
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 20, Number 1, Spring 2008

AN INTEGRAL EQUATION METHOD
FOR A BOUNDARY VALUE PROBLEM

ARISING IN UNSTEADY WATER WAVE PROBLEMS

MARK D. PRESTON, PETER G. CHAMBERLAIN

AND SIMON N. CHANDLER-WILDE

Communicated by Rainer Kress

ABSTRACT. In this paper we consider the 2D Dirichlet
boundary value problem for Laplace’s equation in a non-
locally perturbed half-plane, with data in the space of bounded
and continuous functions. We show uniqueness of solution,
using standard Phragmén-Lindelöf arguments. The main re-
sult is to propose a boundary integral equation formulation,
to prove equivalence with the boundary value problem, and
to show that the integral equation is well posed by applying
a recent partial generalization of the Fredholm alternative in
Arens et al. [2]. This then leads to an existence proof for the
boundary value problem.

0. Introduction. This paper is concerned with the boundary
integral equation method for a problem in potential theory, namely
the Dirichlet boundary value problem in a non-locally perturbed half-
plane. The main aim of the paper is to discuss the well-posedness of
this problem and of a novel second kind boundary integral equation
formulation.

Our motivation for studying this problem is that it arises in the
theory of classical free surface water wave problems, for which boundary
integral equation methods are well-established as a computational and
theoretical tool [3, 4, 8, 13]. In particular, accurate numerical
schemes, based on boundary integral equation formulations, for the
time dependent water wave problem have been proposed and fully
analyzed in [3, 4, 13], these papers providing a full nonlinear stability
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analysis for the spatial discretizations they propose. A significant
component in this analysis is the well-posedness of the boundary
integral equation formulation.

A key restriction in the analysis in the above papers is the requirement
that the free surface be periodic (in 2D) or doubly-periodic (in 3D).
This restriction is helpful theoretically and computationally. It enables
the boundary integral equation on the free surface to be reduced to
one on a (bounded) single periodic cell, which can then be discretized
with a finite size mesh. Moreover, the boundary integral formulation
is of second kind with a compact integral operator, and therefore
standard Riesz/Fredholm theory gives well-posedness via the Fredholm
alternative.

As a step towards a broader extension of the results of [3, 4, 13],
this paper is concerned with studying the Dirichlet boundary value
problem for Laplace’s equation in a perturbed half-plane Ω without the
requirement that the boundary ∂Ω of Ω be periodic. To simplify our
task somewhat, we impose other conditions on the boundary, namely:
the boundary surface is the graph of a bounded continuous function
(this excludes configurations relevant to breaking waves); the surface
is sufficiently smooth (at least Lyapunov, that is, the unit normal
direction is Hölder continuous).

We note that there exists a well-developed L2 theory of the boundary
integral equation method for the Dirichlet problem when the boundary
is the graph of an arbitrary Lipschitz function and the Dirichlet data
is in L2(∂Ω), see e.g., Verchota [19], Meyer and Coifman [15] and the
references therein. However, this theory does not extend to the case
of data in L∞(∂Ω). In particular, even if the boundary is smoother
than Lipschitz, the standard double layer potential operator is not well-
defined on L∞(∂Ω).

Addressing this difficulty, our aim in this paper is to develop a theory
which includes the case when neither the surface elevation nor the
Dirichlet data exhibit decay at infinity. To obtain a boundary integral
equation formulation appropriate to this case we make the ansatz that
the solution can be represented as a double layer potential supported
on the (infinite) boundary of the domain, with the twist that we replace
the standard fundamental solution of Laplace’s equation in 2D with the
Dirichlet Green’s function for a half-plane ΩH that strictly includes



AN INTEGRAL EQUATION METHOD FOR A BVP 123

the domain Ω. We note that the case of periodic surface elevation
and Dirichlet data will be included as a special case in the theory we
develop.

The boundary value problem we solve and the double-layer potential
are specified precisely in the next section. In Section 2 we describe
the properties of the half-plane Green’s function and the double-layer
potential; the main issue is the unboundedness of ∂Ω and how this
affects the double-layer potential and its mapping properties.

In Section 3 we state the boundary integral equation and we prove
results on its well-posedness, and this enables us to establish the well-
posedness of the boundary value problem. In general terms, the ar-
gument follows the usual pattern: we first show uniqueness for the
boundary value problem and next establish that the integral equation
formulation has at most one solution. Finally, we deduce existence of a
solution to the integral equation, and thus to the boundary value prob-
lem. However, the unboundedness of ∂Ω adds significant difficulties
to the analysis. First of all, uniqueness of solution for the boundary
value problem requires a Phragmén-Lindelöf argument. Establishing
uniqueness of solution for the integral equation requires study of an
additional mixed Dirichlet-Neumann boundary value problem in the
infinite domain ΩH \ Ω. To deduce surjectivity from injectivity for the
integral equation we cannot use the Fredholm alternative as the inte-
gral operator is not compact. Instead we use a partial generalization of
the Fredholm alternative, due to Arens et al. [2], which applies when
the operator is only locally compact.

Notation. Throughout this paper x and y will denote points in the
plane R2 such that x = (x1, x2) and y = (y1, y2). Given G ⊆ R2,
let BC(G) denote the space of (real-valued) bounded and continuous
functions on G. For 0 < α ≤ 1, let BC0,α(G) ⊂ BC(G) denote
the space of functions that are bounded and Hölder continuous with
index α. Let BC1,α(R) denote the space of functions ψ : R → R
that are bounded and continuously differentiable with ψ′ ∈ BC0,α(R).
Similarly, for a domain G ⊂ R2, let BC1,α(G) denote the space of
bounded functions ψ ∈ C1(G) for which ∇ψ ∈ BC0,α(G). All of
these function spaces are Banach spaces with their respective norms.
In particular, the standard norm on BC(G) is ‖·‖BC(G), defined by
‖ψ‖BC(G) := supx∈G |ψ(x)| and that on BC0,α(G) is ‖·‖BC0,α(G),
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FIGURE 1. The domain for the boundary value problem.

defined by

‖ψ‖BC0,α(G) := ‖ψ‖BC(G) + sup
x,y∈G
x �=y

|ψ(x) − ψ(y)|
|x− y|α .

1. The boundary value problem. Throughout we suppose that
f ∈ BC1,α(R). The problem we wish to solve will be set in the region
Ω := {x ∈ R2 : x2 < f(x1)} with boundary Γ = {(x1, f(x1)) : x1 ∈ R}.
Since f is bounded there exist f−, f+ ∈ R such that f− ≤ f(x1) ≤ f+
for all x1 ∈ R and since f ′ is Hölder continuous, Γ is a fairly smooth
(Lyapunov) surface.

This paper is concerned with the solution, via a boundary integral
equation method, of the following Dirichlet boundary value problem:
Given φ0 ∈ BC(Γ), find φ ∈ BC(Ω) ∩C2(Ω) such that

(1) φ = φ0 on Γ and Δφ = 0 in Ω.

We choose H > f+. Then Ω ⊂ ΩH where ΩH := {x ∈ R2 : x2 < H}
and ΓH := {x ∈ R2 : x2 = H}. Now let

ΦH(x, y) := Φ(x, y) − Φ(x, yr) = Φ(x, y) − Φ(xr , y),
x, y ∈ ΩH , x 
= y,

where yr := (y1, 2H − y2) is the reflection of y in ΓH and

Φ(x, y) := − 1
2π

ln |x− y|, x, y ∈ R2, x 
= y,
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is the standard fundamental solution of Laplace’s equation in two
dimensions. Then ΦH is the Dirichlet Green’s function for the half-
plane ΩH .

