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ON A NEW CLASS OF HOLONOMY GROUPS

IN PSEUDO-RIEMANNIAN GEOMETRY

Alexey Bolsinov & Dragomir Tsonev

Abstract

We describe a new class of holonomy groups on pseudo-Rieman-
nian manifolds. Namely, let g be a nondegenerate bilinear form
on a vector space V , and L : V → V a g-symmetric operator.
Then the identity component of the centraliser of L in SO(g) is a
holonomy group for a suitable Levi-Civita connection.

1. Introduction and main result

Holonomy groups were introduced in the 1920s by Élie Cartan [13,
14] for the study of Riemannian symmetric spaces and since then the
classification of holonomy groups has remained one of the classical prob-
lems in differential geometry.

Definition 1. Let M be a smooth manifold endowed with an affine
symmetric connection ∇. The holonomy group of ∇ is a subgroup
Hol(∇) ⊂ GL(TxM) that consists of the linear operators A : TxM →
TxM , being parallel transport transformations along closed loops γ with
γ(0) = γ(1) = x.

Problem. Can a given subgroup H ⊂ GL(n,R) be realized as the
holonomy group for an appropriate symmetric connection?

The fundamental results in this direction are due to Marcel Berger
[4], who initiated the program of classification of Riemannian and irre-
ducible holonomy groups that was completed by D. V. Alekseevskii [1],
R. Bryant [10, 11], D. Joyce [20, 21], S. Merkulov, L. Schwachhöfer
[28] and S.T. Yau [36]. Very good historical surveys can be found in
[12, 30].

The classification of Lorentzian holonomy groups has recently been
obtained by T. Leistner [25] and A. Galaev [17]. However, in the general
pseudo-Riemanian case, the complete description of holonomy groups is
a very difficult problem which still remains open and even particular
examples are of interest (see [5, 16, 19]). We refer to [18] for more
information on recent developments in this field.

Received 3/7/2012.

377



378 A. BOLSINOV & D. TSONEV

In our paper, we deal with Levi-Civita connections only. In alge-
braic terms this means that we consider only subgroups of the (pseudo)
orthogonal group O(g):

H ⊂ O(g) = {A ∈ GL(V ) | g(Au,Av) = g(u, v), u, v ∈ V },

where g is a non-degenerate bilinear form on V .
The main result of our paper is

Theorem 1. For every g-symmetric operator L : V → V , the identity
connected component G0

L of its centraliser in O(g),

GL = {X ∈ O(g) | XL = LX},

is a holonomy group for a certain (pseudo)-Riemannian metric.

Notice that in the Riemannian case this theorem becomes trivial: L is
diagonalisable and the connected component G0

L of its centraliser is iso-
morphic to the standard direct product SO(k1)⊕· · ·⊕SO(km) ⊂ SO(n),∑

ki ≤ n, which is, of course, a holonomy group. In the pseudo-
Riemannian case, L may have non-trivial Jordan blocks and the struc-
ture of G0

L becomes more complicated.
The organization of the paper is as follows. First we recall in Sec-

tion 2 the classical approach by Berger to studying holonomy groups.
Like many other authors, we are going to use this approach in our paper.
However, in our opinion, the most interesting part of the present work
consists in two explicit matrix formulas (8) and (18) that, in essence,
almost immediately lead to the solution. To the best of our knowledge,
this kind of formula did not appear in the context of holonomy groups
before and we would really appreciate any comments on this matter.
They came to “holonomy groups” from “integrable systems on Lie alge-
bras” via “projectively equivalent metrics,” and we explain this passage
in Section 3. The proof of Theorem 1 is given in Sections 4 (algebraic
reduction), 5 (Berger test) and 6 (geometric realization).

Acknowledgments. We would like to thank D. Alekseevskii, V. Cortés,
E. Ferapontov, V. Matveev and T. Leistner for useful discussions. We
are also very grateful to the referee for the valuable remarks that helped
us to substantially improve the structure of this paper.

2. Some basic facts about holonomy groups:

Ambrose–Singer theorem and Berger test

Let γ be a curve connecting two points x, y ∈ M (we think of x as
a fixed reference point while y is variable) and Pγ : TxM → TyM denotes
the parallel transport transformation. The holonomy groups Holx (∇)
and Holy (∇) related to these points are obviously conjugate by means
of Pγ , i.e.,

Holy (∇) = Pγ ◦Holx (∇) ◦ P−1
γ .
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In particular, if M is connected, then the holonomy groups at different
points are isomorphic.

