Buekenhout geometries of rank 3 which involve the Petersen graph

By Thomas Meixner

(Received Oct. 5, 1993)
(Revised Sept. 9, 1994)

1. Introduction.

Consider the diagram $\left(c^{*} \cdot P\right):{ }^{\circ} \stackrel{P}{-}$.
Here, the symbol ${ }^{c}-$ stands for the circle geometry with 4 points and \xrightarrow{P} for the geometry of the Petersen graph. We will determine all simply connected geometries \underline{G} with this diagram and flag-transitive automorphism group. It will turn out that there are exactly five simply connected ones. One of them is related to the alternating group of degree 6 , two of them are related to the Mathieu groups M_{11} and M_{12}, all these three are finite.

One is related to the symmetric group of degree 9 and to the sporadic group He , and one to the group $S O_{5}(5)$, and we do not know, whether they are finite or infinite.

To be precise, we will prove the following theorem.
Theorem. Let \underline{G} be a connected, simply connected geometry with diagram ($c^{*} \cdot P$) and flag-transitive automorphism group G. Then \underline{G} is one of the geometries $\underline{G}_{6}, G_{6}, G_{9}, \underline{G}_{11}$ or G_{12} defined in the next section, and G is isomorphic to one of the groups $G_{6 a}, G_{6 b}$ (if G is G_{6}), or G_{11} (if \underline{G} is G_{11}), or $G_{12 a}, G_{12 b}, G_{12 c}, G_{12 d}$, $G_{12 e}$ (if \underline{G} is \underline{G}_{12}), or $G_{9 a}, G_{9 b}$ (if \underline{G} is \underline{G}_{9}), or $G_{5 a}, G_{5 b}$ (if \underline{G} is $\underline{\underline{G}}_{5}$), all defined in the last section, respectively.

Here, G_{11} is a geometry with 66 points and automorphism group $G_{11}=M_{11}$, G_{12} is a geometry with 4752 points and automorphism group $G_{12 d}$ (resp. $\left.G_{12 e}\right)=$ $\left(A_{4} \times M_{12}\right) 2$ and projects onto a geometry for M_{12}, G_{6} is a geometry with 6480 points and automorphism group $G_{66}=3\left(A_{6} \times A_{6}\right) 2$, while we do not know, whether the geometries \underline{G}_{5} and G_{9} are finite or infinite. They project onto finite geometries for $S O_{5}(5)$ and Σ_{9} respectively and have automorphism groups $G_{5 b}$ and $G_{9 b}$ respectively.

The remark on the automorphism groups of the examples is almost trivial: the pairs $(\underline{G}, \operatorname{Aut}(\underline{\underline{G}}))$ have to appear in the list, hence one has only to check in every case, which of the groups acting on the same geometry \underline{G} is the "biggest one".

Presentations for the groups mentioned are given in a table at the end of the paper.

This theorem is part of an attempt to classify flag-transitive diagram geometries that have as rank 2 residues only generalized polygons defined over the field with two elements or "affine parts" (the part "outside" some hyperplane) of these, such as the affine plane of order 2 (the circle geometry on four points) or some affine part of the generalized quadrangle for $S p_{4}(2)$ (the Petersen graph). Many interesting geometries and groups will have to be characterized in this program; it is somehow amazing that so many (small) sporadic simple groups often involve such geometries.

Note that the canonical examples of ($c^{*} \cdot P$) geometries are truncations of geometries of type $\left(c^{2} \cdot P\right)$, as the circle geometry is in fact a truncation of the thin A_{3}-geometry, and these were investigated among others in [IS]. There, one also finds the corresponding examples for $M_{11}, A_{9}, \Omega_{5}(5)$ and He .

We hope that all notation is standard. For instance we use ATLAS-notation for involutions in the automorphism groups of finite simple groups (see [At]).

By Σ_{n}, we denote the symmetric group on n letters, by A_{n} its subgroup of even permutations. By M_{11} (resp. M_{12}) we denote the sharply 4 -transitive (resp. 5 -transitive) permutation groups on 11 (resp. 12) letters called the little Mathieu groups.

The Petersen graph P is the following graph on 10 vertices: to each 2 -set $\{i, j\}$ of the set $\{1,2,3,4,5\}$ there corresponds a unique vertex $v_{i j}$ of P. Vertices $v_{i j}$ and $v_{k l}$ are adjacent (on an edge), if $\{i, j\} \cap\{k, l\}$ is empty. The geometry of the Petersen graph has as points the vertices of P, as lines the edges of P and the natural incidence between vertices and edges. In an analogous way the circle geometry on 4 points is obtained from the complete graph on 4 letters.

If G is a group of automorphisms of some geometry G and y is some vertex of this geometry, we denote by res (y) the residue of y in G, by G_{y} the stabilizer of y in G, which of course acts on $\operatorname{res}(y)$, and by K_{y} the kernel of the action of G_{y} on $\operatorname{res}(y)$. If y, z are two vertices of G we denote the elementwise stabilizer of y and z by $G_{y z}$. The (elementwise) stabilizer of a given chamber (maximal flag) is denoted by B.

The organization of the paper is as follows. In section 2, we describe the (finite) examples. In section 3, we show that any chamber-transitive automorphism group of a simply 2 -connected chamber system of type $\left(c^{*} \cdot P\right)$ has one of twelve explicitly given presentations. Moreover, it is shown that there are precisely five (non-isomorphic) simply 2 -connected chamber-transitive chamber systems with this diagram.

Let us describe the way, in which the classification is achieved.
Assume G is a connected rank-3-geometry with diagram ($c^{*} \cdot P$) (in fact, for
the following facts to hold, a string diagram is already sufficient), and let G be a flag-transitive group of automorphisms of G. The vertices of G are called points (resp. lines, resp. planes), if their types correspond to the left (resp. middle, resp. right) node of the diagram.

Let $\{p, l, x\}$ be a chamber of G. Then $G=\left\langle G_{l x}, G_{p x}, G_{p l}\right\rangle$, and G is isomorphic to the coset geometry $\Gamma\left(G ; G_{p}, G_{l}, G_{x}\right)$ in G, and \underline{G} is also canonically isomorphic to the geometry $\Gamma(C)$ of the chamber system $C=$ $C\left(G ; B ; G_{l x}, G_{p x}, G_{p l}\right)$.

The universal cover of G is canonically isomorphic to the coset geometry $\Gamma\left(G^{0} ; G_{p}, G_{l}, G_{x}\right)$ where G^{0} is the universal completion of the amalgam of the subgroups G_{p}, G_{l}, G_{x} in G. This group is also isomorphic to the inductive limit (amalgamated sum) of the "assemblage" ($B ; G_{l x}, G_{p x}, G_{p l} ; G_{p}, G_{l}, G_{x}$) as it arises in G (see [T], section 1), and the chamber system $C^{0}=C\left(G^{0} ; B ; G_{l x}, G_{p x}, G_{p l}\right)$ is the universal 2-cover of C.

Hence to obtain the universal cover of G we can apply the following wellknown procedure. Choose appropriate generators x_{1}, \cdots, x_{n} of the subgroups $G_{l x}, G_{p x}, G_{p l}$ and a set of relations R between the x_{i} that hold in G and are necessary and sufficient for the chamber system $C^{1}=C\left(G^{1} ; B ; G_{l x}, G_{p x}, G_{p l}\right)$ to have diagram ($c^{*} \cdot P$), where $G^{1}=\left\langle x_{1}, \cdots, x_{n}: r=1\right.$ for $\left.r \in R\right\rangle$. Then $G^{1}=G^{0}$; and the universal cover of G is isomorphic to the geometry $\Gamma\left(C^{1}\right)$ (see for instance [P1]).

Of course, this method can also be used "abstractly": if one is given some diagram (say of rank 3) and wants to determine all possible (simply 2 -connected, chamber-transitive) chamber systems with this diagram, one takes a hypothetical chamber system C with this diagram and chamber-transitive group, picks some chamber c in C and determines the structure of the stabilizers B, X_{1}, X_{2}, X_{3}, X_{12}, X_{13}, X_{23} of the chamber c, the three rank-1-residues and the three rank-2cells on c, and the way they are amalgamated (the "assemblage" ($B ; X_{1}, X_{2}, X_{3}$; $\left.X_{12}, X_{13}, X_{23}\right)$). This can be done in a quite abstract way without having an example. Subsequently, one determines a presentation for the inductive limit of this assemblage: this is obtained by finding generators for the groups X_{12}, X_{18}, X_{23}, and relations which force the pairwise intersections to be X_{1}, X_{2}, X_{3} and the intersection of X_{1}, X_{2}, X_{3} to be B-and which are necessary and sufficient for the rank-2-chamber-systems $C\left(X_{i j} ; B ; X_{i}, X_{j}\right)$ to be isomorphic to the corresponding prescribed rank-2-cells. Then the group G^{0} with generators the union of the generators of the groups $X_{i j}$ and relations the union of the relations in the presentations for the groups $X_{i j}, i=1,2,3$ is the direct limit of the assemblage ($B ; X_{1}, X_{2}, X_{3} ; X_{12}, X_{13}, X_{23}$). In G^{0}, the subgroups $X_{i j}^{0}$ (resp. X_{j}^{0}, resp. B^{0}) generated by the generators coming from $X_{i j}$ (resp. X_{j}, resp. B) is isomorphic to some quotient of $X_{i j}$ (resp. X_{j}, resp. B). If the corresponding chamber
systems $C\left(X_{i j}^{0} ; B^{0} ; X_{i}^{0}, X_{j}^{0}\right)$, are isomorphic to the chamber systems $C\left(X_{i j} ; B\right.$; $\left.X_{i}, X_{j}\right)$, the chamber system $C\left(G^{0} ; B^{0} ; X_{1}^{0}, X_{2}^{0}, X_{3}^{0}\right)$ will be a simply 2 -connected chamber system of the given type with chamber-transitive group of automorphisms G^{0} (compare [P1], Lemma 5).

If the group G^{0} "collapses"-it may be equal to 1 ; it may also happen that G^{0} is a big group, but the chamber systems $C\left(X_{i j}^{0} ; B^{0} ; X_{i}^{0}, X_{j}^{0}\right)$ are not isomorphic to the chamber systems $C\left(X_{i j} ; B ; X_{i}, X_{j}\right)$, one derives that the corresponding assemblage ($B ; X_{1}, X_{2}, X_{3} ; X_{12}, X_{13}, X_{23}$) is not possible for a chamber-transitive group on a chamber system of the given type.

By coset enumeration, one can try to determine the order (and structure) of G^{0}. Of course, if the order of G^{0} equals 1 , this means "collapsing". If coset enumeration does not finish, one is led to suspect that G^{0} is infinite (and in particular does not collapse), but has not proved this. By finding some finite quotient of G^{0}, which does not "collapse", one can prove at least that the corresponding assemblage ($B ; X_{1}, X_{2}, X_{3} ; X_{12}, X_{13}, X_{23}$) exists in a chambertransitive group on a chamber system of the given type.

Now, the discussion above applies, and we have the corresponding results on the universal (2-) covers of all flag-transitive geometries with diagram ($c^{*} \cdot P$). This (well-known) method is used in section 3.

2. The geometries.

(1) A geometry G_{6}^{\prime} on 6 points.

Let Ω be the set $\{1,2,3,4,5,6\}, G=A_{6}$ acting in the natural way on Ω.
The geometry $\underline{G}_{6}^{\prime}$ is defined as follows.
The points are the 6 letters of Ω, the lines are the 3 -sets of Ω, and the planes are the 15 partitions of type $2 / 2 / 2$ (synthemes) of Ω. The incidence between points and lines and between points and planes is defined as follows: All points p and all planes x are incident (i.e., $\underline{G}_{6}^{\prime}$ is flat), and the point p is incident to the line l if and only if p is contained in l.

