Theorem 3.3 (or Corollary 3.4), we cannot in general omit
the assumption that lk $(\beta(V), \beta(V))=1k(\alpha(M), \alpha(M))$ (resp. $P$ has some prime
factor $P’$ with $p’\equiv 3$ (mod4)) if $P$ is odd. For example, let $K$ and $K’$ be the
trivial knot and the (left-hand) trefoil knot respectively. Then $M(K’ ; -5/1)$ is
homeomorphic to the lens space $L(5,1)\cong M(K;5/1)$ ([16]). Set $V=V(K’ ; -5)$ .
Then $V$ is a smooth homotopy $S^{2}$ bounded by $L(5,1)$ . It is easy to see that $V$

and $V(K;5)$ are (orientation reversingly) homotopy equivalent relative to boun-
daries (cf. [7, \S 7]). However, they are not homeomorphic to each other, since
$\beta(V)\neq\pm\alpha(L(5,1))$ . Note that lk $(\beta(V), \beta(V))=-1k(\alpha(L(5,1)),$ $\alpha(L(5,1)))$ and
that 5 has no prime factor $P’$ with $p’\equiv 3$ (mod4).

REMARK 3.7. Corollary 3.4 does not hold for non-slice knots in general.
For example, let $K$ be the $(3, -11)$-torus knot. Then $M(K;34/1)$ is homeo-
morphic to the lens space $L(34,9)$ ([16]), which bounds exactly two topological
homotopy $S^{2}$ (see Example 2.8). Both of them admit smooth structures, since
they are homeomorphic to the handlebodies $V(K;34)$ and $V(K’ ; -34)$ respec-
tively, where $K’$ is the $(5, 7)$-torus knot (see [16]). Thus $K$ is not pseudo-34-
shake-slice (see Remark 3.5), though $K$ has zero Arf invariant.

Using Theorem 3.3, we obtain the following result, which is already known
for the lens spaces $L(p, 1)(p\geqq 2)$ .

COROLLARY 3.8. Let $M$ be a homology lens space homology cobordant to
$L(P, 1)$ , where $p\geqq 2$ is even or $p$ has some prjme factor $P’$ with $p^{r}\equiv 3$ (mod4).
Then for any homeomorphism $h:Marrow M,$ $h_{*}$ acts on $H_{1}(M)$ by the multiplication
of $\pm 1$ .



598 O. SAEKI

PROOF. Suppose there exists a homeomorphism $h:Marrow M$ with $h_{*}\neq\pm 1$ on
$H_{1}(M)$ . By [15] we may assume $h$ is a diffeomorphism. Then using a homo-
logy cobordism, we can construct a smooth homology $S^{2}$ bounded by $M$ whose
boundary class is different from $\pm\alpha(M)$ . This contradicts Theorem 3.3. $\square$

REMARK 3.9. By a similar argument we can show that a canonical gen-
erator is uniquely determined up to a multiple of $\pm 1$ , provided $p$ satisfies the
condition in Corollary 3.8.

EXAMPLE 3.10. Let $K$ be the $(3, 5)$-torus knot and set $M=M(K;-16/1)$ .
Then by [16] $M$ is homeomorphic to the lens space $L(16,7)$ , which admits a
self-homeomorphism $h$ with $h_{*}\neq\pm 1$ on $H_{1}(L(16,7))$ . Thus $M$ is not homology
cobordant to $L(16,1)$ by Corollary 3.8. In particular, the generator of
$H_{2}(V(K;-16))\cong Z$ cannot be represented by a smoothly embedded 2-sphere; $i$ . $e.$ ,
$K$ is not $pseudo-(-16)$-shake-slice.

Using Corollary 3.8, we can completely determine how many topological
homotopy $S^{2}$ a homology lens space as in Corollary 3.4 bounds.

