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SO(3)-CONNECΠONS AND THE
TOPOLOGY OF 4-MANIFOLDS

RONALD FINTUSHEL & RONALD J. STERN

1. Introduction

The early part of the 1980s has experienced a vast increase in our under-

standing of smooth 4-manifolds. This has been accomplished principally

through the work of S. Donaldson, namely

Theorem 1.1 {Donaldson [3]). Let M be a smooth closed oriented simply -

connected 4-manifold with positive definite intersection form θ. Then θ is "stan-

dard ", i.e. over the integers θ = (1) θ θ ( l ) .

Although this is a theorem about 4-dimensional topology, its proof is

differential geometric and analytic. The main theme of Donaldson's work is to

study the topology of the space of solutions of the self-dual Yang-Mills

equations on an 5ίί/(2)-bundle over the Riemannian manifold M and relate it

to the topology of M. Recently we attempted to apply these Yang-Mills

techniques to problems we have been working on for several years; namely

finding numerical invariants for homology 3-spheres bounding acyclic 4-mani-

folds and studying smooth pseudo-free circle actions on 5-manifolds. We were

moderately successful in [4]. That work studied Yang-Mills equations invariant

under a cyclic group action. However, we were unsuccessful in following the

complete "Donaldson program" in this equivariant setting. In particular, we

were unable to mimic the work of C. Taubes [10] in finding nicely parame-

trized solutions to the Yang-Mills equations and were forced to use ad hoc, less

analytical, techniques. We then " unequivariantized" our proof only to realize

that we had a "simpler" proof of a version of Donaldson's theorem under the

weaker (more topologically useful) assumption that Hλ(M\ Z) has no 2-torsion.

The goals of this paper are, then, to give a proof of a version of Donaldson's

theorem which on the one hand is more accessible to topologists and on the
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other hand is more general in that it removes the restriction that π^M) = 0.
We have achieved the first goal by substantially reducing the amount of
analysis necessary to prove our result. As for the second goal, we have been
only partially successful. Our proof shows that many nonstandard positive
definite forms cannot be realized as intersection forms of closed 4-manifolds M
with Hλ(M\ Z) containing no 2-torsion; however the proof does not work for
all such forms. Here is a sample theorem which follows from our techniques.

Theorem 1.2. Let θ be any positive definite symmetric unimodular integral

form. Then Es Θ θ cannot be realized as the intersection form of any smooth

closed 4-manifold M with Hλ(M\ Z) containing no 2-torsion.

Our result is stated in full generality in §2. Theorem 1.2 is more than
enough, when combined with Freedman's work [6], to imply the existence of an
exotic differentiable structure on R4 (see [7], [5]).

As in Donaldson's proof, the idea of our proof is to redufce to a simple
cobordism argument, where the cobordism is obtained as a moduli space of
connections. Our major innovation follows from the use of SO(3) rather than
5"ί7(2)-connections. It turns out that this allows the possibility that the moduli
space be compact (see 5.3 and 5.7) and accounts for the simplification of our
technique. Also, a version of Theorem 1.2 for all nonstandard positive definite
intersection pairings can be obtained from our techniques modulo a reasonable
conjecture (see 5.7).

Since we believe that the techniques related to Donaldson's theorem and our
Theorem 1.2 are important for topologists, we have written this paper in a
somewhat expository manner. It is probably best read in conjunction with one
or both of the excellent expositions of Donaldson's theorem due to Blaine
Lawson [7] or Karen Uhlenbeck et al. [5]. In fact, we shall often refer to these
papers for general background material.

We wish to thank the many mathematicians who have spent time in
discussions about this work; in particular, Morris Kalka, Al Vitter, Mike
Freedman, Frank Quinn, Larry Taylor and Cliff Taubes.

2. Self-dual SO (3) -connections on 4-manif olds

Let M be a smooth closed oriented 4-manifold. It is convenient to arbitrarily
split

H2(M;Z) = ¥τH2(M;Z) ΘTori/2(M;Z)

into free and torsion parts. Our goal is to study the intersection pairing

Fri/ 2(M;Z) ® Fri/ 2 (M;Z) -> Z.
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Basically, this is the same as studying the cup product

H2(M; Z) Θ H2(M; Z) -^ H\M\ Z) = Z.

