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Abstract. We consider homogeneous random Sierpinski carpets, a class of
infinitely ramified random fractals which have spatial symmetry but which do
not have exact self-similarity. For a fixed environment we construct ‘“‘natural”
diffusion processes on the fractal and obtain upper and lower estimates of the
transition density for the process that are up to constants best possible. By
considering the random case, when the environment is stationary and ergodic,
we deduce estimates of Aronson type.

1. Introduction.

The Sierpinski carpet is a fractal subset of R? defined as the fixed point of a family
of eight contraction maps. We can equivalently construct the fractal by taking [0, 1]2,
dividing it into nine equal squares of side length 1/3, and removing the central square.
This procedure is then repeated for each of the eight remaining squares and iterated
infinitely. The carpet is the resulting fractal and has Hausdorff dimension dy =
log8/log3. A fundamental geometrical property of this set is its infinite ramification, in
that any connected subset of the fractal can only be disconnected from the rest by
removing a set of dimension 1. This makes analysis on this set much more difficult than
for the case of the Sierpinski gasket, (the set formed from dividing a triangle into four
equal area triangles with repeated removal of the central, downward pointing triangle)
which is a finitely ramified set in that removal of only a finite number of points is
required to disconnect a subset of the fractal.

The previous work on infinitely ramified fractals has concentrated on generalised
Sierpinski carpets with exact self-similarity. In a series of papers [3], [4], [5], [6], the
existence and properties of a Brownian motion, an isotropic diffusion process, on the

two dimensional carpet were determined. This process was defined as the weak limit of
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a sequence of reflected Brownian motions on a sequence of subsets of R?> converging to
the fractal. Using this probabilistic approach it is possible to examine the Laplacian
and the heat kernel on the fractal as these are respectively, the infinitesimal generator
and transition density of the Brownian motion. The key to proving the existence of
these objects lies in establishing a Harnack inequality, which is accomplished via a
straightforward coupling argument in two dimensions. In [8], this work was extended to
higher dimensional carpets, using a more complicated coupling argument to prove the
necessary Harnack inequality. We will be concerned here with a class of Sierpinski
carpets in any dimension but with the added feature of scale irregularity.

There have now been many results on finitely ramified fractals and in this setting
some non-self-similar sets have been explored, [11], [18], [19]. There are two natural
‘random’ fractals that have been considered. Firstly one with spatial homogeneity but
scale irregularity and secondly, one without spatial symmetry. For these fractals there
are greater oscillations in the heat kernel than that observed in the exactly self-similar
case. We will consider a class of infinitely ramified fractals which are scale irregular,
thus extending the work on homogeneous random fractals initiated in [18], [11]. We do
not consider random recursive fractals [19], as it is essential to our approach via the
Harnack inequality, that there is spatial homogeneity for the fractals in our class.

We construct a simple example of the fractals that we will consider in this paper.
Firstly define a family of two dimensional carpets, which we will call SC(n) for
n >3, where the side length of the carpet is divided by » and a central square of
side (n—2)/n is removed. This gives a family of carpets of Hausdorff dimension
dr =log4(n —1)/logn, the first member, with n = 3 is the original Sierpinski carpet and
it, along with the case n =4, is shown in Figure 1.

In order to construct a carpet with scale irregularity we take a sequence {&,},~,
where &, € {3,4}, Vn, called the environment sequence. We then apply the affine

transformations corresponding to either type 3 or 4 according to the sequence. In this

Figure 1: Two Sierpinski carpets from the family SC(n)
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Figure 2: The first stages in the construction of a scale irregular carpet

way we produce a fractal which has spatial symmetry but not scale invariance. An
example of the first stages in the construction of a version of the type of carpet that
we consider is shown in Figure 2.

The recent work of [8] has shown how to construct processes on infinitely ramified
fractals in dimensions greater than two. The technique used was to scale a sequence of
reflecting Brownian motions to obtain the Brownian motion as a limit. We will take a
slightly different approach, using a combination of ideas from Barlow-Bass and Dirichlet
form techniques. The Dirichlet form methods have been widely applied to finitely
ramified fractals and, for infinitely ramified fractals with spectral dimension less than
two, they were developed in [22]. We will consider scale irregular carpets in all di-
mensions and obtain a construction and estimate transition densities using this Dirichlet
form based approach. We fix an environment sequence and consider firstly the problem
of constructing the diffusion. The main technical point requires an easy (due to the
spatial symmetry) extension of the Harnack inequality proved in and this will allow
us to construct the process itself via Dirichlet forms, extending [22].

The approach of is to define a series of graph approximations to the fractal and
consider the sequence of Poincaré constants generated by the Dirichlet forms on the
graph approximations. We will prove that this sequence can be used to normalize the
Dirichlet forms to obtain the existence of a limiting Dirichlet form which is local and
regular, and hence there is an associated continuous strong Markov process.

Our second result is to obtain bounds on the transition density for the diffusion.
We introduce a shortest path counting function which allows us to obtain estimates for
the transition density that are best possible up to constants. For the case of the
Sierpinski gasket, scale irregularity has been investigated in detail in [11]. The gaskets
were used as it is possible to get very precise information about the effect of the scale

irregularity because of the simplicity of the structure. The results we obtain here are less
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precise as we cannot find a nice representation of the spectral dimension. It would be
possible to apply the techniques used here to construct diffusions on spatially homo-
geneous random nested fractals, a class of finitely ramified fractals introduced by
Lindstrom [23], satisfying a very strong symmetry assumption.

Finally we consider the case when the environment is generated by a stationary and
ergodic sequence of random variables. Our estimates for the transition density can then
be compared with the usual form for such estimates for diffusion processes on fractals.
Using subadditivity we can deduce the existence of a resistance scale factor and
corresponding exponent, which we use to find expressions for both the spectral and walk
dimension. The bounds on the transition density can be expressed in terms of these
dimensional exponents but we are only able to control the oscillations in the density by
introducing an ¢. Even if the types of carpet are chosen according to an i.i.d. envi-
ronment sequence, we cannot describe the precise nature of this oscillation as in [1T].

The structure of the paper is as follows. In Section 2 we introduce the fractals and
define our notation. In Section 3 and 4 we construct the diffusion process on the carpet.
In Section 5 we introduce the shortest path metric and use it in Section 6 to describe
the transition density. Section 7 discusses the relationship with the usual form for
transition density estimates and the asymptotics of the spectral counting function when
the environment is stationary and ergodic. In this paper, ¢; (i€ N) will be used as a
positive finite constant whose value remains fixed within each proof, while ¢, ;(i € N)
denotes a fixed constant appearing in Section .

This research was started by three of the authors who considered the resistance
and the construction of the process on homogeneous random fractals [21]. After the
fourth author passed away, the first author and second author completed the research,
obtaining heat kernel estimates for the processes on these fractals using ideas from work
which had appeared after the original research was undertaken. This work is dedicated

to the fourth author Dr. X. Y. Zhou, our sincere friend who loved stochastic processes.

2. Homogeneous random Sierpinski carpets.

Let V be a finite set. For each ve V, take [,,m, e N, with [, > 2, and let

PO = (Y)Y, vel,

be a family of contractive affine transformations on R“. That is, each Y, is a
composition of a linear transformation and a translation and maps [0, l]d to
I K by (kPP 1) /1) (for 0 <3k <@, — 1,k € N) and W/ # ] for i#j. Set
Fy =10, l]d, I,={1,...,m,} for ve V. For &,...,&, €V, define F,Sé"""é”) inductively
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as
Ittty N ) te .n i (f 7"'?6}1
Flgél : ) = U lpnl ..... n” ) U i I(anzl ))
wiel lels
1§j§n
Here, and in the following, we denote xpm’j".‘_ = 511 o- lpw

Let == VN; we call £ e 5 an environment. We will occasionally need a left shift
0 on Z: if &= (&,&,...) then 0F = (&,,&5,...). The fractal E© associated with the

environment sequence ¢ is defined by

(2.1) E© — mF(flanwén).

We call E©) a homogeneous random Sierpinski carpet if it satisfies the following.