Notice that Pγ allows us to “transfer” from x to y (or back from
y to x) not only tangent vectors but also tensors of any type. For
example, if R : Λ2(TyM) → gl(TyM) is the curvature tensor of ∇ at
the point y, then at the point x we can define the transported tensor
Rγ : Λ

2(TxM) → gl(TxM) as

Rγ(u ∧ v) = P−1
γ ◦R

(
Pγ(u) ∧ Pγ(v)

)
◦ Pγ , u, v ∈ TxM.

The famous Ambrose–Singer theorem [2] gives the following descrip-
tion of the Lie algebra hol (∇) of the holonomy group Hol (∇) = Holx (∇)
in terms of the curvature tensor R:

hol (∇) is generated (as a vector space) by the operators of the form
Rγ(u ∧ v).

This motivates the following construction.

Definition 2. A map R : Λ2V → gl(V ) is called a formal curvature
tensor if it satisfies the Bianchi identity

(1) R(u ∧ v)w +R(v ∧ w)u+R(w ∧ u)v = 0 for all u, v, w ∈ V.

Definition 3. Let h ⊂ gl(V ) be a Lie subalgebra. Consider the set
of all formal curvature tensors R : Λ2V → gl(V ) such that ImR ⊂ h:

R(h)={R : Λ2V →h | R(u∧v)w+R(v∧w)u+R(w∧u)v=0, u, v, w ∈ V }.

We say that h is a Berger algebra if it is generated as a vector space by
the images of the formal curvature tensors R ∈ R(h), i.e.,

h = span{R(u ∧ v) | R ∈ R(h), u, v ∈ V }.

Berger’s test (sometimes referred to as Berger’s criterion) is the fol-
lowing result that can, in fact, be viewed as a version of the Ambrose–
Singer theorem:

Let ∇ be a symmetric affine connection on TM . Then the Lie algebra
hol (∇) of its holonomy group Hol (∇) is Berger.

Usually the solution of the classification problem for holonomy groups
consists of two parts. First, one tries to describe all Lie subalgebras h ⊂
gl(n,R) of a certain type satisfying Berger’s test (i.e., Berger algebras).
This part is purely algebraic. The second (geometric) part is to find a
suitable connection ∇ for a given Berger algebra h that realizes h as the
holonomy Lie algebra, i.e., h = hol (∇).

We follow the same scheme but use, in addition, some ideas from
two other areas of mathematics: projectively equivalent metrics and
integrable systems on Lie algebras. These ideas are explained in the
next section. The reader who is interested only in the proof itself may
proceed directly to Sections 4, 5, and 6, which are formally independent
of this preliminary discussion.
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3. Projectively equivalent metrics and sectional operators

The problem we are dealing with is closely related to the theory of
projectively equivalent (pseudo)-Riemannian metrics [3, 7, 22, 26, 32].

Definition 4. Two metrics g and ḡ on a manifold M are called
projectively equivalent if they have the same geodesics considered as
unparametrised curves.

As a particular case of projectively equivalent metrics g and ḡ, one
can distinguish the following, which is closely related to our problem.
Assume that g admits a covariantly constant g-symmetric (1, 1)-tensor
field L and introduce a new metric ḡ by setting

ḡ(ξ, η) = g(Lξ, η).

Then the geodesics of g and ḡ coincide as parametrized curves. In this
case g and ḡ are called affinely equivalent.

In the pseudo-Riemannian case, the classification of pairs (g, L), such
that ∇L = 0, is an interesting problem (e.g., [33]), which remained
open until recently. A paper by C. Boubel [8], which has just appeared
on the arXiv, seems to contain its complete solution.

The condition ∇L = 0 can be interpreted in terms of the holonomy
group Hol(∇). Namely, ∇L = 0 implies that Hol(∇) is a subgroup of
the centraliser of L in O(g). More precisely,

Holx0
(∇) ⊂ GL(x0) = {X ∈ O(g) | XL(x0)X

−1 = L(x0)}.

Conversely, if Holx0
(∇) ⊂ GL(x0), then we can uniquely reconstruct

L at any other point x ∈ M from the initial value L(x0) by parallel
transport. The independence of the choice of a path γ between x0 and x

is guaranteed by the above inclusion and L so obtained is automatically
covariantly constant.

Since we are going to use Berger’s approach, the role of the curvature
tensor will be very important. Our proof will be based on one unex-
pected and remarkable relationship between the algebraic structure of
the curvature tensor of projectively equivalent metrics and integrable
Hamiltonian systems on Lie algebras.