COROLLARY 3.11. Let $K$ and $p$ be as in Corollary 3.4. Furthermore let $P$

$=2^{e}p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{r^{\gamma}}^{e}(e\geqq 0, e_{i}>0)$ be the prime decomposition of $p$ . Then the number
of homeomorphism classes of topOlOgjcal homotoPy $S^{2}$ bounded by $M(K;p/1)$ is
equal to

$\{\begin{array}{ll}2^{r-1} (if e=1 and p_{i}\equiv 3 (mod 4) for some p_{i}) or2^{r} (if e=0,2 or e=1 and p_{i}\not\equiv 3 (mod 4) for every p_{i}) or2^{r+1} (if e\geqq 3).\end{array}$

PROOF. By Proposition 2.5 and Corollary 3.8, we see that such homeo-
morphism classes are in one-to-one correspondence with elements of $\{$ $n\in(Z/pz)^{\cross};$

$n^{2}\equiv\pm 1\}/\{\pm 1\}$ (if $P$ is even) or $(\{n\in(Z/pZ)^{\cross} ; n^{2}\equiv\pm 1\}/\{\pm 1\})\cross Z/2Z$ (if $p$ is
odd). It is well-known that $(Z/pz)^{\cross}\cong(Z/2^{e}Z)^{\cross}\cross(Z/p_{1}^{e_{1}}z)^{\cross}\cross\cdots\cross(Z/p_{r}^{e_{r}}z)^{\cross}$ .
Furthermore one has

(3.1) $(Z/2^{e}Z)^{\cross}\cong\{\begin{array}{ll}0 (e=1)Z/2Z (e=2)Z/2Z\cross Z/2^{e-2}Z (e\geqq 3)\end{array}$

and

(3.2) $(Z/p_{i}^{e_{i}}z)^{\cross}\cong Z/p_{i}^{e_{i^{-1}}}(p_{i}-1)Z$ ,

where $-1mod 2^{e}$ corresponds to $(1, 0)\in Z/2Z\cross Z/2^{e-2}Z$ in the third isomorphism
of (3.1) and $-1mod p_{t^{i}}^{e}$ corresponds to the unique element of order 2 in
$Z/p_{i}^{e_{i}-1}(p_{i}-1)Z$ in (3.2). (See, for example, Chapter 3 of [17].) Using these
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isomorphisms, we easily obtain

$\#\{n\in(Z/pZ)^{\cross} ; n^{2}\equiv 1\}=\{\begin{array}{ll}2^{r} (e\leqq 1)2^{r+1} (e=2)2^{r+2} (e\geqq 3)\end{array}$

and

$\#\{n\in(Z/pZ)^{\cross} ; n^{2}\equiv-1\}=\{02^{r}$
( $e\geqq 2$ or $p_{i}\equiv 3$ (mod4) for some $p_{i}$ )

(otherwise).

Here the symbol $\#$ denotes the number of elements in the set. Now the result
follows immediately. $\square$

REMARK 3.12. If $K$ is the unknot, then $M(K;p/1)$ is the lens space $L(P, 1)$

and the above result holds for every $p\geqq 2$ . See Example 2.8.

Finally we note that there exists a smooth homotopy $S^{2}$ not homeomorphic
to a handlebody $V(K;p)$ . For example, let $K$ be a smooth knot in $S^{3}$ and $P$ an
integer such that the Dehn surgered 3-manifold $M(K;p/1)$ has no lens spaces
as its connected summands. Furthermore, let $\Sigma(\neq S^{3})$ be a homology 3-sphere
which bounds a smooth contractible 4-manifold $\Delta$ . Then define $V$ to be the 4-
manifold obtained by the boundary connected sum of $V(K;p)$ and $\Delta$ . Then $V$

is a smooth homotopy $S^{2}$ with $\partial V\cong M(K;p/1)\#\Sigma$ . However $V$ is not homeo-
morphic to a handlebody, since the boundary 3-manifold of $V$ cannot be obtained
by Dehn surgery on knots by a recently announced result of Gordon-Luecke [9].

\S 4. Proof of Theorem 3.3.