The incidence between lines l and planes x, however, is defined using the action of G as follows:

It is easily seen that Σ_{6} is transitive on the set of pairs (l, x) with the property that l "cuts" x, by which we mean that the partition consisting of l and its complement, which is of type $3 / 3$, refines x to a partition of type $1 / 1 / 1 / 1 / 1 / 1$. But $G=A_{6}$ has two orbits on these pairs (interchanged by Σ_{6}). Take one of these two orbits to be the set of incident line-plane-pairs.

Lemma 1. (i) The geometry G_{6}^{\prime} has the diagram ($c^{*} \cdot P$), $\underline{G}_{6}^{\prime}$ is connected and has 6 points,
(ii) G is flag-transitive on G_{6}^{\prime}.

Proof. Almost by definition, $G=A_{6}$ is flag-transitive on $\underline{G}_{6}^{\prime}$ and the residue of a line is a generalized digon.

Since there are exactly eight 3 -sets of Ω cutting a given syntheme (plane) x, four of them are lines in $\operatorname{res}(x)$. By transitivity of $G_{x}=\Sigma_{4}$ on the six letters, the pairwise intersections of the four 3 -sets of letters corresponding to lines in res (x) are singletons, and hence the six points in res (x) are each incident to exactly two lines in res (x). Moreover, every two lines in res (x) have a unique point in common. Hence $\operatorname{res}(x)$ is isomorphic to the dual affine plane on 6 points as stated.

In the residue of x, every point p is incident to exactly two lines. Therefore, $\operatorname{res}(p)$ is in fact a graph on the 10 lines incident to p, which correspond to the 2 -sets of $\Omega-\{p\}$, and a double count yields that this is a 3 -valent graph.

Since G_{p} is isomorphic to A_{5}, this graph is uniquely determined (the 10 -point representation of A_{5} has permutation rank 3), and is isomorphic to the Petersen graph. Clearly, $\underline{G}_{6}^{\prime}$ has 6 points and is connected.

We denote by G_{6} the universal cover of G_{6}^{\prime}. It will turn out in the next section that G_{6} is finite but not flat any more. \underline{G}_{6} will be seen to have 6480 points and automorphism group isomorphic to $3\left(A_{6} \times A_{6}\right) 2$.
(2) A geometry G_{12}^{\prime} for M_{12}.

Let $G=M_{12}$ act in the natural way on the 12 point set Ω.
Before describing the geometry $\underline{G}_{12}^{\prime}$ itself, we have to point out some facts about the subgroups and conjugacy classes of G.

Lemma 2. The following hold in $G=M_{12}$.
(i) G has exactly two classes of involutions:
$-2 A$ with $C(2 A)=2 \times \Sigma_{5}$ $-2 B$ with $C(2 B)=2^{1+4} \Sigma_{3}$.
(ii) Involutions of type $2 A$ are fixed point free on Ω.
(iii) Each involution of type $2 B$ has 4 fixed points on Ω.
(iv) G has exactly two classes of fours groups V containing involutions of type $2 A$:
$V=(2 A)^{2}$ with $N(V)=A_{4} \times \Sigma_{3}$
$V=\left(2 A_{2} 2 B\right)$ with V contained in $O_{2}(C(2 B))$.
(v) Let U be elementary abelian of order 8 which contains a $2 A$-pure fours group.
Then U is of type $2 A_{6} 2 B$ and lies in $O_{2}(C(2 B))$.
Proof. The first three statements can be verified by a look at the character table and the information given on G in the ATLAS.

Let t be some $2 A$ involution in G. The action of $C(t)$ on the 6 orbits of $\langle t\rangle$ on Ω is the transitive 6 -point action of Σ_{5}. There, transpositions are fixed
point free, and hence from transpositions in Σ_{b}, we get a class of $(2 A)^{2}$ fours groups V. Assume we already know this class is unique. Then a double count gives $|N(V)|=2^{3} 3^{2}$, and in $C(2 A)$ we see $N(V) \cap C(2 A)=2 \times 2 \times \Sigma_{3}$. Clearly, this is precisely $C(V)$, and the involutions in V are conjugate under $N(V)$. This yields the structure of $N(V)$.

The elements of order 4 in G do not have orbit structure $4+4+4$ on Ω, since G is perfect. Therefore those involutions of G, that are squares, have fixed points on Ω, and therefore are $2 B$-involutions. This implies that involutions s in $C(t)^{\prime}$ are $2 B$ and so there is exactly one class of $2 A$-pure fours groups, and there is exactly one more class of fours groups V containing a $2 A$-involution in G, and V contains a $2 B$ involution. Moreover, there are no $2 A$-pure eights groups in G.

The third involution in $V=\langle s, t\rangle$ is of type $2 A$:
To see this consider the centralizer of s. It acts on the four fixed points of s on Ω and on the four nontrivial orbits of $\langle s\rangle$ as a Σ_{4}.

The kernel K of the action on nontrivial orbits is elementary abelian of order 8 and the involutions in $K-\langle s\rangle$ are all conjugate. Since they must have fixed points on Ω, they are $2 B$, and therefore K is a $2 B$-pure eights group.

This implies that $2 A$ involutions in $C(s)$ act nontrivially on the nontrivial $\langle s\rangle$-orbits.

Since they induce fixed point free involutions on the fixed point set of s, they lie in the commutator subgroup of $C(s)$, and so induce also fixed point free involutions on the four nontrivial $\langle s\rangle$-orbits. This implies that also st is $2 A$.
(v) immediately follows from (iv).

We will construct some rank 3 geometry G_{12}^{\prime} consisting of subgroups of G, with incidence given by inclusion.

Consider the geometry $\underline{G}_{12}^{\prime}$ of points, lines and planes where:
The points are the subgroups of order 2 of G containing $2 A$-involutions, the lines are the $2 A$-pure fours groups in G, and the planes are the elementary abelian subgroups of order 8 of G containing $2 A$-pure fours groups.

Lemma 3. (i) G_{12}^{\prime} has diagram ($c^{*} \cdot P$),
$G_{G_{12}}^{\prime}$ is connected and has 396 points,
(ii) $G=M_{12}$ is flag-transitive on G_{12}^{\prime}, but also $\operatorname{Aut}\left(M_{12}\right)$ acts on $\underline{G}_{12}^{\prime}$.

Proof. Let W be a plane and V a line on W. Then $W \in S y l_{2}(C(V))$, so $N(V)$ permutes transitively the planes on V, and hence there is only one class of planes in G. Moreover, the normalizer of W in G contains a subgroup $A_{4} \times Z_{2}$ from the normalizer of V, and hence contains an element of order 3 which acts nontrivially on W. Since by the above, $N(W)$ is transitive on the four $2 A$-pure fours groups contained in W, at least the alternating group A_{4} is
induced by $N(W)$ on these. Now, G is flag-transitive on G_{12}^{\prime}. A double count gives $|N(W)|=2^{5} 3$. This implies $N(W)=C(2 B)^{\prime}$.

The isomorphism type of $\operatorname{res}(W)$ is now as desired, and clearly, the residue of a line is a generalized digon.

Let p be a point in G_{12}^{\prime}. Then the stabilizer in G of p is isomorphic to $Z_{2} \times \Sigma_{6}$, and lines in res (p) are the $2 A$-pure fours groups in G_{p}, which are in a one-to-one correspondence with the transpositions in $G_{p} / Z\left(G_{p}\right)=\Sigma_{5}$, and therefore to ten 2 -sets of some 5 -set. A double count gives that there are exactly 3 planes on each line, and also exactly 2 lines on each plane in res (p). Now, G_{p} acts flag-transitively on $\operatorname{res}(p)$, which is a 3 -valent graph on the 10 lines in $\operatorname{res}(p)$. This graph is uniquely determined and is in fact the Petersen graph. Since G acts primitively on its $3962 A$-involutions, the result follows.

Let G_{12} denote the universal cover of G_{12}^{\prime}. It will turn out in the next section that G_{12} is a 12 -fold cover of G_{12}^{\prime}.

We point out, that truncations of G_{12}^{\prime} already appear in [B], namely the geometries (21) and (22). There the geometry of all 2 -sets, 3 -sets and 4 -sets of Ω is discussed (geometry (6)), of which G_{11} (defined in (3) below) is a subgeometry.

The geometry G_{11} is the truncation of a rank 4 -geometry with diagram $\left(c^{2} \cdot P\right)$, described and shown to be simply connected in [IS], Theorem (6.1). We give some details for the convenience of the reader.
(3) A geometry G_{11} for the Mathieu group M_{11}.

Let $G=M_{11}$ act in its 3-transitive representation on a set Ω of 12 letters.
Then clearly, G is transitive on 2 -sets and 3 -sets of Ω. But G has two orbits on 4 -sets of Ω, one of size 330 , and one orbit X of size 165 with stabilizer $2 \Sigma_{4}$. (The stabilizer of a 4 -set in X is plain to see, and the fact that G has exactly 2 orbits on 4 -sets can be verified comparing the permutation characters of M_{12} on cosets of "transitive" subgroups M_{11} and on 4 -sets of Ω.)

Define the geometry G_{11} as follows:
The points are the 2 -sets of Ω, the lines are the 3 -sets of Ω, the planes are the 4 -sets of Ω in X. Incidence is defined by inclusion.

Lemma 4. (i) G_{11} has diagram ($c^{*} \cdot P$), G_{11} is connected and has 66 points,
(ii) $G=M_{11}$ is flag-transitive on G_{11}.

Proof. Since the stabilizer in G of a plane x acts as Σ_{4} on the four letters contained in x, we get flag-transitivity of G. A double count gives that each line is on exactly three planes. And clearly, in the residue of a point, a plane is incident to exactly two lines.

The residue of a plane (and a line) has obviously the desired isomorphism type. Let p be a point of G_{11}. Then the stabilizer of p in G is isomorphic to Σ_{5}, and acts flag-transitively on $\operatorname{res}(p)$, which is a 3 -valent graph on the 10 lines in $\operatorname{res}(p)$. This graph is uniquely determined and is in fact the Petersen graph. Since Ω has 662 -sets, and all 2 -sets and 3 -sets of Ω appear in G_{11}, the result follows.

It will turn out in the next section that G_{11} is simply connected.
(4) Graphs for $3^{7}-A_{9}$, He and $\mathrm{SO}_{5}(5)$.

The remaining examples are-just like \underline{G}_{11}-truncations of rank 4 geometries with diagram

$$
\mathrm{O}^{\mathrm{c}} \mathrm{O} \stackrel{c}{-} \stackrel{P}{-}\left(c^{2} \cdot P\right) .
$$

All of these are geometries, whose vertices are cliques in certain graphs Γ, incidence defined by inclusion, and so the same holds for the truncations. Hence we describe just the graphs Γ. We show the following.

Claim. The geometries $\underline{G}(\Gamma)$ of all cliques of Γ, i-cliques having type $i \in\{1,2,3,4\}$, incidence defined by inclusion, are flag-transitive and have the diagram ($c^{2} \cdot P$).

The first example was given in [IS], p. 949f in a slightly different setting. The following description is implicit in [BCN], p. 36 remarks (iii); it is due to Wilbrink, see the reference to [BL] there.

Let V_{n} be an n-dimensional vector space over the field $G F(5)$. Let (\cdot, \cdot) be a non-degenerate symmetric bilinear form on V_{n} with discriminant 2. Call $(+)$-points in V_{n} the l-dimensional subspaces $\langle v\rangle$ of V_{n} satisfying $(v, v) \in\{1,-1\}$.

Then Γ has as vertex set the $(+)$-points of V_{5}, and two vertices are adjacent, if and only if they are perpendicular with respect to (\cdot, \cdot).