AssuMPTION 2.1. (A1) (Symmetry) For all ve V, F is preserved by all the iso-
metries of the unit cube Fy.

(A2) (Connectedness) For all £ € 5, E©) is connected and contains a path connecting
the hyperplanes {x; =0} and {x; = 1}.

(A3) (Non-diagonality) Let B be a cube in Fy with length 2/1, and with vertices on
I7YZ. Then if Int(FY N B) is non-empty, it is connected.

Note that these conditions correspond to the hypotheses (H1) ~ (H3) of [6] and
[8]. In this paper, we do not make the assumption (H4) of those papers. This is a
condition that 0Fj is contained in F} and so we allow the boundaries between cells to be
fractal (see Figure 3 for an example). Also, note that E is not in general self-similar,
but the family {E©) & e 5} does satisfy the equation E(©) =U,. I Y (E09).

At this point we fix an environment sequence &, and, except Where clarity requires

it, will drop & from our notation. We define the word space I associated with E by

0
®I€l WI,WQ,...>21SWiSméi7 iGN}.
i=1

For we I write wjn = (wy,...,w,), and

— §17 7 il . én
lpw\n - Vw w,l w1 o © lpwn‘

.....

We write [, = {(w1,...,w,) : 1 <w; <me,1 <i<n} for the set of words of length n.
Define My, = me, ~-~m5 and let u (u©) to be exact) be the unique measure on E
such that u(y,,,(E)) = 1 for all wel, n>0. We call sets of the form ,,,(E)

n-complexes.
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We construct a sequence of basic graphs which approximate the random carpet.
The suffix n will be used to denote &;,...,¢, but we will sometimes denote it by &|n if
some confusion may occur. For x, y € I,, we write x ~ y if the Hausdorff dimension of
the set ¥, (Fo) Ny, (Fo) equals d — 1. We use this to define a connectivity matrix for our
carpet by defining ¢\, x,yel, by ¢\ =1 if x £ y and ¢\J =0 otherwise. We will

consider the finite graph (I, {qg})} Note that by Assumption 2.1, this graph is

)
connected.

For Acl,Bclyg, we wrte A-B={x-yel,:xed yeB}. Let
Bom = Hx lprgm}p; X €Ly}, 0<m<n. For k=m,....n and BeHB,,n, Byi(B)
denotes the set in %, which contains B. For each n>1, dI, denotes the set of

points x e I, such that v ([0,1]%) N[0, 1]  ¢.

3. Basic estimates for constructing the processes.

We now construct a sequence of symmetric bilinear forms on the graph ap-
proximations to the random carpet. We follow quite closely the development of [22].
For any subset 4 I, let &, 4 be a symmetric bilinear form in C(I,; R) defined by
Ena(u,0) = Y g0 (u(x) — u(»)(0(x) = v(»)), wu,ve C(I;R).
x,yeA
We denote &, ;, by &,. Let (ud, = |A|™" 32, , u(x) for any finite set A4 and u € C(4;R),
where |A| denotes the cardinality of the set A.

We now introduce the following Poincaré constant and effective resistance,

In = sup{Z(u(x) - <u>1n)2 cue C(I;;R), & (u,u) = 1},

xel,
R,(A,B) = min{&,(u,u) : ue C(I;;R),u| , = 0,uz =1} ",

for A,Bc I, with ANB=¢. Let

K=K =10, 1)) < [0, 1] N EES,
KD = K5 o = (1= el 7)< [0, 1) A EF ),
and define
(3.1) R, = R,(K\V, K12y,
(3.2) B, =min{se N :3x1,...,x € L, ¥, ((0,1]) = K,

lprV([()?l]d) CI{,Sz)yxi ~ X,'+1,1 <Vi<s— 1}
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The quantity B, is the number of steps in the shortest path across the fractal in the

n-stage approximation. We consider B, in more detail in Section 5.

3.1. Resistance estimates, Poincaré constants and the Harnack inequality.
We have the following submultiplicativity result for the resistance R, defined in
(3.1).

PrROPOSITION 3.1. There exist constants c31,c32 > 0 such that for each n,me N,
(33) C3.1RnR0"§|m < Rn+m < C3.2RnR0"é|m'

This can be proved in the same way as (see for the case d =2) using a
subadditivity argument. As this is a lengthy proof and the basic idea is the same, the
details are omitted.

Now, let L™ be a linear operator in C(I,; R) given by

Z LWu(x)v(x) = —&p(u,v), u,ve C(I;R).

xel,
We let P\") = exp(tL™), 1> 0 so that {P\"},_, is a symmetric Markov semigroup and
denote by W/ the continuous time Markov chain on /, which corresponds to &,. We
say that a subset G of [;,/ > 1 is /[-connected, if for any x, y € G, there exists an n > 1
and a sequence zy,...,z, € G such that zo = x,z, = y and z;,_, L z; for 1 <i<n. The
hitting times for the Markov chain are written as 74 =inf{r > 0: W/ e 4}.

We define the sequence of the first Dirichlet eigenvalue of the discrete Laplacian on

I, as

AP = sup{X:u(x)2 cue C(I";R),u(y) =0,y € dl,, &(u,u) = 1}.

xel,

An alternative expression for this quantity is

(3.4) (APy! :inf{%:ueC(I”;R),u(y):O,yealn}.
ver, U(x

We also need another version of the Poincaré constant g,,. This is defined by first

setting for any B, B’ € %, n,
O'n,m(B, Bl) = Sup{Mm(<u>B - <u>B')2; ue C(In; R)7 éan,BUB’(ua u) = 1}7
and then

Om = Sup{G,m(B,B);n>=mv 1,B,B' € B, n,B~ B'}.
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We now give the relationships between the various scaling constants.

LeEmMMA 3.2. There exist constants ¢33, C34,C35 such that

sup E¥(a,) = ¢330 = €340, = €352
Proor. For the left inequality we use ideas in E] Define a Green function G, as
Guf (x) = E* [[" f(W")dt for feC(";R). Then, by definition, &,(G.f,g) = (f,9)
for all f,g:1, — R such that g|,, =0, where we set (f,g)=>_ ., f(x)g(x). Also
from there exists a v, such that &,(v,,v,) = (/lf )_l(vn,vn) and indeed we see that
En(vn,g) = (AP )" (va,g) for all g with g| ar, = 0 as v, is the first Dirichlet eigenfunction.
Thus

(9, 0n) = 6u(Grg, vn) = u;?>_l(Gng>Un> = (ﬂf)_l(ga Gytn),

for all g with g|,; =0 (the last equality is from the self-adjointness of G,), and hence
Guv, = i,f v,. We also see that if /,(x) = E¥ty;,, the mean crossing time, then £, = G,1

and

En(hn, hn) = En(Gul, Gu1) = (1, Gyl) = || Bl
Normalizing v, so that sup, v,(x) =1 and v,(x9) =1, then
Gavn(x0) - Gul(x0)  ha(xo)  E™71gp,

L L

n

1 =v,(x0) =

Y

as desired.
In the quantity

’11(11)) = SUP{Mn<u>12n cu(y) =0,yedl,, &(u,u) =1},

is defined. Using the fact that ||u|, > ||u||,, we see that /IEID) <P

For the middle inequality we compare /IEID) and o¢,. This 1s done for the usual
Sierpinski carpet (SC(3) in the introduction) by [22], where it is Assumption B-1. It is
proved in Proposition 8.1, that there exists C e (0,00) and k >0 such that
oy < Cxlfi)k for all »>1. The proof given in depends upon the symmetry as-
sumption and hence will extend to higher dimensions. We give a brief discussion.