Let $M$ be a homology lens space homology cobordant to $L(p, 1)$ and suppose
$V$ is a smooth homology $S^{2}$ bounded by $M$ such that $\beta(V)\neq\pm\alpha(M)$ (and lk $(\beta(V)$ ,
$\beta(V))=1k(\alpha(M), \alpha(M))$ if $p$ is odd). Let $W$ be a homology cobordism between
$M$ and $L(p, 1)$ . Set $X=VU_{M}WU_{L(p.1)}D(p)$ , where $D(p)$ is the 2-disk bundle
over $S^{2}$ with euler number $p$ . (In other words, $D(p)$ is diffeomorphic to the
handlebody $V(K;p)$ , where $K$ is the trivial knot.) Note that $\partial D(p)\cong L(p, 1)$ .
Then $X$ is an orientable smooth closed 4-manifold with $H_{1}(X)=0$ and $H_{2}(X)\cong$

$Z\oplus Z$.
Next we define homology classes $\theta$ and $\tau$ in $H_{2}(X)$ as follows. Let $S$ be

the zero section of $D(p)$ , which is a smoothly embedded 2-sphere. We consider
$S$ to be embedded in $X$ and define $\theta=[S]\in H_{2}(X)$ . Let $f$ be a 2-chain in $D(p)$

represented by a fiber of $D(p)$ , then by the definition of $\alpha(M),$ $[\partial f]\in H_{1}(L(p, 1))$

and $\alpha(M)\in H_{1}(M)$ are homologous in $W$ . Let $c$ be a 2-chain in $W$ with $\partial c=$

$a\cup(-\partial f)$ , where $a$ is a l-cycle in $M$ with $[a]=\alpha(M)$ . Let 7 be a generator of
$H_{2}(V, \partial V)\cong Z(\partial\gamma=\beta(V))$ . Since $\alpha(M)$ is a generator of $H_{1}(M)$ , we have $\beta(V\rangle$

$=r\alpha(M)$ for some $r\in Z$. (Note that $r\not\equiv\pm 1(mod p)$ by the assumption.) Then
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there exists a 2-chain $c’$ in $V$ such that $[c’]=-\gamma$ and $\partial c’=-ra$ . Then define
$\tau=[c’\cup r(c\cup f)]\in H_{2}(X)$ . (See Figure 2.) Note that $\theta\cdot\theta=p$ and $\theta\cdot\tau=r$ .

Figure 2.

LEMMA 4.1. $H_{2}(X)$ is generated by $\theta$ and $\tau$ .

PROOF. There is a generator $\delta$ of $H_{2}(V)$ such that $i_{*}\delta=-p\gamma$ , where
$i_{*}:$ $H_{2}(V)arrow H_{2}(V, \partial V)$ is the homomorphism induced by the inclusion. Then
we have

(4.1) $t=[pc’\cup rp(c\cup f)]=j_{*}\delta+r\theta$ in $H_{2}(X)$ ,

where $j:Varrow X$ is the inclusion map. Let $G_{1}$ be the subgroup of $H_{2}(X)$ gener-
ated by $j_{*}\delta$ and $\theta$ , and let $G_{2}$ be the one generated by $j_{*}\delta,$ $\theta$ and $\tau$ . Then by
(4.1) $[G_{2} : G_{1}]=p$ , since $j_{*}\delta$ and $\theta$ are linearly independent in $H_{2}(X)$ . Further-
more by the Mayer-Vietoris exact sequence

$0arrow H_{2}(V)\oplus H_{2}(W\cup D(p))arrow H_{2}(X)arrow H_{1}(M)arrow 0$ ,

we have $[H_{2}(X):G_{1}]=p$ . Hence we obtain $G_{2}=H_{2}(X)$ . Since $j_{*}\delta=p\tau-r\theta$ by
(4.1), $H_{2}(X)$ is generated by $\theta$ and $\tau$ . $\square$

Since $H_{2}(X)$ is of rank 2, there exist generators $\xi$ and $\eta$ of $H_{2}(X)$ with
respect to which the intersection matrix of $X$ is one of the following forms:

(1) $(\begin{array}{ll}0 11 0\end{array})$ ,

(2) $(\begin{array}{ll}1 00 -1\end{array})$ ,

(3) $(\begin{array}{ll}1 00 1\end{array})$ .