Clearly maximal cliques in Γ are 4 -cliques and the group $O\left(V_{5}\right)$ acts flagtransitively on the geometry $G(\Gamma)$. In order to verify that $G(\Gamma)$ has the given diagram, it suffices to consider the residue of some 2 -clique, and hence to show that the corresponding graph Γ_{3} on the space V_{3} is isomorphic to the Petersen graph.

But Γ_{3} has 10 vertices and valency 3 and admits $O_{3}(5)=A_{5}$: such graph is unique and isomorphic to the Petersen graph.

It is clear, that $S O_{5}(5)$ acts flag-transitively on the geometry of 2 -cliques, 3 -cliques and 4 -cliques, of Γ, which will be denoted by $G_{(}\left(\Omega_{5}(5)\right.$). Its universal cover is denoted G_{5}.

The next example is the commuting graph Γ on transpositions in Σ_{9}. It has maximal cliques of size 4, and the geometry $G(\Gamma)$ is flag-transitive with diagram $\left(c^{2} \cdot P\right)$. It is described in [IS]. Its truncation to 2 -cliques, 3 -cliques
and 4 -cliques will be denoted by $\underline{\underline{G}}\left(A_{9}\right)$. Let the universal cover of $G\left(A_{9}\right)$ be denoted by $\underline{\underline{G}}_{9}$.

The geometry $\underline{G}\left(A_{9}\right)$ is not simply connected, as the following example shows.

For this example a certain group Σ will play the dominant role. It has the properties:

$$
\begin{aligned}
& -O_{3}(\Sigma) \cong Z_{3} \\
& -\Sigma / O_{3}(\Sigma) \cong \Sigma_{7} \\
& -\Sigma^{\prime} \cong 3 \cdot A_{7} \text { nonsplit. }
\end{aligned}
$$

The group Σ is unique up to isomorphism by these properties, and will be denoted $3 \Sigma_{7}$ (just as in [At]). Involutions in $3 \Sigma_{7}$ that correspond to transpositions in $3 \Sigma_{7} / O_{3}\left(3 \Sigma_{7}\right)$ are again called transpositions in $3 \Sigma_{7}$. The commuting graph on transpositions in $3 \Sigma_{7}$ is one of the four locally Petersen graphs ([Ha]).

Let us consider a nonsplit extension G of an elementary abelian normal subgroup N of order 3^{7} with Σ_{9}. Using [KP], one could derive the existence of such group abstractly, we prefer to have a concrete example, however. It lives inside the nonsplit extension $3^{7} \Omega_{7}(3)=: X$, which itself is a subgroup of the big Fischer group $F i_{24}^{\prime}$ (to be precise, there are two classes of them conjugate under the action of $F i_{24}$).

To see this, we investigate X as a subgroup of $F i_{24}$ a bit more closely. It is the normalizer of a certain 3 -group of order 3^{7}, which we again call N. For the following, we use information from [At], pp. 200-207.

Note that elements of order 3 in N are conjugate to their inverses, and hence subgroups of order 3 of N can be named after the two 3-elements they contain.

They split into conjugacy classes under $F i_{24}^{\prime}$ as follows: $3 A_{378} 3 B_{364} 3 C_{351}$.
Clearly, N is just the natural modulo for $X / N=\Omega_{7}(3)$ (with, say, bilinear form (\cdot, \cdot) on N, which has discriminant 1), and nontrivial elements x of N are in the class $3 A$ (resp. $3 B$, resp. $3 C$) if ($x, x)=2$ (resp. 0 , resp. 1).

It is well-known that $\Omega_{7}(3)$ has (two classes of) subgroups isomorphic to Σ_{9}. Let G be a subgroup of X containing N such that $G / N=\Sigma_{9}$. Let t be an involution of G mapping onto a transposition modulo N. Then $C_{G}(t)$ maps onto a group of type $Z_{2} \times \Sigma_{7}$ modulo N, hence $C_{N}(t)$ has order $1,3,3^{6}$ or 3^{7}, as $C_{N}(t)$ is certainly $C_{G}(t)$-invariant. But as X is perfect, the eigenvalue -1 of t must have an even multiplicity, and therefore $C_{N}(t)$ has precisely 3 elements. Let $C_{N}(t)=\langle x\rangle$. We have to determine $C_{G}(t)$ in some detail.

Clearly, as $P \Omega_{6}^{+}(3)$ does not have subgroups isomorphic to A_{7} (see [At], p. 69), x is a $3 C$-element. The centralizer of x in $F i_{24}^{\prime}$ equals $C_{X}(x)$, and is isomorphic to $3^{7} 2 \cdot \Omega_{6}^{-}(3)$. By a look at centralizers of 6 -elements in $F i_{24}^{\prime}$ one sees that t is of class $2 B$ in $F i_{24}^{\prime}$. And its centralizer in $F i_{24}^{\prime}$ looks like: $N(t)=2^{1+12} 3 \Omega_{6}^{-}(3) \cdot 2_{2}$. Moreover, the centralizer of t in $F i_{24}$ is of type
$2^{1+12} 3 \Omega_{6}^{-}(3) \cdot\left(2^{2}\right)_{122}$.
Assume $C_{G}(t)$ is isomorphic to $\left(Z_{6} \times A_{7}\right): 2$, whence it has a subgroup isomorphic to $Z_{2} \times \Sigma_{7}$. Consider now the group $U=3 \Sigma_{7} \times Z_{2}$ of $H e: 2$, which is a subgroup of $F i_{24}^{\prime}$. The involution in $Z(U)$ is of class $2 B$, as $F i_{22}$ does not contain subgroups isomorphic $3 A_{7}$ nonsplit.

We conclude that $N(t) / O_{2}(N(t))$ contains subgroups Σ_{7} and groups of type $3 \Sigma_{7}$. As there are just two classes of subgroups Σ_{7} in the group $\Omega_{6}^{-}(3) \cdot 2_{2}$, and these are fused in $\Omega_{6}^{-}(3) \cdot\left(2^{2}\right)_{122}$, this is impossible.

Hence $C_{G}(t)=Z_{2} \times 3 \Sigma_{7}$.
Assume now that G^{\prime} has a subgroup A isomorphic to A_{9}. Then $N_{G}(A)$ is a subgroup isomorphic Σ_{9}, and contains subgroups $Z_{2} \times \Sigma_{7}$. This contradicts the argument above.

Hence G is "nonsplit" as claimed above.
Now it follows easily that the commuting involutions graph Γ on t^{G} has maximal cliques of size 4, and 2-cliques (resp. 3-cliques, resp. 4-cliques) of Γ containing t correspond to 1 -cliques (resp. 2-cliques, resp. 3-cliques) of the commuting graph on transpositions in $3 \Sigma_{7}$.

Moreover, the group G acts flag-transitively on the (connected) geometry $G(\Gamma)$. The diagram of $G(\Gamma)$ has diagram $\left.0^{{ }^{c}}\right)^{c^{c}}{ }^{-{ }^{P}} 0$.

Of course, the geometry $\underline{G}(\Gamma)$ is a 2-cover of the geometry $\underline{G}\left(A_{9}\right)$ of [IS]. And the truncation to rank 3 is a 2 -cover of $G\left(A_{9}\right)$.

Just like the previous example, the next one is a graph on $2 B$-elements in $F i_{24}^{\prime}$. The automorphism group is the subgroup $H e: 2$ of $F i_{24}^{\prime}$ mentioned above. This example also appears in [IS], but is constructed as a group geometry there. To present it in our graph theoretical way, we need some information on $\operatorname{Aut}(H e)=H e: 2$, which we take from [At], p. 104f. We use the names for the conjugacy classes in $\mathrm{He}: 2$ chosen in [At].

Put in the following $H=H e$, the simple group named after D. Held, and $G=\operatorname{Aut}(H)$, such that $H=G^{\prime}$, and $G / H=Z_{2}$.

Lemma 5. (i) There are precisely two classes of involutions in $H, 2 A$ and $2 B$, and for an involution $t \in H$ we have: 5 divides the order of $C_{H}(t)$, if and only if $t \in 2 A$. (Clearly, the two classes are not fused under the action of G.)
(ii) There are precisely two classes of elements of order 3 in $H, 3 A$ and $3 B$, and for a 3 -element $d \in H$ we have: d is of class $3 A$, if and only if $N_{H}(\langle d\rangle)$ is isomorphic to $3 \Sigma_{7}$ (nonsplit, this is the group Σ defined above).
(iii) There are precisely two classes of elements of order 6 in $H, 6 A$ and $6 B$, and proper powers of $6 A$-elements (resp. $6 B$-elements) are of class $2 A$ and $3 A$ (resp. $2 B$ and $3 B$).
(iv) There is precisely one class of involutions in $G-H, 2 C$, and for $t \in 2 C$ we have $C_{G}(t)$ is isomorphic to $Z_{2} \times 3 \Sigma_{7}$.

Proof. See [At], p. 104f.
Lemma 6. Let t be a $2 C$-involution in G, and let a, b, c be three pairwise commuting transpositions in $C_{H}(t)=3 \Sigma_{7}$. The following holds:
(i) a and $a b$ are of class $2 A$ in H,
(ii) $a b c$ is of class $2 B$ in H.

Proof. We use the information of lemma 5 without explicit mentioning. As 5 divides the order of $C_{H}(a), a$ is of class $2 A$.

As $O_{3}\left(C_{H}(t)\right)=\langle d\rangle$ for some $3 A$-element $d \in H, a b$ is of class $2 A$. This proves (i).

As $C_{H}(t)$ contains some Sylow 3 -subgroup S of H, there is some $3 B$-element e in $C_{H}(t)$. It is obvious that e centralizes some involution s of $C_{H}(t)$ modulo $\langle d\rangle$, and so s centralizes some 3 -element in $\langle d, e\rangle-\langle d\rangle$. These are all $3 B$-elements, as can be seen in the nonabelian group S, and hence there is some $2 B$-involution in $C_{H}(t)$. Now (ii) follows from (i).

We are now able to describe the graph Γ for the desired example.
Vertices of Γ are $2 C$-involutions in G. Two vertices t, s are adjacent, if $[s, t]=1$ and 5 divides the order of $C_{H}(\langle s, t\rangle)$.

Right from the definition it is clear that G induces a group of automorphisms on Γ, which is vertex-transitive. Moreover, $\{s, t\}$ is an edge in Γ, if and only if $s t$ is a transposition in $C_{H}(t)$ (and also in $\left.C_{H}(s)\right)$.

Lemma 7. (i) Maximal cliques in Γ are 4-cliques, and G acts transitively on the set of 4 -cliques of Γ,
(ii) If $t \in \Gamma$, then the 2 -cliques (resp. 3 -cliques, resp. 4 -cliques) of Γ on t correspond to the 1-cliques (resp. 2-cliques, resp. 3-cliques) of the commuting graph on transpositions of $3 \Sigma_{7}$,
(iii) G acts flag-transitively on $\underline{G}(\Gamma)$, and $G(\Gamma)$ has diagram $)^{c}{ }_{-}^{{ }^{c}}-$

Proof. Let $t \in \Gamma$. Then if $s \in \Gamma$ is adjacent to t, the involution $s t \in H$ is a transposition in $C_{H}(t)=3 \Sigma_{i}$, and hence there are no i-cliques in Γ for $i>4$.

Let $u, v, w \in \Gamma$ be three vertices of Γ adjacent to t, such that they commute pairwise. Then the involutions $t u$, $t v$ and $t w$ are pairwise commuting transpositions in $3 \Sigma_{7}$ and the group $\langle t, t u, t v, t w\rangle$ is elementary abelian of order 16. By lemma 2(i), the elements of $\langle t u, t v, t w\rangle-\langle t u v w\rangle$ are $2 A$-involutions. Moreover, there is an element d of order 3 in $C_{H}(t)$ permuting transitively the elements u, v, w.

