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ON THE MEAN CURVATURE EVOLUTION

OF TWO-CONVEX HYPERSURFACES

John Head

Abstract

We study the mean curvature evolution of smooth, closed, two-
convex hypersurfaces in R

n+1 for n ≥ 3. Within this framework we
effect a reconciliation between the flow with surgeries—recently
constructed by Huisken and Sinestrari in [HS3]—and the well-
known weak solution of the level-set flow: we prove that the two
solutions agree in an appropriate limit of the surgery parameters
and in a precise quantitative sense. Our proof relies on geometric
estimates for certain Lp-norms of the mean curvature which are of
independent interest even in the setting of classical mean curvature
flow. We additionally show how our construction can be used to
pass these estimates to limits and produce regularity results for
the weak solution.

1. Introduction

Consider a smooth, closed hypersurface immersion F0 : M
n → R

n+1.
The solution of mean curvature flow starting from M0 ≡ F0(M

n) is the
one-parameter family F : Mn × [0, T ) → R

n+1 satisfying

(MCF)







∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈ Mn, t ≥ 0,

F (·, 0) = F0,

where H and ν denote the mean curvature and outward-pointing unit
normal, respectively. According to our choice of signs, the right-hand

side is the mean curvature vector ~H and the mean curvature of the
round sphere is positive. We write Mt ≡ F (·, t)(Mn).

The non-linear evolution (MCF) generates curvature blow-up in finite
time, motivating a detailed analysis of the geometric structure of the
surface in high-curvature regions. We discuss the case n ≥ 2.

Huisken [H1] showed that any convex hypersurface of dimension at
least two must contract smoothly to a point in finite time and in an
asymptotically round fashion. It is well known, however, that surfaces
which are not uniformly positively curved can develop local singularities
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before they vanish. See [H2, H3, HS1, HS2] for a classification of all
such singularities in the mean-convex setting.

Of course, the onset of local singularities precludes even a formal
definition of the subsequent evolution in the language of differential
geometry. For topological applications, this is fatal. However, for the
class of two-convex surfaces with n ≥ 3, Huisken and Sinestrari [HS3]
have recently succeeded in extending the classical flow in a topologically
controlled way using a surgery-based approach inspired by [Ha]. We
recall that a surface is by definition two-convex if, at each point, the
sum of any two of the principal curvatures is non-negative.

According to the algorithm in [HS3], the smooth evolution is inter-
rupted shortly before the singular time by a surgery procedure which
replaces a neck with two regions diffeomorphic to disks. A neck can be
thought of as a piece of the surface which can be represented (up to a
homothety) as a graph over a cylinder with small Ck-norm for a suit-
able integer k. Any connected components of known topology are also
discarded at the surgery time. The smooth flow is then restarted and
the whole process is repeated. Huisken and Sinestrari established that
this algorithm terminates after a finite number of surgery times.

Mean curvature flow with surgeries does not constitute a weak solu-
tion of (MCF) in the traditional sense since it relies on a non-canonical
modification of the surface at each chosen surgery time. It is controlled
by a set of parameters 1 << H0 < H1 < H2 < H3 < ∞ which de-
termine when and where surgery is performed. H0 represents a control
scale beyond which the second fundamental form and its derivatives
match one of several possible canonical profiles. The smooth evolution
is stopped when the curvature reaches H3 >> H0, and surgery is per-
formed away from the point of maximum curvature at a smaller scale
H1 = ξ1H3 (ξ1 < 1) such that the maximum of the curvature drops by
a fixed amount to H2 = ξ2H3 (ξ1 < ξ2 < 1). The constants H0, ξ1, ξ2
are determined by M0, and H3 provides a uniform upper bound on the
curvature for all times and across all surgeries.

The starting point for the work in this paper is the observation from
[HS3] that the parameters H1,H2,H3 are not unique; they can in fact
be made arbitrarily large. We are therefore prompted to consider an
increasing sequence of parameters {H i

1,H
i
2,H

i
3}i≥1, corresponding to a

whole sequence of mean curvature flows with surgeries, along which
the surgery times grow and the necks cut out during surgery become
increasingly thin. As the parameters increase, more surgeries may be
required. However, for each set of finite parameters H i

1,H
i
2,H

i
3, only

finitely many surgeries are required.
This motivates the following question: how does the object produced

by the limit H i
1,H

i
2,H

i
3 → ∞ relate to the unique weak solution of

mean curvature flow? In this paper we combine a geometric barrier
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construction with new estimates on the required number of surgeries
and Brakke’s clearing out lemma to show that the two concepts agree
in a precise quantitative sense; see Theorem 4.3. We refer the reader
to Section 4 for the relevant definitions and a full description of the
argument.

In addition to further endorsing the geometric relevance of the weak
solution, this result provides a new framework within which to investi-
gate regularity properties of the level-set flow. We also provide the first
example of an application of this kind (see Section 5).

We point out that a different version of Theorem 4.3 was indepen-
dently obtained by Lauer in [L].

The results in this paper are laid out as follows. Our first object of
study in Section 2 is classical mean curvature flow. In the two-convex
setting, we find an upper bound—which behaves like t−1/2 for small
t—on the Lp-norms of the mean curvature for all p < n− 1; see Theo-
rem 2.4. This result should be compared with the estimates obtained by
Ecker and Huisken in [EH]. The critical exponent p = n−1 arises natu-
rally from the two-convex geometry via an application of the roundness
estimate from [HS3]. These estimates play a crucial role in the proof of
our main theorem. In addition, they have an interesting application to
the regularity theory developed in [E2]; see Remark 2.6.

In Section 3 we begin our analysis of mean curvature flow with sur-
geries. We briefly review the construction in [HS3] and use it to show
that every Lp-norm of the mean curvature is non-increasing at the
surgery times. We establish as a corollary that the smooth estimates
on the classical evolution are preserved—in a weak sense—by the flow
with surgeries. This leads us to a new bound on the required number
of surgeries which strengthens the corresponding result in [HS3] and
which is essential for our primary application.

Our main theorem appears in Section 4. We suitably interpret the
flow with surgeries in the language of weak solutions and provide a
formal statement of the convergence result in Theorem 4.3. Our proof
relies on a combination of global barrier arguments and quantitative
local techniques which are well-suited to the study of necks. The tools
employed here are the familiar avoidance principle, Brakke’s clearing
out lemma, and the bound from Section 3 on the required number of
surgeries. We obtain quantitative estimates on the rate of convergence
in terms of the surgery parameters.

Finally, in Section 5, we refine our convergence theorem using tech-
niques developed in [S, MS]. This allows us to pass the integral esti-
mates from Sections 2 and 3 to limits.

Acknowledgments. I would like to express my sincerest thanks to my
advisor Gerhard Huisken for introducing me to this problem and for his
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guidance throughout the preparation of this work. I am also grateful to
Klaus Ecker and Felix Schulze for many valuable discussions.

2. Integral estimates for classical mean curvature flow

In this section we bound the Lp-norms of the mean curvature for
p < n− 1 under smooth mean curvature flow in the two-convex setting.
In the next section we show how these ideas can be applied to obtain a
new bound on the number of surgeries required for the flow constructed
by Huisken and Sinestrari in [HS3].

Notation. We denote by g = {gij} the induced metric on the hyper-
surface Mt = F (·, t)(Mn). We then denote by dµ the surface measure,
by A = {hij} the second fundamental form, and by λ1 ≤ · · · ≤ λn the
ordered principal curvatures at the space-time point (p, t) ∈ Mn×[0, T ].

We assume throughout that the dimension n of the hypersurface is
at least 3 and that the initial surface is two-convex, i.e. λ1 + λ2 ≥ 0
everywhere onM0. Following Definition 2.5 in [HS3], we introduce some
notation which will clarify our exposition. Recall that if λ1 + λ2 ≥ 0 on
M0, then by the strong maximum principle λ1 + λ2 > 0 on Mt for all
t > 0.

Definition 2.1 (Class of Two-Convex Surfaces, [HS3]). We denote
by C(R,α), α = (α0, α1, α2), the class of smooth, closed hypersurface
immersions F : Mn → R

n+1 satisfying

(2.1) λ1 + λ2 ≥ α0H, H ≥ α1R
−1, Hn(Mn) ≤ α2R

n,

for some constants R,α0, α1, α2 > 0.