(See [14, p. 19].) Set $\theta=a\xi+b\eta$ and $\tau=c\xi+d\eta(a, b, c, d\in Z)$ .
Case (1). We have
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(4.2) $2ab=p$ ,

(4.3) $ad+bc=r$ ,

(4.4) ad–bc $=\pm 1$ ,

where (4.2) and (4.3) are equivalent to $\theta\cdot\theta=p$ and $\theta\cdot\tau=r$ respectively, and (4.4)

is equivalent to that $\theta$ and $\tau$ generate $H_{2}(X)$ .
Since $\theta$ is represented by a smoothly embedded 2-sphere $S$ , we may assume

$|a|\leqq 1$ by [11] or [5]. (Kuga [11] proves the result assuming $X$ is simply
connected. However, this assumption can be eliminated by a recent result of
Donaldson [3].) By (4.2) $a\neq 0$ ; hence, $a=\pm 1$ and $2b=\pm p$. By (4.3) and (4.4)

we have $2bc=r\pm 1$ ; hence, $r\equiv\pm 1(mod p)$ . Since $\beta(V)=r\alpha(M)$ , this is a con-
tradiction.

Case (2). We have

(4.5) $a^{2}-b^{2}=p$ ,

(4.6) $ac-bd=r$ ,

(4.7) $ad-bc=\pm 1$

as in Case (1). Changing orientations of $\xi and/or\eta$ if necessary, we may
$assumea\geqq 0andb\geqq 0$ . Using (4.5), (4.6) and (4.7), $wehavec-d=(1/p)(a-b)(r\pm 1)$.
Thus, if $a-b=1$ , we have $r\equiv\pm 1(mod p)$ , which contradicts the assumption.
Hence by (4.5) $a-b\geqq 2$ . Furthermore $a,$ $b>0$ by (4.7). Hence, $\theta=a\xi+b\eta$ cannot
be represented by a smoothly embedded 2-sphere by [12], which is a contra-
diction.

Case (3). We have

(4.8) $a^{2}+b^{2}=p$ ,

(4.9) $ac+bd=r$ ,

(4.10) ad–bc $=\pm 1$ .
Set $\tau\cdot\tau=t$ , then the intersection matrix of $X$ with respect to the generators $\theta$

and $\tau$ is $(\begin{array}{ll}p rr t\end{array})$ . Since the intersection form of $X$ is definite and unimodular,

det $(\begin{array}{ll}p rr t\end{array})=pr-r^{2}=1$ ; hence, $r^{2}\equiv-1(mod P)$ . If $P$ is odd, we have $-r^{2}/p\equiv$

lk $(\beta(V), \beta(V))\equiv 1k(\alpha(M), \alpha(M))\equiv-1/p(mod Z)$ by the assumption; hence, $r^{2}\equiv 1$

$(mod p)$ . Thus $P$ must be even. Then by (4.8) and (4.10), both $a$ and $b$ are odd
and $\theta=a\xi+b\eta$ is a characteristic homology class. Furthermore $|ab|\neq 1$ , since
otherwise $p=2$ and $r\equiv\pm 1(mod p)$ . Thus $\theta$ cannot be represented by a smoothly
embedded 2-sphere by [12, Theorem 3 (ii)] (see also [3]), which is a contradic-
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tion. Hence the 4-manifold $V$ cannot be smooth. This completes the proof of
Theorem 3.3. $\square$

REMARK 4.2. We do not know whether the assumption that lk $(\beta(V), \beta(V))$

$=1k(\alpha(M), \alpha(M))$ is necessary when $p\neq 5$ . (See Remark 3.6 in \S 3.) For ex-
ample, if a homology lens space $M$ homology cobordant to $L(13,1)$ bounds a
smooth homology $S^{2}V$ with lk $(\beta(V), \beta(V))\neq 1k(\alpha(M), \alpha(M))$ , then for some
smooth closed 4-manifold $X$ with the homology of $CP^{2}\# CP^{2}$ the homology class
corresponding to $(2, 3)\in Z\oplus Z\cong H_{2}(X)$ can be represented by a smoothly em-
bedded 2-sphere.

\S 5. Homology lens spaces which cannot bound smooth homology $S^{2}$ .
In [7] Fukuhara has shown that there exist infinitely many lens spaces

$L(p, q)$ which, though each $q$ is a quadratic residue mod $p$, cannot bound a
smooth homology $S^{2}$ . He showed this using a Rohlin-type invariant for certain
homology lens spaces. In this section we show the existence of infinitely many
homology lens spaces with the same property which cannot be detected by
Fukuhara’s invariant. First we prove the following.