Claim: $\{t, u, v, w\}$ is a 4-clique in Γ.
Assume the contrary, then $\{u, v, w\}$ is a co-clique in Γ. Now, in $C_{H}(u)$, the element $t u$ is a transposition, while the elements $u v$ and $u w$ are not. Therefore $u v$ and $u w$ are double transpositions in $C_{H}(u)$. But since $t u v$ and $t u w$ are $2 A$-involutions, we may identify $\{t u, u v, u w\}$ in $C_{H}(u) / O_{3}\left(C_{H}(u)\right)=\Sigma_{7}$ with $\{(12),(12)(34),(12)(56)\}$. Therefore $C=C_{H}(\langle u, v, w\rangle)$ is a $\{2,3\}$-group with $O_{3}(C)=O_{3}\left(C_{H}(u)\right)$, as can be seen in $C_{H}(u)$. And d is contained in $N_{H}\left(O_{3}(C)\right)$ $=C_{H}(u)$. This is clearly a contradiction.

We may conclude that vertices u, v adjacent to t form an edge, if and only if the transpositions $t u$ and $t v$ in $C_{H}(t)=3 \Sigma_{7}$ commute. Now (ii) follows. As G (and also H) is transitive on pairs $\{t, F\}$ of vertices $t \in \Gamma$ and 4-cliques F containing t of Γ, G (resp. H) is transitive on 4 -cliques of Γ, and the stabilizer G_{F} (resp. H_{F}) of a 4 -clique F is transitive on vertices in F. But, given a pair $\{t, F\}$ as above, $C_{H}(t)$ induces a group Σ_{3} on the 2-cliques of F containing t, hence G_{F} (resp. H_{F}) induces Σ_{4} on vertices of F, and G (resp. H) acts flagtransitively on $\underline{G}(\Gamma)$. Together with (ii), this implies the rest of (iii).

The truncation of $G(\Gamma)$ to 2-cliques, 3-cliques and 4-cliques will be denoted by $G(H e)$. It will later on turn out, that its universal cover is \underline{G}_{9}.

3. The proof of the theorem.

Let G be a connected geometry with diagram ($c^{*} \cdot P$) and flag-transitive group of automorphisms G. Let $\{p, l, x\}$ be some chamber of G, where p is a point, l is a line and x is a plane.
(1) $G_{p} / K_{p}=A_{5}$ or Σ_{5}.

In the first case, $G_{l p} / K_{p}=\Sigma_{3}, G_{x p} / K_{p}=Z_{2} \times Z_{2}, B / K_{p}=Z_{2}$.
In the second case, $G_{l_{p}} / K_{p}=Z_{2} \times \Sigma_{3}, G_{x p} / K_{p}=D_{8}, B / K_{p}=Z_{2} \times Z_{2}$.
In the first case, B / K_{p} does not contain a nontrivial subgroup invariant under $G_{l p}$, in the second case, there is a unique nontrivial subgroup of B / K_{p} invariant under $G_{l p}$, its order is 2 .

Proof. The automorphism group of the Petersen graph is Σ_{5}, and has only A_{5} as a proper flag-transitive subgroup. The further statements can be verified on the Petersen graph.
(2) $G_{x} / K_{x}=A_{4}$ or Σ_{4}.

In the first case, $G_{l x} / K_{x}=Z_{3}, G_{x p} / K_{x}=Z_{2}, B=K_{x}$.
In the second case, $G_{l x} / K_{x}=\sum_{3}, G_{x p} / K_{x}=Z_{2} \times Z_{2}, B / K_{p}=Z_{2}$.
In any case, B / K_{x} does not contain a nontrivial subgroup invariant under $G_{l x}$.

Proof. The automorphism group on the circle geometry on 4 points is Σ_{4} and only A_{4} is a proper flag-transitive subgroup. The further statements are obvious.

Note that there is no nontrivial normal subgroup of G contained in B, as G acts faithfully on the set of chambers of \underline{G}. But \underline{G} is connected, hence $G=\left\langle G_{i}, G_{j}\right\rangle$ for $\{i, j, k\}=\{p, l, x\}$, and even $G=\left\langle G_{i}, G_{j k}\right\rangle$, and therefore, if K is some nontrivial normal subgroup of G_{i} contained in B, then K is not invariant under $G_{j k}$. In particular, if we can prove $K_{l}=K_{x}$ or $K_{p} K_{l}=K_{x}$, we already know $K_{x}=1$.

By (1) and (2), $G_{p l}=\langle B, d\rangle$ for some element d not in B satisfying $d^{3} \in B$, $G_{p x}=\langle B, a\rangle$ for some element a not in B satisfying $a^{2} \in B$, and $G_{l x}=\langle B, e\rangle$ for some element e not in B satisfying $e^{3} \in B$. By connectedness of G, $G=\langle B, d, a, e\rangle$. We will use the elements a and e right from the beginning and prove early statements (for instance in (3)) for all possible choices; later on, we pick specific elements d, a and e subject to further conditions. Then we can, of course, still use these early results.
(3) $K_{l} \leqq K_{x}$, and $K_{p} \cap K_{x} \leqq K_{l}$; either $K_{x}=K_{l}=1$, or $\left|K_{x}: K_{l}\right|=2$.

Further, $K_{l} \cap\left(K_{l}\right)^{a}=K_{p} \cap K_{x}$ is G_{p}-invariant
and $K_{l} \cap\left(K_{l}\right)^{a} \cap\left(K_{l}\right)^{a e} \cap\left(K_{l}\right)^{a e e}=1$.
In particular, K_{x} is an elementary abelian 2-group of order at most 16.

Proof. By (2), $K_{l} K_{x} / K_{x}=1$ and we get $K_{l} \leqq K_{x}$. Since res(1) is a generalized digon, $K_{p} \cap K_{x} \leqq K_{l}$. And since G_{l} / K_{l} is isomorphic to a subgroup of $\Sigma_{3} \times \Sigma_{3},\left|K_{x}: K_{l}\right| \leqq 2$ holds.

In case $K_{l}=1$, there is nothing to show.
Assume for the rest of (3) that $K_{l}>1$. Then K_{l} is not G_{x}-invariant, but is invariant under $G_{l x}$, hence has precisely the four G_{x}-conjugates $K_{l},\left(K_{l}\right)^{a}$, $\left(K_{l}\right)^{a e}$ and $\left(K_{l}\right)^{a e e}$ (which are all contained in K_{x}). Moreover, $K_{p} \cap K_{x}$ is a proper subgroup of K_{l}.

The intersection M_{x} of all G_{x}-conjugates of K_{l} has index at most 16 in K_{x}, and K_{x} / M_{x} is an elementary abelian 2-group. We have to show that $M_{x}=1$.

It is clear, by (1), that $K_{l} / K_{p} \cap K_{l}=K_{l} K_{p} / K_{p}$ has at most two elements.
Assume K_{l} is contained in K_{p}. Then $K_{l}=K_{l} \cap K_{p}=K_{p} \cap K_{x}$, contradicting the above.

Therefore $K_{l} / K_{p} \cap K_{l}$ has precisely 2 elements, and so $K_{p} \cap K_{l} \leqq K_{p} \cap K_{x}<K_{l}$ which implies $K_{p} \cap K_{l}=K_{p} \cap K_{x}$; in particular, $K_{p} \cap K_{l}$ is G_{p}-invariant.

Hence $K_{p} \cap K_{l}$ is contained in the group $K_{l} \cap\left(K_{l}\right)^{a}$. But as the group $K_{l} \cap\left(K_{l}\right)^{a}$ is a proper subgroup of K_{l}, equality holds. Now the conjugates $K_{l} \cap\left(K_{l}\right)^{a}, K_{l} \cap\left(K_{l}\right)^{a e}$ and $K_{l} \cap\left(K_{l}\right)^{a e e}$ are nothing but the conjugates of
$K_{l} \cap\left(K_{l}\right)^{a}=K_{p} \cap K_{l}$ under the action of $G_{l x}$. In fact, they equal the intersections of K_{l} with K_{q} for the three points q incident to l. Clearly, the whole of G_{l} acts on this set, whence normalizes the intersection M_{x}.

Now, M_{x} is normalized by G_{x} and G_{l}, whence $M_{x}=1$.
We discuss the possible structures of G_{p} / K_{p} and G_{x} / K_{x} in the following. By (1) and (2), we consider the cases (4), (5) and (6).
(4) Assume $G_{x} / K_{x}=A_{4}$. Then $\left|K_{x}\right|=2$ and $G_{p}=A_{5}$, or $\left|K_{x}\right|=8$ and $G_{p}=Z_{2} \times \Sigma_{5}$.

Proof. We have $K_{p} \leqq K_{x}=B$ by (2) and therefore $B=K_{x} \geqq K_{l} \geqq K_{p}$ by (3). If $K_{l}=1$, we get $|B|=2$, and the first possibility occurs. Assume K_{l} is different from 1, whence $K_{x}>K_{l}>K_{p}$ and $\left|B / K_{p}\right|=4$. Then K_{l} is not G_{x}-invariant and there are four G_{x}-conjugates of K_{l} in K_{x}. This clearly implies $K_{p}>1$. Moreover by (1), we know K_{l} is not contained in $G_{p}^{\prime} K_{p}$, and $G_{p} / K_{p}=\Sigma_{5}$.

Now G_{p} is generated by G_{p}-conjugates of K_{l} and the subgroup K_{p}, therefore it centralizes K_{p}. Recall that $K_{p}=K_{p} \cap K_{x}=K_{l} \cap\left(K_{l}\right)^{a}$, by (3). And take some element $e^{\prime} \in G_{x}$ of order 3 that permutes the groups $K_{l},\left(K_{l}\right)^{a}$ and $\left(K_{l}\right)^{a e}$ among themselves. Clearly, $G_{x}=\left\langle G_{p x}, e^{\prime}\right\rangle$. Hence the group $K_{l} \cap\left(K_{l}\right)^{a} \cap\left(K_{l}\right)^{a e}$ is normal in G, and therefore it is equal to 1 . Now K_{l} has at most 4 elements and $\left|K_{x}\right|=8$ follows.

We showed $\left|K_{p}\right|=2$; since K_{x} is elementary abelian, $G_{p}=Z_{2} \times \Sigma_{5}$.
(5) Assume $G_{x} / K_{x}=\Sigma_{4}$ and $G_{p} / K_{p}=A_{5}$.

Then $K_{p}=K_{x}=1$, or $\left|K_{p}\right|=\left|K_{x}\right|=2, G_{p}=Z_{2} \times A_{5}$.
Proof. We have $\left|B / K_{p}\right|=\left|B / K_{x}\right|=2$ by (1) and (2), and $K_{l} \leqq K_{x}$ with $\left|K_{x}: K_{l}\right| \leqq 2$ by (3). Moreover, $K_{p} \cap K_{x}$ is contained in K_{l} by (3). Hence either $K_{p}=K_{x}=1$, or $K_{p} K_{x}=B$ and $K_{p} \cap K_{x}=K_{l}=1$. Then $\left|K_{p}\right|=\left|K_{x}\right|=2$. Since B contains more than one involution, the last statement holds.
(6) Assume $G_{x} / K_{x}=\Sigma_{4}$ and $G_{p} / K_{p}=\Sigma_{5}$.