By definition

Om = sup{c, m(B,B):n>=mv 1,B,B € #,,,,B~ B'},

and we can take B, B’ where the supremum is attained and let u be the function such
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that &,(u,u) =1 and M,,({upp — <u>B/)2 = 0,,. The function u must be symmetric and
so we can take a reflection S : B’ — B such that u(x) > 0,u(S(x)) = —u(x),x € B". We

now define a function vy(x) € C(I,,) by
vo(x) = u(b'.x), (b'.1,=B),
and observe that
Em(vo,v0) < &y pup(u v 0,u v 0) <1,

as well as <vo>%m = 0, /4M,,. Now define functions v; € C(I,), for each cell i neigh-
bouring b’, by using suitable reflections of vy which ensure that the boundary values on

adjacent cells are equal. We then define a function v e C(l,;,) by setting
v(a.x) =vo(x), a¢dl,
v(b.x) =vp(x), qpa > 0.

Thus we have a function which has the properties that

Om

_ 2 _
v|6[m - 07 <U>Im+2 - 4_]‘4’71_‘_2 :

Thus, by our choice of v, we have ensured that there is no gain in the Dirichlet form as

we add up the pieces on the cell and all its neighbours, and hence
Emia(v,0) < (2d 4+ 1)Ep(vo, v9) < 2d + 1.

With a final adjustment of v to scale out the 2d + 1 factor, we have a function v such
that

D
/’L’(H‘)z Z Mm+2<v>12m+2 Z O-m/4’

as desired.

The third inequality is [4.3). This is proved by showing that A, ., <
Am + CA,0,, and observing that 4, — oo. The first part follows from definitions and is
exactly the same as Proposition 2.13(1) using Lemma 2.12. The increasing

nature of the sequence A, is proved from the definitions. We can consider the function

f,(x) = (number of the steps from 0 to x in 1,)/\/M,,

so that &,(f,,f,) < C and calculate 1, > |f, — {f,>|l3 = C’'B? for some constants
C,C'">0. Thus we can find n such that 7, < Z,.,,/2 and hence 4, < A, <

2Cl,0,, = c10, and we have the result. O
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The most difficult part in the construction of the diffusion process on the Sierpinski
carpet was to show the continuity of harmonic functions via a Harnack inequality.
This was first shown by Barlow-Bass using coupling arguments, valid only for the
2-dimensional case. After that, Kusuoka-Zhou obtained the Harnack inequality
under mild conditions, but the argument was restricted to the case when the domain of
the Dirichlet form was contained in the continuous functions. Recently, Barlow-Bass [7],
obtained the inequality for the higher dimensional carpets using a coupling result
for reflecting Brownian motion on the pre-carpet. Their arguments rely strongly on the
spatial symmetry of the carpets, and, as our random fractals still have that symmetry,
we can apply their arguments directly. We now translate the theorems in [8], [9] into

our setting.

THEOREM 3.3 (Knight move). For any | > 1, any I-connected non-void subset Gy of I
and any non-void subset Gy of I, if dist (\),q ¥+(E)s U g ¥i(E)) >0, then

inf{P"" (., < 16,1);2€ Go,x€ Gy -I,n>1,0"¢eE} >0.

Note that the infimum is uniformly positive regardless of the environments as we
have a finite family of contraction maps (|V] < o).

Using this fact in an essential way, one can obtain the coupling result i.e., in our
case, that there are (not independent) random walks on the graphical approximations to
the carpet which couple with positive probability before they exit some region. We do
not state the result here but will state the coupling result for the limiting process later
((Theorem 4.10). From the coupling result we can deduce the following uniform

Harnack inequality for our approximating Markov chains.

THEOREM 3.4 (Uniform Harnack inequality). There exists 6 > 0 which is independent
of the choice of &€ E such that the following holds. For Gy, Gy as in Theorem 3.3, if
n>1, ue C(Ij1y;[0,00)) and L(l+n)”|1,+,,\61~1,7 =0, then

0 max u(x) < min u(x).
xe Gy-I, xeGy-I,

We learned the following lemma for electric networks, which is an extension of the
theorem in [13], [28], from M. T. Barlow.

LemMA 3.5. Let (V,E) be a connected graph and X, be a simple random walk on V.
For each A,Bc< V,ANB = ¢, there exists a probability measure Iy on A such that

(3-3) Y Etplly(x) = R(A,B) Y f45(»),

xeA yeV

where fy p(x) = P* (X, hits A before B).
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PrROOF. As f, p is non-negative and harmonic on V\(4UB) and f|z =0, there
exists 77y : A — R, such that

Ja.8(x ZQBXJ/

yeA

where gp(x,y) is a Green function for V killed on B, which is the average number of
times for the random walk starting at x to visit y before arriving at B. By Ohm’s law,
1 = R(4,B)I14(4). On the other hand, E¥tp =3 .} gp(x,y). Thus,

ZE Tl (x ZZggxy

xed xedyeV
- Z ZgB Y, X ZfA B
yeVxeAd yeV
We thus obtain [3.5). O

For A = I, and for m < n, define

(3.6) D? (4) = {m-complex which contains A4},
(3.7) D! (4) = D% (A)U{B: B is an m-complex, D’ (4)N B # J}.

ProposiTioN 3.6. 1) For Gy,Gy as in Theorem 3.3 and for € N, there exists
c36 =c36(l) >0 so that

(3.8) C3_6R9/ k= RHk(G() Ik, Gl Ik) fOV all neN.
2) There exist c37,c38 >0 so that

(3.9) 3R M, < E*typ,,  for all x e (Dzl(ﬁln))c,

(3.10) E*ty, < c3sR,M,, for all x €1,

Proor. We first remark on a fundamental property of resistance. Resistance
increases if we cut bonds in the network and it decreases if we short vertices. Using such
a shorting argument, one can easily obtain (3.8).

Now, set A, = (D}(01,))°. Note that there exist ¢j,¢; >0 such that ¢/ M, <
|4,| < oM, for large n. From [Cemma 3.3, we have

Y E¥ton 4, (x) = R(An 01) Y f,.00,(9)

X€eA, yel,

AsO<f<land fl, =1, &aMy < >, f4,01,(¥) < caM,. Further, by using cutting



384 B. M. HamBLy, T. Kumacal, S. Kusuoka and X. Y. ZHOU

and shorting arguments again, we have csR; et = R(A4,,01,) < R, 1 Using these
facts and the Harnack inequality for E*7y; (which can be proved in the same way as
Proposition 4.2 using [Theorem 3.4), we have (3.9) and (3.10) for x € 4,. Now, using

Mheorem 3.3, we can show that sup,_; E*7s, < ¢6Sup,., E*74, for some ¢g > 0 in the
same way as [3] [4.5) This proves (3.10) for x € I,. O

As a corollary we have the following control on the scaling constants. Let

T, = R,M, denote the n-th level time scale factor.

COROLLARY 3.7. There exist constants c39,C310,C3.11 Such that
T, > c3040 > > 3114
n = €394, = €3.100, = C3.114n-

3.2. Hitting time estimates and tightness of the processes.

We now use the Harnack inequality to obtain some hitting time estimates for the
sequence of Markov chains. We consider the scaled Markov chain W,(m) = Wy, and
write Spi (W) =inf{r > 0: W™ ¢ Di(x)} (i=0,1), and S for the exit time from
any set B.

LemMA 3.8. There exist constants c3.3,c¢3.13 such that for each m > r,

2T, < E*Spig (W), Vze DY(x),
E*Spi (W) < c313T,!, Vze D} (x).

PROOF. As Spr (X)(W(’")), [ >n 1s a decreasing sequence, we deduce

o0

(3.11) Spr = Z(SD}(x)(W(m)) — Sy (x)(W(M))>'

4 i+1
i=l

From [Proposition 3.6 we have E(Sp1 — Sp1 ) < y(&i1) T, where y(v) is a constant

determined by the type of the carpet, ve V, used.
Let ¢; = max,cp p(v). From we have, for all ye D/(x),

o0
(3.12) E"Spiy(WM) <) Th <ol
i—1
Lower bounds can be obtained in the same way using [Proposition 3.6, (]

Since SD}(X)(W(’”)) <1+ (s, >y (Spy — 1) we have, from [3.12),

!