To solve the boundary value problem we will look for a solution in
the form of the double-layer potential

(2) φ(x) :=
∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y) ds(y), x ∈ Ω,

for some density μ ∈ BC(Γ). Throughout, n(y) = (−f ′(y1), 1)/√
1 + f ′(y1)2 will denote the unit normal vector at y ∈ Γ directed

out of Ω. We will abbreviate the norm on BC(Γ) by ‖·‖∞, so that
‖μ‖∞ = ‖μ‖BC(Γ) = supx∈Γ |μ(x)|. Explicitly, for y ∈ Γ, x ∈ ΩH ,

∂ΦH(x, y)
∂n(y)

=
1
2π

(x− y).n(y)
|x− y|2 − 1

2π
(xr − y).n(y)
|xr − y|2 .

We will see shortly that φ(x) is well-defined by (2) for all x ∈ ΩH

(as a Lebesgue or Riemann improper integral). This statement is no
longer true if we replace ΦH by Φ in (2) unless μ decays sufficiently
rapidly at infinity, e.g., μ(x) = O(|x|−b) as |x| → ∞ for some b > 1. It
is this fact that makes the choice of ΦH instead of Φ in (2) essential to
the analysis that is to follow.

As f ∈ BC1,α(R), by definition, there exist constants Cf ′ and Cα

such that

(3) |f ′(x1)| ≤ Cf ′ and |f ′(x1) − f ′(y1)| ≤ Cα|x1 − y1|α,

for x1, y1 ∈ R. We also define the constant Cint :=
√

1 + C2
f ′ that will

be used later. Further, defining δ± := 2(H − f∓), it holds that

0 < δ− ≤ |y − yr| ≤ δ+, y ∈ Γ.

We begin by establishing some straightforward bounds.

Lemma 1.1. For x, y ∈ Γ, |(x − y).n(y)| ≤ Cα|x1 − y1|1+α and
|n(x) − n(y)| ≤ √

5Cα|x1 − y1|α.
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Proof. Let g(y1) :=
√

1 + f ′(y1)2, y1 ∈ R. By (3) and applying the
mean value theorem, we have, for some ξ between x1 and y1,

|(x − y).n(y)| =
∣∣∣∣(x1 − y1)(f ′(y1) − f ′(ξ))

g(y1)

∣∣∣∣ ≤ Cα|x1 − y1|1+α.

Further,

|g(x1) − g(y1)| =
|f ′(x1) + f ′(y1)||f ′(x1) − f ′(y1)|

g(x1) + g(y1)
≤ Cα|x1 − y1|α

and so

|f ′(x1)g(y1) − f ′(y1)g(x1)|
g(x1)g(y1)

=
∣∣∣∣ (f ′(x1) − f ′(y1))g(y1)

g(x1)g(y1)
− f ′(y1)(g(x1) − g(y1))

g(x1)g(y1)

∣∣∣∣
≤ 2Cα|x1 − y1|α.

Thus,

|n(x) − n(y)|2 =
(
f ′(x1)g(y1) − f ′(y1)g(x1)

g(x1)g(y1)

)2

+
(
g(x1) − g(y1)
g(x1)g(y1)

)2

≤ 5C2
α|x1 − y1|2α.

2. Properties of the double-layer potential. In this section we
establish the behavior of the double layer potential given by (2) when
μ ∈ BC(Γ). Throughout this section let φ denote the double layer
potential defined by

(4) φ(x) :=
∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y) ds(y), x ∈ ΩH ,

for some μ ∈ BC(Γ).

We first derive a key bound on the integrand, given by (5) below.
This requires a simple preliminary result.
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Lemma 2.1. If x ∈ ΩH , y ∈ Γ and x 
= y, then

|∇yΦH(x, y)| ≤ 3|x− xr |
2π|x− y|2 .

Proof. We have 0 < |x− y| < |x− yr| and 0 < |x− yr|2 − |x− y|2 =
|x− xr||y − yr|. So

|∇yΦH(x, y)| =
1
2π

∣∣∣∣ x− xr

|x− y|2 +
(xr − y)

(|x− yr|2 − |x− y|2)
|x− y|2|x− yr|2

∣∣∣∣
≤ 1

2π

[ |x− xr|
|x− y|2 +

|xr − y||x− xr||y − yr|
|x− y|2|x− yr|2

]
≤ |x− xr|

2π|x− y|2
[
1 +

|x− yr| + |x− y|
|x− yr|

]
≤ 3|x− xr |

2π|x− y|2 ,

as required.

It now follows from Lemma 2.1 that

(5)
∣∣∣∣∂ΦH(x, y)

∂n(y)

∣∣∣∣ ≤ 3|H − x2|
π|x− y|2 ≤ 3δ+

2π|x− y|2 , x ∈ ΩH , y ∈ Γ.

This bound, together with Lemma 1.1, implies that the double-layer
potential φ(x), given by (4), is well-defined for all x ∈ ΩH and μ ∈
BC(Γ). Further, it follows from the bound in Lemma 2.1 together with
standard local elliptic regularity results [10, Lemma 3.9 and Theorem
4.1] and standard results on the differentiation of functions defined
as integrals, that the following lemma holds. Here and subsequently
Γr := {xr : x ∈ Γ} denotes the image of Γ in ΓH .

Lemma 2.2. φ ∈ C2(R2\(Γ∪Γr)) and is harmonic in R2\(Γ∪Γr).

Having established that φ is harmonic above and below Γ, we now
prove that it can be continuously extended onto Γ, specifically that the
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standard jump relations for the double-layer potential remains valid in
this case.

Theorem 2.3. φ can be continuously extended from Ω to Ω and from
ΩH \ Ω to ΩH \ Ω with limiting values

(6) φ±(x) =
∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y) ds(y) ± 1
2
μ(x), x ∈ Γ,

where
φ±(x) := lim

h→0+
φ(x± hn(x)).

Proof. It is clear, from the bounds in Lemmas 1.1 and 2.1, that the
right-hand side of (6) is continuous on Γ. So we only need to show
that, for every x∗ ∈ Γ, φ(x) → φ+(x∗) as x → x∗ with x ∈ Ω and
φ(x) → φ−(x∗) as x→ x∗ with x ∈ ΩH \ Ω, and φ±(x∗) given by (6).

Suppose x∗ ∈ Γ and define ψ ∈ C(Γ) so that ψ is compactly supported
and ψ(y) = 1 in a neighborhood of x∗. Let I1 and I2 represent the
double-layer potentials with densities μψ and μ(1 − ψ), respectively,
so that φ = I1 + I2. Then, by Lemma 2.2, I2 is continuous in a
neighborhood of x∗. Further, from the standard jump relations for the
double-layer potential on bounded Lyapunov domains, [16, Theorem
18.5.1 and Chapter 18, Section 13] or [11, Chapter 2, Section 3,
Theorem 2], it follows that I1(x) → I1,−(x∗) as x→ x∗ with x ∈ Ω and
I1(x) → I1,+(x∗) as x → x∗ with x ∈ ΩH \ Ω, where I1,±(x∗) is given
by

I1,±(x∗) =
∫

Γ

∂ΦH(x∗, y)
∂n(y)

μ(y)ψ(y) ds(y) ± 1
2
μ(x∗).

(To see that the results of [11, 16] apply, note that we can consider I1
to be a standard double-layer potential supported on a closed Lyapunov
curve with density which is zero except in neighborhoods of x∗ and its
image point x∗r.) Combining these properties of I1 and I2 the result
follows. (We note that this partition of unity technique has been used
previously: for the two-dimensional case, see e.g., [6], and for the three-
dimensional case, see e.g., [5, 17]).

Corollary 2.4. With φ± defined as in Theorem 2.3, it holds that
μ = φ+ − φ−.
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Arguing similarly to Theorem 2.3 we also have the following result.

Theorem 2.5. The normal derivative of φ is continuous across Γ
in the sense that, for x ∈ Γ,

(7) n(x).(∇φ(x + hn(x)) −∇φ(x− hn(x))) −→ 0, as h→ 0.