Then $\left|B: K_{x}\right|=2$ and $G_{l} / K_{l}=\Sigma_{3} \times \Sigma_{3}$. Moreover, $G_{p}^{\prime \prime}=A_{5}$.
Proof. The group B / K_{x} has precisely 2 elements by (2). Hence B / K_{l} has 4 elements by (3), and as G_{l} / K_{l} is a flag-transitive subgroup of $\Sigma_{3} \times \Sigma_{3}$, we get $G_{l} / K_{l}=\Sigma_{3} \times \Sigma_{3}$. The group $G_{p x} / K_{x}$ is a fours group by (2), and so $G_{p x}$ has exponent at most 4. Clearly, K_{p} is a 2 -group of order at most 8 , hence centralized by $G_{p}^{\prime \prime}$, and therefore $G_{p}^{\prime \prime}$, which is a perfect central extension of A_{5}, is isomorphic to A_{5} or to $S L_{2}(5)$. Assume the second case occurs. Then some involution t from $G_{p}-G_{p}^{\prime \prime}$ normalizes some Sylow 2 -subgroup S of $G_{p}^{\prime \prime}=S L_{2}(5)$, which is quaternion. By the structure of $G_{p} / K_{p}, t$ does not centralize $S / Z(S)$. But then it is easily verified that $S\langle t\rangle \leqq G_{p}$ contains elements of order 8. As
$G_{p x}$ contains a Sylow 2-subgroup of G_{p}, this contradicts $\exp \left(G_{p x}\right)=4$.
For the convenience of the reader, we once more describe the procedure for the identification of G and \underline{G}.

We start with the flag-transitive group G on the simply 2 -connected geometry G. Then G also acts transitively on the chamber system $C=C(\underline{G})$, which is simply connected. Assume B (resp. X_{1}, X_{2}, X_{3}) are the stabilizers of some chamber c (resp. the rank 1 residues containing c) of C (the parabolics of G). Then C is isomorphic to $C\left(G ; B ; X_{1}, X_{2}, X_{3}\right)$ by the transitive action of G. We choose a "canonical" generator set $\left\{x_{i}: i \in I\right\}$ of G from the local structure of G, and derive a set R of relations between these generators. We do this in a way that the parabolics of G are generated by subsets of the generator set and relations live only inside the parabolics.

Assume that for each parabolic X, the generators contained in X and the relations between these generators derived from a presentation of this parabolic. Then consider the group G^{0}, for which our generators and relations form a presentation. Then the corresponding subsets of generators of G^{0} generate subgroups $B^{0}, X_{1}^{0}, X_{2}^{0}$ and X_{3}^{0}, again called parabolics, of G^{0}.

Then there is a natural projection π from G^{0} onto G, where parabolics are mapped onto parabolics.

Assume we know that π induces a bijection on each parabolic of G^{0}. Then clearly π induces a 2 -cover from $C^{0}=C\left(G^{0} ; B^{0} ; X_{1}^{0}, X_{2}^{0}, X_{3}^{0}\right)$ onto $C=$ $C\left(G ; B ; X_{1}, X_{2}, X_{3}\right)$, which must be an isomorphism, as C is simply connected. This implies that π is an isomorphism of groups, and we derived a presentation for G. Moreover, as in our case the diagram is a string and some "fundamental condition" is satisfied, we may apply [MT] to see that G is isomorphic to $\underline{G}(C)=\underline{G}\left(C^{0}\right)$.

The mentioned knowledge that rank 2 residues of C^{0} have the desired isomorphism type must be taken from some quotient, where it can be verified explicitly.

Now to the presentations. We give generators and relations for the group G. We thereby frequently use well-known presentations for A_{4}, Σ_{4}, A_{5} and Σ_{5}.

For instance, if d, t are elements in A_{5} of order 3 and 2 respectively, and t inverts d, and s is some other involution in A_{5} commuting with t, then the elements $d s$ and $d s t$ have both order 5. Conversely, $\left\langle d, t, s: d^{3}=t^{2}=s^{2}=[s, t]\right.$ $\left.=(d t)^{2}=(d s)^{5}=(d s t)^{5}=1\right\rangle$ is isomorphic to the group A_{5}.

It is also well-known that $\left\langle a, e: a^{2}=e^{3}=(e a)^{4}=1\right\rangle$ is isomorphic to Σ_{4}.
The verification that the presentations given below indeed define the groups stated, was done by coset enumeration using CAYLEY. We summarize the presentations in table at the end of the paper.

A natural division into three cases is given by the structure of G_{x} / K_{x} and G_{p} / K_{p} (see (4), (5) and (6) above).

We investigate the situation of (4) (resp. (5), resp. (6)) in sections (7) (resp. (8), resp. (9)).
(7) Let $G_{x} / K_{x}=A_{4}$. Then $G=G_{12 a} \cong Z_{3} \times M_{12}$ or $G=G_{12 b} \cong A_{4} \times M_{12}$.
(a) Assume $K_{p}=1$.

Then by (4), $G_{p}=A_{5}$, and it is easily seen that $G_{p x}=Z_{2} \times Z_{2}, G_{x}=Z_{2} \times A_{4}$, $G_{l x}=Z_{6}, G_{p l}=\Sigma_{3}, G_{l}=Z_{3} \times \Sigma_{3}$.

Pick $d \in G_{p l}$ of order $3, e \in G_{x l}$ of order $3, s \in G_{x l}$ of order $2, a \in G_{p x} \cap G_{x}^{\prime}$, not in B, of order 2. Then $B=\langle s\rangle, G_{p l}=\langle s, d\rangle, G_{p x}=\langle B, a\rangle$ and $G_{l x}=\langle B, e\rangle$, and the relations $[d, e]=(d s)^{2}=(d a)^{5}=(d s a)^{5}=[e, s]=(a e)^{3}=1$ hold.

The group $G_{12 a}=\left\langle a, d, e, s: a^{2}=d^{3}=e^{3}=s^{2}=[a, s]=[d, e]=[e, s]=(d s)^{2}=\right.$ $(d a)^{5}=(d s a)^{5}=(a e)^{3}=1>$ is isomorphic to $Z_{3} \times M_{12}$.
(b) Assume next $G_{x} / K_{x}=A_{4},\left|K_{p}\right|>1$.

Then by (1), $G_{p}=Z_{2} \times \Sigma_{5}, G_{p x}=Z_{2} \times D_{8}, G_{p l}=Z_{2} \times Z_{2} \times \Sigma_{3}, K_{x}=\left(Z_{2} \times Z_{2} \times Z_{2}\right)$, $G_{l}=A_{4} \times \Sigma_{3}, \quad G_{l x}=A_{4} \times Z_{2}$.

Moreover, $1<K_{p}<K_{l}<B=K_{x}$, and so we may pick elements t in K_{p} of order $2, d \in G_{p l}$ of order $3, e \in G_{x l}$ of order 3, u in K_{l} with $u=t^{e}, s \in Z\left(G_{x l}\right)$ of order $2, a \in G_{p x} \cap G_{p}^{\prime}$, not in B, of order 2.

Then $B=\langle t, u, s\rangle, G_{p l}=\langle B, d\rangle, G_{x l}=\langle B, e\rangle, G_{p x}=\langle B, a\rangle$ and $G_{p x} \cap G_{p}^{\prime}=$ $\langle s, a\rangle$, and the relations $[t, u]=[t, s]=[t, d]=[t, a]=t^{e} u=u^{e} u t=[u, s]=[u, a] s$ $=[u, d]=[d, e]=(d s)^{2}=(d a)^{5}=(d s a)^{5}=[e, s]=1$ hold. Moreover $(a e)^{3} \in B$.

The possible relations $(a e)^{3}=u, t, u t, u s, s t$, uts make the presented group collapse to a group with at most 3 elements, the relations $(a e)^{3}=1$ and $(a e)^{3}=s$ are equivalent (replace a by $a s$).

The group $G_{12 b}=\left\langle a, d, e, s, t, u: a^{2}=d^{3}=e^{3}=s^{2}=t^{2}=u^{2}=[t, u]=[s, t]=[d, t]\right.$ $=[a, t]=t^{e} u=u^{e} u t=[s, u]=[a, u] s=[d, u]=[a, s]=[e, s]=[d, e]=(d s)^{2}=(d a)^{5}$ $\left.=(d s a)^{5}=(a e)^{3}=1\right\rangle$ is isomorphic to $A_{4} \times M_{12}$.
(8) Let $G_{x} / K_{x}=\sum_{4}$ and $G_{p} / K_{p}=A_{5}$. Then $G=G_{6 a} \cong 3\left(A_{6} \times A_{6}\right)$ or $G=G_{6 b} \cong Z_{3}\left(A_{6} \times A_{6}\right) Z_{2}$ or $G=G_{12 c} \cong\left(Z_{3} \times M_{12}\right) Z_{2}$.
(a) Assume $K_{p}=K_{x}=1$.

Then $G_{p}=A_{5}, G_{p l}=\Sigma_{3}, G_{p x}=Z_{2} \times Z_{2}, B=Z_{2}, \quad G_{l}=\left(Z_{3} \times Z_{3}\right) Z_{2}$.
Hence we may pick elements a, b, d, e in the following way:
s is the involution in B, d is an element of order 3 in $G_{p l}, e$ is an element of order 3 in $G_{x l}$, and a is the involution in $G_{p x} \cap G_{x}^{\prime}$.

Then the relations $[a, s]=(d s)^{2}=(e s)^{2}=[d, e]=(a e)^{3}=1$, and $(a d)^{5}=(a s d)^{5}=1$ hold in G.

The group $G_{6 a}=\left\langle a, d, e, s: a^{2}=d^{3}=e^{3}=s^{2}=[a, s]=(d s)^{2}=(e s)^{2}=[d, e]=(d a)^{5}\right.$ $\left.=(d s a)^{5}=(a e)^{3}=1\right\rangle$ is isomorphic to the central product of two perfect central extensions $Z_{3} A_{6}$.
(b) Assume $\left|K_{p}\right|=\left|K_{x}\right|=2$.

Then $B=K_{p} K_{x}$ is elementary abelian of order 4 , and $G_{p}=Z_{2} \times A_{5}$.
Now $G_{p l}=Z_{2} \times \Sigma_{3}, \quad G_{p x}=Z_{2} \times Z_{2} \times Z_{2}$ and $G_{x}=Z_{2} \times \Sigma_{4}$. Moreover, $K_{l}=$ $K_{x} \cap K_{p}=1$ and hence $G_{l}=\Sigma_{3} \times \Sigma_{3}$.

Pick elements k in K_{p} of order 2, s in K_{x} of order 2, d in $G_{p l}$ of order 3 and e in $G_{l x}$ of order 3. Moreover, take the involution a in $\left(G_{p x} \cap G_{x}^{\prime}\right)-B$.

Then $B=\langle k, s\rangle, G_{p l}=\langle B, d\rangle, G_{p x}=\langle B, a\rangle, G_{l x}=\langle B, e\rangle$, and, if $\langle u, v\rangle=$ $G_{p x} \cap G_{p}^{\prime}$, where u inverts d, the following relations hold:
$[k, s]=[k, d]=[k, a]=[e, s]=[a, s]=[d, e]=(k e)^{2}=(s d)^{2}=(d v)^{5}=(d v u)^{5}=1$, and $(a e)^{3}=1$.