These groups are related to the geometry of M via deRham cohomology. The
deRham complex is

where Ω* is the space of exterior k-forms on M and d is exterior differentiation.
This complex has finite-dimensional cohomology groups H^R(M) which are
isomorphic to the real singular cohomology groups Hk(M;R). There is a
subgroup of H^R(M) which is isomorphic to FτHk(M; Z); it consists of those
classes represented by a /:-form β such that fτβ e Z for every integral A -cycle
Γ on M.

Fix a Riemannian metric on M. Then there is a canonical representative of
each cohomology class in H^R(M) obtained by minimizing the energy func-
tional jM\β\2 over β in a fixed cohomology class. Solutions to this minimi-
zation problem must satisfy the Euler-Lagrange equation δβ = 0, where δ is
the adjoint of d. Since also dβ = 0, β is harmonic. The Hodge theorem states
that in each cohomology class in HΌR(M) there is a unique harmonic
representative. We let H* denote the subspace of Ω* consisting of harmonic
forms. Thus we may identify H^R(M) = H*.

An important role is played by the relationship between H2(M\Z) and
2-plane bundles over M. There is 1-1 correspondence

H2(M; Z) ~ principal Sθ(2)-bundles over M

where e is the Euler class e(Pe). Equivalently we have the 1-1 correspondence

H2(M; Z) <-> SΌ(2)-vector bundles over M

Note that Le comes equipped with a Riemannian metric induced from the
standard inner product on R2.

This correspondence can be used to place a natural equivalence relation on
Fr//2(M;Z).

Definition 2.1. For ex, e2 e Fri/2(M;Z) say that ex - e2 if Leχ Θ ε1 =
Le θ ε1, where ε1 is a trivial real line bundle.

In other words ex - e2 if and only if the corresponding 5Ό(2)-bundles are
equivalent after stabilizing to SO(3).
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Consider principal 5Ό(3)-bundles over a given oriented 4-manifold M. A
simple obstruction theory argument shows that principal SΌ(3)-bundles over
M-(4-ball) are classified by their second Stiefel-Whitney class w2. Gluing in the
bundle over the 4-ball corresponds to fixing trivializations over the boundary
S3 and prescribing a map S3 -> SO(3). This fixes the Pontryagin class pv In
fact, a theorem of Dold and Whitney [2] states that principal SΌ(3)-bundles
over 4-manifolds are classified by w2 andpv

For a moment consider 5Ό(3)-bundles over S4. For such a bundle w2 = 0;
so it is double covered by a Spin(3) = Sί/(2)-bundle. An S£/(2)-bundle has
cλ = 0, so pλ = -2c2 and c2 is the Euler class; so we see that any even integer
can occur as pλ[S4] for a principal St/(2)-bundle over S4. Our given £0(3)-
bundle is double covered by an S£/(2)-bundle; so it is not hard to see that for
it,Pι[S4] = 4k.

Now fix a principal 5Ό(3)-bundle over M. Any other principal SΌ(3)-bun-
dle over M with the same w2 can be obtained by removing the part of the
bundle over a 4-ball and regluing. In terms of the classifying map:

M -> M V S4 -» BSO(3).

So the Pontryagin number is changed by 4k. Thus we have:
Lemma 2.2. Let Eλ, E2 be SO(3)-υector bundles over the oriented closed

4-manifoldM. Ifw2(Eλ) = w2(E2), thenpι{Eι) = pλ{E2) (mod4).
We shall say that an 5Ό(3)-vector bundle E over M reduces to an SΌ(2)-vec-

tor bundle Le'ύ E = LeΦ ε1. In this c&se px(E) = e2 and w2(E) = e (mod 2).
By the classification of Dold and Whitney [2], all other reductions correspond
to v G H2(M\ Z) such that υ = e (mod2) and v2 = e2. Furthermore, returning
to the equivalence relation on ¥τH2{M\ Z):

Lemma 2.3. Ifel9 e2 e Fr H2(M; Z), then ex - e2 if and only if e\ = e\ and
eλ = e2 (mod 2).

Clearly -e ~ e, so we define

μ ( e ) = i # { ϋ G FτH2(M;Z)\v~ e).

Also, define e e F r / / 2 ( M ; Z) to be minimal if

v = e (mod2) => \e2\ < \v2\.

These concepts make sense in any inner product space over Z. Consider some
examples.