EZSDll <t+ EZ(I(SD1>1)EXt(SD,1))

i

< l—}-PZ(SDll > l)CQTlil.
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So Pi(Spr <) <¢;'Tit+(1—¢;') for each zeDj(x), and we deduce there exist
¢3>0, c4€(0,1) such that

(3.13) PA(Spiy(W"™) <t) 3Tyt +cay 120,

We can improve this to an exponential estimate on PZ(SD} (x)(W('”)) <t). In order

to do this we define the following function of time and space,

) Thti T
(3.14) k:k(n,l):mf{jzo;ﬂ > —’}.
n+j Bn
The function k(n,/) was defined in and a version of it used in [20]. Its properties
will be as in those papers. First, the following inequalities are clear: 2 < b, < b*,

t.<t,<t",2<b,<t,/b, <t*/2, where b* = max, b,, t, = min, t,, t* = max, , ([8]

[Proposition 5.1, here we define b, = By, t, = T; if &, =v). Summarising, we have
1. If n>1 then T,/B, > T;/B,, and so k(n,l) = 0.
2. If n < then k(n,l) >/ —n and we can show that there exists a constant ¢s > 1
such that

(3.15) l—n<k(nl)<cs(l—n) when n<I
Note also
(3.16) I <n+k(nl)<cl if n<l

Using the bounds on ¢,/b, above, [Proposition 3.1, and [Proposition 5.1 (which can

be proved independently), there exist cg,c7 > 0 such that for i >0,

i T Toiwini T
C621+1 n+j < n+1+j+i £C7(l‘*/2)l+ln—+].

By Buyijri B,
From this, it follows that
(3.17) lk(n+1,1) —k(n,1)| <cg, for all n,l.
So, we have,
(3.18) ’10g (%) — log (@)' < (1 +¢g)|n’ —n|logb™.

As in we can define the approximate walk and spectral dimensions,

_logT, ( )_210gM,,
~ logB,’ s\ = logT,

(3.19) d,,(n)
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LemMA 39. Let 0<t< 1, 0<r< 1, and let [ ,n satisfy
~1 -1 -1 -1

Then writing k = k(n,l), there exist constants c31a,c315 such that

1/(d“(}’1+k)—1)
1 Bn+k> <rdw(n+k)>
3.20 —exp| ¢ <ex
( ) 3 P( 3.14 B, p p
B,
<exp <C3.15 ln;rk)'
PROOF. As in Lemma 4.2, O

LemMMA 3.10. There exist constants c31¢,c317 such that if k = k(n,l) then for all

xeE, and n,l < m,
(3.21) P¥(Spig (W) < T < 316 €xp(—c317Bsk / Ba).-

Proor. If j >0, then for the process X to cross one m-complex it must cross at

least N = B,;/By, (n+ j)-complexes. So, there exists 0 < ¢ <1 such that

CBj+n/Br1
Soy(W™) = Y W
i=1

where V; are i.i.d. and have distribution S _(x)(W(’”)). Lemma 1.1 of |3] states that if
n+j
P(V; < s) < py+ as, where p, e (0,1) and o > 0, then

cN
(3.22) logP(Z Vi < z) < 2(aeNt/po)"* = eNlog(1/po).
1

Thus, using (3.13) and [3.22), we have
(3.23) logP(SDnl(x)(W(’”)) = Tfl) = Cl(Bn+j/Bn)1/2[(Tn+j/T1)1/2 - CZ(BnH/Bn)l/z]-
Given k = k(n,l) as above, there exist ¢3 and ko such that k —¢3 < ko < k, and
1
(Tn-i-ko/Tl)]/z < ECZ(BH-&-/CO/B")I/Z‘
Provided ky > 1 we deduce

1
log P(SDJ(X)(W(m)) < T[_l) < _ECICZBn+kO/Bn < —C3_17Bn+k/Bn.
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Choosing ¢3¢ large enough we have 1 < c¢316exp(—c3.17Bnix/Bn) Whenever k < ¢z + 1,
so that holds in all cases. O

Let {P&");x e I,} be a Markov process on I,, whose generator is L. Then, as a

corollary to this lemma, we have the following tightness of the processes.

ProrosiTiON 3.11.

X
m— o0

lTiin)0 lim sup sup{\B\1 ZIgPF”)[WY";It el,\B|;te (0,T],Be Bymn=> m} =0
xe
Note that this corresponds to Proposition 4.9 of [22]. As was shown in that paper, the
Harnack inequality is not necessary for the proof of tightness. Here we obtain the
sharper estimate |(3.21), using the Harnack inequality, as we will need this estimate later
for deriving detailed heat kernel bounds.

We proceed following Section 4. For each n > 1, let P, : L' (E,du) — C(I,; R)
and 1, : C(I,;R) — L™ (E,du) be given by

Bof(x) = u(0o(E)) ! jw Su(dx), xel, feL'(E, duw),

nu(y) =u(x), if yey (E), xel, ueC(I;R).

We want to construct a process on the random carpet and use the projection and
injection operators to transfer the Markov chains on the approximating graphs onto
the fractal itself. Let Q\" =1,0 P} 0P, >0, n>1. Then {Q\"},, is a semi-
group of symmetric Markov operators in L*(E,du). Let P, = 1,0 P,,n > 1. We denote
-1 =1 llz2(5.qu- Then, as in Lemma 4.10 of [22], we have the following.

Lemma 3.12.
(1) (I = Po)tgttl5 < AmM; Eu(u,u), ue C(I;R), 1 <m <n.

(2) There is a constant c313 > 0 such that
||(I — Pm)QEn)||L2~>L2 < C&]glil/zin,m/ﬂn, t> 0, 1 <m<n.

(3) limsup, o limsup, . {||f — 0" fllyin =1} =0 for any f e C(E;R).

We now construct the paths of our Markov chains on the carpet. Let us take
xo€ E and fix it. Let Q" be the probability law of {¥(1,0(x0),2 € @} under
MUY P\ (dw) where Q, = QN[0,0). Then, O™, n > 1 are probability measures
in E2-. As E2+ is compact, we see that {Q");n > 1} is tight. Using [Lemma 3.12, we
can prove the following in the same way as Theorem 4.5.
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THEOREM 3.13. For each cluster point Q of {Q"}, there is a strongly continuous

symmetric Markov semigroup {Qy},~, in L*(E,du) such that

E2Lfy(w(t0)) £ (w(11)) -+ £, (w(ta))]
= (an—ln—l (fn—l(an—l—ln—2<fn—2(' o (Qll—lof()> o ))))7fn)L2

for any 0<ty<ti<---<t,eQ, and f,...,f,€C(E;R). Moreover, for any
f e L*(E;dp) with [, fdu=0, we have

10:f1l, <e'|Ifll,, t=0.

4. Dirichlet forms.

This section gives a construction of the limiting Dirichlet form on a random
Sierpinski carpet. We follow the results of Section 5. Let &”),n > 1 be a Dirichlet
form in L?(E,du) given by

E(f,9) = Rubu(Puf Pag),  [,9 € L*(E,dp).

LEMMA 4.1. There exists a constant csy such that

EVL ) < a1 f), ¥aom,  f e L*(E,du).

PrOOF. By definition of & and the fact that P is a projection,

g(n) (f7f) = Rn(f)éagz@(i)ni)n+mf; PnPnerf)'

We have the following result, which is obtained as in Lemma 2.12, combined

with the inequality g, < ¢| T),.

(4.1) Z (<“>x.lm - <“>y.1,,,)2q,(x'}) < 2Ry Epim(u,u),

xvyEIn

for all ue C(L4m),n,m >0. Now if ue C(I,1,), then, by

EO Py, Pa) = 7 (CPaiy(x) = (Paa) (1)) 4

x,yel,

< CZRm(enf)éargf—)m (u> u)

as required. ]

Let Zch be the set of Dirichlet forms associated with the cluster points of {Q"}
and let 9(()5) = {f :sup, E"(f, f) < w}.
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Lemma 4.2. For any f € 9(()6) and iel,, foy,e 279 holds.

ProOF. This follows easily from

Emin( [ 1) 2 D En(f oV f o). O

iel,

LemMA 4.3. (1) For any & € Dch, we have 99 (&) = 9(()@.
(2) There exist ca,c43 >0 such that

(4.2) can sup EV(f, f) < 9, f)<C4311mlnféa (f. 1),

n

for any & € Ych and f € Y.