Further, (7) holds uniformly for x on every compact subset of Γ.

Proof. It is sufficient to show that, for every x∗ ∈ Γ, (7) holds
uniformly for x in a neighborhood of x∗. So suppose x∗ ∈ Γ and
define I1, I2 and ψ as in Theorem 2.3. Arguing as before we have that
I2 is continuously differentiable in a neighborhood of x∗. To see that I1
satisfies (7) we apply the standard jump relations [16, Theorem 18.5.2
and Chapter 18, Section 13].

We next prove that φ is bounded in ΩH (which, of course, includes
Γ).

Theorem 2.6. There exists a positive constant CΓ, dependent only
on α, f±, H, Cα and Cf ′ , such that

(8) |φ(x)| =
∣∣∣∣ ∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y) ds(y)
∣∣∣∣ ≤ CΓ‖μ‖∞, x ∈ ΩH .

Proof. Note first that, for μ ∈ BC(Γ), x ∈ ΩH , and defining
Γx := {y ∈ Γ : |x1 − y1| < 2δ+},∣∣∣∣∫

Γ

∂φH(x, y)
∂n(y)

μ(y) ds(y)
∣∣∣∣ ≤ ‖μ‖∞[Inear(x) + Ifar(x)],

where

Inear(x) :=
∫

Γx

∣∣∣∣∂ΦH(x, y)
∂n(y)

∣∣∣∣ds(y),
Ifar(x) :=

∫
Γ\Γx

∣∣∣∣∂ΦH(x, y)
∂n(y)

∣∣∣∣ds(y).
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We now bound Ifar and Inear separately.

To bound Ifar note that, for x ∈ ΩH , y ∈ Γ,

|x− y| ≥ |x− yH | − |y − yH | =⇒ |x− y|2 ≥ |x− yH |[|x− yH | − δ+],

where yH is the projection of y onto ΓH , that is, yH := (y1, H). If
y ∈ Γ \ Γx then

δ+ ≤ 1
2
|x1 − y1| ≤ 1

2
|x− yH |.

Thus, for x ∈ ΩH , y ∈ Γ \ Γx,

|x− y|2 ≥ 1
2
|x− yH |2 =

1
2
[(x1 − y1)2 + (H − x2)2].

Using this inequality, the substitution r = (x1 − y1)/(x2 −H) and (5),
we have

Ifar(x) ≤
∫

Γ\Γx

3(H − x2)
π|x− y|2 ds(y)

≤ 6Cint

π

∫ ∞

−∞

(H − x2)
(x1 − y1)2 + (x2 −H)2

dy1

≤ 6Cint

π

∫ ∞

−∞

1
1 + r2

dr = 6Cint.

We initially bound Inear by

Inear(x) ≤ I1(x) + I2(x), x ∈ ΩH ,

where

I1(x) :=
∫

Γx

∣∣∣∣∂Φ(x, y)
∂n(y)

∣∣∣∣ds(y),
I2(x) :=

∫
Γx

∣∣∣∣∂Φ(xr, y)
∂n(y)

∣∣∣∣ ds(y).

To bound I1 we note that, where s = x1 − y1 and t = |x2 − f(x1)| (so
that t = 0 if x ∈ Γ), it follows by the triangle inequality that

(s2 + t2)1/2 ≤ |x− y| + |f(x1) − f(y1)| ≤ (1 + Cf ′)|x− y|.
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Further, for x ∈ ΩH and y ∈ Γ, where xΓ := (x1, f(x1)), it follows from
Lemma 1.1 that

|(x− y).n(y)| ≤ |(xΓ − y).n(y)| + |(x− xΓ).n(y)| ≤ Cα|s|1+α + t.

Using these bounds we have∫
Γx

∣∣∣∣∂Φ(x, y)
∂n(y)

∣∣∣∣ds(y) =
1
2π

∫
Γx

∣∣∣∣(x− y).n(y)
|x− y|2

∣∣∣∣ds(y)
≤ Cint(1 + Cf ′)2

2π

∫ 2δ+

−2δ+

|s|1+α + t

s2 + t2
ds

≤ Cint(1 + Cf ′)2

2π

(
Cα(2δ+)α

α
+ π

)
.

To bound I2, we have, for all x ∈ ΩH ,∣∣∣∣∂Φ(x, yr)
∂n(y)

∣∣∣∣ ≤ 1
2π

1
|x− yr| ≤

1
πδ−

.

Thus, ∫
Γx

∣∣∣∣∂Φ(x, yr)
∂n(y)

∣∣∣∣ ds(y) ≤ Cint

πδ−

∫
Γx

ds(y) =
4Cintδ+
πδ−

.

Putting these bounds together, we have shown that (8) holds with

CΓ = Cint

(
6 +

4δ+
πδ−

+
1 + Cf ′

2π

(
Cα(2δ+)α

α
+ π

))
.

Properties of the double layer potential evaluated on the boundary
Γ are particularly important. We define the double layer potential
operator K by

(9) (Kψ)(x) := 2
∫

Γ

∂ΦH(x, y)
∂n(y)

ψ(y) ds(y), x ∈ Γ,

for ψ ∈ BC(Γ).
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We now prove three mapping properties of the operator K. These
mapping properties are:

K : BC(Γ) → BC0,α(Γ)

K : BC0,β(Γ) → BC0,α+β(Γ), if α+ β < 1

K : BC0,β(Γ) → BC1,α+β−1(Γ), if β ∈ (0, 1) and α+ β > 1.

We first prove the first two properties together. It is convenient in
this proof to use the notation BC0,0(Γ) for BC(Γ) and, for β ∈ (0, 1),
BC1,β(Γ) is the set of φ : Γ → R for which φ̃ ∈ BC1,β(R) where
φ̃(x1) := φ((x1, f(x1))).

Theorem 2.7. For β ∈ [0, 1 − α), K is a bounded operator from
BC0,β(Γ) to BC0,α+β(Γ). In particular, for some C > 0, depending
only on α, β, f±, H, Cα and Cf ′ ,

(10) |Kψ(x) −Kψ(z)| ≤ C‖ψ‖BC0,β(Γ)|x− z|α+β , x, z ∈ Γ.

Proof. We already know, from Theorem 2.6, that Kψ ∈ BC(Γ) with
‖Kψ‖∞ ≤ 2CΓ‖ψ‖∞. In the straightforward case where x, z ∈ Γ with
|x1 − z1| ≥ 1, we have

|Kψ(x) −Kψ(z)| ≤ 4CΓ‖ψ‖∞ ≤ 4CΓ‖ψ‖BC0,β(Γ)|x− z|α+β.
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To consider the case when x, z ∈ Γ and |x1 − z1| < 1, we write

Kψ(x) −Kψ(z) = 2[I(x, z) − I(xr , zr)],

where

I(x, z) :=
∫

Γ

[
∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

]
ψ(y) ds(y).

We examine I(x, z) first. Let Γt := {y ∈ Γ : |x1 − y1| < t}, for t > 0,
and let Γ∪ := {y ∈ Ω : y1 = x1 ± 2, y2 ≥ f− − 1} ∪ {y : |x1 − y1| ≤
2, y2 = f− − 1}, and note that the interior of Γ2 ∪ Γ∪ is a Lipschitz
domain. By Gauss’s theorem and Green’s first theorem, cf. [7, (2.42)],
we know that

(11)
∫

Γ2∪Γ∪

∂Φ(w, y)
∂n(y)

ds(y) =
1
2
, w ∈ Γ2,

and thus ∫
Γ2∪Γ∪

[
∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

]
ds(y) = 0.