Example 2.4. The standard form (1) θ θ(l). Minimal vectors have the
form e = (εx, -,εk), where ε( = 0 or ± 1 . Let n be the number of +Γs in a
particular minimal e. Then μ(e) = \2n = 2"~ι. Hence μ(e) is even unless e
has just one ± 1, in which case μ(e) = 1 and e2 = 1.
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Example 2.5.

ho = *

Note e2 = 2, e is minimal and μ(e) = 1.
In fact we have the following characterization of the standard form in terms

of these concepts.
Proposition 2.6. A positive definite unimodular integral inner product space U

is standard if and only if each minimal vector e with e2 > 1 has μ(e) even.
Proof. For each vector v e U such that v2 = 1 we may form the orthogo-

nal splitting ί/= (v) θ (v)± . After inductively splitting off all such sub-
spaces we either exhaust U, and thus we see that U is standard, or we are left
with an orthogonal summand V of U in which each vector has length v2 > 2.
Let e e F be a vector with minimum length. If v ~ e, then ϋ = e (mod 2) and
v2 = e2; so there is a vector w e Ksuch that υ = e + 2w. Thus

e2 — v2 = (e -\- 2w) = e2 4- 4e w 4- 4w2;

i.e. w (w 4- e) = 0. So we have e2 = v2 = ((e + w) 4- w)2 = (e 4- w)2 4- w2.
Since e has minimal length in V, unless w = 0 or -e, we have the contradiction
e 2 = (e 4- w)2 + w2 ^ 2e2. So μ(e) = 1. The converse was proved in Example
2.4. q.e.d.

We thus pose the following
Conjecture 2.7. Let M be a closed smooth oriented 4-manifold. Suppose that

its intersection form is positive definite and has a minimal vector e with e2 > 1.
Then μ(e) is even.

In other words the conjecture is that such a form is standard. Under the
additional hypothesis that π^M) = 0 this is Donaldson's theorem. As we
mentioned in §1, in this paper we prove a portion of this conjecture. More
precisely we shall prove:

Theorem 2.8. // U is a positive definite unimodular inner product space over
Z and if there is a vector u e U such that u2 — 2 or 3 and μ(u) is odd, then U is
not the intersection form of any oriented 4-manifold M with Hλ(M; Z) containing
no 2-tors ion.

If there is a minimal vector u with u2 = 4 and μ(u) is odd, then U is not the
intersection form of any oriented 4-manifold M with H^M Z) containing no
2-torsion and H2(τr1M; Z2) = 0.

We shall prove this theorem by studying the geometry of the bundle
E = Le® ε associated to a minimal vector e e Fri/2(M;Z). The geometric
structure is provided by an SO(5)-connection, i.e. a linear map

V:Γ(£)-+Γ(Γ*M<g>£)
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satisfying V(/σ) = ί//δ>σ+/Vσ and d(σ2, σ2) = (Vσ υ σ2) 4- (σ l9 Vσ2),
where /: M -> R, and ( , > is the Riemannian metric on E = Le θ ε which
was described above.

It will be convenient for us to use the notation

Qk(F) = T(AkT*M ® F)

for any bundle F over M. So, for example, V: Q°(E) -> ίl\E). A connection
V has a natural extension dv\ Q,k{E) -> Ω*+ 1(£) defined by </v(α (8) σ) =
da <8> σ 4- (-l)*α Λ Vσ, where α e Ω* and σ e Ω°(£).

The curvature Rv of an 5Ό(3)-connection V on E is a 2-form with values in
QE, where QE C Hom(£, £ ) is the subbundle of those transformations which
are skew-symmetric on each fiber. (In fact, for an 5Ό(3)-vector bundle E,
QE~ E via the cross product "X".) That is Rv e Ω2(g£). It is defined by

Also we have Rv = J v ° v .
Similarly we can study 5Ό(2)-connections and their curvatures on the

SO(2)-vector bundle Le. It is easy to see that g Le is just the trivial real line
bundle over M\ so if D is a connection on Le, then Rv e Ω2(gL ) = Ω2. The
real Euler class eR(Le) e H^R(M) is represented by Rv'/2π. By the Hodge
Theorem there is a unique harmonic 2-form θ in the deRham class of eR(Le).
We shall be interested in those 5Ό(2)-connections D on Le such that RD/2π =
θ. These connections provide a link between differential geometry and the
group Fr7/2(M;Z).