ProoFr. The first result follows from the second. For the second we use
in the same way as Mheorem 5.4l 0

We can now write down a decomposition of the limiting Dirichlet form which holds

for all the cluster points.

LEMMA 4.4. There exists a constant cs4 such that

O )= caad 6T f o, foy)Ry, VS €.

iel,

ProoF. By construction we have

Euk(f, 1) = D 6L (f o f o)

lelk

so that

EMOSf) = R Y 6 (S 0, f o)

iEIk

>C31szggé (f ot f o).

lEIk

Taking limits as n — oo gives

liminf &R (£, f) >szhmlnfgeg (fow, fo)

n— o0
ZGI]\

Then for any cluster point &) we have by I , that
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EOf, f) = carsup EV(S, f) = carliminf £7(f, f)

> Clezg(gké)(fo ¥, fo¥),

iel;
for any cluster point &0, L]

In the following we take & € Zch and fix it. For {Qg")} and {Q;} as defined in
Section 3 and 1> 0, set U/ = [, oM di, U = Jo e*Q,dt.

PROPOSITION 4.5. For each f € L*(E,du) NL*(E,dy), U*f is a continuous function
on E.

The proof of this proposition is essentially the same as that in [3] Section 6. Here
we only sketch the outline of the proof and refer the reader to the paper for details.
First, by the uniform Harnack inequality (Theorem 3.4), one can deduce the following
in the same way as in Section 3:

There exist constants f,C >0 such that, if u, is non-negative bounded and

harmonic with respect to L"), then

)~ ) = s we) v (mip 1) Y

for all x, yel”.

Using this, it is not hard to show that for fe L>NL™, (a suitable continuous
modification of) {U,f /1,2 is equicontinuous and uniformly bounded. Therefore by the
Ascoli-Arzela theorem, there exists subsequence of which converges uniformly. By

Theorem 3.13, the limit should be U” f so that the continuity of the function is deduced.

Using this proposition, we have the following.
THEOREM 4.6. (&,90) is a local regular Dirichlet form on L*(E,dy).

Proor. The local property follows easily using the right inequality in (4.2). Thus

/l

we will only prove the regularity of the form.

We take Gy, G; as in and fix them. Let uy4(x) = P*(t6,0, < TG,1,) €
C(I11x;R). Then, we see that u1+k|G0.,k =1, “1+k|G1-1k =0 and &pr(wn, k) =
Rk (Go - I, Gy -Ik)_l. Using (3.8), we have

(4.3) sup R, &, (uy, u,) = sup 5’(”)(znun, Lally) < 00.

n>1[ n>1

On the other hand, as ||z,u,||, <1, by the Banach-Alaoglu theorem, we have a sub-



Transition density estimates for random Sierpinski carpets 391

sequence (which we also denote 1,u,) so that 1,u, converges weakly to some ve L
Then, clearly P,iu; — P,v pointwise as k — oo (n is fixed). This, with and
Lemma 4.1, gives

(5’(”)(1;,1)) = klim 5(”)(zkuk,zkuk) < sup é"(k)(zkuk,zkuk) <o Vn>1,
— 00 k

so that ve Zy. It is easy to see that ve C(E;R)7U|WGO(E) = 17U|WG1(E) =0 and, by the
Stone-Weierstrass theorem, we have proved that 2N C is dense in C. To show that
20N C is dense in % in &1-norm, it is enough to approximate f € %, L™ by elements
of 29N C due to Theorem 1.4.2 iii) of [T7]. But this is now clear as U*f e 2,NC
for fe2yNL” from [Proposition 4.3 and it is a general fact that U’f — f in

&1-norm. ]

As we have a local regular Dirichlet form, there is a one to one correspondence
between it and a diffusion process {X;: 7> 0} ([17]). However this diffusion process is
only defined for quasi-every starting point, as the capacity of points could well be zero.
As we will see later in this section, we can extend this quasi-everywhere result to
everywhere.

We now derive a Poincaré inequality.

PROPOSITION 4.7. There exists a constant cys, such that for all f € 9,

2

(4.4) ES 1) = eas

f—Lfdu

2

Proor. This result will come from the construction of the Dirichlet form. We use
the fact that the Poincaré constant A, scales as the time constant 7,,. Note that it is

enough to prove the result for f e oM C by [Theorem 4.6.
Recall that by the definition of the Poincaré constant,

En(Ppit, Pyit) 1y > Z —<uyy)?, Vue C(I;R).

xel,

We know that

éo(é)(u, u) > sup Rnéo,,(f’,,u, ﬁnu) Yue 9y
and hence

g(n)(u’ u) > %Z(ﬁ u(x) — <Pnu>l,,) M_
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For ue 2yN C, taking n — oo, we see that, as (7,/4,) = ¢311, the Poincaré inequality
will follow. Ul

Let P; be the semigroup of positive operators associated with the Dirichlet form
(&6,%0) on L*(E, ). We can prove the Nash inequality using Propositions 4.4 and &.7.
We omit the proof as it is the same as that of Lemma 4.1.

LeEMMA 4.8. There is a constant c46 such that if Tn_1 <t< Tn__ll, then
(4.5) 1Py, < csM.

We now consider the density of P, with respect to x. Using the method indicated in
the lead up to Proposition 4.14, we can prove the existence of a transition density
p,(x,y) which is jointly measurable and satisfies the Chapman-Kolmogorov equations.

In order to prove the joint continuity of the heat kernel we will follow the argument of

[16], Lemma 4.6.

LemmA 4.9. The transition semigroup P, on L*(E) has a kernel p,(x,y) which is
jointly continuous for (t,x,y) € (0,00) x E X E.

Proor. We will first show that P, has the strong Feller property:
P, L'NL* — C(E).

Note that as the semigroup is the L* semigroup associated with a Dirichlet form, it is
holomorphic (see [14]). Thus P,f e 2(%) for all f e L*. Now, as U*f is continuous
for all f e L>NL™ (due to [Proposition 4.9), according to Proposition 2.3 and Lemma
2.4 of [26], it is enough to check that

o0
(4.6) J (27 P dt < oo
0

p—= X

holds for some r >0, 1 < p < oo. But we already have a good bound of |P||,_ .,
(= |P/l5_..,) for small ¢ in so that holds for p =2 and large r.

Thus given f € L'NL* we have that P,f € C. Observe that the transition density
p,(,y)e L'NL* as

JE pi(x, y)u(dx) =1, and sup pi(x,y) < c(2).

Now we can write p,(x,y) = P;2(p,(.,»))(x) by the Chapman-Kolmogorov

equations, and hence, by the above, we see that p,(x, y) is continuous in x. Equipped
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with this result we can follow through the argument of Lemma 4.6 to obtain the

joint continuity of the transition density. O

This result shows that there is no uncertainty in the starting point for the one to
one correspondence between the Dirichlet form and the diffusion process, which was
mentioned after the proof of [Theorem 4.6

Finally in this section, we state the coupling result and Harnack inequality for the
limiting operator for later use. Given two processes Y'!, Y2, defined on the same state

space, we set
Te(X,Y)=inf{t>0:Y' =Y.

Also, let S; denote the exit time from the set B, when the process is started from the

point z.

THeOREM 4.10 (Coupling). For x, y € E, there exist diffusion processes WX, W with
Wi =x, Wy =y on E whose laws are equal to {X,} that satisfy the following:
For ne N and ¢ > 0, there exists a ko such that

pwd) > 1=

for all k> ko, yeDY  (x).

THEOREM 4.11. Let & be the generator associated with the Dirichlet form (&,%y).
Then for any connected open sets Gy, G, in E with dist (G, G>) > 0, there exists 6 > 0
such that

(4.7) 0 max f(x) < min f(x)

xe Gy xeGy

for any f € 2y with fl|g =0 and &L f|; = 0.

The proof follows in the same way as Barlow-Bass [8], as £ and W have enough
symmetries for their arguments to work. As before, we do not write down the proof as

it 1s lengthy and there are no non-trivial modifications from the original one.