Using this identity, we split I(x, z) into four integrals,

I(x, z) = I1(x, z) + I2(x, z) + I3(x, z) + I4(x, z),

where

I1(x, z) :=
∫

Γ2r

[
∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

]
[ψ(y) − ψ(x)] ds(y),

I2(x, z) :=
∫

Γ2\Γ2r

[
∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

]
[ψ(y) − ψ(x)] ds(y),

I3(x, z) :=
∫

Γ\Γ2

[
∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

]
ψ(y) ds(y),

I4(x, z) := −ψ(x)
∫

Γ∪

[
∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

]
ds(y),

in which r = |x1 − z1| < 1, see Figure 2.

By Lemma 1.1, for x, y ∈ Γ,∣∣∣∣∂ΦH(x, y)
∂n(y)

∣∣∣∣ ≤ 1
2π
Cα|x1 − y1|α−1.
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Note also that, for x, y ∈ Γ, |ψ(y) − ψ(x)| ≤ 2‖ψ‖∞ = 2‖ψ‖BC0,0(Γ).
Thus, for 0 ≤ β < 1 − α,

|ψ(y) − ψ(x)| ≤ 2‖ψ‖BC0,β(Γ)|x− y|β
≤ 2Cβ

int‖ψ‖BC0,β(Γ)|x1 − y1|β .

To bound I1, we note that if |x1 − y1| < 2r then |z1 − y1| < 3r, and
therefore

(12) |I1(x, z)| ≤ 1
π
Cβ

intCα‖ψ‖BC0,β(Γ)(2r)
β[ ∫

Γ2r

|x1 − y1|α−1 ds(y)+
∫

Γ2r

|z1 − y1|α−1 ds(y)
]

≤ 1
π
C1+β

int Cα‖ψ‖BC0,β(Γ)(2r)
β

[ ∫ 2r

−2r

|s|α−1 ds+
∫ 3r

−3r

|s|α−1 ds
]

≤ 1
π

21+β(2α + 3α)C1+β
int Cα‖ψ‖BC0,β(Γ)|x− z|α+β .

Turning to I2, we note that if |x1 − y1| ≥ 2r, ξ ∈ Γ and ξ1 lies in
the closed interval between x1 and z1, then |ξ1 − y1| ≥ r ≥ |ξ1 − x1|
so |x1 − y1| ≤ |x1 − ξ1| + |ξ1 − y1| ≤ 2|ξ1 − y1|. So, by the mean value
theorem, we have∣∣∣∣ 1

|x− y|2 − 1
|z − y|2

∣∣∣∣ ≤ 16
|x− z|

|x1 − y1|3
and, by Lemma 1.1,

|n(y).(x − z)| ≤ |(n(y) − n(x)).(x − z)| + |n(x).(x − z)|
≤

√
5Cα|x1 − y1|α|x− z| + Cα|x1 − z1|1+α.

Combining these inequalities we have, for 2r ≤ |x1 − y1| ≤ 2, that
|z1 − y1| ≤ 3|x1 − y1|/2 and

(13)
∣∣∣∣∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

∣∣∣∣
≤ 1

2π

∣∣∣∣ 1
|x− y|2 − 1

|z − y|2
∣∣∣∣|n(y).(z − y)| + 1

2π
|n(y).(x− z)|

|x− y|2

≤ 1
2π

(
24(3α)

2α
+
√

5 + 1
)
Cα|x− z||x1 − y1|α−2,
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so, letting C1 := ((24(3α)/2α) +
√

5 + 1)/(2π),

|I2(x, z)| ≤ 2C1CαC
β
int‖ψ‖BC0,β(Γ)|x− z|

∫
Γ2\Γ2r

|x1 − y1|α+β−2 ds(y)

≤ 4C1CαC
1+β
int ‖ψ‖BC0,β(Γ)|x− z|

∫ 2

2r

sα+β−2 ds

≤ 21+α+β

1 − α− β
C1CαC

1+β
int ‖ψ‖BC0,β(Γ)|x− z|α+β.

To bound I3 we note that, for i = 1, 2,

∂

∂xi

∂Φ(x, y)
∂n(y)

=
1

2π|x− y|2
(
ni(y) − 2

(x− y).n(y)
|x− y|2 (xi − yi)

)
so that

(14)
∣∣∣∣∇x

∂Φ(x, y)
∂n(y)

∣∣∣∣ ≤ 3
√

2
2π

|x− y|−2.

Hence, by the mean value theorem,∣∣∣∣∂Φ(x, y)
∂n(y)

− ∂Φ(z, y)
∂n(y)

∣∣∣∣ ≤ 3
√

2
2π

|x− z|max{|x− y|−2, |z − y|−2}.

Thus, since, for y ∈ Γ\Γ2, |z−y| ≥ |x−y|−|x−z| ≥ |x−y|−1 ≥ |x−y|/2,
it holds that

(15)
∣∣∣∣∂ΦH(x, y)

∂n(y)
− ∂ΦH(z, y)

∂n(y)

∣∣∣∣ ≤ 6
√

2
π

|x− z||x− y|−2.

Hence,

|I3(x, z)| ≤ 12
√

2
π

Cint‖ψ‖∞|x− z|
∫ ∞

2

s−2 ds

≤ 6
√

2
π

Cint‖ψ‖BC0,β(Γ)|x− z|.

Now turning to I4(x, z), we can apply (15) once more to get, since
|x− y| ≥ 1 and |z − y| ≥ 1 on Γ∪,

|I4(x, z)| ≤ 3
√

2
2π

‖ψ‖∞|x− z|
∫

Γ∪
ds(y)

≤ 3
√

2
π

(3 + f+ − f−)‖ψ‖BC0,β(Γ)|x− z|.
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Finally, we examine the reflected portion. By applying (15) and
noting that I(xr , zr) is never singular we can see that

|I(xr , zr)| ≤ ‖ψ‖∞
∫

Γ

∣∣∣∣∂Φ(xr, y)
∂n(y)

− ∂Φ(zr, y)
∂n(y)

∣∣∣∣ds(y)
≤ 3

√
2

2π
‖ψ‖∞|x− z|

∫
Γ

max{|xr − y|−2, |zr − y|−2} ds(y)

≤ 3
√

2
π

Cint‖ψ‖∞|x− z|
∫ ∞

0

1
δ2− + s2

ds

≤ 3
√

2Cint

δ−
‖ψ‖BC0,β(Γ)|x− z|.

Therefore the required bound (10) holds.

In the next theorem, and in the rest of the paper, for x ∈ Γ, let t(x)
denote the unit tangent vector, with the horizontal component of t(x)
chosen to be positive (explicitly, t(x) = (1, f ′(x1))/

√
1 + f ′(x1)2 ). For

φ ∈ C1(Γ), x ∈ Γ, we define

∂φ

∂s
(x) := lim

h→0

φ((x1 + h, f(x1 + h))) − φ(x)
l

,

where

l :=
∫ x1+h

x1

√
1 + f ′(s)2 ds.

Let

d(x, y) := − 1
2π

[
t(x).n(y)
|x− y|2 − 2

(x− y).n(y)(x − y).t(x)
|x− y|4

]
,

for x, y ∈ Γ.

Theorem 2.8. If β ∈ (0, 1) and α + β > 1 then K : BC0,β(Γ) →
BC1,α+β−1(Γ) and is bounded. Precisely,

∂Kψ(x)
∂s

=
∫

Γ

[d(x, y) − d(xr , y)][ψ(y) − ψ(x)] ds(y), x ∈ Γ,
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x

Γ′

t

Γ′

∪,t

t + 1

t + 1

y1 = m y1 = m + 1

y2 = f− − 1

FIGURE 3. The point x, the surfaces Γt′ and Γ∪,t′ .

and for some constant C > 0, dependent only on α, β, f±, H, Cα and
Cf ′ , ∣∣∣∣∂Kψ(x)

∂s
− ∂Kψ(z)

∂s

∣∣∣∣ ≤ C‖ψ‖BC0,β(Γ)|x− z|α+β−1,

for x, z ∈ Γ.