Analogously we wish to consider those SΌ(3)-connections on E whose
curvatures are harmonic. Now Hom(E, E) has the inner product (A, B) =

B). The energy or Yang-Mills action of V is defined by

II*ΊI2

M

A critical point of the Yang-Mills functional satisfies the Yang-Mills equations
SVRV = 0. Here δ v is the adjoint of dv (we identify QE with E to get dv).
The Bianchi identity dvRv = 0 shows that any solution v to the Yang-Mills
equation has harmonic curvature, that is (d v δ v + δvd v )RV = 0.

To find such solutions we consider the *-operator *: Ω2 -> Ω2 on the
2-forms of M. For a local orthogonal basis θ1,- ,04, * is defined by * θι A θj

= θk A θι where (/, j9 k, I) is an even permutation of (1, 2, 3, 4), or equiva-
lently by φ A * ψ = (φ, ψ)dvol for any φ,ψG Ω2. The *-operator has order 2
and its + 1-eigenspaces define a splitting of Ω2 into orthogonal subspaces
Ω2 = Ω 2

fΘΩ 2.Ω 2(Ω 2_)is called the space of self-dual (anti self-dual) 2-forms
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of M. Tensoring with Q E we obtain the orthogonal splitting

in which we get Rv = K* + ΛY for any 5Ό(3)-connection v on E. Since this
splitting is orthogonal,

The Chern-Weil formula for the Pontryagin number of E is

Using i£ v = R^_ + ΛY the formula may be rewritten as

Hence <&Jί(v) > 2π2pλ(E) with equality holding if and only if | |#Y||2 = 0.
Such v are called self-dual. Evidently, V is self-dual if and only if RΣ = 0, i.e.,
*ΛV = Rv. Notice that if self-dual connections exist on a bundle E, they give
an absolute minimum for WJί on E\ hence they satisfy the Yang-Mills
equations. Furthermore self-dual connections form a bond between the topol-
ogy and geometry of E via the equation βC^(v) = 2π2pλ(E) when V is
self-dual.

For an SΌ(3)-vector bundle E over M, let # denote the set of all SΌ(3)-con-
nections, and let s/ c <$ be the set of all self-dual connections. (In general we
do not know thats/Φ 0.) It is convenient to identify two connections on E
which are related by a gauge transformation', i.e. a bundle map

M

such that on each fiber gx e SO(EX). Then g acts on forms by pullback and on
connections by g( V) = g"1 ° V ° g. So # s ( v ) = g"1 o ^ o g . Clearly g( V) is
self-dual if and only if V is self-dual. Hence we can form the moduli spaces

, where ^is the group of gauge transformations of E.

3. Reducible connections

From here on we let M be a smooth oriented closed 4-manifold with

H1(M;Z2) = 0. If £ is an SO(3)-vector bundle over M, then we define a

splitting of £ to be a real 2-plane bundle L over M such that E = L θ ε1. Since
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// 1 (M;Z 2 ) = 0, w1(L) = 0; so L may be given an S0(2)-vector bundle
structure. From the classification of 5Ό(3)-vector bundles we see that up to
orientation, splittings of E are in 1-1 correspondence with

{ ±e e H2(M; Z)\e2 = pλ(E) and e = w2(E) (mod2)}.

If E is a reducible SΌ(3)-vector bundle, say E = Le θ ε1, and if T G
Tor H2(M\ Z) = Tor Hλ(M; Z) = Hλ(M\ Z), then (e + τ) 2 = e2 and e + T =
e (mod 2), so also £ = Le+T θ ε1. Hence up to orientation, the number of
reductions of E = Le θ ε1 is just μ(e) \Hλ(M; Z)| which (mod 2) is congruent

toμ(ί>).
If £" = Le θ ε and V = De ® d, where Z)e is an SΌ(2)-connection on Le and

d is exterior differentiation on the trivial bundle, then V is called a reducible
connection. Let Γ v denote (g e 9?|g( V) = V }, the stabilizer of V under the
action of the gauge transformation group. We have:

Proposition 3.1. For a nonflat SO(3)-vector bundle E over M the following

are equivalent.

(1) V is a reducible connection on E.