5. Shortest path metric.

In this section we construct the shortest path metric on our random fractals. This is
an intrinsic metric which we will use to study the diffusion process on the fractal. This
kind of metric is constructed for affine nested fractals in and for homogeneous
random Sierpinski gaskets in [I1]. Let B, be the smallest number of steps in the
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path across the n-th approximation to the carpet, as defined in (3.2). Let x(n), y(n)
(sometimes denoted by x(&---&,), (& ---¢&,)) be the extreme points of the shortest
path.

PROPOSITION 5.1. There exists cs; > 0 such that, for each n,me N,
¢s1ByBoreym < Buim < BuByrgpm.

Proor. We first prove the second inequality. Take the n-path which attains B,.
We will construct the n 4+ m-path by putting the contraction of the m-path, which attains
Bygy (or less), on each n-complex in the path on B,. For this to succeed in giving a
path we should connect each contracted m-path and construct a connected n + m-path.
This can be done using homogeneity and symmetry of the fractal. Indeed, if the shortest
m-path goes from x(m) to y(m), by reflection arguments we can construct an m-path
from x(m) to the point which is a translation of x(m) and which is in the opposite face
of [0, l]d. As this path is constructed using the original shortest m-path and the re-
flection of it, the length of the path is less than or equal to the original m-path. On the
other hand, by diagonal reflections, we can construct an m-path from x(m) to each face
of [O,I]d whose end point is a rotation of x(m) with length less than or equal to the
shortest m-path. Using the contractions of these m-paths, it is easy to construct the
desired n + m-path.

In order to prove the first inequality, we define for xel,,,, the domains
D? (x), D! (x), in the same way as (3.6), (3.7). Take an n + m-path which attains B,
and separate it into each n-complex. Set xo = x(n+ m) and let x| € I,,.,,, be the first
element in the shortest n+ m-path which is outside D! (xy). Define inductively
Xit1 € Liim to be the first element in the shortest 7+ m-path which is outside D) (x;)
until it reaches y(n+ m) (we denote by s the last such i). Clearly the number of the
n + m-complexes between x; and x;i; is greater than or equal to Byr,. On the other

hand, (s/c;) > B, where ¢; = (max,cy mv)_l. We thus obtain ¢|B,Byp ey < Bpym. [

For x,y € I,, define d,(x, y) = min{z : = is an n-path between x and y}/B,. Now

we assume the following.

ASSUMPTION 5.2. There exists c¢sy >0 such that for all nme N and for all
X,y € Lyym which are in the same n-complex (i.e. W\ (E) and W,(E) are in the same

n-complex),

min{z : 7 is an n+ m-path between x and y} < cs52By g
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Figure 3: A random Sierpinski carpet with borders not included and its two generators

We believe that this assumption holds for all our fractals but so far we can only

prove it in the following situations. An example is shown in Figure 3.

PROPOSITION 5.3. Under the following condition (a) or (b), Assumption 5.2 holds.
(a) d=2 (ie. The fractal is in R?).
(b) (Borders included) OF, is contained in FY'.

ProOOF. In case (a), if x, y are at the opposite ends of a path which is from one
boundary to the other, then any path from x to y intersects the original path. Using this

fact, it is easy to deduce that

m
min{z : 7 is an n+ m-path from x to 7'} < ¢, ZB@?H...@W,
=1
where 7’ is an n + m-path which attains By, and ¢; = max,ey m,. Using
5.1, the right hand side can be estimated from above by

1 : :BinJrl'“éner/CS-lBérwl"'érﬂrl—l .

As Bg

That case (b) is sufficient for the Assumption can be proved similarly as lines are

< (CZ)H, we have the desired fact.

n+l"'én+l—l -

the shortest paths in this case. ]
We now construct a metric on E.

TueoreM 5.4. For x,y€E, take (arbitrary) x,,y,€l, so that xey, (E),
y ey, (E). Then the following d(x, y) can be defined independently of the choice of xy, y,

and d is a metric on E:

d(x,y) = limsup dy(xy, y,)-

n—oo
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Proor. Firstly, we remark that from [Proposition 5.1 and Assumption 5.2, if

X,y € I, are in the same n-complex, then
(5.1) dyim(x,y) < C'B;

for some C’ > 0. Using this and the fact that B ... > 2", it is easy to show that d(x, y)
is independent of the choice of {x,},{y.}.

For the proof that d is a metric, the only non-trivial part is to show that, if
d(x,y) =0, then x = y. To prove this, suppose x # y. Then there exists an m € N such
that y,.,, ¢ D5 (xX,m) for all n > 1. We then see that dypm(Xnim, Vi) = Bymen/Bugm =
1/B,, >0 and hence d(x, y) > 0. Ll

We call this metric the shortest path metric. The following proposition suggests

that this metric behaves like a geodesic metric.

PROPOSITION 5.5. There exists ¢s3 > 0 such that the following holds.
For all x # y € E and all m € N, there is a sequence {x;};", < E,x; = X, Xy, = y such

that

m—1

d(x,p) > es3 Y d(xi,xip1), 1/2<
=

1

d(xh Xi+1)

<2 (1<ij<m—1).
d(xj, xj41) ( / )

Proor. We first prove that there exists ¢; > 0 such that for x,y e E,

(5.2) d(x,y) < ¢ liminf d,(x,, y,),
n— o0
where x,, y, are chosen as in [Theorem 5.4. To prove this, we will show that for
w, W/ € In+m
(5.3) d,(w|n,w'|n) < crdyym(w,w'),

where wn € I, is the first n letters in the word w. Indeed,

Byn
dyim(w,w') > cymin{z : 7 is an n-path from wln to w'[n} ——
n+m

By
> cymin{z : 7 is an n-path from win to w'[n} —el"
BnBH”f\m
— ey, (wln, w'ln),

for some c¢;,c3 > 0. The first inequality can be proved in a similar way to the proof of
[Proposition 5.1 and the second inequality is from [Proposition 5.1. Using (5.3},
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d(x, y) = hm sup dn(xm yn)

n— oo

< ¢y lim inf dypm(Xntms Vyym) = 1 liminf d,(x, ),
n—oom>1 n— oo

so that is proved. Now, for each x, y € E, corresponding x,, y, € I, (n large) and
for each me N, we can choose {x!:n=1,...,m} < I, which satisfies d,(x,,,) =
S, (X x’ 1), Xx§ = x,x), = y and the ratio of each distance is within [1/2,2]. Using

(5.2},
d(x,y) = Y liminfd,(x}, x},) > ;"> d(xi,xi01),

where {x;} c E is taken as a limit of some subsequence of {x/}. The proof is

completed. ]

We remark that this proposition will be used for the chaining argument required in
the proof of the lower bound for the heat kernel (Theorem 6.8). It follows from
that there exists ¢s4 > 0 such that

(5.4) d(x,y) < cs4B;' if x,y belong to the same k-complex.

Note also that if d(x,y) < B,;l then x,y are either in the same k-complex or in
“adjacent” k-complexes, (which means that y € D} (x)). If B(x,r) = {ye F :d(x,y) <r},
then as the wu-measure of each k-complex is M !, we have ¢M! < u(B(x,B.')) <
Mt Set

log M,
(5.5) & =T
it follows that if B;! <r < B!,
(5.6) 55" < u(B(x, 1)) < cser™, xeE.

The Hausdorff and packing dimension with respect to the metric d are written
dimy 4(-) and dimp 4(-). The following result follows easily from and the density
theorems for Hausdorff and packing measure—see [15].

LemMA 5.6. (a) dimy 4(FE) = liminf,_.., dr(n),
(b) dimp 4(E) = limsup,_,., dr(n).

In the case that the environment is generated by a stationary and ergodic sequence
of random variables, we will have more detailed information of Hausdorftf and packing

dimensions in Section 7.
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6. Transition density estimates.