To explain this relationship, we first notice that Λ2V can be naturally
identified with so(g). Therefore, in the (pseudo)-Riemannian case, a
curvature tensor at a fixed point can be understood as a linear map

(2) R : so(g) → so(g).

Some operators of this kind play an important role in the theory of
integrable systems on semisimple Lie algebras.

Definition 5. We say that (2) is a sectional operator if R is self-
adjoint w.r.t. the Killing form and satisfies the algebraic identity:

(3) [R(X), L] = [X,M ] for all X ∈ so(n),
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where L and M are some fixed symmetric matrices.

These operators first appeared in the famous paper by S. Manakov
[27] on integrability of a multidimensional rigid body and then were
studied by A. Mischenko and A. Fomenko in the framework of the argu-
ment shift method [29]. The terminology “sectional” was suggested by
A. Fomenko and V. Trofimov [15] for a more general class of operators
on Lie algebras with similar properties and originally was in no way
related to “sectional curvature.” However, such a relation exists and is,
in fact, very close.

The following observation, which is, in fact, an algebraic interpre-
tation of the so-called second Sinjukov equation [32] for projectively
equivalent metrics, was made in [6].

Theorem 2. If g and ḡ are projectively equivalent, then the curvature
tensor of g considered as a linear map R : so(g) → so(g) is a sectional
operator, i.e., satisfies identity (3) with L defined by ḡ−1g = detL · L
and M being the Hessian of 2trL, i.e., M i

j = 2∇i∇jtrL.

There is an elegant explicit formula expressing R(X) in terms of L
and M . To get this formula, one first needs to notice that (3) imme-
diately implies that M belongs to the center of the centraliser of L

and, therefore, can be written as M = p(L), where p(t) is a certain
polynomial. Then

(4) R(X) =
d

dt

∣∣
t=0

p(L+ tX)

satisfies (3). To check this, it is sufficient to differentiate the identity
[p(L+ tX), L+ tX] = 0 to get [ d

dt

∣∣
t=0

p(L+ tX), L] + [p(L),X] = 0, i.e.,
[R(X), L] + [M,X] = 0 as needed.

In the case of affinely equivalent metrics (we are going to deal with
this case only!), L is automatically covariantly constant and, therefore,
M = 0. Thus, the curvature tensor R satisfies a simpler equation

[R(X), L] = 0,

which, of course, directly follows from ∇L = 0 and seems to make all
the discussion above irrelevant to our particular situation. However,
formula (4) still defines a non-trivial operator if p(t) is the minimal
polynomial for L so that p(L) = M = 0.

The above discussion gives us a very good candidate for the role of a
formal curvature tensor in our construction, namely, the operator R(X)
defined by (4) with p(t) being the minimal polynomial of L. As we shall
see below, this operator satisfies all the required conditions and plays a
crucial role in the proof of Theorem 1 given in the next three sections.
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4. Step one: Algebraic reduction

Let g be a non-degenerate bilinear form on V and L : V → V be a
g-symmetric operator. First of all, we notice that it is sufficient to prove
Theorem 1 for two special cases only:

• either L has a single real eigenvalue;
• or L has a pair of complex conjugate eigenvalues.

The reduction from the general case to one of these is standard. If
L has several eigenvalues, then V splits into L-invariant and pairwise
g-orthogonal subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs,

where Vi is either a generalized eigensubspace corresponding to a real
eigenvalue λi, or a similar subspace corresponding to a pair of complex
conjugate eigenvalues λi and λ̄i.

The group G0
L is compatible with this decomposition in the sense that

G0
L is the direct product of the Lie groups G1, . . . , Gs, each of which is

naturally associated with Vi and is the connected component of the
centraliser of L|Vi

in O(g|Vi
).

Thus G0
L is reducible and therefore G0

L is a holonomy group if and
only if each Gi is a holonomy group. A similar reduction obviously takes
place for the corresponding Lie algebras: the Lie algebra gL of G0

L splits
into the direct sum g1 ⊕ · · · ⊕ gs, and gL is Berger if and only if each gi
is Berger, i = 1, . . . , s.

Thus, from now on we may assume that the g-symmetric operator L
has either a single real eigenvalue or two complex conjugate eigenvalues.
Below we concentrate on the case when λ ∈ R and all the necessary
amendments related to the complex situation will be discussed in the
appendix.

In the real case, we use the following well-known analog of the Jordan
normal form theorem for g-symmetric operators in the case when g is
pseudo-Euclidean (see, for example, [23, 35]).

Proposition 1. Let L : V → V be a g-symmetric operator with a
single eigenvalue λ ∈ R. Then by an appropriate choice of a basis in
V , we can simultaneously reduce L and g to the following block diagonal
matrix form:

(5) L =




L1

L2

. . .