(2)ΓV = S1.
(3)Γ**{id}.
(4) There is a parallel section in Q E {with respect to J v ).
Proof. If V is reducible, then V = De θ d on Le Φ ε1 for some Le. Let

S1 c ^be the subgroup which rotates the fibers of Le (each fiber by the same
amount) and acts trivially on the ε^summand. Then if g e Sι and σ e Ω°(£'),

V(gσ) = dg Θ σ + g( Vσ) = g(vσ),

i.e. g( V) = g~ιVg = V.SogG Γ v . Furthermore, if g e Γ v , then g must fix
ε1 and rotate Le\ and as above, the equation Vg = gV shows that g must
rotate each fiber of Le by the same amount. Thus Γ v = Sι. So (1) => (2).
Clearly (2) => (3).

To see that (3) => (1), consider any g e Γ v , g ^ id. Over the point x e M,
g^|£ x has a real eigenvalue λ. However, g is parallel. (This means that g is
parallel when ^is viewed as the sections of the subbundle GE of Hom(£, E)
which are in SO(EX) on each fiber. The connection on Hom(E, E) in-
duced from V is V(L) = [v, L] = vL - Lv. So, since g e Γ v , [V, g] =
Vg — gV = 0 and g is parallel.) Thus parallel translation shows that the
eigenvalue λ is constant throughout M. The corresponding eigenspace gives a
real line in each fiber of E preserved by V. Its orthogonal complement yields a
splitting E = L θ η, where L is an O(2)-bundle and η is an 6>(l)-bundle.
However, since Hλ(M; Z 2) = 0, L must be an 5Ό(2)-bundle, hence E = L θ ε1.
Since g e Γ v , Vg = gV and V preserves this splitting, so (3) => (1).
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We have seen that V is reducible if and only if E has a parallel section; but

E = g E , so (1) => (4). q.e.d.

Consider now an SΌ(2)-connection D on an SΌ(2)-vector bundle L. Lo-

cally, a connection on L has the form d + w where w e Ω1, and so locally,

RD = dw, and the deRham class [RD/2π] represents the real Euler class

Proposition 3.2 (Compare [7, Π.8.14]). The map D -> RD/2π induces a 1-1

correspondence between gauge equivalence classes of 50(2)-connections on L and

closed 2-forms representing eR(L).

Proof. A gauge transformation of L is a section of Hom(L, L) which is in

SO(LX) for each x G. M. Let exp: R = so(2) -> SO(2) be the exponential map.

Then a gauge transformation is just exp(s) for s e Ω°.

Two connections D and D' are gauge equivalent if and only if D' =

exp(-s)Z> exp(s) for some s e Ω°, i.e. if and only if

Df = Qxp(-s)(exp(s) ds + exp(^)D) = Z> -h ds.

Thus RD' = RD + dds = RD. So D -* RD/2ττ depends only on the gauge

equivalence class of D.

If RD = RD, then D r = D + w where dw = 0. Since we are assuming that

Hλ(M; Z 2 ) = 0, also i/ x (M; R) = 0, thus w is exact; w = ds for some 5 e Ω°.

So Z) and Z>' are gauge equivalent.

Finally, if Φ represents eR(L) then fix any D and note RD/2π = Φ + dw

for some w e Ω1. Set Df = D - 2τrw; then RD'/2π = Λ D / 2 7 Γ - Λv = Φ. So

Z> -> RD/2π is onto, q.e.d.

Now we move to self-dual connections. The action of the *-operator splits

Ω2 = Ω^_θΩi and preseves harmonic forms; so we have H 2 = H ^ θ H 2 . The

cup product on H^R(M) is given by [φ] [ψ] = jMφ A ψ for closed 2-forms φ

and ψ. Thus, if * φ = ± φ , then

[ Φ ] 2 = [ Φ ] [ Φ ] = ί φ Λ φ = i ί Φ Λ * φ = ± ( φ , φ > .

Consequently, the intersection form is ± -definite on H ^ . If Mhas positive

definite intersection form, then H 2 = H\ and every harmonic 2-form is

self-dual.

Corollary 3.3. Let M be a smooth oriented 4-manifold with H^R(M) = 0 and

positive definite intersection form. Then each SO(2)-bundle L over M has a

unique gauge equivalence class of self-dual connections.

Corollary 3.4. // E = Le θ ε1 is a reducible SO(3)-vector bundle on a smooth

closed positive definite 4-manifold M with Hλ(M; Z 2 ) = 0, then there are exactly

μ(e) \Hλ(M\ Z)| gauge equivalence classes of reducible self-dual SO(3)-connec-

tions on E.
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Proof. Recall that m = μ(E) \Hι(M; Z)| is just the number of reductions,
up to orientations, of E = Le Θ ε1.