From this section, we let P, be the semigroup of positive operators associated with
the Dirichlet form (&, %) on L*(E, u), and let (£, 2(#)) be the infinitesimal generator
of (P,). We will call this operator a Laplacian on E. As (&, %) is regular and local,
there exists a diffusion (X;,,7>0,P* xe€ E) with semigroup P,, which we will call
Brownian motion on E. There could be different processes associated with the different
limits of the sequence of Dirichlet forms. We will show that all processes have the same
bounds on their transition density.

We first note that from we have the pointwise bound, that if
T,' <t<T/!, then

(6.1) pi(x,y) <ca6M,, x,yeE.

We can now extend our hitting time estimates for the Markov chains, obtained in
to the diffusion itself. We firstly construct the neighbourhood of a point
x e E. For a point x € [0,1]* we define the cube with center near x by letting ¢(x;) = j
if (j—(1/2))/B,<xi<(j+(1/2))/B, (i=1,...,d) and setting

Dy(x) = [(¢(x1) = 1)/Bu, ($(x1) + 1)/Bu] x - x [($(xa) = 1)/ By, ((xa) + 1)/ By

Let S5 ) =inf{z: W, e D;(x)}.

(x

LEMMA 6.1. There exist constants ce.1, 6o such that, if k = k(r,n), then for all x € E,
(6.2) Px(S[),(x) < T;") < cs1exp(—c62Brix/By).

Proor. This follows exactly the same approach as for the proof of [Lemma 3.10.
We first establish the weak bound, that P*(S5 <) < ¢+ c1f, and then use Lemma 1.1

of [3]. ]

The next lemma can be proved in the same way as Lemma 4.4.

LemMmA 6.2. There exist constants cg 3,64 such that if 0 <t <1,0<r<1, and n,m

satisfy
T-'<t<T, B'<r<B,

m—1>

and k = k(m,n) then for xe E

plo(m)\ (k) =1)
(6.3) px( sup d(X,,x) Zr) < c63 exp<_c64< ) )

0<s<t t
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THEOREM 6.3. There exist constants cgs, ce such that if 0 <t <1, x,y € E, and n,m

satisfy
(6.4) T '<t<T/ ', B'<dxy<B',
and k = k(m,n) then

1/(d,(m+k)—1
d(x,ww)“ i

(6.5) Pi(x,y) < Cé.sl_dS(")/z exp _C6.6< ;

ProOF. Noting that M, < ct~®/2 this is proved from [6.1] and [Lemma 6.2 by

exactly the same argument as in Theorem 6.2 of [6]. O

REMARK. Note that the bound may also be written in the form

(6.6) P, ¥) < My exp(—¢'Buysi/ Bu),

where m,n satisfy [6.4), and k = k(m, n).

We obtain lower bounds on p,(x, y) using the same approach as [11], though the
techniques must be modified to cater for the case when d; > 2. These bounds are
identical, apart from the constants, to the upper bound [6.5).

LemMA 6.4. There exists a constant c¢7 such that if Tn_1 >t then
(6.7) p,(x,x) > ce7M, for all x€eE.

PROOF. As in Lemma 5.1. We note that the direction of the inequality of time
was mistyped in [I1]. O

We need to extend this on-diagonal lower bound to a neighbourhood of the di-
agonal. In the case of finitely ramified fractals with d; < 2 this has been done via an
estimate on the Holder continuity of the heat kernel, derived directly from the control
on functions in the domain provided by the effective resistance. As we wish to consider
the case in which d; >2 as well, we use the Harnack inequality following [8]. Let
T;'<t< T, and set

A)rcl = {y : pt(x; J’) = 66‘8Mn}-

We can write ¢;(n) = P¥(X, € A”) and begin by showing that ¢;(n) > ¢, >0 for
some c¢; > 0. Using the Chapman-Kolmogorov equations and our on diagonal esti-

mates, we have
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P, x) = Jpz(x, »)p,(y, x)u(dy)

— | nopud) | e np @)
AL (A7)

ce1M,_1 < C4_6Man(Xt € A;) + Cﬁganx(Xl € (AZ)C)
Removing M, and writing ¢| = ¢¢7/maxm,, we have
¢y < caec1(n) + ces(1 — c1(n)),
and thus ¢;(n) > ¢; = ((¢] — c68)/(ca6 — c63)) > 0, by choice of cog = c]/2 A c46/2.
Now

Pt(x> y) = JA pz/Z(X7z)pI/2(za y),Lt(dZ) = c6~8M"Py(Xl/2 € A)rcl)

Thus we will have the near diagonal bound if PY(X,, € A}) > ¢, for d(x,y) <
e3B!, T, <t where ¢,,c¢3 are positive constants.

We prove this in two lemmas.

LEMMA 6.5. There exists a constant cg9 > 0 such that

T, ) — _ _
PY(Sp, ) > 1) < C69 Tn:l if yeD,y(x), T;'<r<T/.

Proor. This is a simple application of Markov’s inequality, P”(Sj5 ) > 1) <

n+l

EySBM(X)/Z. For ye D,./(x) we have EVSp, o < T, ", and hence we have the

result. O
LeEmMMA 6.6. There exist constants cg10,k) such that for all n > 0,
P'(X,e AY) > co10, if y€Dun(x), T,'<t<T].

PrOOF. Let ¢ = ¢;/4 > 0. Using the coupling result in [Theorem 4.10, there exists a
k! such that if y e D, (x), then

,S7

P(T¢c < min{Sgw(x Dn+/(X)}) >1—g¢,

)

for k > k}. Rewriting this we have
I —e <P(Tc <t/2)+ P*(Sp, vy > 1/2) + P (S5, ) > 1/2):

Thus for our value of ¢, choosing / such that ¢597),/ Ty < C6.9(l*)718, and using Lemma
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6.5, we have
P(Tc <t/2) >1— 3¢,
for y € D,,x(x). Thus, using the argument from Theorem 6.9,
P'(X; e AY) = PP(X, e AL Te < t/2)
=P (X;e AL Te < t/2)
> PY(X, e AY) — PY(T¢ > t/2)
> —3e > ce10 = c1/4,
for y € Dy, (x), where k| = k. O
Thus we have the following near diagonal bound.
Lemma 6.7. There exist ce11,C6.12 such that if Tn_1 <t< Tn:ll, then
(6.8) p,(x,y) = cs 1M, whenever d(x,y) < cs12B,".

We can now use a standard chaining argument to obtain general lower bounds on

p, from [Lemma 6.7.

THEOREM 6.8. There exist constants cg13,¢e.14 Such that if x,y in E, te(0,1) and

T,'<i<T,, B, <d(x,y) <B,,,

m

then

1/(dy(m+k)—1
syt

(6.9) Pi(x,y) > C6.131_d‘"(")/2 exp _C6.14< ;

Proor. Using (6.8) we see that the bound is satisfied if m >n. Now let m < n,
write k = k(m,n), and choose j,/ with 0 < j </ < ¢ such that

215 > 3b% Jeg1n,  (bF) < (2b%);

note that such a choice is possible, with a constant ¢ depending only on c¢¢ > and b*.
We then have

1—j < T, m-k+j
Bm+k - Bm+k o Tm—i—k Tm+k

Y
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and

* x j—I
3b < 3H*2 < C6.12

(6.11)

Buyiivi Btk m-+k-+j

Let N = By k+1/Bn. Since d(x,y) <b*B,! there exists a chain x = zg,zy,..., zy = y
with d(z;_1,z;) < ¢53b*B,L, ., (here we use [Proposition 5.3). Let G; = B(z;,b*B, !, . )):

then, if x; € G;, we have

(612) d(xl-_l,x,-) < 3C b Bm+k+l < Ce. 123m+k+/
Let s =¢/N, then

Bm B}«n 1
(6.13) 5> > S

Tan+k+l Tm+kBm+k+l Tm+k+j

From (6.8), (6.12) and (6.13) we have p(xiy1,X;) = c6.11 Mpii+j = ¢6.11 Mpik. Therefore
since wu(G;) > e/ M,,},, and m+k > n,

pi(x,y) > j j po(r, 1) - py(xnot, Yl - pldey_1)

N-1 N
( /1 ) CSMn1+k)

> cyMy ik exp(—c3N) > caM, exp(—caByik/Bm)-

\Y

Using completes the proof. O

7. Stationary and ergodic environment.

In this section we assume that the environment is generated by a stationary and
ergodic sequence of random variables and see how oscillations in the environment
sequence &; relate to oscillations in the transition density. In it was possible to
explicitly determine the spectral dimension in the case where there was ergodic behavior
in the environment. For the homogeneous random carpets we cannot express the
spectral or walk dimensions in terms of the time scaling factors for the individual carpet
types but we can show the existence of the spectral dimension. We can then use this to
find bounds of Aronson type for the transition density.