The parameter R is chosen such that supM0
|A|2 = R−2. Proposition

2.6 in [HS3] establishes that any smooth, closed, strictly two-convex
surface belongs to C(R,α) and satisfies |A|2 ≤ R−2 for some R,α. Fur-
thermore, C(R,α) is invariant under both smooth mean curvature flow
and standard surgery as defined in Section 3.

Note that R represents the scale of the surface and will therefore
feature explicitly in the estimates below. For later reference we point
out that the surgery parameters Hk (k = 1, 2, 3) can be written in the

form H̃kR
−1 where each H̃k depends only on scale-free properties ofM0;

see Section 3. We stress that the inequality |A|2 ≤ R−2 is not invariant
under mean curvature flow and pertains only to the initial data. This
assumption is made throughout but will not be repeated.

Our starting point is the following well-known result from [H1].

Lemma 2.2 (Evolution Equations, [H1]). Let Mt be a smooth solu-
tion of mean curvature flow. The surface measure and mean curvature
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satisfy the evolution equations

∂

∂t
dµ = −H2dµ,

∂

∂t
H = ∆H + |A|2H

as long as Mt remains smooth.

Let Mt be the smooth solution of mean curvature flow starting from
an initial surface M0 ∈ C(R,α) for some R,α. Using Lemma 2.2 we
compute

d

dt

∫

Mt

Hp dµ = −p(p−1)

∫

Mt

|∇H|2Hp−2 dµ+

∫

Mt

Hp
(

p|A|2 −H2
)

dµ

for any p ∈ R. We consider p > 0 and use the two-convex geometry
to deal with the mixed term on the right-hand side. We appeal to the
following roundness estimate from [HS3] (for later reference we state
the full result for the flow with surgeries, which is defined in the next
section).

Theorem 2.3 (Roundness Estimate, [HS3]). i) Let M0 ∈ C(R,α)
for some R,α and consider the smooth solution Mt of mean curvature
flow starting from M0. For any η > 0 there exists a constant Cη =
Cη(n, α) > 0 such that

(2.2) |A|2 −
H2

n− 1
≤ ηH2 + CηR

−2

on Mt as long as the solution remains smooth.
ii) There exists η̃ = η̃(n) > 0, where 0 < η̃ < 1, such that the following

holds. The parameters controlling the surgery procedure can be chosen
such that for all 0 < η < η̃ the estimate (2.2) holds on the solution of
mean curvature flow with surgeries starting from M0.

We therefore restrict our attention to p < n−1. To make this concrete,
let 0 < ε ≤ 1, fix p = n − 1− ε, and choose η = η(n, ε) > 0 sufficiently
small with respect to ε, for example

ηε ≡
ε

2(n− 1)(n − 1− ε)
.

We henceforth suppress the subscript ε on η and write Cε in place of
Cηε for ease of notation. Now applying Theorem 2.3 with this choice of
η, we obtain

d

dt

∫

Mt

Hp dµ ≤− p(p− 1)

∫

Mt

|∇H|2Hp−2 dµ

−
ε

2(n− 1)

∫

Mt

Hp+2 dµ+ pCεR
−2

∫

Mt

Hp dµ.
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Using Hölder’s inequality, Lemma 2.2, and Definition 2.1, we conclude

d

dt

∫

Mt

Hp dµ ≤ −p(p− 1)

∫

Mt

|∇H|2Hp−2 dµ

−
ε

2(n− 1)
α
− 2

p

2 R
−2n
p

(
∫

Mt

Hp dµ

)
p+2

p

+ pCεR
−2

∫

Mt

Hp dµ.

Define

ϕ = exp

(

−
pCε

R2
t

)
∫

Mt

Hp dµ.

We have proved that ϕ is non-increasing under the smooth evolution.
In particular, the Lp-norm of the mean curvature is bounded for all
p < n−1 under smooth mean curvature flow on any finite time interval.
In fact, by solving the ODE

d

dt
ϕ ≤ −

ε

2(n − 1)
α
− 2

p

2 R
−2n
p exp

(

2Cε

R2
t

)

ϕ
p+2

p ,

we obtain an Lp-estimate for the mean curvature which behaves like
t−1/2 for small t (this agrees with the scaling of the interior estimates
obtained by Ecker and Huisken in [EH]).

Proposition 2.4 (Smooth Lp Estimate). Let M0 ∈ C(R,α) for
some R,α and consider the smooth solution Mt of mean curvature
flow starting from M0. For any 0 < ε ≤ 1 there exists a constant
Cε = Cε(n, α) > 0 such that, setting p = n− 1− ε, we have

‖H‖Lp(Mt)

≤ C(n)α
1/p
2 R(n−p)/p

(

pCε

ε

)
1

2

exp

(

Cε

R2
t

)(

exp

(

2Cε

R2
t

)

− 1

)− 1

2

for all t > 0 as long as the solution remains smooth. Here C(n) > 0 is
a constant depending only on n.

Note that the additional estimate in the second part of Theorem 2.3
has not yet been used. In the next section, we will apply this calculation
to a solution of mean curvature flow with surgeries, and in this setting
it will be necessary to call upon the roundness estimate (with the same
constants) before and after surgeries.

We now make an informal remark on the critical exponent p = n− 1.

Remark 2.5 (Two-Convexity). The coefficient of H on the left-hand
side of the roundness estimate (2.2) determines the values of p which
are susceptible to our approach. The factor (n− 1)−1, and therefore the
critical exponent p = n − 1 (with ε = 0), arise from the property that
on the round cylinder |A|2 − (n− 1)−1H2 ≡ 0. It is in this way that the
two-convex geometry declares itself.
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In the setting of two-convex surfaces, the mean curvature controls
the full norm of the second fundamental form: (1/n)H2 ≤ |A|2 ≤ nH2.
Proposition 2.4 is therefore equivalent to a bound on the Lp-norms of
A for p < n− 1.

In particular, if we denote by T < ∞ the extinction time of the
smooth solution Mt, we obtain

∫ T

0

∫

Mt

|A|n+1−ε dµ dt ≤ C1ε
−1 exp

(

C2R
−2T

)

∫

M0

Hn−1−ε dµ(2.3)

≤ C3R
1+ε,(2.4)

where the constants C1, C2, C3 > 0 depend only on n, ε, α. Here we have
used Definition 2.1 and the well-known bound T ≤ (n/2)α−2

1 R2 from
Lemma 3.8 below.

Remark 2.6 (Size of the Singular Set). The estimate (2.4) is relevant
to the regularity theory developed by Ecker in [E2]. As above we use T
to denote the extinction time of the smooth evolution. Let sing(MT ) ⊂
R
n+1 be the set of points x ∈ R

n+1 such that the space-time point (x, T )
is singular. Theorem 1.1 in [E2] asserts that the integrability condition

∫ T

0

∫

Mt

|A|q dµ dt < ∞, q ≥ 2,

implies Hn+2−q(sing(MT )) = 0 for all 2 ≤ q ≤ n+2 and sing(MT ) = ∅
for q ≥ n+2. Hence, if M0 ∈ C(R,α) for some R,α, and Mt, 0 ≤ t < T ,
is the maximal smooth mean curvature evolution of M0, we can apply
(2.4) and conclude that H1+ε

(

sing(MT )
)

= 0 for all ε > 0. That is
to say, the Hausdorff dimension dimH(sing(MT )) of the singular set
satisfies dimH(sing(MT )) ≤ 1; compare Corollary 1.7 in [E2].

In the next section we begin our analysis of the surgery construction
developed by Huisken and Sinestrari.

3. MCF with surgeries and the number of surgeries

This section is devoted to the task of finding a quantitative bound on
the number of surgeries required by the algorithm constructed in [HS3].
The key step is to adapt the smooth calculation from the previous sec-
tion to this discontinuous setting. The resultant estimate, Corollary 3.9,
is the essential ingredient in the proof of the convergence result in Sec-
tion 4.

We begin with the necessary definitions from the theory developed
by Huisken and Sinestrari in [HS3].

Mean curvature flow with surgeries. Section 2 in [HS3] de-
fines the solution of mean curvature flow with surgeries starting from
a smooth hypersurface immersion F0 : M1 → R

n+1 in C(R,α) for
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some R,α. It consists of a sequence of smooth mean curvature flows
F i
t : Mi → R

n+1, t ∈ [Ti−1, Ti], such that the initial hypersurface for
the family F 1 is given by F0 : M1 → R

n+1, and such that the initial
hypersurface for the flow F i

t : Mi → R
n+1 on [Ti−1, Ti], 2 ≤ i ≤ N , is

obtained from F i−1
Ti−1

by:

i) performing standard surgery on finitely many disjoint necks, re-
placing each of them with two spherical caps (see below for defi-
nitions); and

ii) removing finitely many disconnected components.