Proof. Let x = (x1, f(x1)) ∈ Γ. For h ∈ R, let xh = (x1 + h, f(x1 +
h)). Then xh ∈ Γ is distance l along Γ from x and we need to examine
[Kψ(xh) −Kψ(x)]/l. Choose m ∈ Z so that m ≤ x1 < m+ 1 and, for
t > 1, set

Γ′
t := {y ∈ Γ : m− t− 1 < y1 < m+ t+ 1},

Γ′
∪,t := {y ∈ Ω : y1 = m± (t+ 1), y2 ≥ f− − 1}

∪ {y : |(m, f− − 1) − y| = t+ 1, y2 ≤ f− − 1},

see Figure 3.

For t > 1 let Kt denote the double layer potential operator over the
surface Γ′

t, given by

Ktψ(x) :=
∫

Γ′
t

∂Φ(x, y)
∂n(y)

ψ(y) ds(y).
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Clearly, |Γ′
∪,t| ≤ πt + δ+, and if t ≥ δ+/(4 − π) then |Γ′

∪,t| ≤ 4t. The
domain enclosed by Γ′

t∪Γ′∪,t is a closed Lipschitz domain and, applying
(11), we have

1
l
[Ktψ(xh) −Ktψ(x)]

=
1
l

∫
Γ′

t

[
∂Φ(xh, y)
∂n(y)

− ∂Φ(x, y)
∂n(y)

]
ψ(y) ds(y)

=
1
l

∫
Γ′

t

[
∂Φ(xh, y)
∂n(y)

− ∂Φ(x, y)
∂n(y)

]
[ψ(y) − ψ(x)] ds(y)

− 1
l
ψ(x)

∫
Γ′
∪,t

[
∂Φ(xh, y)
∂n(y)

− ∂Φ(x, y)
∂n(y)

]
ds(y)

=
∫

Γ′
t

dh(x, y)[ψ(y) − ψ(x)] ds(y)

− ψ(x)
∫

Γ′
∪,t

dh(x, y) ds(y)

= Ia(x) + Ib(x) − ψ(x)Ic(x)

where

dh(x, y) :=
1
l

[
∂Φ(xh, y)
∂n(y)

− ∂Φ(x, y)
∂n(y)

]
,

and
Ia(x) :=

∫
Γ2h

dh(x, y)[ψ(y) − ψ(x)] ds(y),

Ib(x) :=
∫

Γ′
t\Γ2h

dh(x, y)[ψ(y) − ψ(x)] ds(y),

Ic(x) :=
∫

Γ′
∪,t

dh(x, y)ds(y).

Now the integral I1(x, z) in the proof of Theorem 2.7 is identical to
Ia(x)/l, if we set r = h. We again use the notation Γ2h = {y ∈ Γ :
|x1 − y1| < 2h}. So substituting z = xh in (12) and as α+β > 1 we can
see that |Ia(x)| ≤ 21−β(2α + 3α)Cα+2β

int Cα‖ψ‖BC0,β(Γ)h
α+β−1/π → 0

as h→ 0.

We now define

d̃h(x, y) :=
{

0 y ∈ Γ2h,
dh(x, y) y ∈ Γ′

t \ Γ2h,
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so that

Ib(x) =
∫

Γ′
t

d̃h(x, y)[ψ(y) − ψ(x)] ds(y).

Taking z = xh, t > 1 and using (13) we see that |d̃h(x, y)| ≤
C1Cα|x1 − y1|α−2 for y ∈ Γ1 \ Γ2h and with C1 defined as in the proof
of Theorem 2.7. Similarly, using (15), |d̃h(x, y)| ≤ 6

√
2|x1 − y1|−2/π for

y ∈ Γ′
t \ Γ1. Thus, for 0 < h ≤ 1,

|d̃h(x, y)| ≤ D(x, y) :=
{
C1Cα|x1 − y1|α−2 y ∈ Γ1,
6
√

2 |x1 − y1|−2/π y ∈ Γ′
t \ Γ1.

Now D(x, ·)[ψ(·) − ψ(x)] ∈ L1(Γ′
t) and, for x 
= y, dh(x, y) → d(x, y)

as h → 0. Hence, by the dominated convergence theorem we have, as
h→ 0,

Ib(x) →
∫

Γ′
t

d(x, y)[ψ(y) − ψ(x)] ds(y).

It is clear that
Ic(s) →

∫
Γ′
∪,t

d(x, y) ds(y)

as h→ 0 so that
∂Ktψ(x)

∂s
:= lim

h→0

1
l
[Kt(xh) −Kt(x)](16)

=
∫

Γ′
t

d(x, y)[ψ(y) − ψ(x)] ds(y)

− ψ(x)
∫

Γ′
∪,t

d(x, y) ds(y).

Now for x, y ∈ Γ and x 
= y, we have the bound

(17) |d(x, y)| ≤ 3
2π

|x− y|−2.

Hence by (15) with z = xh and letting t ≥ δ+/(4 − π), so that
|∫

Γ′
∪,t

ds(y)| ≤ 4t, we have

(18)
∣∣∣∣∫

Γ′
∪,t

d(x, y) ds(y)
∣∣∣∣ ≤ 6

√
2

π

∫
Γ′
∪,t

|x− y|−2 ds(y)

≤ 6
√

2
π

t−2

∫
Γ′
∪,t

ds(y) ≤ 24
√

2
π

t−1.
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Arguing similarly to the derivation of (16) and (18), we have∫
Γ′

t

d(xr , y)ψ(y) ds(y) =
∫

Γ′
t

d(xr , y)(ψ(y) − ψ(x)) ds(y)

− ψ(x)
∫

Γ′
∪,t

d(xr , y) ds(y)

and ∣∣∣∣∫
Γ′
∪,t

d(x, y)ds(y)
∣∣∣∣ ≤ 24

√
2

π
t−1.

Thus, and by (16) and (18),

∂Kψ(x)
∂s

=
∫

Γ\Γ′
t

(d(x, y) − d(xr , y))ψ(y) ds(y)

+
∫

Γ′
t

(d(x, y) − d(xr , y))(ψ(y) − ψ(x)) ds(y)

− ψ(x)
∫

Γ′
∪,t

(d(x, y) − d(xr , y)) ds(y).

Letting t→ ∞ we see that
∂Kψ(x)
∂s

=
∫

Γ

[d(x, y) − d(xr , y)][ψ(y) − ψ(x)] ds(y),

for x ∈ Γ, as required.

We now show that the surface derivative is Hölder continuous.
(Kψ)′(x) := ∂Kψ(x)/∂s will be a useful shorthand to employ for the
next section of the proof.

For x, y ∈ Γ we show a further inequality for d(x, y). As t(x).n(y) =
t(x).(n(y) − n(x)) and by applying Lemma 1.1 we have

(19) |d(x, y)| ≤ 1
2π

(2 +
√

5)Cα|x1 − y1|α−2.

Using (17), (19) and as ψ ∈ BC0,β(Γ) we have

|(Kψ)′(x)| ≤ 1
π

(2 +
√

5)CαC
1+β
int ‖ψ‖BC0,β(Γ)

∫ 1

−1

|s|α+β−2 ds

+
3
π
Cint‖ψ‖BC0,β(Γ)

∫ ∞

1

|s|−2 ds

≤ 1
π

((2 +
√

5)CαC
β
int + 3)Cint‖ψ‖BC0,β(Γ).
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Let C2 := ((2+
√

5)CαC
β
int +3)Cint/π and therefore (Kψ)′(x) exists as

an improper integral.

We now consider |(Kψ)′(x) − (Kψ)′(z)|. For |x1 − z1| ≥ 1, we can
utilize the above bound to obtain

|(Kψ)′(x) − (Kψ)′(z)| ≤ 2C2‖ψ‖BC0,β(Γ) ≤ 2C2‖ψ‖BC0,β(Γ)|x−z|α+β−1.