As possibilities for $\langle u, v\rangle$ we get all fours groups in $G_{p x}$ that do not contain the element k. The two possibilities $\langle u, v\rangle=\langle s, k a\rangle,\langle s k, a k\rangle$ give a collapsing of the corresponding group, whereas the choices $\langle u, v\rangle=\langle s k, a\rangle$, $\langle s, a\rangle$ do not force the group to collapse. So we end up with the following groups:
$G_{6 b}=\left\langle a, d, e, k, s: a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[a, s]=[k, s]=[d, k]=[e, s]\right.$ $\left.=[d, e]=(d s)^{2}=(e k)^{2}=(d a)^{5}=(d s k a)^{5}=(a e)^{3}=1\right\rangle$, which is isomorphic to a group $Z_{3}\left(A_{6} \times A_{6}\right) Z_{2}, G_{12 c}=\left\langle a, d, e, k, s: a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[d, k]=[e, s]=\right.$ $\left.[k, s]=[a, s]=[d, e]=(d s)^{2}=(k e)^{2}=(d a)^{5}=(d s a)^{5}=(a e)^{3}=1\right\rangle$, which is isomorphic to a group $\left(Z_{3} \times M_{12}\right) Z_{2}$.
(9) Let $G_{x} / K_{x}=\Sigma_{4}$ and $G_{p} / K_{p}=\Sigma_{5}$. Then $G=G_{11} \cong M_{11}$ or $G=G_{12 d}$ $\left(\right.$ resp. $\left.G_{12 e}\right) \cong\left(A_{4} \times M_{12}\right) Z_{2}$ or $G=G_{5 a}$ or $G_{5 b}$ or $G=G_{9 a}$ or $G_{9 b}$, in which cases we do not know the isomorphism type.
Recall that $K_{l} \leqq K_{x}$; and as res(1) is a digon, $K_{x} \cap K_{p} \leqq K_{l}$.
(a) $K_{x}>1$.

Assume $K_{x}=1$. Then $|B|=2$, which contradicts $\left|B / K_{x}\right|=4$.
(b) Assume $\left|K_{x}\right|=2$. Then $G=G_{11}$.

We have $|B|=4$, and $K_{p}=1$. Then $G_{p}=\Sigma_{5}$, and $G_{p x}=D_{8}, G_{p l}=Z_{2} \times \Sigma_{3}$. Now $|B|=Z_{2} \times Z_{2}$, and $G_{l}=\Sigma_{3} \times \Sigma_{3}$. Clearly, $G_{l x}=Z_{2} \times \Sigma_{3}$, and $K_{x}=Z\left(G_{l x}\right)=$ $Z\left(G_{x}\right)$. Pick an element z in K_{x} of order 2, and an element t in $Z\left(G_{p l}\right)$ of order 2, an element d in $G_{p ı}$ of order 3, and an element e in $G_{l x}$ of order 3. Pick further an involution a in $G_{p x} \cap G_{p}^{\prime}-B$. Then $B=\langle z, t\rangle, G_{p l}=\langle B, d\rangle$, $G_{p x}=\langle B, a\rangle$ and $G_{l x}=\langle B, e\rangle$. As G_{l} is 3 -closed, the elements d and e commute. K_{x} centralizes G_{x}, hence $G_{p x}$, and hence z is contained in $G_{p x}^{\prime}$.

This implies $K_{x} \leqq G_{p}^{\prime}$ and so $G_{p x} \cap G_{p}^{\prime}=\langle a, z\rangle$, and the relations $[z, t]=$ $[z, e]=[z, a]=(z d)^{2}=[t, d]=(t e)^{2}=[t, a] z=(d a)^{5}=(d z a)^{5}=1$ hold. Moreover, as $G_{p x}=D_{8}, z$ lies in the commutator subgroup of Sylow 2-subgroups of G_{x}, whence $O_{2}\left(G_{x}\right)=Q_{8}$. Now the involution a is not contained in $O_{2}\left(G_{x}\right)$, but the 4 -element $t a$ is. Hence $(a t e)^{3}$ is contained in K_{x}. Up to replacing a by $a z$, this gives a unique presentation $G_{11}=\left\langle a, d, e, z, t: a^{2}=d^{3}=e^{3}=z^{2}=t^{2}=[e, z]=\right.$
$\left.[a, z]=[z, t]=(d z)^{2}=[d, t]=(e t)^{2}=[a, t] z=(d a)^{5}=(d z a)^{5}=(a t e)^{3}=1\right\rangle$.
A coset enumeration shows that G_{11} is isomorphic to M_{11}.
Remark. The identification could be achieved also as follows. Consider the chamber system $C=C\left(G ; K_{x} ; B,\left\langle K_{x}, t e\right\rangle,\left\langle K_{x}, a\right\rangle,\left\langle K_{x}, d\right\rangle\right)$. Then C has diagram ($c^{2} \cdot P$), and by [MT], the corresponding geometry $\Gamma(C)$ has the same diagram and flag-transitive group of automorphisms G. As the stabilizer of a point-line-flag F in G induces only A_{5} on \boldsymbol{F}, which has type P, by [IS], Theorem 6.1, we get $\Gamma(C)=G_{11}$ and $G=M_{11}$.
(c) The case $K_{x}=Z_{2} \times Z_{2}$ does not occur.

Assume $K_{x}=Z_{2} \times Z_{2}$. Then $\left|K_{l}\right|=\left|K_{p}\right|=2$. As K_{x} can not contain four different conjugates of K_{l}, but $G_{l x}$ normalizes K_{l}, the whole of G_{x} leaves invariant K_{l}, a contradiction.
(d) Assume $K_{x}=Z_{2} \times Z_{2} \times Z_{2}$. Then $G_{12 d}, G_{12 e}, G_{9 a}$ or $G_{5 a}$. .

Then $K_{l}=Z_{2} \times Z_{2}$, and K_{l} is contained in $K_{x} ;\left|K_{p}\right|=4$, and K_{p} is not contained in K_{x}, as it is not equal to K_{l}; furthermore K_{l} is not G_{x}-invariant and hence has precisely four G_{x}-conjugates in K_{x}. This is only possible, if these are precisely the four 2 -spaces in K_{x} missing a certain 1-space Z_{x}, which of course equals $Z\left(G_{x}\right)$.

Again $B=K_{x} K_{p}$, and K_{p} acts nontrivially on K_{x}. Hence $\left[K_{x}, K_{p}\right]=K_{x} \cap K_{p}$ $=K_{l} \cap K_{p}$. As $K_{p} \leqq G_{x}$ centralizes Z_{x}, we get [$\left.K_{l}, K_{p}\right]=K_{l} \cap K_{p}$.

Recall that $G_{x} / K_{x}=\Sigma_{4}$ acts faithfully on K_{x}. Hence $\left[G_{p x}, K_{x}\right]=\left(K_{l} \cap K_{p}\right) \cdot Z_{x}$. Therefore, $\left(K_{l} \cap K_{p}\right) \cdot Z_{x}$ is contained in $G_{p x}^{\prime}$.

Now $G_{p}=\left(K_{p} \times G_{p}^{\prime \prime}\right): 2$, with $K_{p}=Z_{2} \times Z_{2}$ or Z_{4}; moreover, K_{l} is not contained in ($K_{p} \times G_{p}^{\prime \prime}$), and $\left\langle K_{p}, K_{l}\right\rangle=D_{8}$, whence K_{p} is not central in G_{p}, and $Z\left(G_{p}\right)=$ $\left[K_{p}, K_{l}\right]$.

We get $G_{p l}=D_{8} \times \Sigma_{3}$, and $G_{l}=\Sigma_{4} \times \Sigma_{3}$.
Now we may pick elements k in $Z\left(G_{p}\right)$ of order $2, d$ in $G_{p l}$ of order $3, m$ in $K_{p}-\langle k\rangle$ with $m^{2}=k$ or $1, u$ in $K_{l}-\langle k\rangle$ of order $2, e$ in $G_{l x}$ of order 3 such that $\langle e\rangle$ is inverted by some element t in the $\operatorname{coset} K_{x} m$, and $z \in Z\left(G_{x}\right)$ of order 2 , $a \in G_{p x} \cap G_{p}^{\prime \prime}$, not in B, of order 2. As $G_{p}^{\prime \prime}$ centralizes K_{p}, we get $[a, m]=$ $[a, k]=1$. As a is contained in $G_{p x}$, we get $[a, z]=1$.

The element t must be an involution, since k is the only nontrivial square in $\left\langle K_{x}, m\right\rangle$, but does not centralize e. Involutions in $K_{x} m$ are the elements m, $m k, m z, m k z$ if $m^{2}=1$, and the elements $m u, m u k, m u z, m u k z$ if $m^{2}=k$. Hence up to replacing m by $m k$, we may assume $t=m$ in the first case, and $t=m u$ in the second case.

This gives the relations

$$
\begin{equation*}
m^{2}=1 \text { and }(e m)^{2}=1, \text { or } m^{2}=k \text { and }(e m u)^{2}=1 . \tag{*}
\end{equation*}
$$

Then $K_{p}=\langle m, k\rangle, K_{l}=\langle k, u\rangle, K_{x}=\langle k, u, z\rangle, B=\langle m, k, u, z\rangle, G_{l x}=\langle B, e\rangle, G_{p x}$ $=\langle B, a\rangle, G_{p l}=\langle B, d\rangle$.

Now, the element a does not normalize K_{l}, but centralizes k and z, hence maps K_{l} onto some conjugate of K_{l} different from K_{l}, containing k and not containing z. Thus $K_{l}^{a}=\langle k, u z\rangle$, and we get

$$
\begin{equation*}
[u, a]=z \text { or } k z . \tag{**}
\end{equation*}
$$

In the first case, a induces a fixed point free involution on the four conjugates of K_{l} in K_{x}, while in the second case, a fixes the conjugates $\langle u, k z\rangle$ and $\langle u k, k z\rangle$. As m has two fixed points $\left\langle K_{l}\right\rangle$ and $\langle k, u z\rangle, a m$ induces a fixed point free involution in this case.

But e acts fixed point freely on $O_{2}\left(G_{x}\right) / Z_{x}$, hence elements of K_{x} centralized by an element of order 3 in G_{x} are contained in Z_{x}, and we get the relations

$$
\begin{equation*}
(a e)^{3}=1 \text { or } z, \text { or }(a m e)^{3}=1 \text { or } z . \tag{***}
\end{equation*}
$$

Moreover, there are the trivial relations $[k, m]=[k, u]=[k, z]=[k, d]=[k, a]$ $=[u, m] k=[u, z]=[u, k]=[u, d]=[m, z]=[m, d]=[e, z]=[e, d]=1$, and $(z d)^{2}$ $=(d a)^{5}=1$. Up to replacing u by $k u$, we may assume $k^{e} u=u^{e} k u=1$.

Now checking (using again CAYLEY) the group generated by k, u, z, a, d, e and one set of the relations indicated, we get a contradiction, (the parabolic subgroups of G are smaller than we assumed) as soon as the resulting group has fewer than 60 elements. This happens, whenever the relation $m^{2}=k$ holds.

Hence we know that always $m^{2}=1$.
Now the relations $[u, a]=z$ and $(a e)^{3}=1$ or z give a presentation for the group $\left(A_{4} \times M_{12}\right) Z_{2}$. The so presented groups are named $G_{12 d}$ and $G_{12 e}$; it can be checked that factoring out the normal subgroup A_{4} yields a projection of chamber systems, hence geometries, onto $\underline{G}_{12}^{\prime}$. Hence we get $\underline{G}=\underline{G}_{12}$ in both cases.

The relations $[u, a]=k z$ and $(a m e)^{3}=1$ and $[u, a]=k z$ and $(a m e)^{3}=z$ do not force the respective groups (named $G_{9 a}$ and $G_{5 a}$) to collapse either; in contrast, it can be verified, by letting act $G_{9 a}$ on cosets of a subgroup of index 126 or $G_{5 a}$ on cosets of a subgroup of index 300, that A_{9} is a quotient of $G_{9 a}$ and $\Omega_{5}(5)$ is a quotient of $G_{5 a}$, and that the projection maps are injective on parabolic subgroups of the chamber systems. This can most effectively be achieved using the cosact homomorphism implemented in CAYLEY. Now G is the universal 2-cover of $G\left(A_{9}\right)$ respectively the universal 2-cover of $G\left(\Omega_{5}(5)\right)$ in the two cases.