We again write Mt for the solution of mean curvature flow with sur-
geries. The surgery time TN is the extinction time of Mt if all connected
components of MTN

can be identified as copies of Sn or S
n−1 × S

1, or
alternatively if this can be achieved after performing finitely many sur-
geries on MTN

.

Necks. In order to control the Lp-norms of the mean curvature under
mean curvature flow with surgeries, we therefore require estimates on
the curvature of necks before and after surgery. The following definition
is independent of mean curvature flow.

Definition 3.1 (Hypersurface Neck, [HS3]). Let F : Mn → R
n+1 be

a smooth hypersurface with induced metric g and Weingarten map W ,
and let N : Sn−1 × [a, b] → (Mn, g) ⊂ R

n+1 be a local diffeomorphism.
Then N is an (ǫ, k)-hypersurface neck if

|r−2(z)g − ḡ|ḡ ≤ ǫ, |D̄j(r−2(z)g)|ḡ ≤ ǫ, and |(d/dz)j log r(z)| ≤ ǫ

uniformly for 1 ≤ j ≤ k, and if in addition

|W (q)− r−1(z)W̄ | ≤ ǫr−1(z) and |∇lW (q)| ≤ ǫr−l−1(z)

for 1 ≤ l ≤ k and for all q ∈ S
n−1 × {z} and all z ∈ [a, b]. Here ḡ is

the standard metric on the cylinder and r : [a, b] → R is the average
radius of the cross-section N (Sn−1 × {z}) with respect to the pullback
of g on Mn.

Remark 3.2 (Maximal Normal Neck). In order to deal with over-
lapping necks, it is necessary to introduce the concept of a maximal
normal hypersurface neck. Definitions 3.8 and 3.11 in [HS3]—see also
[Ha]—use constant mean curvature slices and harmonic mappings to
guarantee uniqueness of the neck up to isometries.

Definition 3.3 (Length Parameter, [HS3]). We define the length of
a hypersurface neck N : Sn−1 × [a, b] → R

n+1 to be b− a.

According to this definition, length is a scale-free quantity. The length
of the neck plays a crucial role in our analysis and will depend only on
the dimension n. Recall that the distance (with respect to the met-
ric) between the two ends of the standard embedded cylinder of length
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L and radius r0 is r0L. The control scale H0 depends on our choice of L.

Surgery. Let N : Sn−1 × [a, b] → M be a normal neck of length
L ≥ 8Λ (Λ will be chosen later) and let z0 ∈ [a, b] such that [z0−4Λ, z0+
4Λ] ⊂ [a, b]. Section 3 of [HS3] defines the following standard surgery
with parameters 0 < τ < 1 and B > 10Λ at the cross-section Nz0 =
N (Sn−1 ×{z0}). To the left of z0, it leaves the collar S

n−1 × [a, z0 − 3Λ]
untouched, and replaces N (Sn−1 × [z0 − 3Λ, z0]) with a ball attached
smoothly to Nz0−3Λ. The other direction is similarly modified.

For convenience we set z0−4Λ = 0 and consider N : Sn−1× [0, 4Λ] →
M. We denote by C̄z0 : Sn−1 × R → R

n+1 the straight cylinder best
approximating the surface at the cross-section Nz0 .

i) (Pinching) Let u(z) ≡ r0 exp (−B/(z − Λ)) on [Λ, 3Λ] for B >

10Λ. Given 0 < τ < 1, define Ñ (ω, z) ≡ N (ω, z)− τu(z)ν(ω, z).
ii) (Symmetrising) Denote by ϕ : [0, 4Λ] → R

+ a fixed smooth tran-
sition function with ϕ = 1 on [0, 2Λ], ϕ = 0 on [3Λ, 4Λ], and

ϕ′ ≤ 0. In addition, let C̃z0 : Sn−1 × [0, 4Λ] → R
n+1 denote the

bent cylinder defined by C̃z0(ω, z) ≡ C̄z0(ω, z) − τu(z)νC̄ (ω, z).
Now interpolate to obtain an axially symmetric surface

N̂ (ω, z) ≡ ϕ(z)Ñ (ω, z) + (1− ϕ(z))C̃z0(ω, z).

iii) (Capping Off ) Finally, on [3Λ, 4Λ] change u to a function û such
that τ û(z) → r(z0) = r0 as z → z1 for some z1 ∈ (3Λ, 4Λ]. We can

assume that C̃z0([3Λ, 4Λ]) is a smoothly attached, axially symmet-
ric and uniformly convex cap. There is a fixed upper bound on the
curvature and each of its derivatives, independent of Λ, τ, B.

Mean curvature flow with surgeries is governed by the choice of surgery
procedure, the neck parameters ǫ, k, L, and the algorithm parameters
H0,H1,H2,H3.

Integral estimates for necks. We are now ready to control the
Lp-norms of the mean curvature across surgery. The next lemma is
independent of mean curvature flow and will be combined with the
smooth calculation from the previous section in Theorem 3.6.

In Lemma 3.4 we consider an (ǫ, k)-hypersurface neck N : Sn−1 ×
[0, L] → M− contained in M− ∈ C(R,α) for some R,α, and a single
standard surgery at z0 = L/2. As before, r0 will be the mean radius of
the cross-section Nz0 . We refer to r0 as the scale of the neck and we write
M+ (M−) for the surface before (after) surgery. For ease of notation
we write U− ⊂ M− for the subset of M− altered by the surgery and
U+ for the subset of M+ replacing U−.

Lemma 3.4 (Lp Estimate across Surgery). Let p ≥ 0. We can choose
L = L(n, p) sufficiently large such that the following property holds. Let
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M−, M+, U−, U+, and r0 be as described immediately above. There
exists a constant C(n, p) > 0 depending only on n, p such that

∫

U−

Hp dµ−

∫

U+

Hp dµ ≥ C(n, p)L(r0)
n−p.

Proof. Fix p ≥ 0 and consider the neck N : Sn−1× [0, L] → M− with
scale r0. From Definition 3.1 we have |λ1(q)| ≤ ǫr(z)−1 and |λj(q) −
r(z)−1| ≤ ǫr(z)−1, j = 2, . . . , n, for all q ∈ S

n−1 × {z} and for each
z ∈ [0, L]. In addition, |(d/dz)l log r(z)| ≤ ǫ, 1 ≤ l ≤ k, on [0, L]. Hence
there exists ǫ0 = ǫ0(n,L) > 0 such that for all 0 < ǫ ≤ ǫ0 we have

(3.1)

∫

U−

Hp dµ ≥

(

9

10

n− 1

r0

)p( 9

10
ωn−1L̃(r0)

n

)

,

where L̃ = L− 2Λ. The replacement region U+ consists of two copies of
U+
1 ∪ U+

2 where U+
2 denotes the convex cap attached to N3Λ as described

in step iii) of the surgery procedure and U+
1 corresponds to the modified

cylinder N̂ in between. Using Remark 3.20 in [HS3] and estimating as
we did in (3.1), we can choose τ = τ(n) > 0 sufficiently small such that

(3.2)

∫

U
+

1

Hp dµ ≤ ωn−1(n− 1)p(2Λ)(r0)
n−p

(

11

10

)p+1

.

It is clear that the final step of the surgery construction can also be
adapted such that

(3.3)

∫

U+

2

Hp dµ ≤ ωnn
p(r0)

n−p

(

11

10

)p+1

.

We can therefore choose L = C(n, p) + 8Λ sufficiently large in terms of
n and p such that the result follows from (3.1), (3.2), and (3.3). q.e.d.

We henceforth assume that a fixed choice has been made for the pa-
rameters τ,B as well as the transition function and convex cap in steps
ii) and iii) of the surgery procedure such that Lemma 3.4 holds.

Lp estimate for mean curvature flow with surgeries. We now
combine the smooth calculation from the previous section with Lemma
3.4 to prove that Proposition 2.4 applies—in a weak sense—to the flow
with surgeries. In what follows: Mt denotes the solution of mean cur-
vature flow with surgeries; Tj , j = 1, 2, . . . , N , are the surgery times;
and MT−

j
(MT+

j
) denotes the surface at time Tj before (after) surgery.