THEOREM 5.1. Let $m$ and $n$ be odd integers with $n\geqq 3$ and $K$ be a knot in
$S^{3}$ . Set $p=mn^{2}+1$ and $q=n^{2}$ . Let $\alpha\in H_{1}(M(K;p/q))$ be the homology class re-
presented by a meridian of K. SuPpose $V$ is a homology $S^{2}$ bounded by the
Dehn surgered 3-manifold $M(K;P/q)$ with $\beta(V)=\pm mn\alpha$ . Then $V$ cannot admit
any smooth structures.

REMARK 5.2. There does exist such a topological 4-manifold as above by
Proposition 2.5.

$m$

Figure 3.

PROOF OF THEOREM 5.1. Let $W$ be the handlebody obtained by attaching
two 2-handles to the 4-ball $D^{4}$ along the link $L=L_{1}\cup L_{2}$ as in Figure 3 using
the indicated framings. Then $\partial W$ is homeomorphic to $M(K;P/q)$ (see, for ex-
ample, Lemma 2.1 of [13]). Furthermore $\alpha\in H_{1}(M(K;p/q))$ corresponds to the
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homology class of $H_{1}(\partial W)$ represented by a meridian of $L_{1}$ .
Suppose $V$ is a smooth homology $S^{2}$ bounded by $M=M(K;p/q)$ with $\beta(V)$

$=\pm mn\alpha$ . Set $X=W \bigcup_{M}(-V)$ , which is a smooth closed 4-manifold with $H_{1}(X)$

$=0$ and $H_{2}(X)\cong Z\oplus Z\oplus Z$. Next we define the homology classes $\theta,$ $\tau$ and $\omega$ in
$H_{2}(X)$ as follows. Let $S_{i}$ be the $PL$ embedded 2-sphere in $W$ which is the union
of the core of the 2-handle attached along $L_{i}$ and the cone over $L_{i}$ embedded
in $D^{4}(i=1,2)$ . Note that $S_{2}$ is smoothly embedded, while $S_{1}$ is not necessarily
locally flat. We consider $S_{i}$ to be embedded in $X$ and define $\theta=[S_{1}]$ and $\tau=$

$[S_{2}]$ . Let $c$ be a 2-chain in $W$ represented by a cocore of the 2-handle attached
along $L_{1}$ . We may asume $[\partial c]=\alpha$ in $H_{1}(\partial W)$ . Let $\gamma\in H_{2}(V, \partial V)\cong Z$ be a
generator, then $\partial\gamma=\beta(V)=r\alpha$ , where $r=\pm mn$ . Hence there is a 2-chain $c’$ in
$V$ such that $[c’]=-\gamma$ and $\partial c’=-r(\partial c)$ . Then we define $\omega=[c’\cup rc]$ .

Using the same argument as in Lemma 4.1, we see that $\theta,$ $\tau$ and $\omega$ generate
$H_{2}(X)$ . Note that $\tau$ is represented by a smoothly embedded 2-sphere $S_{2}$ .

Set $s=\omega\cdot\omega$ . Then the intersection matrix of $X$ with respect to generators
$\theta,$ $\tau$ and $\omega$ is

$Q=(\begin{array}{lll}m 1 r1 -n^{2} 0r 0 s\end{array})$ .

Set $\epsilon=\det Q(=\pm 1)$ , then we easily obtain $s(mn^{2}+1)=(mn^{2}+1)(mn^{2}-1)+1-\epsilon$ .
If $\epsilon=-1,$ $mn^{2}+1$ must divide 2, which is a contradiction. Hence $\epsilon=1,$ $s=mn^{2}-1$ ,
and sign $Q=-1$ . Thus the intersection form of $X$ is isomorphic to (1) $\oplus(-1)\oplus$

$(-1)$ . Furthermore since $\tau\cdot\theta\equiv\theta\cdot\theta$ (mod2) and $\tau\cdot\omega\equiv\omega\cdot\omega$ (mod2), $\tau$ is charac-
teristic. Then by the same argument as in [12], we see that $\tau$ cannot be
represented by a smoothly embedded 2-sphere, since $\tau^{2}=-n^{2}\leqq-9$ . This is a
contradiction. This completes the proof. $\square$

As a corollary to Theorem 5.1, we have the following.