Let us summarize the result of case (d):
The group G is hence generated by elements k, u, z, m, d, e, a and satisfies the relations $k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=1, \quad[k, m]=[k, u]=[k, z]=[k, d]=$ $[k, a]=[u, m] k=[u, z]=[u, k]=[u, d]=[m, z]=[m, d]=[e, z]=[e, d]=1$,
$k^{e} u=u^{e} k u=1, \quad(e m)^{2}=1, \quad(z d)^{2}=(d a)^{5}=1$, and further relations $[u, a]=z$, and $(a e)^{3}=1$ or z, or $[u, a]=k z$, and $(a m e)^{3}=1$ or z.

As already stated, these are presentations for G in the four respective case.
What about the universal 2-cover of $\underline{G}(H e)$? It must appear in case (d) by the structure of its parabolic subgroups. Certainly, it is not covered by the geometry \underline{G}_{12}, but which of \underline{G}_{5} and \underline{G}_{9} is the universal 2-cover of $\underline{G}=\underline{G}(H e)$?

Analogously as in the remark at the end of case (b), we can switch to the chamber system $C\left(G ; K_{x} ; B,\left\langle K_{x}, m e\right\rangle,\left\langle K_{x}, a\right\rangle,\left\langle K_{x}, d\right\rangle\right)$ which has diagram $\left(c^{2} \cdot P\right)$ and to the geometry $\Gamma(C)$. By ([P2], Theorem 1), the universal 2-cover of G is the appropriate truncation of the universal 2-cover of $\Gamma(C)$, and by ([P2], Lemma 4), all rank 3 residues in the universal 2 -cover of G (viewed as a rank 4 geometry) and in $\Gamma(C)$ are isomorphic. The same holds also for the geometries $G\left(A_{9}\right)$ and $\underline{G}\left(\Omega_{5}(5)\right)$ and their universal 2-covers respectively.

Now point residues in the rank 4 geometries $\underline{G}\left(A_{9}\right)$ and $\underline{G}(H e)$ are isomorphic to the $(c \cdot P)$-geometry for the group $3 \Sigma_{i}$, point residues in the rank 4 geometry $G\left(\Omega_{5}(5)\right)$ are isomorphic to the (c.P)-geometry for the group $\Omega_{4}^{-}(5)$ in the other case.

Hence the universal 2-covers for the Held group example and the universal 2-cover for $G\left(A_{9}\right)$ are isomorphic, but are not isomorphic to the universal 2-cover of $G\left(\Omega_{5}(5)\right.$).
(e) Assume $K_{x}=Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$. Then $G=G_{\text {5b }}$ or $G=G_{9 b}$.

We will see that G has a flag-transitive subgroup with $\left|K_{x}\right|=8$ in this case, whence the geometry must already occur in case (d). The flag-transitive subgroup can be identified to be $G_{5 a}$ (resp. $G_{9 a}$).

Now, $K_{l}=Z_{2} \times Z_{2} \times Z_{2} \leqq K_{x}$, and we claim that K_{x} is the (dual) permutation module for $G_{x} / K_{x}=\Sigma_{4}$. To see this, assume by way of contradiction, that the four G_{x}-conjugates of K_{l} in K_{x} intersect in a 1 -space Z. Then Z is certainly contained in $K_{p} \cap K_{l}=K_{l} \cap\left(K_{l}\right)^{a}$ and therefore centralized by G_{p}^{\prime}. But then, as G is generated by G_{x} and G_{p}^{\prime}, Z is G-invariant, which is a contradiction. Hence the intersection of the four G_{x}-conjugates of K_{l} in K_{x} is 1 , and the claim is proved.

Now G_{x} fixes precisely one 1 -space Z_{x}, no 2 -space and precisely one 3 -space H_{x} in K_{x} and Z_{x} is contained in H_{x}, but not in K_{l}.

Hence Z_{x} equals $Z\left(G_{x}\right)$ and is a complement to K_{l} in K_{x}. As $K_{p} K_{x}=B$, K_{p} acts nontrivially on K_{x}, and as K_{p} normalizes K_{l} and Z_{x}, we get [K_{x}, K_{p}] $=\left[K_{l}, K_{p}\right]$ is a group of order 2 in $K_{l} \cap K_{p}$, which itself is a fours group.

By (3), $K_{l} \cap K_{p}=K_{p} \cap K_{x}$ is G_{p}-invariant, and hence not invariant under G_{l}. Therefore, there are three conjugates of $K_{l} \cap K_{p}$ in K_{l} under $G_{x l}$.

Assume by way of contradiction that they intersect in a group Z of order 2. Then Z is central under $G_{x l}$, and contained in K_{p}. But K_{p} is centralized
by G_{p}^{\prime}, and $G_{p}=G_{p}^{\prime} \cdot B$; hence Z is centralized by G_{p} and is G-invariant, which is a contradiction (the same contradiction proof was performed ten lines above). Therefore, K_{l} is the dual permutation module for the group $\sum_{3}=G_{l x} / K_{x}$. But clearly also G_{l} induces Σ_{3} on K_{l}. This implies that there is a G_{l}-invariant 2-space $M_{x l}$ and a G_{l}-invariant 1 -space Z_{l} in K_{l}, such that Z_{l} is a complement to $M_{x l}$ and to $K_{l} \cap K_{p}$ and $G_{l x} / K_{x}$ acts faithfully on $M_{x l}$. Clearly, $H_{x}=Z_{x} M_{x l}$.

As K_{p} acts nontrivially on K_{x}, it has to act nontrivially on $K_{l} \cap K_{p}$ and K_{p} (being nonabelian of order 8 and containing the fours group $K_{p} \cap K_{x}$) is dihedral of order 8 .

By (6), $G_{p}=\left(D_{8} \times A_{5}\right) 2$. But Z_{l} is not contained in K_{p}, it is not even contained in $K_{p} G_{p}^{\prime}$ by (1), and it centralizes K_{p}. Hence, $G_{p}=D_{8} \times \Sigma_{5}$. In particular, $G_{p x}=D_{8} \times D_{8}$. Moreover, $G_{p x}^{\prime}=Z\left(G_{p x}\right)=Z_{2} \times Z_{2}$. And this group is contained in K_{x}, as $G_{p x} / K_{x}$ is abelian.

The action of G_{x} on the permutation module K_{x} shows that Z_{x} is contained in $G_{p x}^{\prime}$. Hence, $G_{p x}^{\prime}=\left[K_{x}, G_{p x}\right]=Z_{x}\left[K_{p}, K_{x}\right]$.

Let $\langle k\rangle=Z\left(K_{p}\right),\langle z\rangle=Z_{x},\langle l\rangle=Z_{l} . \quad$ Clearly, these three involutions commute. To generate B , we pick an element $r \in K_{p} \cap K_{l}-\langle k\rangle$ and a further involution m in $K_{p}-K_{x}$. Then $[m, z]=[m, l]=[m, k]=[r, k]=[r, z]=[r, l]=1$, and $[m, r]$ $=k$.

For the convenience of the reader, we list some consequences. $K_{p} \cap K_{l}=$ $\langle k, r\rangle, K_{l}=\langle k, r, l\rangle, K_{x}=\langle k, z, l, r\rangle$ and $B=\left\langle K_{x}, m\right\rangle$. Moreover, $K_{p}=\langle k, r, m\rangle$.

The group $G_{p}^{\prime \prime}=A_{5}$ acts still flag-transitively on $\operatorname{res}(p)$, whence $G_{p}^{\prime \prime} \cap B=Z_{2}$ is properly contained in $G_{p}^{\prime \prime} \cap G_{p x}=Z_{2} \times Z_{2}$.

Hence, we may pick an involution $a \in G_{p x}-B$ such that a is contained in $G_{p}^{\prime \prime}$, and hence centralizes K_{p}. This gives relations $[a, z]=[a, m]=[a, k]=$ $[r, a]=1$, and $[a, l]$ is contained in $Z\left(G_{p x}\right)=\langle k, z\rangle$. Assume $[a, l]$ is contained in $\langle k\rangle$. Then K_{l} is normalized by the element a, hence invariant under $G_{p x}=$ $\langle B, a\rangle$ and G_{l}, and therefore G-invariant, a contradiction. Hence we get $[a, l]=z$ or $k z$.

Assume $[a, l]=z$. Then a induces some transvection with center Z_{x} on K_{x}, which contradicts the action of $G_{x} / K_{x}=\Sigma_{4}$ on K_{x}. Hence
(*) $\quad[a, l]=k z$.
In particular, $K_{l}^{a}=\langle k, r, l z\rangle$. Moreover, a induces a transposition on the four G_{x}-conjugates of K_{l}. Let these be denoted by $K_{l}, K_{l}{ }^{a}, Q$ and R. Clearly, $K_{l} \cap K_{l}^{a}=\langle r, k\rangle$ is centralized by a, and $\langle k, r, z\rangle$, the centralizer of a in K_{x}, is the sum of $K_{l} \cap K_{l}^{a}$ and $\left[K_{x}, a\right]=\langle k z\rangle$.

Also the element m acts as a transvection on K_{x}, hence as a transposition on $\left\{K_{l}, K_{l}^{a}, Q, R\right\}$. As $[m, a]=1, m$ fixes K_{l} and K_{l}^{a}, and interchanges Q and R. Therefore, $Q \cap R$ is centralized by m, hence lies in $\langle k, l, z\rangle$. By the above argument, $Q \cap R$ is a complement to $\langle k\rangle=\left[K_{x}, m\right]$ in $\langle k, l, z\rangle$.

Moreover, a centralizes K_{x} / Q and K_{x} / R, hence $Q \cap R$ contains [$\left.a, K_{x}\right]=\langle k z\rangle$. Now, $Q \cap R=\langle k z, l\rangle$ or $\langle k z, l k\rangle$.
Therefore, $Q \cap R \cap K_{l}=\langle l\rangle$ or $\langle l k\rangle$. This implies $Q \cap R \cap\left(K_{l}^{a}\right)=\langle l k z\rangle$ or $\langle l z\rangle$. As this group is invariant under the action of $G_{l x}$, which centralizes $\langle l, z\rangle$ but not k, we get $Q \cap R \cap\left(K_{l}\right)^{a}=\langle l z\rangle, Q \cap R \cap K_{l}=\langle l k\rangle$, and $Q \cap R=\langle l z, l k\rangle$.

Now consider $K_{l} \cap\left(K_{l}\right)^{a} \cap Q$ and $K_{l} \cap\left(K_{l}\right)^{a} \cap R$. These 1 -spaces of K_{x} are interchanged by the element m. Hence they equal $\langle r\rangle$ and $\langle r k\rangle$, and we found a "canonical" basis of the 4 -space K_{x} in the vectors

$$
l z, l k, r, r k
$$

which are permuted "naturally" via conjugation by $G_{x} / K_{x}=\Sigma_{4}$. Note that $H_{x}=\langle k, r l, z\rangle$ is the unique G_{x}-invariant 3 -space in K_{x}, and $M_{x l}=K_{l} \cap H_{x}=$ $\langle k, r l\rangle$ is the unique $G_{x l}$-irreducible 2 -space in K_{x}.

We go on with the presentation for G.
Clearly, $G_{p l}$ is 3 -closed and we take $\langle d\rangle=O_{3}\left(G_{p l}\right)$.
Then $[d, k]=[d, m]=[d, r]=[d, l]=1$, and so d is inverted by z, as $G_{p l} / K_{p}=Z_{2} \times \Sigma_{3}$. In $G_{p}^{\prime \prime}$ we see $(d a)^{5}=1$. It is easily seen that $\langle d\rangle=O_{3}\left(G_{l}\right)$, as the centralizer of K_{l} in G_{l} is 3 -closed.