The solution Mt is determined by a set of parameters H1,H2,H3 which
control the choice of surgery times and locations. We recall the main
result from [HS3].

Theorem 3.5 (Existence & Finite Extinction, [HS3]). Let M0 ∈
C(R,α) for some R,α. There exist constants ω1, ω2, ω3 > 1 depending
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only on α such that the following holds. If we set H2 = ω2H1 and
H3 = ω3H2, then for any H1 ≥ ω1R

−1 there exists an associated mean
curvature flow with surgeries Mt, 0 ≤ t ≤ TN < ∞, starting from M0

and such that:

i) each surgery is performed at the earliest time Tj such that the

curvature reaches maxH(·, T−
j ) = H3;

ii) after the two-step surgery procedure, maxH(·, T+
j ) ≤ H2;

iii) all surgeries start from a cross-section of a normal hypersurface
neck with mean radius r0 = (n− 1)/H1;

iv) N < ∞.

We emphasize that Theorem 3.5 holds for any choice of length pa-
rameter L ≥ 20 + 8Λ. We refine the choice of L such that Lemma 3.4
holds for all p < n− 1. This leads to the following estimate for the flow
with surgeries.

Theorem 3.6 (Lp Estimate for Flow with Surgeries). Let M0 ∈
C(R,α) for some R,α. We can choose L = L(n) sufficiently large such
that the following property holds. Consider the solution Mt, 0 ≤ t ≤
TN < ∞, of mean curvature flow with surgeries starting from M0. For
any 0 < ε ≤ 1 there exists a constant Cε = Cε(n, α) > 0 such that

exp
(

pCεR
−2t0

)

∫

M0

Hp dµ ≥ p(p− 1)

∫ t0

0

∫

Mt

|∇H|2Hp−2 dµ dt

+

∫

Mt0

Hp dµ+
ε

2(n− 1)

∫ t0

0

∫

Mt

Hp+2 dµ dt,

for any 0 < t0 ≤ TN and where p = n− 1− ε.

Proof. First recall that Proposition 2.4 relies only on Theorem 2.3.
Since the estimate (2.2) survives surgery without any modifications to
the constants, we conclude that the smooth calculation applies to each
smooth time interval [0, T1], [T1, T2], . . . , [Tm, t0]. Note that the one-sided
time derivatives exist at each surgery time Tj. We can therefore inte-
grate on each time interval [Tj , Tj+1] and sum the m+ 1 contributions.
Furthermore exp

(

−pCεR
−2t

)

is continuous in t, and from Lemma 3.4
we have

∫

M
T
−

j+1

Hp dµ >

∫

M
T
+
j+1

Hp dµ

for each p ≥ 0 and for all j ≥ 0. Here we simply disregard any con-
tribution made by the components discarded at the surgery time. This
completes the proof. q.e.d.

Remark 3.7 (Brakke Flow). Recall that, in the language of smooth
surfaces, Brakke’s definition of a weak mean curvature evolution [B]
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requires
∫

M0

φdµ ≥

∫

Mt0

φdµ +

∫ t0

0

∫

Mt

φH2 +H 〈∇φ, ν〉 dµ dt

for all non-negative φ = φ(x) ∈ C2
c (R

n+1). Lemma 3.4 reveals that the
flow with surgeries does not satisfy Brakke’s definition, but the error
term introduced by each standard surgery satisfies the estimate

(3.4)

∫

U+

φdµ −

∫

U−

φdµ ≤ C(n)L(r0)
n sup

U+

φ,

where U− and U+ are defined immediately before Lemma 3.4 above.
The constant C(n) > 0 depends only on n.

Number of surgeries. Theorem 3.5 above asserts that the flow with
surgeries terminates after finitely many surgery times. In fact, the proof
of this result in [HS3] produces quantitative estimates on N in terms
of the parameters H1,H2,H3 (note that this does appear explicitly in
[HS3] as it is not required). Our goal is to strengthen this result using
the higher order Lp-estimates in Theorem 3.6.

The following lemma is well known in the context of smooth mean
curvature flow; see for example Proposition 2.7 in [HS3].

Lemma 3.8 (Finite Extinction Time). Let M0 ∈ C(R,α) for some
R,α and consider the solution Mt, 0 ≤ t ≤ TN < ∞, of mean curvature
flow with surgeries starting from M0. We have

TN ≤ min

{

n

2
α−2
1 R2,

1

2n

(

diam(M0)
)2
}

,

where TN denotes the extinction time of Mt and diam(M0) denotes the
diameter of M0.

Proof. The first estimate can be found in the proof of Corollary 4.7
in [HS3]. In the smooth setting, it follows from the trivial inequality
∂tH ≥ ∆H + (1/n)H3, an ODE comparison argument, and Definition
2.1. Corollary 3.21 in [HS3] ensures that surgery does not reduce the
mean curvature, so the same estimate applies to the flow with surgeries.

The second bound follows from Jung’s theorem and the avoidance
principle. This argument applies to the flow with surgeries since the
surgery procedure does not interfere with the spherical barrier and the
avoidance principle can be applied on each smooth time interval. q.e.d.

Combining Lemma 2.2 this time with the two-convex inequality |A|2 ≤
nH2 gives ∂tH ≤ ∆H + nH3. Comparison with the associated ODE in
this case yields a uniform lower bound δT ≥ C(n, α)(H2)

−2 on the time
interval δT separating any two consecutive surgery times; see Remark
7.17 in [HS3]. Recall that the mean curvature has to increase from H2
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to H3 = ω3H2 > H2 during this time. Hence the number of surgery
times satisfies the bound

(3.5) N ≤ C(n, α)R2(H2)
2.

This guarantees that the flow with surgeries must terminate after a fi-
nite number of surgery times for any finite H1,H2,H3. However, the es-
timate (3.5) is not strong enough for our application in the next section.
We therefore use an alternative argument—inspired by [HS3, Ha]—in
combination with Theorem 3.6 to establish a new bound on N .

Corollary 3.9 (Number of Surgery Times). We can choose L =
L(n) sufficiently large such that the following property holds. Let M0 ∈
C(R,α) for some R,α and consider the solution Mt, 0 ≤ t ≤ TN <
∞, of mean curvature flow with surgeries starting from M0 and with
parameters H1,H2,H3. For any 0 < ε ≤ 1 there exists a constant Cε =
Cε(n, α) > 0 depending only on n, ε, α such that

N ≤ CεL
−1R1+ε(H1)

1+ε,

where N denotes the number of surgery times associated with Mt.

Proof. Let 0 < ε ≤ 1. Theorem 3.6, Lemma 3.8, and Definition 2.1
combine to produce a uniform constant C(n, ε, α) > 0 depending only
on n, ε, α such that

(3.6)

∫

Mt

Hn−1−ε dµ ≤ C(n, ε, α)R1+ε

on [0, TN ]. In addition, Lemma 3.4 guarantees that each surgery con-
sumes

∫

U−

Hn−1−ε dµ −

∫

U+

Hn−1−ε dµ ≥ C(n, ε)L(H1)
−1−ε.

Note that we can again ignore the contribution made by the components
discarded at the surgery time. Hence there exists a constant C > 0
depending only on n, ε, α such that the total number of surgeries S(TN )
performed on the time interval [0, TN ] cannot exceed CL−1R1+ε(H1)

1+ε.
In addition, the number of connected components at any given time
t0 ∈ [0, TN ] is bounded above by C0 + S(t0), where C0 is the number
of components at time t = 0 and S(t0) represents the total number
of surgeries performed on the time interval [0, t0). Recall that at each
surgery time the curvature has to drop from H3 to H2 via the two-step
surgery procedure described in Section 2.2, and C0 is bounded courtesy
of Definition 2.1. The number of surgery times N therefore satisfies the
desired estimate. q.e.d.

We next use Corollary 3.9 to reconcile the solution produced by the
non-canonical surgery construction with the unique weak solution of
mean curvature flow introduced in [B, CGG, ES1].
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4. Approximating weak solutions using MCF with surgeries

The flow with surgeries and the so-called weak solution are hereto-
fore independent interpretations of a global mean curvature evolution
of M0. In this section we investigate the relationship between the two:
Theorem 4.3 below asserts that the solution of the flow with surgeries
converges to the weak solution in an appropriate limit of the surgery pa-
rameters. We obtain quantitative estimates on the rate of convergence
using Corollary 3.9 and Brakke’s clearing out lemma.