Now a reducible connection V gives a splitting E = L θ ε1 and V = D Θ d.
But £ = (-L) θ (-ε)1 and D is also a connection on -L, so that by (3.3) there
are at most m gauge equivalence classes of reducible self-dual connections on
E.

Any gauge equivalence of reducible S0(3)-connections must preserve paral-
lel sections of E and hence induce a gauge equivalence of the corresponding
SΌ(2)-connections. Thus there are exactly m gauge equivalence classes of
reducible self-dual 5O(3)-connections on E.

4. Local description of the moduli space

Once again let M be a smooth closed oriented Riemannian 4-manifold with
Hλ(M; Z 2) = 0 and with a positive definite intersection form. Fix a reducible
5Ό(3)-vector bundle E = Le θ ε1 over M. We want to give a local description
of the moduli space Wl of self-dual connections on E. If v and v ' are
5Ό(3)-connections on E, consider the differenced = V' - V. For any smooth
function/on M and σ e Ω°(£),

A(fσ) = V ' ( / σ ) - v(/σ) = (df ® σ + / Vσ) - (df Θ σ + / Vrσ).

So A(fσ) = /(^4σ). Furthermore if Fis a vector field on M,AV is linear and

(^κσ1,σ2> + (σ 1,^ κσ 2> = ̂ ( σ ^ σ ^ - ^(σ 1,σ 2> J /= 0.

Hence A e
Conversely, if V is an 5Ό(3)-connection on E and 4̂ e Q,1(QE), then

Vr = V + A is an SΌ(3)-connection on E. Hence the space #of SΌ(3)-con-
nections on E is an affine space. If V' = V + A, then Rv = Rv + dvA 4-
[A, A],vίheτe[A,A]Vtlv= \AV, Aw\

Now let V be a fixed self-dual connection on E and V, = V + At be a
1-parameter family of self-dual connections through v . Then

RV. = RV + d*At+[AnAt],

by self-duality. Differentiating with respect to / and setting / = 0, we obtain
dΣA = 0, where A = (d/dt)At\t=Q. This is the linearized condition for self-
duality. Thus the space of tangents to curves of self-dual connections at v 0 is
kerdΣ. To compute the space of tangents to the gauge equivalence class
[ v 0 ] e 9K we must divide ker dΣ by the tangent space to the orbit ^( V).
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The gauge transformations of E are sections of a bundle GE of M with fiber
5Ό(3), and Q E is its associated bundle of Lie algebras. So if we locally identify
a gauge orbit with & = ίl°(GE), then its tangent space at a point can be
identified with ίl°($E). Hence it is not surprising that lm{dv: ίl°(QE)^>
&1(QE)} g i v e s t n e s P a c e o f tangents to ^( V) at V (see [7, Π.6.10] for a proof).

Thus the space of tangents to ϋDΐ at [ V ] is the first cohomology H^ of the
complex

(Note that dΣ ° d v . = RY = 0.)
This complex is elliptic [1]. This has the following consequences. Let δ v

denote the formal adjoint to dv and note that the adjoint of dΣ is the
restriction of dv to Ωl. Then each of the Laplace operators Δo = δ v d v ,
Δx = 8vdΣ + </ vδ v and Δ2 = d ^ δ v is elliptic and has finite dimensional
kernel

Also, the Hodge theorem applies to identify if* = H^.
Atiyah, Hitchin, and Singer [1] have computed the index of the above

complex,

-dim//° + d i m # ^ - dim H% = 2Pι(E) - f ( χ ( M ) - σ(M))

= 2e2 - 3,

since M is positive definite.
Note that H^ consists of the V-parallel sections of QE. By Proposition 3.1

this has dimension 1 if V is reducible and dimension 0 if V is irreducible.
If V is reducible and corresponds to the splitting V = D + d on E =

L θ ε1 = QE, then Γ v consists of the Sι which rotates L and acts trivially on
ε1. So Ωk(QE) = Ω*(L) θ Ω^ε1) and Γ v acts via the standard action of Sι on
Ώk(L) and trivially on Ω^ε1). The fixed point set of the action of Γ v on
Ω*( Q E) is Ω/c(ε1). For the harmonic spaces we have

Yί\, = H^ θ Hi(e) = Hi, Φ H 1 = H1,,,

H 2

v = H > H ^ ( e ) S H > H ! = H ^ .