Let (£, %, P) be a Borel probability space, on which cylinder sets are measurable.

We begin by showing that there is a resistance scale factor.
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PROPOSITION 7.1. There is a constant p € (0,00) such that

log R,
lim —&

n—oo

=logp, P-as.

Proor. Note that from and the fact that |V| < oo, there exist constants

/l

c1,¢y > 0 such that
(7.1) cf <R, <¢} forall neN.

Now, from [3.3),

/l

log C3. ank Zlog C3. zR kf|k)'
Thus, for any k > 1, we have

1 R 1
lim supw < %Ep log[c32Ri], P-a.s.

Moreover, from [3.3), (7.1) we know that if i€ [(n — 1)k + 1,nk|, then
k k
€3.1€y R(n—l)k < R; < 3205 Ry
From these facts, we see that for any k > 1,

1 R, 1
lim supM < —Eplog[c32Ri], P-as.

n—oo n k
In the same way, we have for any k > 1,

log[cs (R,
lim jnf 10831 Rl
n— 00 n

1
> EEP 10g[63.1Rk], P-as.

Let R, = Eplog[cioR,), then R,,,, < R, + R,,, ¥Yn,m > 1. We thus see that

: R, . . Ry . . 1
limsup— < liminf —= = liminf — Ep log[c3.1 R,].
nooo N m—oo M m—oo m

Therefore, we have

1 1
lim suanp log[csaR,] = liminf — Ep log[cs.1 Ry

n— oo n—0

Combining this with (7.1), we see that there exists a constant p € [c], 2] < (0, 00)

such that

log R,
lim —¢

n—aoo

=logp, P-as. L
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In this setting, we can also determine the Hausdorff and Packing dimensions. As
in the previous result we can prove that the limit lim, dy(n) exists and it is a constant
P-a.s. So the Hausdorff and Packing dimensions are the same and are given by
dr =logm/logb where logm = lim,_,., log M,,/n and logb = lim,_., log B,/n. If we let

p, denote the limiting proportion of type ve V' in the sequence, then

logm = va log m,.
velV
We can see that the asymptotic behaviour of the spectral dimension depends on the
convergence of log R,/n. In general there will not be a simple expression for this limit in
terms of the different types of carpets, unlike the scale irregular gasket case. We now

define the dimensional exponents for the random carpet P-a.s. as

dy = lim dy(n) = 257
n— o0 log mp

Y _ logmp
d, = nlerolo d,(n) = Togh

As the convergence that occurs in this result comes from the sub-additive ergodic
theorem we do not have control on the rate of convergence. Thus, all that we have in
general is that there exists a set Q — =, with P(Q) = 1, such that for each ¢ > 0 and

each ¢ e Q, there exists an ny = no(¢) such that
(7.2) —|ds(n) —dy| <e, |dy(n)—d,| <e Vn=ny.

THEOREM 7.2. For each ¢ > 0, there exist constants c7; = c7,(¢), i=1,2,3,4 such
that for 0 <t <1, x, ye E9, P-as.,

1/(dy—1)
d(x, y)™
(7.3) pi(x, y) < crat 4P exp | —e7 (%) ;
4\ @)
(7.4) pi(x, y) = cr3t 4 exp | —cr4 (%)

ProoF. Take e Q and let T,' <¢< T, B! <r=d(x,y) <B,',. Note that
by modifying constants ¢7; = ¢7;(&) it is enough to prove for the case n > ny(¢). Since

(t.)" < T, < (t*)", and similar bounds hold for B,,, we have

(7.5) cin <log(l/t) < con,  cym <log(1/r) < com.
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So by
(7.6) b2 < di/2e

For the off-diagonal term we have, writing u = ré /1,

u<

dy—1
T T, B " _
n < m-+k e m-+k Bdw (m+k)—d,,

= C3 =3 - m 3
Bii © BBy B, "
so that
— e/(d,—1
(7.7) Byiio/ By = cqu'/ @ gl

If m < n then using (3.16) we have csn < log By.x < c¢n, and so with |(7.5),

08 B 5 e

while if m >n then B,.x/B,=1. From we have

pix,p) < et~ /2 eXp(_C/Berk/Brn)a

and combining this with 7.6}, and we obtain [7.3].

The lower bound is proved in exactly the same way. ]

ReEMARK. 1. The spectral dimension d; should be a continuous function of the
limiting proportions in the sequence and hence we can obtain fractals which take all
values of d; in some interval. In particular there will be examples of homogeneous
random fractals for which d; = 2. In [8] it was noted that this was unlikely to occur for
deterministic carpets but results were stated that would hold for any such examples.
Thus in our setting there will be such examples where the results stated in hold. A
case would be an appropriate combination of the three dimensional Sierpinski carpet
and the Menger Sponge as defined in Section 9.

2. In order to obtain sharper estimates of [Theorem 7.2l as in the case of the
Sierpinski gasket ([11]), one needs to obtain good asymptotics for (log R,)/n. We do not
know how to do this even for the case where the environment is generated by an i.i.d.
sequence of random variables, as R, is not expressible as a simple product of some i.i.d.
random variables in that case.

We can also obtain bounds on the eigenvalue counting function using the rela-
tionship between it and the transition density. As p, is uniformly continuous, this
implies that P, is a compact operator on L*(E,u), so that P, and hence —%, has a

discrete spectrum. Let 0 < A; < --- be the eigenvalues of —%, (with either Dirichlet or
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Neumann boundary conditions) and let N(1) = #{4; : 4; < A} be the eigenvalue counting

function.
Since
o0
J p,(x, X)u(dx) = J e 'N(ds), >0,
E 0
using and we have
w
(7.9) aM, < J e TN (ds) < exM,, n>0.
0

We can then convert this into estimates for N (1), using the same proof as [11].

PROPOSITION 7.3. There exist constants cqs, 76, €77 such that if A > c75 and n is

such that T,_y < A< T, then
(7.10) 076442 < N (1) < ¢772%0012,

Finally, if the sequence ¢ is generated by a stationary and ergodic sequence of
random variables, and there is no rapid convergence of the proportions, we see that
N(2)/A%/? is not bounded from above and below, unlike the regular fractals such as

(non-random) nested fractals or Sierpinski carpets.

COROLLARY 7.4. For each ¢ >0, the following holds P-a.s.,

N N(2)
(7.11) 0 <liminf-7=, lmsup g5 < .

Further, for fixed & € Q, if there is a function g : Ry — R, with g(x) — o0 as x — o0 and

{mi}i2,, such that

(7.12)

N —

nj 2 Ny

1
() =) > 20 (e S (am) - < 22),
Then, there is a constant c7g (resp. c79) such that

, NG) . N()
(113) - limsup e a7 — @ (1’ It e a2~ 0 )

If the following holds instead,

(7.14)

N

(ds — ds(ny.)) > gszck) (resp. %(ds —dy(mg)) < g;”:)),
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then there is a constant c719 (resp. c7.11) such that

. N(2)
(7.15) hinilogf e—cr0g(log2) 5 ds/2

M)

=0 (resp. lim sup catio ) 1472

A—oo e
PROOF. comes from [Theorem 7.2l For [7.13), taking 7,1 < A < T,

N(2)

— > c7.6i(dx(nk)_dv)/ze*ﬁﬁg(l()gA) > 67.66(01*07.8)9(10%)
eC7_gg(10g}.)j’ A‘/

where the first inequality is by and the second is by [(7.12). Thus the result holds

by taking c¢73 < ¢;. The rest can be proved in the same way. O
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