In order to set up a precise statement of the result, we rapidly recall
some basic definitions and results from the theory of weak solutions.
There are several comprehensive treatments of weak solutions available
in the literature—for further details we refer to [B, CGG, ES1, I, W].
Here we adopt the viewpoint taken in [CGG, ES1, MS]; see also
[HI, S].

Weak solutions. Let Ω ⊂ R
n+1 be an open, bounded set with mean-

convex boundary ∂Ω and consider the classical solution of (MCF) start-
ing from ∂Ω. The smoothly evolving surfaces Mt can therefore be repre-
sented as the level-sets of a continuous scalar “time” function u : Ω̄ → R

satisfying the degenerate elliptic boundary value problem

(⋆)











div

(

Du

|Du|

)

= −
1

|Du|
,

u
∣

∣

∣

∂Ω
= 0.

A weak concept of solutions to (⋆) can be defined using a variational
approach; compare [HI, MS, S]. For more general formulations we refer
to [CGG, ES1] and to [B, I].

Definition 4.1 (Weak Solution). Given u ∈ C0,1(Ω̄) such that
|Du|−1 ∈ L1(Ω), u > 0 on Ω, and {u = 0} = ∂Ω, we say that u is
a weak solution of (⋆) on Ω if

∫

Ω

(

|Du| −
u

|Du|

)

dx ≤

∫

Ω

(

|Dv| −
v

|Du|

)

dx

for any Lipschitz continuous function v on Ω such that {u 6= v} ⊂⊂ Ω.

There exists a unique weak solution of (⋆) on Ω; see [CGG, ES1].
We hereafter write ū for the weak solution and we define

Γt ≡

{

∂
{

x ∈ Ω
∣

∣ ū(x) > t
}

for all t ≤ T̄

∅ for all t > T̄

where T̄ ≡ supΩ(ū). We have T̄ ≤ min{C(n, α)R2, C(n)(diam(M0))
2};

see Theorem 4.1 in [ES2]. We also write Ωt ≡ {ū > t} for the regions
enclosed by the level-sets Γt.
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With the preceding definitions in hand, we now turn to the geometric
properties of the weak solution. Recall from [ES1] that Γt agrees with
the smooth evolution Mt starting from ∂Ω if and so long as the latter
exists. In addition, it satisfies the avoidance principle: if Mt, t0 ≤ t ≤
t1, is any smooth, compact mean curvature flow with positive mean
curvature, and if Mt0 ∩ Γt0 = ∅, then Mt ∩ Γt = ∅ for all t0 < t ≤ t1.
Equivalently, d

dtdist(Mt,Γt) ≥ 0.
We adopt the notation ∂∗A for the reduced boundary of a set A ⊂

R
n+1.

Definition 4.2 (Minimising Hull). Let U ⊂ R
n+1 be an open set. We

say that the set E ⊂ R
n+1 is a minimising hull in U if Hn(∂∗E ∩K) ≤

Hn(∂∗F ∩K) for any F ⊃ E such that F \ E ⊂⊂ U and any compact
set K ⊃ (F \ E).

It is well known that the sets Ωt are minimising hulls in Ω; see [W] and
[HI, MS]. These fundamental geometric features of the weak solution
play an important role in our construction.

It was established in [ES1, CGG] that ū can be approximated uni-
formly in C0 by smooth, non-compact solutions of mean curvature flow
satisfying an appropriate “regularised” boundary value problem; see also
[HI, MS]. (Note that in the next section we will in fact make use of
the theory developed in [MS].) We now put forth a new approximation
scheme in the two-convex setting using solutions of mean curvature flow
with surgeries.

Mean curvature flow with surgeries. We restrict our attention
to domains Ω in R

n+1, n ≥ 3, such that ∂Ω ∈ C(R,α) for some R,α.
Let Mt, t ∈ [0, TN ], be the corresponding flow with surgeries. We now
construct the level-set function u associated with the evolution Mt. If Tj

is a surgery time, we write ET−

j
for the closed domain in R

n+1 bounded

by MT−

j
and FT+

j
for the open set in R

n+1 enclosed by MT+

j
. Note that

the surgery procedure gives rise to points x ∈ Ω such that x /∈ Mt for
any t.

Define

u(x) ≡

{

t for all x ∈ Mt

Tj for all x ∈ ET−

j
\ FT+

j
, j = 1, . . . , N,

where ET−

j
\ FT+

j
is the region overlooked as a result of the alterations

made at the surgery time Tj . These regions are by definition plateaus
in graph(u) ⊂ R

n+1 ×R and the corresponding level-sets {u = Tj} may
not be smooth hypersurfaces. Observe that MT−

j
= ∂ (int{u ≥ Tj}) and

MT+

j
= ∂ {u > Tj}. For convenience we define the sets Σt ≡ {u > t}

and Σ̃t ≡ int{u ≥ t} so that MT+

j
= ∂ΣTj

and MT−

j
= ∂Σ̃Tj

.
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For all t /∈ {T1, . . . , TN} we have Mt = {u = t}. The function u is
smooth in these regions and in addition u ∈ C0,1(Ω̄).

Convergence. Theorem 3.5 provides three constants ω1, ω2, ω3 which
depend only on α and which produce a flow with surgeries starting from
∂Ω for any choice H1 ≥ ω1R

−1 with H2 = ω2H1 and H3 = ω3H2. Now
consider an increasing sequence of parameters {H i

1,H
i
2,H

i
3}i≥1 corre-

sponding to a sequence {Mi
t}i≥1 of mean curvature flows with surgeries.

This generates an associated sequence of level-set functions {ui}i≥1.
The ratios ω2, ω3 are fixed along the sequence; that is, H i

2 = ω2H
i
1 and

H i
3 = ω3H

i
2 for each i. We are now able to formulate a precise statement

of our convergence result.

Theorem 4.3 (Convergence to Weak Solution). Suppose n ≥ 3 and
let Ω ⊂ R

n+1 be an open, bounded set such that ∂Ω ∈ C(R,α) for some
R,α. We can choose L = L(n) sufficiently large such that the following
holds. Let ū ∈ C0,1(Ω̄) be the weak solution generated by Ω, and consider
the solution ui ∈ C0,1(Ω̄) of the flow with surgeries starting from ∂Ω and
with parameters H i

1,H
i
2,H

i
3. For any 0 < ε ≤ 1 there exists a constant

Cε = Cε(n, α) > 0 depending only on n, ε, α such that

max
x∈Ω̄

|ui(x)− ū(x)| ≤ CεLR
1+ε(H i

1)
−1+ε.

Theorem 4.3 follows from Corollary 3.9, Lemma 4.4, and Proposition
4.6. As a first step we prove that ui sits below ū for each i. We then
show that ū can also be used as a lower barrier to ui after an appropri-
ate “time”-translation which depends explicitly on H i

1; see step 2 below.

Step 1. We record a global barrier result controlling the height of
thelevel-set functions ui relative to ū.

Lemma 4.4 (Upper Barrier). Suppose n ≥ 3 and let Ω ⊂ R
n+1 be

an open, bounded set such that ∂Ω ∈ C(R,α) for some R,α. Let ū be
the weak solution generated by Ω, and denote by ui the solution of the
flow with surgeries starting from ∂Ω and with parameters H i

1,H
i
2,H

i
3.

We have ui(x) ≤ ū(x) for all x ∈ Ω̄.

Before proceeding with the proof, we recall the concept of the solid
tube enclosed by a hypersurface neck; see Proposition 3.25 in [HS3].

Proposition 4.5 (Solid Tube, [HS3]). There exists ǫ0 = ǫ0(n) > 0
depending only on n such that the following holds. Given a normal (ǫ, k)-
hypersurface neck N : Sn−1 × [0, L] → Mn ⊂ R

n+1 with parameters
L ≥ 20 + 8Λ ≥ 100, 0 < ǫ ≤ ǫ0, and k ≥ 2, there exists a unique local
diffeomorphism G : B̄n

1 × [0, L] → R
n+1 such that: i) G (when restricted

to the cylinder) agrees with N ; ii) each cross-section G(B̄n
1 × {z0}) ⊂

R
n+1 is an embedded area minimising hypersurface; iii) G is a harmonic



ON THE MEAN CURVATURE OF TWO-CONVEX HYPERSURFACES 257

diffeomorphism when restricted to each slice B̄n
1 × {z0}; and iv) G is

ǫ-close in Ck+1-norm to the standard isometric embedding of a solid
cylinder in R

n+1.