Lk


 , g =




g1
g2

. . .

gk






ON A NEW CLASS OF HOLONOMY GROUPS 383

where

Li =




λ 1
λ 1

. . .
. . .

λ 1
λ




and gi = ±




1
1

. .
.

1
1




.

The blocks Li and gi are of the same size ni×ni and n1 ≤ n2 ≤ · · · ≤ nk.
As a particular case, we admit 1× 1 blocks Li = λ and gi = ±1.

In what follows, we shall assume that gi has +1 on the antidiagonal.
This assumption is not very important but allows us to simplify the
formulae below.

The next statement gives an explicit matrix description for so(g) and
the Lie algebra gL of the group G0

L for L and g described in Proposi-
tion 1. The proof is straightforward and we omit it.

Proposition 2. In the canonical basis from Proposition 1, the or-
thogonal Lie algebra so(g) consists of block matrices of the form

(6) X =




X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...

Xk1 Xk2 · · · Xkk




where Xij is an ni × nj block. The diagonal blocks Xii’s are skew-
symmetric with respect to their antidiagonal. The off-diagonal blocks
Xij and Xji are related by Xji = −gjX

⊤

ij gi.
The Lie algebra gL consists of block matrices of the form:

(7)




0 M12 · · · M1k

M21 0
...

...
. . . Mk−1,k

Mk1 · · · Mk,k−1 0




with Mij =




0 · · · 0 µ1 µ2 · · · µni

0 · · · 0 0 µ1

. . .
...

...
. . .

...
...

. . .
. . . µ2

0 · · · 0 0 · · · 0 µ1



,

where i < j and Mij ’s are ni × nj matrices. If ni = nj, then Mij is a
square matrix and the first zero columns are absent. The blocks Mij and

Mji are related in the same way as Xij and Xji, i.e., Mji = −gjM
⊤

ij gi.

The subspace mij ⊂ gL (i < j) that consists of two blocks Mij and
Mji is a commutative subalgebra of dimension ni. As a vector space, gL
is the direct sum

∑
i<j mij. In particular, dim gL =

∑k
i=1(k − i)ni.

5. Step two: Berger’s test

We consider a non-degenerate bilinear form g on a finite-dimensional
real vector space V and a g-symmetric linear operator L : V → V , i.e.,

g(Lv, u) = g(v, Lu), for all u, v ∈ V.
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As before, we denote the Lie algebra of the orthogonal group asso-
ciated with g by so(g). Recall that this Lie algebra consists of g-skew-
symmetric operators:

so(g) = {X : V → V | g(Xv, u) = −g(v,Xu), u, v ∈ V }.

Consider the Lie algebra gL of the group G0
L:

gL = {X ∈ so(g) | XL− LX = 0}.

We are going to verify in this section that gL is a Berger algebra.
In what follows, we use the following natural identification of Λ2V and

so(g): v∧u = v⊗g(u)−u⊗g(v). Here the bilinear form g is understood
as an isomorphism g : V → V ∗ between vectors and covectors. Taking
into account this identification, we define the linear mapping R : so(g) ≃
Λ2V → gl(V ) by:

(8) R(X) =
d

dt

∣∣
t=0

pmin(L+ tX),

where pmin(t) is the minimal polynomial of L.

Proposition 3. Let L : V → V be a g-symmetric operator. Then
(8) defines a formal curvature tensor R : Λ2V ≃ so(g) → gL for the
Lie algebra gL. In other words, R satisfies the Bianchi identity and its
image is contained in gL.

The proof consists of the following two lemmas.

Lemma 1. The image of R is contained in gL.

Proof. First we check that R(X) ∈ so(g), i.e., R(X)∗ = −R(X),
where ∗ denotes “g–adjoint”:

g(A∗u, v) = g(u,Av), u, v ∈ V.

Since L∗ = L, X∗ = −X, (pmin(L + tX))∗ = pmin(L
∗ + tX∗) and

“ d
dt
” and “ ∗ ” commute, we have

R(X)∗ =
d

dt

∣∣
t=0

pmin(L+ tX)∗ =
d

dt

∣∣
t=0

pmin(L
∗ + tX∗)

=
d

dt

∣∣
t=0

pmin(L− tX) = −
d

dt

∣∣
t=0

pmin(L+ tX) = −R(X),

as needed. Thus, R(X) ∈ so(g). Notice that this fact holds true for any
polynomial p(t), not necessarily minimal.