Similarly to Theorem 2.7, we split the integral into parts for |x1 − z1| ≤
1, namely,

(Kψ)′(x) − (Kψ)′(z) = 2[I1(x, z) + I2(x, z) + I3(x, z) + I4(x, z)]

where

I1(x, z) :=
∫

Γ2r

d(x, y)[ψ(y) − ψ(x)] − d(z, y)[ψ(y) − ψ(z)] ds(y),

I2(x, z) :=
∫

Γ2\Γ2r

[d(x, y) − d(z, y)][ψ(y) − ψ(x)] ds(y),

I3(x, z) :=
∫

Γ\Γ2

[d(x, y) − d(z, y)][ψ(y) − ψ(x)] ds(y),

I4(x, z) := −
∫

Γ\Γ2r

d(z, y)[ψ(z) − ψ(x)] ds(y),

with r = |x1 − y1|. We bound I1 in the same manner as in Theorem 2.7.
By (19) and as |x1 − y1| < 2r implies |z1 − y1| < 3r,

|I1(x, z)|

≤ 1
2π
C1+β

int Cα‖ψ‖BC0,β(Γ)

[ ∫ 2r

−2r

|s|α+β−2 ds+
∫ 3r

−3r

|s|α+β−2 ds
]

≤ 1
π

(2α+β−1 + 3α+β−1)C1+β
int Cα‖ψ‖BC0,β(Γ)|x− z|α+β−1.

Before we can proceed to the next two integrals, we must prove a
final inequality for d(x, y). We again note that |x1 − y1| ≤ 2|ξ1 − y1|, if
2r ≤ |x1 − y1| and ξ1 ∈ [x1, z1], ξ ∈ Γ. So by the mean value theorem,
we have ∣∣∣∣ 1

|x− y|4 − 1
|z − y|4

∣∣∣∣ ≤ 32
|x− z|

|x1 − y1|5 .
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Further, from Lemma 1.1, we can deduce that |t(x) − t(y)| ≤ √
5Cα ×

|x1 − y1|α and |(x− y).t(y)| ≤ Cα|x1 − y1|1+α. Now by applying
the above bounds, |z1 − y1| ≤ 3|x1 − y1|/2, |x1 − z1| ≤ |x1 − y1|/2,
|z − y| ≤ Cint|z1 − y1| and |x1 − z1| ≤ |x− z|, so that∣∣∣∣n(y).(x− y)t(x).(x − y)

|x− y|4 − n(y).(z − y)t(z).(z − y)
|z − y|4

∣∣∣∣
=

∣∣∣∣( 1
|x− y|4 − 1

|z − y|4
)
n(y).(z − y)t(z).(z − y)

+
1

|x− y|4
(
n(y).(x− y)(t(x) − t(z)).(x − y)

+ n(y).(x − z)t(z).(z − y)

+ n(y).(x − y)t(z).(x− z)
)∣∣∣∣

≤ C3Cα|x− z|α|x1 − y1|−2

and∣∣∣∣t(x).n(y)
|x− y|2 − t(z).n(y)

|z − y|2
∣∣∣∣

≤
∣∣∣∣ 1
|x− y|2 − 1

|z − y|2
∣∣∣∣|(t(z) − t(y)).n(y)| + |n(y).(t(x) − t(z))|

|x− y|2
≤ C4Cα|x− z|α|x1 − y1|−2

where C3 = 2232+αC2−α
int +

√
5Cα

int + 2α−1(31+α + 1) and C4 =
2131+αC1−α

int +
√

5Cα
int. Hence,

|d(x, y) − d(z, y)| ≤ 1
2π

(2C3 + C4)Cα|x− z|α|x1 − y1|−2.

Thus turning to I2 we have

|I2(x, z)| ≤ 1
π

(2C3 + C4)CαCint‖ψ‖BC0,β(Γ)|x− z|α
∫ 2

2r

|s|β−2 ds

≤ 1
π

2β−1(2C3 + 3)CαCint‖ψ‖BC0,β(Γ)[|x− z|α+β−1 + |x− z|α].

For I3 we utilize (17) and the mean value theorem again to obtain

|I3(x, z)| ≤ 3
π
Cint‖ψ‖BC0,β(Γ)|x− z|

∫ ∞

2

|s|β−2 ds

≤ 3
π
Cint‖ψ‖BC0,β(Γ)|x− z|.
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Ω∗
ε

ΓH

Γ \ Γ∗
x∗

1
2

ε

FIGURE 4. The point x∗, the surface Γ \ Γ∗ and the domain Ω∗
ε .

To bound I4, by (19), we obtain

|I4(x, z)| ≤ 1
π

(2 +
√

5)Cint‖ψ‖BC0,β(Γ)|x− z|β
∫ ∞

2r

|s|α−2 ds

≤ 1
π

2α−1(2 +
√

5)Cint‖ψ‖BC0,β(Γ)|x− z|α+β−1.

Thus we conclude that Kψ ∈ BC0,α+β−1(Γ).

Remark 2.9. Let N ∈ N be such that Nα ≥ 1. Then we can apply
Theorem 2.7 repeatedly to see that KN : BC(Γ) → BC0,β(Γ) for all
β ∈ (0, 1). Finally, we now apply Theorem 2.8 to this result to see that
KN+1 : BC(Γ) → BC1,β(Γ) for every β ∈ (0, α).

Theorem 2.10. If μ ∈ BC1,β(Γ) and β ∈ (0, 1), then for the
double-layer potential φ, defined by (2), it holds that φ ∈ BC1,β(Ω)
and φ ∈ BC1,β(ΩH \ Ω).

Proof. From Theorem 2.3 and Theorem 2.6 we see that φ ∈ BC(Ω)
and φ ∈ BC (ΩH \ Ω). It remains to show that ∇φ ∈ BC0,β(Ω) and
∇φ ∈ BC0,β(ΩH\Ω). Let x∗ := (x∗1, f(x∗1)) ∈ Γ, and define χ ∈ C∞(R)
such that, for y1 ∈ R,
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χ(y1) =
{

1, |y1| ≤ 1/2,
0, |y1| > 1.

Let Γχ := {y ∈ Γ : |y1 − x∗1| ≤ 1} and Γ∗ := {y ∈ Γ : |y1 − x∗1| ≤
1/2} ⊂ Γχ and, fixing 0 < ε < 1/2, Ω∗

ε := {y ∈ ΩH : |y1 − x∗1| <
1/2 − ε}, see Figure 4.

Next we split φ into three parts,

φ(x) = I1(x) + I2(x) + I3(x), x ∈ ΩH ,

where

I1(x) :=
∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y)(1 − χ(x∗1 − y1)) ds(y),

I2(x) :=
∫

Γχ

∂Φ(x, y)
∂n(y)

μ(y)χ(x∗1 − y1) ds(y),

I3(x) :=
∫

Γχ

∂Φ(xr, y)
∂n(y)

μ(y)χ(x∗1 − y1) ds(y).

We now examine I1, I2 and I3 separately. We take C > 0 to be a
constant independent of x∗, but not necessarily equal at each use. By
Lemma 2.2, I1(x) is harmonic in Ω∗

0 and, by Theorem 2.6, I1 is bounded
for x ∈ ΩH , by

|I1(x)| ≤ CΓ‖1 − χ‖∞‖μ‖∞ = C‖μ‖∞.
Furthermore, by the elliptic regularity results [10, Theorem 3.9, Lemma
4.1] and as Ω∗

ε is at least distance ε away from Γ \ Γ∗, then ∇I1 ∈
BC0,1(Ω∗

ε) and

‖∇I1‖BC0,1(Ω∗
ε) ≤ C

1
ε
‖μ‖∞.