Proof of Lemma 4.4. Since Mi
0 = Γ0 = ∂Ω, we have Mi

δ ⊂⊂ Ω for

all small δ > 0. Hence d
dtdist(M

i
t+δ,Γt) ≥ 0 as long as Mi

t+δ remains
smooth. However, it is straightforward to see that this property is pre-
served by the surgery construction. Each standard surgery is performed
on a neck N0 of length L which encloses a solid tube G0 : B̄

n
1 × [0, L] →

R
n+1. As in Lemma 3.4, we denote by U+ the two caps introduced

by each standard surgery. By construction, U+ ⊂ G0(B̄
n
1 × [0, L]) and

therefore Mi
T+

j

⊂ ET−

j
. This property is clearly respected by step two

of the surgery procedure in which finitely many components are dis-
carded. Therefore dist(Mi

t+δ,Γt) is non-decreasing across each surgery
time. Since there are only finitely many surgery times, we therefore have
Mi

t+δ ⊂⊂ Ωt for all t ≥ 0. The desired result then follows from the fact
that the level-set functions ui, ū are continuous. q.e.d.

Step 2: “Time-Shifting” the Weak Solution. Our goal is now to
translate ū vertically (in “time”) until it sits below ui; this will complete
the proof of Theorem 4.3. We use Brakke’s clearing out lemma and
Corollary 3.9 to control the process in a quantitative way. The heuristic
idea can be described as follows.

The solutions Mi
t and Γt agree—and coincide with the classical

evolution—up to and including the first surgery time T1 (more pre-
cisely T−

1 ). We now freeze Mi
T−

1

and run the weak solution a short time

longer until ΓT1+tw ⊂ Σi
T1
. That is, we give the weak solution enough

time to vacate the regions modified by surgery. This must happen for
some finite tw < ∞ in light of the curvature assumption on ∂Ω; we claim
that tw can be controlled explicitly in terms of the surgery parameters
with the expected parabolic scaling.

We then perform surgery on Mi
T−

1

, after which Mi
T+

1

∩ ΓT1+tw = ∅.

This allows us to restart the two evolutions and apply the avoidance
principle until the next surgery time. We iterate the argument at each
subsequent surgery time.

The fundamental quantity to control is therefore the combined scal-
ing of the estimates on tw and N . The length parameter L plays an
important role.

Proposition 4.6 (Lower Barrier). Suppose n ≥ 3 and let Ω ⊂ R
n+1

be an open, bounded set such that ∂Ω ∈ C(R,α) for some R,α. We can
choose L = L(n) sufficiently large such that the following holds. Let ū
be the weak solution generated by Ω, and denote by ui the solution of the
flow with surgeries starting from ∂Ω and with parameters H i

1,H
i
2,H

i
3.

There exists a constant C(n, α) > 0 depending only on n, α such that
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for all x ∈ Ω̄ we have

ū(x) ≤ ui(x) +Ntw,

where tw ≤ C(n, α)L2(H i
1)

−2 and N is the number of surgery times
associated with ui.

We adapt the statement of the famous clearing out lemma from [B]
to our setting; see Theorem 7.3 in [ES2].

Theorem 4.7 (Clearing Out Lemma, [B]). Let Ω ⊂ R
n+1 be an open,

bounded set with mean-convex boundary ∂Ω, and consider the weak so-
lution ū generated by Ω. There exist constants C(n), θ(n) > 0 depending
only on n such that the following holds. For any x0 ∈ R

n+1 and ρ > 0
the estimate

Hn
(

Γt0 ∩Bρ(x0)
)

≤ θ(n)ρn

implies Γt ∩Bρ/2(x0) = ∅, where t− t0 ≤ C(n)ρ2.

The parabolic scaling of the estimate on the waiting time t− t0 will
lead to a refined upper bound on the time tw required by the weak
solution to vacate the regions modified by surgery. Proposition 4.6 will
follow from the next two results, which we state and prove separately,
in combination with the avoidance principle.

Remark 4.8 (Proof of Prop. 4.6). Points modified at a surgery time
belong either to hypersurface necks or to components of known topology
which are subsequently discarded. Discarded components may contain
regions which are not cylindrical; these will be discussed in Lemma 4.10.

We first deal with regions directly affected by the surgery procedure
itself. In what follows we say that the point x ∈ R

n+1 is modified by
the surgery procedure if x belongs to the part of a solid tube G which
is changed by surgery. In the language of Proposition 4.5, this implies
that x ∈ G(B̄n

1 × [Λ, L− Λ]).

Lemma 4.9 (Regions Modified by Surgery Procedure). Suppose n ≥
3 and let Ω ⊂ R

n+1 be an open, bounded set such that ∂Ω ∈ C(R,α) for
some R,α. We can choose L = L(n) sufficiently large such that the
following holds. Let ū be the weak solution generated by Ω, and denote
by ui the solution of the flow with surgeries starting from ∂Ω and with
parameters H i

1,H
i
2,H

i
3. Let Tj , j ∈ {1, . . . , N}, be a surgery time for

ui, and assume that t0 > Tj ≥ 0 is such that Hn(Γt0) = Hn(∂∗Ωt0)

and Γt0 ⊂ Σ̃i
Tj
. There exist constants C1, C2 > 0 depending only on n

such that Γt0+t̄ ∩ Bρ0/2(x) = ∅ for all x ∈ Σ̃i
Tj

modified by the surgery

procedure, where ρ0 = C1L(H
i
1)

−1 and t̄ ≤ C2L
2(H i

1)
−2.

Proof. Consider any x ∈ G0(B̄
n
1 ×[Λ, L−Λ]), where G0 : B̄

n
1 ×[0, L] →

R
n+1 is the solid tube enclosed by a neck N0 with scale ri0 and center
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p0. By Definition 3.1, there exists ǫ1 = ǫ1(n,L) > 0 such that for all
0 < ǫ ≤ ǫ1 and each such x we have Hn

(

N0∩B(Λri
0
)(x)

)

≤ 4Λωn−1(r
i
0)

n.

We refine our choice of Λ(n) > 0 (if necessary) so that

(4.1) Hn
(

N0 ∩B(Λri
0
)(x)

)

≤ θ(n)Λn(ri0)
n,

where θ(n) > 0 is the constant from Theorem 4.7. We therefore define
ρ0 ≡ (n−1)Λ(H i

1)
−1, and we claim that (4.1) impliesHn

(

Γt0∩Bρ0(x)
)

≤
θ(n)(ρ0)

n. The result then follows from the clearing out lemma.
We first use the minimising hull property of the weak solution to show

that Hn
(

(Γt0 ∩G0)∩Bρ0(x)
)

≤ θ(ρ0)
n. In fact, direct comparison of the

set Ωt0 with the perturbation Ωt0 ∪ G0 yields the estimate Hn
(

(Γt0 ∩

G0) ∩ Bρ0(x)
)

≤ Hn
(

N0 ∩ Bρ0(x)
)

. This is the step which requires the
assumption Hn(Γt0) = Hn(∂∗Ωt0).

It is then necessary to confirm that no other part of the surface can
intersect Bρ0(x)—that is, Bρ0(x)∩(Σ̃

i
Tj
\G0) = ∅. To this end we exploit

the fact that the neck is close to a shrinking cylinder on an earlier time
interval. We require additional machinery from [HS3].

Let Bg(t)(p, l) ≡ {q ∈ Mn | dg(t)(p, q) ≤ l}. Lemmas 7.4 and 7.9 in
[HS3] assert that the backward parabolic neighborhood

P(p0, Tj ,r
i
0L, (r

i
0)

2ω)

≡
{

(q, s)
∣

∣ q ∈ Bg(Tj)(p0, r
i
0L), s ∈ [Tj − (ri0)

2ω, Tj ]
}

can be made arbitrarily close to a portion of an exact cylinder evolving
by mean curvature flow over the same time interval. It is clear that we
can therefore choose Λ, L = C(n) + 8Λ and ω = C(n)L2 large enough
such that Lemma 3.4 and (4.1) hold, and in addition such that Bρ0(x) is
completely contained within the solid tube enclosed by N0 at the earlier
time Tj −ω(ri0)

2. Surgery cannot interfere with the neck before time Tj

since the curvature is below the surgery scale H i
1.