COROLLARY 5.3. For every odd square $q\geqq 9$ , there exist infinitely many
$po\alpha$ tive integers $p$ with the following properties.

(1) $p$ is prime to $q$ .
(2) For every knot $K$ in $S^{3}$ , the Dehn surgered 3-manifold $M(K;p/q)$ bounds

a topological homotopy $S^{2}$ but never bounds a smooth homology $S^{2}$ . In particular,
$M(K;p/q)$ cannot be obtained from $S^{s}$ by integral Dehn surgery on knots.

To prove Corollary 5.3, we need the following.

LEMMA 5.4. Let $p=2t$ , where $t$ is a prime number with $t\equiv 3$ (mod4). Supp0se
$r^{2}q\equiv\pm 1(mod p)$ and $r^{\prime 2}q\equiv\pm 1(mod p)$ , where $r,$

$r’$ and $q$ are integers. Then
$r=\pm r’(mod p)$ .
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PROOF. Since $r$ is prime to $p$, there is an integer $s$ with $r’\equiv sr(mod p)$ .
Then $s^{2}\equiv\pm s^{2}r^{2}q\equiv\pm r^{\prime 2}q\equiv\pm 1(mod p)$ . Then by the assumption on $p$, we have
$s\equiv\pm 1(mod P)$ . (See [7] or the proof of Corollary 3.11.) $\square$

PROOF OF COROLLARY 5.3. We have $q=n^{2}$ for some odd integer $n\geqq 3$ . Set
$n=2n’+1$ and $p_{k}’=q(8k+5)+1$ $(k=1,2, 3, )$ . Then we have $p_{k}’/2=4qk+$

$10n’(n’+1)+3\equiv 3$ (mod4). Since $4q=4(4n^{\prime 2}+4n’+1)$ and $10n’(n’+1)+3$ are rela-
tively prime, there are infinitely many prime numbers in the sequence $\{p_{k}’/2\}_{k=1}^{\infty}$

by Dirichlet’s theorem. Let $\{p_{k}\}$ be an infinite subsequence of $\{p_{k}’\}$ such that
each $p_{k}/2$ is a prime number. We show that each $p_{k}$ satisfies the required
condition.

First, note that $M(K;p/q)(p=p_{k})$ bounds a topological homotopy $S^{2}$ , since
$q=n^{2}$ is a quadratic residue mod $P$ (see Example 2.3). Suppose $M(K;p/q)$ bounds
a homology $S^{2}$ $V$ with $\beta(V)=r\alpha$ , where $\alpha\in H_{1}(M(K;p/q))$ is the homology
class represented by a meridian of $K$. By the above construction, $p=mn^{2}+1$

for some odd integer $m$ . We have lk $(\beta(V), \beta(V))\equiv-r^{2}q/p\equiv\pm 1/p(mod Z)$ ;
hence, $r^{2}q\equiv\pm 1(mod P)$ . By Lemma 5.4 such an integer $r$ modulo $P$ is deter-
mined up to

$a_{d}$

multiple
$soostreof\underline{+}1hence,r\equiv\pm m_{\square }n(mod p)$

. Thus, by Theorem
5.1, $V$ cannot admit any smooth structures.

We now recall the definition of Fukuhara’s invariant $\tilde{\mu}$ for certain homo-
logy lens spaces ([7]). Let $M$ be a homology lens space with $H_{1}(M)$ isomorphic
to $Z/pZ$, where $p=2t^{e}(e\geqq 1)$ with $t$ an odd prime congruent to 3 modulo 4.
Furthermore we assume that there is a homology class $\beta\in H_{1}(M)$ with lk $(\beta, \beta)$

$=\pm 1/p$ . Then Fukuhara shows that $M$ can be obtained by an integral surgery
on a knot in some homology 3-sphere $\Sigma$ . Fukuhara’s invariant $\overline{\mu}(M)$ is defined
to be the Rohlin invariant of $\Sigma$ . If $P$ is of the form $2t^{e}$ , this is well-defined.
Furthermore, if $M$ bounds a smooth homology $S^{2},\overline{\mu}(M)$ must vanish.