To prove that R(X) commutes with L, we consider the obvious iden-
tity [pmin(L+ tX), L+ tX] = 0 and differentiate it at t = 0:

[
d

dt

∣∣
t=0

pmin(L+ tX), L] + [pmin(L),X] = 0.

Clearly, pmin(L) = 0 as it is a minimal polynomial, whence [R(X), L] =
0, as required. Thus, R(X) ∈ gL. q.e.d.
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Lemma 2. R satisfies the Bianchi identity (1).

Proof. It is easy to see that our operator R : Λ2V ≃ so(g) → gl(V )
can be written as R(X) =

∑
k CkXDk, where Ck and Dk are some g-

symmetric operators (in our case these operators are some powers of L).
Thus, it is sufficient to check the Bianchi identity for operators of the
form X 7→ CXD. For X = u ∧ v we have

C(u ∧ v)Dw = Cu · g(v,Dw) − Cv · g(u,Dw)

If we cyclically permute u, v, and w and sum up the expressions so
obtained, taking into account that both C and D are g-symmetric, we
obtain zero, as required. q.e.d.

To prove that gL is a Berger algebra, it remains to compute the
image of (8) and compare it with gL. We are going to do it by means
of matrix linear algebra and, from now on, we consider the reduced
case with a single real eigenvalue λ ∈ R described in Proposition 1.
Replacing L by L− λ·Id, we can assume without loss of generality that
λ = 0, i.e., L is nilpotent.

Proposition 2 implies that in the case of a single Jordan block the
algebra gL is trivial and thus we begin with the first non-trivial case
when L consists of two Jordan blocks L1 and L2.

Proposition 4. Let L : V → V be a g-symmetric nilpotent operator
that consists of two Jordan blocks. Then the image of the formal curva-
ture tensor R : Λ2V ≃ so(g) → gL defined by (8) coincides with gL. In
particular, gL is Berger.

Proof. Consider L =

(
L1 0
0 L2

)
, where L1 and L2 are standard

nilpotent Jordan blocks of size m and n, respectively, m ≤ n, as in
Proposition 1. The minimal polynomial for L is pmin(t) = tn so that
R(X) = d

dt

∣∣
t=0

(L+ tX)n = Ln−1X + Ln−2XL+ · · ·+XLn−1.
If we represent X ∈ so(g) as a block matrix (see Proposition 2), then

we immediately see that R acts independently of each block, i.e.,

(9) R(X) = R

(
X11 X12

X21 X22

)
=

(
R11(X11) R12(X12)
R21(X21) R22(X22)

)
=

(
0 M12

M21 0

)
.

where M12 = R12(X12) = Ln−1
1 X12 + Ln−2

1 X12L2 + · · · +X12L
n−1
2 .

Since R(X) ∈ gL, the matrices M12 and M21 have the form described
in Proposition 2 and a straightforward computation shows that the en-
tries µα of M12 (see (7)), α = 1, . . . ,m, are related to the entries of

X12 =




x11 x12 . . . x1n
...

...
. . .

...

xm1 xk2 . . . xmn



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as µα =
∑α

j=1 xm−α+j,j.
Clearly, there are no relations between µα’s and therefore the image

of R coincides with m12 = gL, which completes the proof. q.e.d.

Thus, formula (8) solves the problem in the case of two blocks. Now,
let us consider the case of k Jordan blocks, k > 2. In this case, the
image of the formal curvature tensor defined by (8) can be smaller than
gL and formula (8) needs to be modified.

We start with the following obvious remark. Let V ′ ⊂ V be a sub-
space of V such that g′ = g|V ′ is non-degenerate. Consider the stan-
dard embedding so(g′) → so(g) induced by the inclusion V ′ ⊂ V . If
R′ : so(g′) → so(g′) is a formal curvature tensor, then its trivial exten-
sion R : so(g) → so(g) defined by

R

(
X Y

Z W

)
=

(
R′(X) 0

0 0

)

is a formal curvature tensor too. In particular, if h ⊂ so(g′) is a Berger
subalgebra, then h as a subalgebra of so(g) will be also Berger.

This remark allows us to construct a “big” formal curvature tensor as
the sum of “small” curvature tensors related to different pairs of Jordan
blocks and in this way to reduce the general case to the situation treated
in Proposition 4.

Consider the operator R̂12 : so(g) → so(g) defined by:

(10) R̂12




X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...

Xk1 Xk2 · · · Xkk


 =




0 R12(X12) · · · 0
R21(X21) 0 · · · 0

...
...

. . .
...