Consider the group $G_{l x}$. We know $G_{l x} / K_{x}=\Sigma_{3}$, and $\left\langle Z_{x}, Z_{l}\right\rangle \leqq K_{x}$ is central in $G_{l x}$. Therefore, the four Sylow 3 -subgroups of $G_{l x}$ are permuted transitively by the fours group $K_{x} /\left\langle Z_{x}, Z_{l}\right\rangle$ and $G_{x l} /\left\langle Z_{x}, Z_{l}\right\rangle$ induces Σ_{4} on $\operatorname{Syl}_{3}\left(G_{x l}\right)$. The involution m in $B-K_{x}$ must therefore induce a transposition there. Let $\langle e\rangle$ be a Sylow 3 -subgroup of $G_{l x}$, which is normalized by m. Up to replacing e by its inverse, we get

$$
(l z)^{e}=l z,(l k)^{e}=r, r^{e}=r k,(r k)^{e}=l k .
$$

Now, the element ema acts as an element of order 3 on K_{x}, with centralizer $\langle r, z\rangle$. Hence we get the condition

$$
\begin{equation*}
(e m a)^{3} \in\langle r, z\rangle . \tag{**}
\end{equation*}
$$

The element $e a$ induces a 4 -cycle on $\{l z, l k, r, r k\}$, hence $\langle e, a\rangle K_{x}=G_{x}$.
Assume (ema) ${ }^{3}$ is not contained in $\langle z\rangle$. Then H_{x} is contained in $\langle e, m, a\rangle$, and since the involution m normalizes $\langle e, a\rangle$, also $\langle e, a\rangle$ contains H_{x}. But $(e a)^{4}$ is contained in $\langle z\rangle$, as it is centralized by $e a$. Therefore, $\langle e, a, z\rangle /\langle z\rangle$ is generated by an element of order 3 and an involution, such that their product is of order 4 ; such a group is isomorphic to Σ_{4}, a contradiction.

Hence $(e m a)^{3}=1$ or z.
Together with all other relations derived so far, in particular $[d, e]=1$, the first relation defines a group $G_{5 b}$, the second a group $G_{9 b}$, and we find again subgroups of indices 126 (resp. 300), such that in the permutation groups induced on the cosets of these subgroups no residue collapses. Let $K_{x}^{1}=\langle k, z, r l\rangle, B^{1}=$
$\left\langle K_{x}^{1}, m\right\rangle$; then the group $G^{1}=\langle k, z, r l, e, a, d\rangle$ is obviously a flag-transitive subgroup of G. The chamber system $C\left(G^{1} ; K_{x}^{1} ;\left\langle K_{x}^{1}, m\right\rangle,\left\langle K_{x}^{1}, e m\right\rangle,\left\langle K_{x}^{1}, a\right\rangle\right.$, $\left\langle K_{x}^{1}, d\right\rangle$) has diagram ($\left.c^{2} \cdot P\right)$, the chamber system $C\left(G^{1} ; B^{1} ;\left\langle b^{1}, e m\right\rangle,\left\langle B^{1}, a\right\rangle\right.$, $\left\langle B^{1}, d\right\rangle$) has diagram ($c^{*} \cdot P$). Hence we are back in case (d) and the result follows.

We omit the identification of the group G^{1} as $G_{5 a}$ respectively $G_{9 a}$ in the two cases.

As we already know that there must occur the two non-isomorphic geometries \underline{G}_{5} and \underline{G}_{9} in case (e), this follows anyway.

Table of Presentations.

$$
\begin{aligned}
G_{6 a}= & \left\langle a, d, e, s: a^{2}=d^{3}=e^{3}=s^{2}=[a, s]=(d s)^{2}=(e s)^{2}\right. \\
& \left.=[d, e]=(d a)^{5}=(d s a)^{5}=(a e)^{3}=1\right\rangle \\
\cong & Z_{3}\left(A_{6} \times A_{6}\right) . \\
G_{6 b}= & \left\langle a, d, e, k, s: a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[a, s]=[k, s]\right. \\
& \left.=[d, k]=[e, s]=[d, e]=(d s)^{2}=(e k)^{2}=(d a)^{5}=(d s k a)^{5}=(a e)^{3}=1\right\rangle \\
\cong & Z_{3}\left(A_{6} \times A_{6}\right) Z_{2} . \\
G_{11}= & \left\langle a, d, e, z, t: a^{2}=d^{3}=e^{3}=z^{2}=t^{2}=[e, z]=[a, z]=[z, t]=(d z)^{2}\right. \\
& \left.=[d, t]=(e t)^{2}=[d, e]=[a, t] z=(d a)^{5}=(d z a)^{5}=(a t e)^{3}=1\right\rangle \\
\cong & M_{11} . \\
G_{12 a}= & \left\langle a, d, e, s: a^{2}=d^{3}=e^{3}=s^{2}=[a, s]=[d, e]=[e, s]\right. \\
& \left.=(d s)^{2}=(d a)^{5}=(d s a)^{5}=(a e)^{3}=1\right\rangle \\
\cong & Z_{3} \times M_{12} . \\
G_{12 b}= & \left\langle a, d, e, s, t, u: a^{2}=d^{3}=e^{3}=s^{2}=t^{2}=u^{2}=[t, u]=[s, t]\right. \\
& =[d, t]=[a, t]=t^{e} u=u^{e} u t=[s, u]=[a, u] s=[d, u] \\
& \left.=[a, s]=[e, s]=[d, e]=(d s)^{2}=(d a)^{5}=(d s a)^{5}=(a e)^{3}=1\right\rangle \\
\cong & A_{4} \times M_{12} . \\
G_{12 c}= & \left\langle a, d, e, k, s: a^{2}=d^{3}=e^{3}=k^{2}=s^{2}=[a, k]=[d, k]=[e, s]=[k, s]\right. \\
& \left.=[a, s]=[d, e]=(d s)^{2}=(k e)^{2}=(d a)^{5}=(d s a)^{5}=(a e)^{3}=1\right\rangle \\
\cong & \left(Z_{3} \times M_{12}\right) Z_{2} . \\
G_{12 d}= & \left\langle k, u, z, m, d, e, a: k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]\right. \\
& =[k, u]=[k, z]=[k, d]=[k, a]=[u, m] k=[u, z]=[u, d] \\
& =[m, z]=[m, d]=[e z]=[e, d]=k^{e} u=u^{e} k u=[m, a] \\
& \left.=[z, a]=(e m)^{2}=(z d)^{2}=(d a)^{5}=1,[u, a]=z,(a e)^{3}=1\right\rangle \\
\cong & \left(A_{4} \times M_{12}\right) Z_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& G_{12 e}=\left\langle k, u, z, m, d, e, a: k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]\right. \\
& =[k, u]=[k, z]=[k, d]=[k, a]=[u, m] k=[u, z]=[u, d] \\
& =[m, z]=[m, d]=[e, z]=[e, d]=[m, a]=[z, a]=k^{e} u \\
& \left.=u^{e} k u=(e m)^{2}=(z d)^{2}=(d a)^{5}=1,[u, a]=z,(a e)^{3}=z\right\rangle \\
& \cong\left(A_{4} \times M_{12}\right) Z_{2} . \\
& G_{5 a}=\left\langle k, u, z, m, d, e, a: k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]\right. \\
& =[k, u]=[k, z]=[k, d]=[k, a]=[u, m] k=[u, z]=[u, d] \\
& =[m, z]=[m, d]=[e, z]=[e, d]=[m, a]=[z, a]=k^{e} u=u^{e} k u \\
& \left.=(e m)^{2}=(z d)^{2}=(d a)^{5}=1,[u, a]=k z,(a m e)^{3}=z\right\rangle \text {. } \\
& G_{5 b}=\left\langle k, z, l, r, m, a, d, e: k^{2}=z^{2}=l^{2}=r^{2}=m^{2}=a^{2}=d^{3}=e^{3}\right. \\
& =(d z)^{2}=(d a)^{5}=[k, z]=[k, l]=[l, z]=[m, z]=[m, l] \\
& =[m, k]=[r, k]=[r, z]=[r, l]=[m, r] k=(e m)^{2}=[d, e] \\
& =[l, e]=[z, e]=k^{e} r l=r^{e} r k=[a, z]=[a, m]=[a, k] \\
& \left.=[r, a]=[a, l] k z=[d, k]=[d, r]=[d, l]=(e m a)^{3}=1\right\rangle \text {. } \\
& G_{9 a}=\left\langle k, u, z, m, d, e, a: k^{2}=u^{2}=z^{2}=m^{2}=d^{3}=e^{3}=a^{2}=[k, m]\right. \\
& =[k, u]=[k, z]=[k, d]=[k, a]=[u, m] k=[u, z]=[u, d] \\
& =[m, z]=[m, d]=[e, z]=[e, d]=[m, a]=[z, a]=k^{e} u \\
& \left.=u^{e} k u=(e m)^{2}=(z d)^{2}=(d a)^{5}=1,[u, a]=k z,(a m e)^{3}=1\right\rangle \text {. } \\
& G_{9 b}=\left\langle k, z, l, r, m, a, d, e: k^{2}=z^{2}=l^{2}=r^{2}=m^{2}=a^{2}=d^{3}=e^{3}=(d z)^{2}\right. \\
& =(d a)^{5}=[k, z]=[k, l]=[l, z]=[m, z]=[m, l]=[m, k] \\
& =[r, k]=[r, z]=[r, l]=[m, r] k=(e m)^{2}=[d, e]=[l, e] \\
& =[z, e]=k^{e} r l=r^{e} r k=[a, z]=[a, m]=[a, k]=[r, a] \\
& \left.=[a, l] k z=[d, k]=[d, r]=[d, l]=(e m a)^{3} z=1\right\rangle \text {. }
\end{aligned}
$$

References

[At] J. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[B] F. Buekenhout, Geometries for the Mathieu group M_{12}, in Combinatorial Theory, (eds. D. Jungnickel and K. Vedder), Lecture Notes in Math., 969, Springer, 1982, pp. 74-85.
[BCN] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete, 18, Springer-Verlag, 1989.
[BL] A.E. Brouwer and J. Van Lint, Strongly regular graphs and partial geometries, in Enumeration and Design-Proc. Silver Jubilee Conf. on Combinatorics, Waterloo 1982, (eds. D. M. Jackson and S. A. Vanstone), Academic Press, Toronto, 1984, pp. 85-122.
[Ha] J.I. Hall, Locally Petersen Graphs, J. Graph Theory, 8 (1985), 173-187.
[IS] A.A. Ivanov and S.V. Shpectorov, Geometries for sporadic groups related to the Petersen graph. I, Comm. Algebra, 16 (1988), 925-953.
[KP] A.S. Kleshchev and A. A. Premet, On second degree cohomology of symmetric and alternating groups, Comm. Algebra, 21 (1993), 583-600.
[MT] Th. Meixner and F. Timmesfeld, Chamber systems with string diagram, Geom. Dedicata, 15 (1983), 115-123.
[P1] A. Pasini, Some remarks on covers and apartments, in Finite Geometries, (eds. Baker and Batten), Dekker 1985, pp. 223-250.
[P2] A. Pasini, Covers of finite geometries with non-spherical minimal circuit diagram, in Buildings and the Geometry of Diagrams, Lecture Notes in Math., 1181, Springer, 1984, pp. 218-241.
[T] J. Tits, Buildings and group amalgamations, Proc. Groups-St. Andrews 1985, London Math. Soc. Lecture Note Ser., 121, 1986, pp. 110-127.

Thomas Meixner

Mathematisches Institut der JLU Gießen Arndtstraße 2
35392 Gießen
Bundesrepublik Deutschland