Since each point x ∈ R
n+1 satisfies x ∈ Mi

t for at most one t, this
ensures that the ball does not touch any part of the weak solution which
lies outside the neck N0. Hence Hn

(

Γt0 ∩Bρ0(x)
)

≤ θ(ρ0)
n as claimed,

and the assertion then follows directly from Theorem 4.7. q.e.d.

We point out that the barriers constructed by Ecker in [E1] can also
be used to obtain the estimate in Lemma 4.9. Next we discuss the com-
ponents discarded at the surgery times.

Canonical neighborhoods. The proof of Theorem 8.1 in [HS3]
establishes that, at each surgery time, all points with mean curvature
exceeding H i

2 are contained in one of finitely many disjoint regions Al.
Let ri∂ ≡ 2(n − 1)/H i

1. Each Al must assume one of five possible struc-
tures (only the final two have non-empty boundary):

i) Al is uniformly convex and diffeomorphic to S
n;
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ii) Al is the union of a neck N0 with two disks and forms a connected
component diffeomorphic to S

n;
iii) Al is a maximal hypersurface neck N0 which covers an entire con-

nected component of Mi
T−

j

and is diffeomorphic to S
n−1 × S

1;

iv) Al is the union of a neck N0 with a region diffeomorphic to a disk,
and has one boundary component with mean radius ri∂ ;

v) Al is a neck N0 with two boundary components (each of which has
mean radius ri∂) and is therefore diffeomorphic to S

n−1 × [0, 1].

Components of known topology are discarded at the surgery time. In
addition, one standard surgery is performed at the cross-section nearest
to each boundary component with mean radius ri0 ≡ (n−1)/H i

1, forming
a component diffeomorphic to S

n which is also discarded.
It is therefore necessary to deal with the points affected by step two of

the surgery procedure. Let Tj be a surgery time. Consider anyAl ⊂ Mi
Tj

and the corresponding domain Gl ⊂ R
n+1 enclosed by Al. Let S ⊂ Gl be

the open set in R
n+1 enveloped by a component removed at the surgery

time Tj . We state and prove a result which gives an upper bound on
the extinction time TS ≡ sup { t ≥ 0 | Γt 6= ∅ } of the weak solution
generated by S.

Lemma 4.10 (Discarded Components). Suppose n ≥ 3 and let Ω ⊂
R
n+1 be an open, bounded set such that ∂Ω ∈ C(R,α) for some R,α.

Let Mi
t be the solution of the flow with surgeries starting from ∂Ω and

with parameters H i
1,H

i
2,H

i
3. In addition, let Tj be any surgery time for

Mi
t, and consider any discarded component ∂S produced by the solution

Mi
t at time Tj. Denote by S ⊂ R

n+1 the open set enveloped by ∂S
and let uS : S̄ → R be the weak solution generated by the domain S.
There exists a constant C(n, α) > 0 depending only on n, α such that
TS ≤ C(n, α)L2(H i

1)
−2, where TS denotes the extinction time of uS .

Proof. If ∂S is uniformly convex, we can use the curvature bound
from Theorem 7.14 in [HS3] in combination with Myers’ theorem and
a standard spherical barrier argument to obtain the desired estimate.
In the remaining cases the discarded component contains a neck.

The neck either covers ∂S—in which case ∂S is diffeomorphic to
S
n−1×S

1—or separates two regions diffeomorphic to disks (this implies
that ∂S is again diffeomorphic to S

n). In addition, each disk must ei-
ther be uniformly convex or correspond to the region introduced by a
previous surgery; see Lemma 7.12 in [HS3]. In these cases, the estimate
follows from an argument similar to the proof of Lemma 4.9. q.e.d.

Proof of Proposition 4.6. We have Mi
0 = Γ0 = ∂Ω and therefore Γδ ⊂⊂

Ω for all δ > 0. The avoidance principle guarantees that dist(Γδ+t,M
i
t)

is non-decreasing in t for all δ > 0 and for all 0 < t ≤ T−
1 until the first

surgery time for Mi
t—that is, as long as Mi

t remains smooth. Hence
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we have Γδ+t ⊂⊂ Σ̃i
t, 0 ≤ t ≤ T1, and Γδ+t ⊂⊂ Σi

t, 0 ≤ t < T1, for
all δ > 0. Let tδ ≡ δ + T1. In addition, using (5.1) below, we have
Hn(Γtδ ) = Hn(∂∗Ωtδ ) for a.e. δ > 0. We now show that Γtδ+tw ⊂⊂ Σi

T1

for all δ > 0, where tw ≤ C(n, α)L2(H i
1)

−2.
Let ∂Sl denote the (at most) finitely many components discarded by

the solution Mi
t at time T1. Applying Lemma 4.9, we obtain Γtδ+t̄ ⊂⊂

(

Σi
T1

∪ (∪lSl)
)

for all small δ > 0, where t̄ ≤ C(n)L2(H i
1)

−2. The avoid-

ance principle for weak solutions yields Γtδ+tw ⊂⊂ Σi
T1

for all δ > 0,
where tw ≡ t̄ + maxl TSl

and TSl
denotes the extinction time of the

weak solution generated by Sl. Using Lemma 4.10, we conclude that
maxl TSl

≤ C(n, α)L2(H i
1)

−2.
We then invoke the avoidance principle on the next smooth time

interval and iterate the argument finitely many times. This establishes
that Γt̃δ+t ⊂⊂ Σi

t for all t ≥ 0 and for all small δ > 0, where t̃δ ≡ δ+Ntw.
The proposition follows from the continuity of the level-set functions
ui, uL. q.e.d.

Proof of Theorem 4.3. Combine Lemma 4.4, Proposition 4.6, and Corol-
lary 3.9. q.e.d.

5. Regularity estimates for weak solutions

We now assemble some preliminary consequences of our undertaking
in the previous sections. Our primary goal is to investigate the finer
properties of our convergence statement, Theorem 4.3. In particular,
we make precise the sense in which the surfaces Mi

t approximate the
level-sets {ū = t} using methods developed in Sections 5 and 6 of [S]
and Sections 2 and 3 of [MS]. This will allow us to pass the integral
estimates from Section 3 to limits; see Lemma 5.4 and Corollary 5.5.

Weak compactness. It is well known that if ∂Ω is mean-convex, the
resultant weak solution ū generated by Ω cannot fatten: Hn+1({Dū =
t}) = 0 and in particular Hn+1({ū = t}) = 0 for all t ≥ 0; see for
example Section 2 of [MS]. Indeed, since ū ∈ C0,1(Ω̄), we have

(5.1) ∂∗{ū > t} = {ū = t} Hn-a.e.

for almost every 0 ≤ t ≤ T̄ . We will require the following definitions.

Definition 5.1 (Radon Measures). We define the families of Radon
measures µi

t ≡ Hn
L ∂{ui > t}, µ̃i

t ≡ Hn
L ∂(int{ui ≥ t}), and µ̄t ≡

Hn
L ∂∗{ū > t}.

The main result in [MS] establishes that µ̄t is continuous in t. We
henceforth write Γ̄t ≡ ∂∗{ū > t} and define I ⊂ [0, T̄ ] to be the set of
times such that (5.1) holds. In particular, µ̄t = Hn

LΓt for all t ∈ I. The
set I has full L1 measure, and as a first step we establish convergence
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for each t ∈ I. It is then straightforward to verify that the result can be
extended to all t ∈ [0, T̄ ] using Corollary 1.2 in [MS].

Recall from Lemma 2.2, Lemma 3.4, and Definition 2.1 that we have
the uniform area bound

(5.2) Hn(Mi
t) ≤ Hn(∂Ω) ≤ α2R

n

for all t ≥ 0. Now fix t ∈ [0, T̄ ]. By the weak compactness theorem

for Radon measures, there exist subsequences {µ
ij
t }j≥1, {µ̃

ij
t }j≥1, and

Radon measures µ, µ̃ on Ω such that µ
ij
t → µ and µ̃

ij
t → µ̃ as measures.