0 0 · · · 0




where R12(X12) and R21(X21) are defined as in Proposition 4 (see (9))
and all the other blocks in the right-hand side vanish. Then applying
the above remark to the subspace V ′ ⊂ V related to the first two blocks

L1 and L2, we see that R̂12 is a formal curvature tensor and its image
coincides with the Abelian subalgebra m12 ⊂ gL (see Proposition 2). In
particular, m12 ⊂ so(g) is a Berger algebra.

To construct the “big” formal curvature operator R : so(g) → gL we
simply do the same for each pair of blocks, namely we set:

(11) R




X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...

Xk1 Xk2 · · · Xkk


 =




0 R12(X12) · · · R1k(X1k)
R21(X21) 0 · · · R2k(X2k)

...
...

. . .
...

Rk1(Xk1)Rk2(Xk2) · · · 0




In other words, R acts independently on each block Xij (compare
with the proof of Proposition 4) and each of its components

Rij : Xij 7→ Rij(Xij)
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is defined in the same way as in Proposition 4 provided we ignore all
the blocks of L except for Li and Lj . In other words, instead of the

minimal polynomial of L, we use that of

(
Li 0
0 Lj

)
; that is, p(t) = tnij

with nij = max{ni, nj}, where ni, nj are the sizes of the nilpotent
Jordan blocks Li and Lj .

If we introduce the operators R̂ij : so(g) → so(g) by generalizing (10)
for arbitrary indices i < j, we can rewrite (11) as

(12) Rformal = R =
∑

i<j

R̂ij.

The following statement completes Berger’s test for gL.

Proposition 5. Let L be an arbitrary nilpotent g-symmetric opera-
tor. Then the operator Rformal = R defined by (11) (or equivalently by
(12)) is a formal curvature tensor. Moreover, ImR = gL and, therefore,
gL is a Berger algebra.

Proof. Since each R̂ij is a formal curvature tensor, so is R by linearity.

By Proposition 4, the image of R̂ij is the subalgebra mij. Since the

operators R̂ij do not interact among themselves, we immediately obtain

ImR =
∑

i<j Im R̂ij =
∑

i<j mij = gL, as required. q.e.d.

This proposition implies that gL is Berger whenever L has a single
real eigenvalue λ ∈ R. In the case of a pair of complex eigenvalues λ

and λ̄, the proof just needs the few additional comments given in the
appendix. Taking into account the reduction in Section 4, we come to
the following final conclusion.

Theorem 3. Let L : V → V be a g-symmetric operator. Then gL =
{X ∈ so(g) | XL = LX} is a Berger algebra.

6. Step three: Geometric realization

Now, for a given operator L : Tx0
M → Tx0

M , we need to find a
pseudo-Riemannian metric g on a small neighbourhood U(x0) ⊂ M

and a (1, 1)-tensor field L(x) (with the initial condition L(x0) = L)
such that

1) ∇L(x) = 0;
2) hol (∇) = gL.

Notice that the first condition guarantees that hol (∇) ⊂ gL. On the
other hand, ImR(x0) ⊂ hol (∇), where x0 ∈ M is a fixed point and R

is the curvature tensor of g. Thus, taking into account Theorem 3, the
second condition can be replaced by

2′) R(x0) coincides with the formal curvature tensor Rformal from
Proposition 5.
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Thus, our goal in this section is to construct (at least one example of)
L(x) and g(x) satisfying conditions 1 and 2′. Apart from formula (8)
(whose modification (18) leads to the desired example), the construction
below is based on two well-known geometric facts. The first one is

Proposition 6. For every metric g there exists a local coordinate

system such that
∂gij
∂xα (0) = 0 for all i, j, α. In particular, in this coordi-

nate system, Γk
ij(0) = 0 and the components of the curvature tensor at

x0 = 0 are defined as some combinations of second derivatives of g.

The second result states that covariantly constant (1, 1)-tensor fields
L are actually very simple. To the best of our knowledge, this theorem
was first proved by A. P. Shirokov [31] (see also [9, 24, 34]).

Theorem 4. If L satisfies ∇L = 0 for a symmetric connection ∇,
then there exists a local coordinate system x1, . . . , xn in which L is con-
stant.

In this coordinate system the equation ∇L = 0, for a g-symmetric L,
can be rewritten in a very simple way:

(13)

(
∂gip

∂xβ
−

∂giβ

∂xp

)
L
β
k =

(
∂giβ

∂xk
−

∂gik

∂xβ

)
Lβ
p .

This equation is linear and if we expand g in a power series of x,
then (13) must hold for each term of this expansion. Moreover, if we
consider the constant and second order terms only, then they will give
us a particular (local) solution.