REMARK 5.5. Such a homology lens space as above bounds a topological
homotopy $S^{2}$ and, by the assumption that $p$ is of the form $2t^{e}$ , such a 4-mani-
fold is unique. Then $\overline{\mu}(M)$ coincides with the Kirby-Siebenmann obstruction of
the homotopy $S^{2}$ .

LEMMA 5.6. Let $P$ and $q$ be the integers of Corollary 5.3 and $K$ be a knot
in $S^{3}$ . Then for the homology lens space $M(K;p/q)$ Fukuhara’s invariant is
defined and $\tilde{\mu}(M(K;P/q))\equiv(q-1)/8$ (mod2).

PROOF. Since $p=2t$ for some odd prime $t$ with $t\equiv 3$ (mod4) and $q$ is a qua-
dratic residue mod $p$, Fukuhara’s invariant is defined for $M=M(K;p/q)$ . Set
$m=(p-1)/q$ , which is an odd integer. Let $\Sigma$ be the homology 3-sphere which
has the surgery description as in Figure 4 $(q=n^{2})$ . Then it is easily seen that
the component with framing $-q$ is the characteristic sublink in the sense of
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[10]. Then by [10, Theorem 4.2], $\Sigma$ bounds a spin 4-manifold of signature
$q-1$ . Note that $M(K;p/q)$ is homeomorphic to the 3-manifold described in
Figure 3, which is obtained by integral Dehn surgery on a knot in $\Sigma$ . Hence,
$\tilde{\mu}(M)\equiv(q-1)/8$ (mod2). $\square$

$m$

( $D^{n}$ stands for $n$ times full-twist.)

Figure 4.

If we consider odd squares $q=n^{2}$ with $n\equiv\pm 1$ (mod8) in Corollary 5.3, we
obtain the following proposition, using Lemma 5.6.

PROPOSITION 5.7. There are infinitely many homology lens spaces $M$ with
the following ProPerties.

(1) $M$ bounds a topological homotopy $S^{2}$ .
(2) Fukuhara’s invariant is defined for $M$ and it vanishes.
(3) Nevertheless, $M$ cannot bound any smooth homology $S^{2}$ . In Particular,

$M$ cannot be obtained from $S^{3}$ by integral Dehn surgery on knots.

Using our techniques, we can find many lens spaces $L(p, q)$ which, though
each $q$ is a quadratic residue mod $p$ , cannot bound any smooth homology $S^{2}$ .
There are at least 41 such lens spaces $L(p, q)$ with $2\leqq p\leqq 100$ , which include 12
lens spaces found by Fukuhara [7]. For example, consider the lens space
$L(52,3)$ , for which Fukuhara’s invariant is not defined. There are exactly two
topological homotopy $S^{2}$ bounded by $L(52,3)$ (see Example 2.8), whose Kirby-
Siebenmann obstructions vanish. However, we can show that no homology $S^{2}$

bounded by $L(52,3)$ can admit a smooth structure, using the same argument as
in the proof of Theorem 5.1.

A computation shows that there are exactly 1401 topological homotopy $S^{2}$

bounded by lens spaces $L(p, q)$ with $2\leqq P\leqq 100$ . We can show that among these
there are at least 701 homotopy $S^{2}$ which cannot admit any smooth structures.
On the other hand, we can find at least 274 homotopy $S^{2}$ which can be given
smooth structures, using results on lens spaces obtained by Dehn surgery on
knots [16], [4] (see also [7]). For example, there are exactly 4 topological
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homotopy $S^{2}$ bounded by $L(56,9)$ . Two of them admit smooth structures, since
they are homeomorphic to the handlebodies $V(K;56)$ and $V(K’$ ; 56 $)$ respectively,
where $K$ is the $(5, -11)$-torus knot and $K’$ is the $(3, -19)$-torus knot [16]. The
other two 4-manifolds cannot admit any smooth structures, since their Kirby-
Siebenmann obstructions do not vanish.
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