Theorem 4.3 ensures that spt(µ) ⊂ {ū = t} and spt(µ̃) ⊂ {ū = t}.
Assume in addition that t ∈ I. We will use Proposition 5.10 in [S] to

show that µ = µ̃ = µ̄t and that the limit is independent of the choice of
subsequence. In order to apply the proposition, however, we must first
prove that the solution of mean curvature flow with surgeries retains the
minimising hull property after surgery. Note that this is not immediate,
since the condition is global in nature and surgery acts as the inverse
operation of a connected sum.

Lemma 5.2 (Minimising Hull Property). Let Ω ⊂ R
n+1 be an open,

bounded set such that ∂Ω ∈ C(R,α) for some R,α. Consider the solution
Mi

t, 0 ≤ t ≤ TN , of the flow with surgeries starting from ∂Ω and with

parameters H i
1,H

i
2,H

i
3. For all 0 ≤ t ≤ TN , the sets Σ̃i

t ≡ int{ui ≥ t}
and Σi

t ≡ {ui > t} are minimising hulls in Ω.

Proof. We employ a standard finite induction argument. Recall that
the classical evolution preserves the minimising hull property. Therefore
suppose that at any surgery time Tj the set Σ̃i

Tj
is a minimising hull.

We want to show that the same is true of Σi
Tj
.

Since Σ̃i
Tj

is a valid comparison set, we first appeal to Lemma 3.4 to

obtain
Hn(Mi

T−

j

) ≥ C(n)L(H i
1)

−n +Hn(Mi
T+

j

).

The surface Mi
T+

j

is obtained from Mi
T−

j

by performing surgery on

finitely many independent necks and by subsequently discarding finitely
many components of known topology. Since Σ̃i

Tj
is a minimising hull,

any perturbation F ⊃ Σi
Tj

with Hn(∂∗F ) ≤ Hn(Mi
T+

j

) must in turn

satisfy F ⊂ (Σ̃i
Tj

∪ Mi
T−

j

) and ∂∗F must agree with Mi
T−

j

outside the

regions altered at the surgery time.
Consider any neck N0 ⊂ Mi

T−

j

of length L in normal form enclosing a

solid tube G0, and suppose that ∂∗F minimises area among all surfaces
outside Mi

T+

j

. Then ∂∗F ∩
(

G0 \ Ū
+
)

is a properly embedded minimal

surface in G0 \ Ū+, where Ū+ represents the closed domain bounded
by the surgery caps U+ introduced during the surgery procedure. We
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therefore choose L = L(n) sufficiently large and apply standard non-
existence results for minimal surfaces; see for example [D] and [E1].
Note that the maximum principle ensures that a minimal surface can-
not extend from U+ into G0 \ Ū+ without joining the two ends. This
completes the proof. q.e.d.

We can therefore follow the proof of Proposition 5.10 in [S] to obtain
µ = µ̃ = µ̄t, regardless of the choice of subsequence.

The result extends to the remaining times t ∈ [0, T̄ ] \ I via a stan-
dard growth control argument—see for example Section 7.2 in [I]—and
Corollary 1.2 in [MS]. Note that the argument in [I] can be adapted to
our setting using Remark 3.7 and the estimates from Section 3 on the
number of surgeries.

Corollary 5.3 (Weak Convergence). Let Ω ⊂ R
n+1 be an open,

bounded set such that ∂Ω ∈ C(R,α) for some R,α. Let ū be the weak
solution generated by Ω, and denote by ui the solution of the flow with
surgeries starting from ∂Ω and with parameters H i

1,H
i
2,H

i
3. For all

0 ≤ t ≤ T̄ we have

µi
t → µ̄t, µ̃i

t → µ̄t, ∂Σi
t → Γ̄t, ∂Σ̃i

t → Γ̄t

as measures and varifolds, respectively (see Definition 5.1).

Proof. We have already established the first two convergence state-
ments. The remaining two claims require Allard’s compactness theorem;
see for example Section 1.9 in [I]. Using (3.6), Hölder’s inequality, and
(5.2), we can find a uniform constant C(n, ε, α) > 0 depending only on
n, ε, α such that

(5.3)

∫

Mi
t

H dµi
t ≤ C(n, ε, α)Rn−1

for all 0 ≤ t ≤ T̄ . Applying (5.2), Allard’s compactness theorem, and
the first two convergence statements, we can therefore find subsequences

{∂Σ
ij
t }j≥1, {∂Σ̃

ij
t }j≥1 such that ∂Σ

ij
t → Γ̄t and ∂Σ̃

ij
t → Γ̄t as varifolds.

This is independent of the choice of subsequence. q.e.d.

Regularity estimates. The estimate (5.3) and Allard’s compact-
ness theorem combine to establish that the n-rectifiable sets Γ̄t carry
a generalised mean curvature vector H̄ for all 0 ≤ t ≤ T̄ . We can now
use Corollary 5.3 to pass the integral estimates from Section 3 to limits.
The next result states that for all 0 ≤ t ≤ T̄ we have H̄ ∈ Lp(Γ̄t) for all
p < n− 1.

Lemma 5.4 (Lp Estimate for Weak Solution). Let Ω ⊂ R
n+1 be an

open, bounded set such that ∂Ω ∈ C(R,α) for some R,α. Let ū be the
weak solution generated by Ω, and denote by ui the solution of the flow
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with surgeries starting from ∂Ω. For all 0 < ε ≤ 1 there exists a constant
Cε = Cε(n, α) > 0 depending only on n, ε, α such that

(5.4)

∫

Γ̄t

|H̄|n−1−ε dµ̄t ≤ CεR
1+ε

for all 0 ≤ t ≤ T̄ , where H̄ denotes the generalised mean curvature
vector associated with Γ̄t.

Proof. Using Corollary 5.3 and Allard’s compactness theorem, we ob-

tain µi
t L

~Hi → µ̄t L H̄ as vector-valued Radon measures, where ~Hi de-
notes the mean curvature vector −Hiνi associated with Mi

t. We here-
after suppress the subscript i. Since |·|p is convex, we can therefore apply
Theorem 4.4.2 in [Hu] to obtain the lower semi-continuity property

(5.5)

∫

Γ̄t

|H̄|p dµ̄t ≤ lim inf
i→∞

∫

Mi
t

Hp dµi
t

for all 0 ≤ t ≤ T̄ . The assertion then follows from (3.6). q.e.d.

Using Fatou’s lemma and Theorem 3.6, we can in fact find a uniform
constant C(n, ε, α) > 0 depending only on n, ε, α such that

(5.6)

∫ T̄

0

∫

Γ̄t

|H̄|n+1−ε dµ̄t dt ≤ C(n, ε, α)R1+ε.

Note that the exponent here is greater than the dimension n. Finally,
we point out that (5.5) can be turned into an equality using White’s
estimate on the size of the singular set of ū—see [W]—and Brakke’s
local regularity theorem; see [B, I]. The proof of the following result
closely follows Lemma 6.1 in [S] and Lemma 3.3 in [MS].

Corollary 5.5 (Lp Convergence). Let Ω ⊂ R
n+1 be an open, bounded

set such that ∂Ω ∈ C(R,α) for some R,α. Let ū be the weak solution
generated by Ω, and denote by ui the solution of the flow with surgeries
starting from ∂Ω. We have

∫

Mi
t

Hp dµi
t →

∫

Γ̄t

|H̄|p dµ̄t

for all 0 ≤ t ≤ T̄ and for all 0 < p < n − 1, where H̄ denotes the
generalised mean curvature vector associated with Γ̄t.

Proof. For any ξ > 0, we can use White’s theorem on the size of the
singular set of ū to find a neighborhood U of the singular set such that

lim sup
i→∞

∫

Mi
t∩U

Hp dµi
t ≤ C(n, p, α)Rn−pξ

for all 0 < p < n − 1 and for all 0 ≤ t ≤ T̄ . Here we have used
Theorem 3.6 and Hölder’s inequality. In addition, we can follow the
proof of Lemma 3.3 in [MS]—with minor modifications—and apply
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Brakke’s local regularity theorem to conclude that Mi
t → Γt smoothly

away from the singular set. This completes the proof. q.e.d.

We point out that convergence for almost every 0 ≤ t ≤ T̄—and
with respect to an appropriate subsequence—follows from (5.6), Allard’s
regularity theorem, Theorem 3.6, and a standard application of Rellich’s
theorem (see for example Section 6 of [S] or Section 5 of [HI]), without
the use of White’s estimate or Brakke’s local regularity theorem.
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