This suggests the idea to set L(x) = const and then try to find the
desired metric g(x) in the form “constant” + “quadratic”, i.e.,

(14) gij(x) = g0ij +
∑

Bij,pqx
pxq,

where B satisfies obvious symmetry relations, namely, Bij,pq = Bji,pq

and Bij,pq = Bij,qp.
Before discussing the explicit formula for B, we give some general

remarks about the metrics (14).

• The condition ∇L = 0 amounts to the following equation for B:

(15) (Bip,βq − Biβ,pq)L
β
k = (Bβi,kq − Bik,βq)L

β
p .

• The condition that L is g-symmetric reads:

(16) Bij,pqL
i
l = Bil,pqL

i
j .

• The curvature tensor of g at the origin x = 0 takes the following
form:

(17) Ri
k αβ = gis(Bβs,αk + Bαk,βs − Bβk,αs − Bαs,βk).
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Thus, the realization problem admits the following purely algebraic
version: find B satisfying (15), (16) and such that (17) coincides with
Rformal from Proposition 5.

We will be looking for B in the form B =
∑

α Cα ⊗ Dα, i.e., Bij,pq =∑
α(Cα)ij ·(Dα)pq, where Cα and Dα are symmetric bilinear forms. Along

with B, we consider the (2, 2)-tensor B =
∑

α Cα ⊗Dα, where Cα and
Dα are g0-symmetric operators associated with the forms Cα and Dα.
In other words, Bij,pq = g0isg

0
ptB

s,t
j,q. It is convenient to think of B as a

linear map

B : gl(V ) → gl(V ) defined by B(X) =
∑

CαXDα .

In terms of this map, the conditions (15), (16), (17) for the corre-
sponding metric g = g0 + B(x, x) can be rewritten as

(15′) [B(X), L] + [B(X), L]∗ = 0 for any X ∈ gl(V ),

(16′) [Cα, L] = 0,

(17′) R(X) = −B(X) +B(X)∗, X ∈ so(g0).

As the reader may notice, we prefer to work with operators rather
than forms. The reason is easy to explain: operators form an associative
algebra and we use this property throughout the paper.

The latter formula (17′), in fact, shows how to reconstruct B from
R(X): we need to “replace” X by ⊗, i.e., B = −1

2R(⊗). Namely, we
consider the following formal expression:

(18) B = −
1

2
·
d

dt

∣∣
t=0

pmin(L+ t · ⊗),

where pmin(t) is the minimal polynomial of L. This formula, obtained
from the right-hand side of (8), looks a bit strange but, in fact, defines
a tensor B of type (2, 2) whose meaning is very simple. If the minimal
polynomial of L is pmin(t) =

∑n
m=0 amtm, then

(19) B = −
1

2
·

n∑

m=0

am

m−1∑

j=0

Lm−1−j ⊗ Lj.

Proposition 7. Assume that L is a g0-symmetric operator and con-
sider it as (1, 1)-tensor field whose components are all constant in co-
ordinates x. Define the quadratic metric g(x) = g0 + B(x, x) with

Bij,pq = g0isg
0
ptB

s,t
j,q, where B is constructed from L by (18) (or, equiva-

lently, by (19)). Then

1) L is g-symmetric;

2) ∇L = 0, where ∇ is the Levi-Civita connection for g;
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3) the curvature tensor for g at the origin is defined by (8), i.e.,

R(X) =
d

dt

∣∣
t=0

pmin(L+ tX) for X ∈ so(g0).

Proof. Since B is of the form
∑

α Cα ⊗ Dα, where Cα and Dα are
some powers of L, we can use formulas (15′), (16′), and (17′).

Item (1) is equivalent to (16′) and hence is obvious.
Next, to check (2) it suffices, according to (15′), to show that

[B(X), L] = 0, where B(X) = −
1

2
·
d

dt

∣∣
t=0

pmin(L+ t ·X),

which has been already done in Lemma 1.
Finally, we compute the curvature tensor R at the origin by using

(17′). Namely, for X ∈ so(g0) we have:

R(X) = −B(X) +B(X)∗ = −2B(X) =
d

dt

∣∣
t=0

pmin(L+ tX),

as stated. Here we use Proposition 3 which says, in particular, that
B(X) belongs to gL ⊂ so(g0), i.e., B(X) = −B(X)∗. q.e.d.