Now, by [11, Chapter 2, Section 19, Theorem 3] and as μ ∈ BC1,β(Γ)
then ∇I2 ∈ BC0,β(Ω) and

‖∇I2‖BC0,β(Ω) ≤ C‖χ‖BC1,β(Γ)‖μ‖BC1,β(Γ).

Similarly, ∇I2 ∈ BC0,β(ΩH\Ω) and ‖∇I2‖BC0,β(ΩH\Ω) ≤ C‖μ‖BC1,β(Γ).
It is clear that I3 ∈ BC2(ΩH), i.e., I3 is bounded and continuous with
bounded and continuous first and second derivatives, and we have

‖∇I3‖BC0,1(ΩH ) ≤ ‖I3‖BC2(ΩH ) ≤ C.
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Thus, there exists C > 0 such that ‖∇φ‖BC0,β(Ω∩Ω∗
ε) ≤ C for all x∗ ∈ Γ.

Hence ∇φ ∈ BC0,β(Ω) and, similarly, ∇φ ∈ BC0,β(ΩH \ Ω).

3. The boundary integral equation and well-posedness. In
this section we begin by reformulating the boundary value problem
as a boundary integral equation. The results of the previous section,
in particular Lemma 2.2, Corollary 2.4 and Theorem 2.6, imply the
following theorem.

Theorem 3.1. Suppose μ ∈ BC(Γ) and φ is defined by (2). Then φ
satisfies the Dirichlet boundary value problem (1) if and only if

(20) φ0(x) =
∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y) ds(y) − 1
2
μ(x), x ∈ Γ.

We can write (20) in operator notation as

(I −K)μ = −2φ0,

where I is the identity operator and K is defined by (9).

We next show that the boundary value problem and boundary inte-
gral equation are well-posed, this notion dating back to Hadamard [12]
who wrote that a problem is well-posed if a solution exists, is unique
and depends continuously on the data.

To prove uniqueness for the boundary value problem, we use the fol-
lowing Phragmén-Lindelöf-type result, an extension of the maximum-
minimum principle from bounded to unbounded domains (cf. [9, Sec-
tion 2.5]).

Theorem 3.2. If u ∈ BC(Ω) ∩ C2(Ω) is harmonic in Ω, then

sup
x∈Ω

u(x) ≤ sup
x∈Γ

u(x).

Proof. We assume, without loss of generality, that supx∈Γ u(x) = 0
and suppose that there exists x+ ∈ Ω such that u(x+) > 0. Choose



146 M.D. PRESTON, P.G. CHAMBERLAIN AND S.N. CHANDLER-WILDE

Ga

a

x+

x0

FIGURE 5. The domain Ga and points x0, x+.

x0 ∈ R2 \ Ω with dist (x0,Ω) > 1 so that ln |x− x0| > 0 for all
x ∈ Ω. Let a > 1 be sufficiently large that |x+ − x0| < a and define
Ga := Ω ∩ {x : |x− x0| < a}, see Figure 5.

Defining v ∈ C(Ω) by

v(x) := u(x) − 1
2
u(x+)

ln |x− x0|
ln |x+ − x0| ,

clearly v is harmonic in Ω. Further, v ≤ 0 on Γ and, if a is chosen
large enough, v ≤ 0 on the boundary of Ga. Thus, it follows from the
maximum principle for finite domains [14, Corollary 6.9] that v(x) ≤ 0
for all x ∈ Ga. However v(x+) = u(x+)/2 > 0 which is a contradiction
since x+ ∈ Ga.

The above result has the following corollary.

Corollary 3.3. The Dirichlet boundary value problem (1) has at
most one solution.

We next prove that the integral operator (I −K) is injective, where
K is given by (9). To do this we initially study a mixed homogeneous
boundary value problem in the infinite strip domain between ΓH and
Γ.
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Theorem 3.4. Suppose that

φ(x) =
∫

Γ

∂ΦH(x, y)
∂n(y)

μ(y) ds(y), x ∈ ΩH \ Ω,

where μ ∈ BC1,β(Γ), for some β ∈ (0, 1), and that ∂φ/∂n = 0 on Γ in
the sense that

lim
h→0,h>0

n(x).
∇φ(x + hn(x))

h
= 0, x ∈ Γ.

Then φ = 0 in ΩH \ Ω.

Proof. We define S := ΩH \ Ω, SA := {x ∈ S : |x1| < A} and
EA := {x ∈ S : |x1| = A}. Since μ ∈ BC1,β(Γ), it follows from
Lemma 2.2 and Theorem 2.10 that φ ∈ BC1,β(S) ∩ C2(S) and that φ
is harmonic in S. Noting also that φ = 0 on ΓH and ∂φ/∂n = 0 on Γ,
applying Green’s first theorem we see that∫

SA

(∇φ)2 dx =
∫

EA

φ
∂φ

∂n
ds = O(1)

as A→ ∞, so that ∇φ ∈ L2(S). Also, since∫
S

(∇φ)2 dx ≥
∫

S

∣∣∣∣∂φ(x)
∂x1

∣∣∣∣2 dx =
∫ ∞

−∞

{∫ H

f(x1)

∣∣∣∣∂φ(x)
∂x1

∣∣∣∣2 dx2

}
dx1

there exists a sequence An → ∞ such that∫
EAn

∣∣∣∣∂φ∂n
∣∣∣∣2 ds =

∫ H

f(An)

∣∣∣∣∂φ(x)
∂x1

∣∣∣∣2 dx2 +
∫ H

f(−An)

∣∣∣∣∂φ(x)
∂x1

∣∣∣∣2 dx2 −→ 0,

as n → ∞. Using the same sequence {An} we have, by the Cauchy-
Schwarz inequality,∫

S

(∇φ)2 dx = lim
n→∞

∫
EAn

φ
∂φ

∂n
ds

≤ lim
n→∞

√∫
EAn

|φ|2 ds

√∫
EAn

∣∣∣∣∂φ∂n
∣∣∣∣2 ds = 0.
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Hence, ∇φ = 0 in S and, since φ ∈ C1(S) and φ = 0 on ΓH , φ = 0 in
S as required.

Now, combining the above result with the properties of the double
layer potential and the mapping properties of the integral operator K,
we prove the injectivity of (I −K).

Theorem 3.5. (I −K) is injective on BC(Γ).

Proof. Let μ ∈ BC(Γ) satisfy (I − K)μ = 0, that is, μ = Kμ. By
Theorems 2.7 and 2.8, μ ∈ BC1,β(Γ) for all β ∈ (0, α).

By Theorem 3.1, φ, defined by (2), satisfies the boundary value
problem (1) with φ0 = 0. Using Corollary 3.3 it follows that φ = 0
in Ω so that ∇φ = 0 in Ω. Hence, by Theorem 2.5, ∂φ/∂n = 0 on Γ
in the sense of Theorem 3.4. Thus, by Theorem 3.4, φ = 0 in ΩH \ Ω
and so, in the φ± notation used in Theorem 2.3, φ+ = 0 on Γ. Finally,
by Corollary 2.4, μ = φ+ − φ− = 0. Therefore, (I −K)μ = 0 ⇒ μ = 0
and hence (I −K) is injective.

To prove the surjectivity of the integral operator (I − K) we use a
result from Arens et al. [2], which applies to integral equations on the
real line of the form

(21) λψ(s) −
∫ ∞

−∞
κ(s− t)z(s, t)ψ(t) dt = φ(s), s ∈ R,

where λ ∈ C, the functions κ, z and φ are assumed known and ψ is the
solution to be determined, in the case that κ ∈ L1(R) and z ∈ BC(R̃2)
where R̃2 := {(s, t) ∈ R2 : s 
= t}.