So H x

v and H ^ have actions of Sι with only the origin fixed. Thus they are
even dimensional vector spaces.

We next need to study the ambient moduli space 38 = <€/<$. At this point it
is useful to complete our various spaces of connections with respect to
appropriate Sobolev norms. For any Riemannian vector bundle £ over M with
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a connection v , the Sobolev k-noτm (k e Z + ) on Γ(£) is

n ..2 f (u 1.2 II 2

I k l U = / I N + *•• + v ••• v σ
JM \ " k

(Different choices of metrics and connections give equivalent norms.)

For example the space ίlp(E) = T(APT*M ® E) may be completed in the

Sobolev λ>norm to obtain the Hubert space ίlξ(E). The point is that after

completion we have important analytical tools at our disposal, for example, the

implicit and inverse function theorems, the open mapping theorem and regu-

larity theorems for solutions for elliptic partial differential equations. If we fix

a base connection Vo ^ ^we define the Sobolev space of connections <Sk to be

^k = { Vo + v4|̂ 4 e Ώ,\(qE)}. Because of the affine structure, this does not

depend on the base connection.

Since 9= ίl°(GE), the gauge transformation group of ζ€k is defined to be
&k + ι = Ωfc + iίGjr). It is known that ^ 4 is a Hubert Lie group with Lie algebra

ΩjίQf), and that the action of ^ o n ^extends to a smooth action of ^ 4 on # 3 .

Furthermore if we restrict the action of ^ 4 to the irreducible connections

*3* = *3 "" *3 red* t n e n t n e orbit map # 3 * -> ^ 3 * is a principal bundle projec-

tion and ^ 3 * is a smooth Hausdorff Hubert manifold. From now on we drop

the Sobolev subscripts and use ^ t o mean ^ 3 and ^ t o mean ^ 4 .

We also have the following "slice theorem". For a proof see [7, §11.10] or [1],

Proposition 4.1. The action of <& on Ήhas slices of the form

0 V ί β = {V + A\8VA = 0and\\A\\3 < ε}, εsmall.

This means

(1) At an irreducible connection V, Θ v e forms a local coordinate chart for 38.

(2) At a reducible connection V, 3S is locally homeomorphic to Θ v ε /Γ v

this homeomorphism is a diffeomorphism away from V.

Using the slice theorem we can now follow Atiyah, Hitchin and Singer in

describing Wl in the neighborhood of a given self-dual connection. Fix a

self-dual connection V on E and suppose V' = V + A e Θv ε. Then Rv =

# v 4- dA 4- [yl, ^ ] . So Λ Γ = dΣA -h [^, v4]_. Thus we want to solve the

system of equations

8VA = 0 , dvA +[A,A]_=0

for ||^41|3 < ε. The group H x

v = {v4|J34 = 0, 8VA = 0} represents the solution

to the linearized equations and we have seen that H ^ may be viewed as the

formal tangent space of Wl at [ V ]. One can now apply a technique known as

the Kuranishi method to the current situation. This essentially amounts to a

smooth change of variables in Ω 3 (g E ) and Ω | ( g £ ) (see [7, IV.2.1.] for details).
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One obtains

Proposition 4.2 (Atiyah, Hitchin and Singer). Let V be a self-dual SO(3)-

connection on E. Then there is a neighborhood Θ of 0 e H x

v and a smooth map

Φ: 0 —> H ^ such that Φ(0) = 0 and which is Sι-equivariant if V is reducible and

such that

(1) Tl Π 0 = Φ-^O) // v is irreducible.

(2) m Π (Θ/Sι) = Φ'\0)/Sι if V is reducible.

So here is a local description of ϋD? in a special case. If V is irreducible (so

H ^ = 0) and if H ^ = 0 , then near V, Wl is diffeomorphic to H x

v , i.e. it is a

manifold of dimension 2e2 — 3. If V is reducible (so d imH x

v = 1) and if

H ^ = 0, then near V, $ft is the quotient of a 2e2 — 2 dimensional real vector

space by a linear action of S1 which fixes only the origin, so it is a cone on

CP* 2 2.

In general we do not have H ^ = 0. (Although Uhlenbeck has proved that

for a generic metric on M this cohomology group vanishes [5].) However we

shall be able to perturb the system of equations to turn the moduli space into a

2e2 — 3 dimensional manifold with point singularities of the type described

above.