This proposition together with Proposition 4 solves the realization
problem in the most important “two Jordan blocks” case. To get the
realization in the general case, we proceed in the same way as we did for
the algebraic part. Namely, we split L into Jordan blocks and for each

pair of Jordan blocks Li, Lj define a formal curvature tensor R̂ij (see
Section 5 for details). Then by using (18) we can realize this formal cur-

vature tensor by an appropriate quadratic metric g(x) = g0 + B̂ij(x, x)
satisfying ∇L = 0. We omit the details because this construction is
straightforward and just repeats its algebraic counterpart discussed in
Section 5. Now, if we set

g(x) = g0 + B(x, x), with B =
∑

i<j

B̂ij,

then, by linearity, this metric still satisfies ∇L = 0 and its curvature

tensor coincides with Rformal =
∑

i<j R̂ij from Proposition 4. This
completes the realization part of the proof of Theorem 1.

7. Appendix: The case of a pair of complex conjugate

eigenvalues

Let L : V → V be a g-symmetric operator with two complex conjugate
eigenvalues λ and λ̄. In this case an analog of Proposition 1 can be
formulated in complex terms.

The point is that on the vector space V there is a canonical complex
structure J that can be uniquely defined by the following condition:
the i and −i eigenspaces of J in V C coincide with λ and λ̄ generalized
eigenspaces of L, respectively.
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The complex structure J obviously commutes with L and is g-symme-
tric. This immediately implies that if we consider V as a complex vector
space with respect to J , then L : V → V is a complex operator and g can
be considered as the imaginary part of the following complex bilinear
form gC : V × V → C:

gC(u, v) = g(Ju, v) + ig(u, v).

It is easy to see that L is still g-symmetric with respect to gC.
Thus, instead of looking for a real canonical form for L and g, it is

much more convenient to use a complex canonical form for L and gC.
As a complex operator, L has a single eigenvalue λ and therefore we are
led to the situation described in Proposition 1. Replacing R by C does
not change the conclusion: there exists a complex coordinate system
such that L and gC are given by exactly the same matrices as L and g

are in Proposition 1.
In this canonical complex coordinate system, the statement of Propo-

sition 2 remains unchanged if we replace the real Lie algebra so(g) by
the complex Lie algebra so

(
gC

)
(the entries of all matrices in (6) and

(7) are now, of course, complex). These two Lie algebras are different,
but we have the obvious inclusion so

(
gC

)
⊂ so(g). It is also important

that gL turns out to be a complex Lie algebra, i.e., gL ⊂ so
(
gC

)
.

To show that gL is still Berger in this case, we first need to verify
the conclusion of Propositions 4; i.e., to check that the image of the
operator (8) coincides with gL.

Proposition 4 is purely algebraic, so it remains true for a complex
operator L and a complex bilinear form gC, if we define R : so(gC) → gL
by (8) with pmin(t) = (t− λ)n.

But we have two new issues. First of all, R should be defined on
a larger Lie algebra, namely on so(g). Second, instead of (t − λ)n we
should consider the real minimal polynomial pmin(t) = (t− λ)n(t− λ̄)n

(otherwise, R won’t be real!).
The first issue is not much trouble at all: we can restrict R on the

subalgebra so(gC) ⊂ so(g) and if the image still coincides with gL, then
the same will be true for the original operator (we use the fact that the
image of R belongs to gL automatically, Lemma 1).

To sort out the second problem, we simply compute R for pmin(t) =
(t − λ)n(t − λ̄)n, thinking of L and X ∈ so(gC) as complex operators
and using the fact that (L− λ)n = 0:

R(X) =
d

dt

∣∣
t=0

(
(L− λ+ tX)n · (L− λ̄+ tX)n

)

=

(
d

dt

∣∣
t=0

(L− λ+ tX)k
)
· (L− λ̄)n + (L− λ)n ·

d

dt

∣∣
t=0

(L− λ̄+ tX)n

=

(
d

dt

∣∣
t=0

(L− λ+ tX)n
)
· (L− λ̄)n.
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The operator in the first bracket is the same as in Proposition 4. In
particular, its image coincides with gL, as needed. After this we multiply
the result by the non-degenerate matrix (L−λ̄)k. This operation cannot
change the dimension of the image, and since we know that ImR is
contained in gL automatically (Lemma 1), we conclude that ImR = gL.

The proof of Proposition 5 does not use any specific property of the

“small” operators R̂ij . We only need the image of R̂ij to coincide with
the subalgebra mij ⊂ gL. But this is exactly the statement of Proposi-
tion 4, which still holds true in the case of two complex blocks.

Thus, if L has two complex conjugate eigenvalues λ and λ̄, the Lie
algebra gL is still Berger.
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