In general, the integral operator in (21) is noncompact (for example,
this is certainly the case if κ 
= 0 and z ≡ 1). In [1, 2] the invertibility of
individual integral operators of the form (21) is deduced by embedding
them in a larger family of integral operators, where this family is chosen
so that it has certain compactness and translation invariance properties.
Let B := B(f+, f−, Cf ′ , Cα) denote the set of f ∈ BC1,α(R) such that
f− ≤ f(x1) ≤ f+, x1 ∈ R, and such that (3) holds. We will apply [2,
Theorem 3.18] to a family of operators generated by the set B.
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We note that the integral equation (20) is equivalent to the integral
equation on the real line

(22) μ̃(s) − 2
∫ ∞

−∞

∂ΦH(x, y)
∂n(y)

√
1 + f ′(t)2μ̃(t) dt = −2φ̃0(s), s ∈ R.

In this equation x and y are the points x = (s, f(s)), y = (t, f(t))
and μ̃, φ̃0 ∈ BC(R) are defined by μ̃(s) := μ((s, f(s))) and φ̃0(s) :=
φ0((s, f(s))), s ∈ R. So we define the kernel kf , dependent on f ∈ B,
by

kf (s, t) := 2
∂ΦH(x, y)
∂n(y)

∣∣∣∣
x=(s,f(s)),y=(t,f(t))

√
1 + f ′(t)2,

s, t ∈ R, s 
= t.

Define κ ∈ L1(R) by

κ(s) :=
{ |s|α−1 0 < |s| ≤ 1,
|s|−2 1 < |s|,

and let
zf (s, t) :=

kf (s, t)
κ(s− t)

, s, t ∈ R, s 
= t,

so kf (s, t) = κ(s − t)zf (s, t) and the integral equation (22) takes the
form (21) with λ = 1. Further, by Lemma 2.1 and Theorem 2.6, it
holds that, for some constant C > 0,

(23) |kf (s, t)| ≤ Cκ(s− t),

for all s, t ∈ R with s 
= t and all f ∈ B. Thus zf ∈ BC(R̃2) for f ∈ B.

Theorem 3.6. The operator (I − K) is invertible on BC(Γ).
Further, for some constant CI , dependent only on f±, Cf ′ , Cα and
H, we have that

‖(I −K)−1‖BC(Γ) ≤ CI .

Proof. To prove this theorem we show that all five conditions of [2,
Theorem 3.18] are satisfied by the family of operators generated by B,
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namely, the set of integral operators with kernel kf = κ(s − t)zf (s, t),
for some f ∈ B. Let V := {zf : f ∈ B}.

By (23) condition 1 holds with b = 2. Using [2, Lemma 4.4] it follows
that V is s̃-sequentially compact (as defined in [2]), so condition 2 is
satisfied. It is clear, from the definition of B, that V is closed under the
action of the translation operator Ta : BC(R̃2) → BC(R̃2), defined by
Taz = z(· − a, · − a), a ∈ R, z ∈ BC(R̃2), so condition 3 is satisfied.
To show that condition 4 is satisfied we note that the definition of B is
the same as in [2] and apply Corollary 4.5 of [2]. Theorem 3.5 ensures
that condition 5, injectivity of I−Kf on BC(Γ), for f ∈ B, is satisfied.

Thus [2, Theorem 3.18] applies and the result follows.

Remark 3.7. Let K∗ denote the adjoint operator of K, defined by
(20) with ∂ΦH(x, y)/∂n(y) replaced by ∂ΦH(x, y)/∂n(x). Reference
[2, Theorem 3.18] implies that I −K∗ is also invertible as an operator
on BC(Γ) and that I−K and I−K∗ are invertible operators on Lp(Γ),
1 ≤ p ≤ ∞. Further, the constant CI can be chosen, dependent only
on f±, Cf ′ , Cα and H , so that

max
1≤p≤∞

‖(I −K)−1‖Lp(Γ) = max
1≤p≤∞

‖(I −K∗)−1‖Lp(Γ) ≤ CI .

We can combine the previous results into a final theorem.

Theorem 3.8. The Dirichlet boundary value problem defined in
Section 1 has exactly one solution. This solution satisfies the bound

(24) |φ(x)| ≤ sup
y∈Γ

|φ0(y)|, x ∈ Ω,

that is, the problem is well-posed.

Proof. Theorem 3.6 implies that the integral equation (20), equivalent
to (22), has exactly one solution μ. Therefore, by Theorem 3.1, there
exists a solution to the boundary value problem and Corollary 3.3 tells
us that this is the unique solution. Finally, applying Theorem 3.2 we
obtain (24).



AN INTEGRAL EQUATION METHOD FOR A BVP 151

REFERENCES

1. T. Arens, S.N. Chandler-Wilde and K. Haseloh, Solvability and spectral
properties of integral equations on the real line: I. Weighted spaces of continuous
functions, J. Math. Anal. Appl. 272, (2002), 276 302.

2. , Solvability and spectral properties of integral equations on the real line:
II. Lp spaces and applications, J. Int. Equations Appl. 15 (2003), 1 35.

3. J.T. Beale, A convergent boundary integral equation method for three-
dimensional water waves, Math. Comp. 70 (2001), 977 1029.

4. J.T. Beale, T.Y. Hou and J. Lowengrub, Convergence of a boundary integral
method for water waves, SIAM J. Numer. Anal. 33 (1996), 1797 1843.

5. S.N. Chandler-Wilde, E. Heinemeyer and R. Potthast, Acoustic scattering by
mildly rough unbounded surfaces in three dimensions, SIAM J. Appl. Math. 66
(2006), 1002 1026.

6. S.N. Chandler-Wilde and C.R. Ross, Scattering by rough surfaces: The Dirich-
let problem for the Helmholtz equation in a non-locally perturbed half-plane, Math.
Meth. Appl. Sci. 19 (1996), 959 976.

7. D. Colton and R. Kress, Integral equation methods in scattering theory, Wiley,
New York, 1983.

8. C. Fochesato and F. Dias, A fast method for nonlinear three-dimensional free-
surface waves, Proc. Royal Soc. London 462 (2006), 2715 2735.

9. L. Fraenkel, Introduction to maximum principles and symmetry in elliptic
problems, CUP, 2000.

10. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of
second order, Springer, New York, 1977.

11. N.M. Günter, Potential theory and its applications to basic problems of
mathematical physics, Ungar, New York, 1968.

12. J. Hadamard, Lectures on Cauchy’s problem in linear partial differential
equations, Yale University Press, New Haven, CT, 1923.

13. T.Y. Hou and P. Zhang, Convergence of a boundary integral method for 3-d
water waves, Discrete Contin. Dyn. Sys. 2 (2002), 1 34.

14. R. Kress, Linear integral equations, Springer, New York, 1999.

15. Y. Meyer and R. Coifman, Wavelets: Calderon-Zygmund and multilinear
operators, CUP, 2000.

16. S. Mikhlin, An advanced course of mathematical physics, North-Holland,
Amsterdam, 1970.

17. A.T. Peplow and S.N. Chandler-Wilde, Approximate solution of second kind
integral equations on infinite cylindrical surfaces, SIAM J. Numer. Anal. 32 (1995),
594 609.

18. M.D. Preston, A boundary integral equation method for a boundary value
problem arising in unsteady water waves, Ph.D. thesis, University of Reading,
Reading, UK, 2007.

19. G. Verchota, Layer potentials and regularity for the Dirichlet problem for
Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572 611.



152 M.D. PRESTON, P.G. CHAMBERLAIN AND S.N. CHANDLER-WILDE

Department of Mathematics, University of York, York, YO10 5DD UK
Email address: md505@york.ac.uk

Department of Mathematics, University of Reading, P.O. Box 220,
Whiteknights, Reading RG6 6AX, UK
Email address: p.g.chamberlain@reading.ac.uk

Department of Mathematics, University of Reading, P.O. Box 220,
Whiteknights, Reading RG6 6AX, UK
Email address: s.n.chandler-wilde@reading.ac.uk