5. The Compactness Theorem

We now return to our original conjecture (2.7):

Conjecture. Let M be a smooth closed oriented A-manifold. Suppose that its

intersection form is positive definite and has a minimal vector e with e2 > 1. Then

μ(e) is even.

So suppose we have such an M and an e e Fr H2(M; Z). Form the £0(2)-

vector bundle Le over M and stabilize to get the 5Ό(3)-vector bundle E =

Le θ ε1. We wish to study the moduli space of self-dual connections on E. Two

theorems of Karen Uhlenbeck are fundamental.

Proposition 5.1 {The Bubble Theorem [11]). Let { V,} be any sequence of

self-dual connections on E. Then one of the following holds:

(1) There is a subsequence { V,} and gauge equivalent connections { V/} such

that vf-' -* VQQ, a self-dual connection on E, in the C°°-topology (so [ Vy] -> [ V^]

inWt).

(2) There are a finite number of points xv- ,xk in M and a subsequence

{ V/'} and gauge equivalent connections { V,} such that Vr -> V^, a self-dual

connection on E\M0 ( M o = M — [xx,- -9xk}) in the C°°-topology.

Proposition 5.2 (Removability of Singularities [12]). Let V be a self-dual

SO(3)-connection on a bundle Eo defined over Mo = M — {xv- -,xk}. Suppose

®JJί( V ) < oo. Then (Eo, V ) extend smoothly over M.
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An important consequence is that the moduli space 2)ΐ is compact when
Pι(E) is small enough.

Theorem 5.3 (Compactness Theorem). Let E be an SO(3)-vector bundle over
an oriented 4-manifold M and suppose that 0 < P\(E) < 3. Then Tl is compact.
This also holds if pλ(E) = 4 // we also assume that w2(E) Φ 0 and

Proof. Consider a sequence {[V,]} in Wl. If {[Vj} has no convergent
subsequence, then the Bubble Theorem implies that there is some subsequence
{ V/'} and gauge equivalent connections { V,-} such that V,- -> V^, a self-dual
connection on E\M0, where Mo = M — {xv- -,xk) for some finite number of
points of M. Since each V,- is a self-dual connection on E we have

So from Fatou's Lemma

oo.

Thus the Removability of Singularities Theorem applies; so v^ extends to a
self-dual connection on a bundle E^ over all of M. Sedlacek [9] shows that
^2(^00) = wi{E)\ t n u s Pι(Eoo) = Pi(E) (mod4) (see Lemma 2.2). However
since 0 < \<yjί( V^)/^ 2 = p^E^) we have 0 < p^E^) < pλ(E). If 0 <
pλ(E)^3 this implies that P\(EOQ)= pγ(E). So by the classification of
5Ό(3)-bundles, E^ = E and {[ Vj} actually has a convergent subsequence in

In case pλ(E) = 4, w2(E) Φ 0 and H2(πι(M);Z2) = 0, we might have
Pι(Eoo) = 0 However this would imply that the bundle E^ was flat and so had
finite structure group G. So the classifying space BG = K(G, 1). Thus the
classifying map for the vector bundle E^ must factor through K(πx(M), 1).
But the second Stiefel-Whitney class w2(£'oo) was pulled back through
7/2(ττ1(M); Z 2) = 0; i.e. w2(EO0) = 0, a contradiction. Hence 2?̂  = £ in this
case as well, q.e.d.

We now want to deal with the possibility that there are self-dual connections
V on E such that H^ Φ 0. Assume that we are in a situation where the moduli
space Wl is compact. Since Λ^ ( v ) = g"1 o Rv o g for g e ^, v -> î Y does not
induce a map ̂  -> ί2l(g£). However, recall that away from the reducible
connections we have a principal G-bundle #* -> ̂ * . If we form the associated
bundle with fiber
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then v -> RΣ defines a section of this bundle. More generally let

We have an obvious projection J*"2 -» 38 and section R_: v -» ΛY. The

moduli space 3Jί is the zero set of this section. The idea is to perturb R_ until

the image of the section cuts transversely across the zero set of 3F2. This can be

carried out precisely because Wl is assumed compact.

One first compactly perturbs the section R _ near the reducible connections

V1,- , Vμ so that the perturbed section R'_ is equal to R_ outside small

neighborhoods of the v " s and so that the new zero set is a cone on the

complex projective space CPe " 2 in a neighborhood of each v ' . Now, using

the compactness of Wl continue to perturb R'_ to be transverse to the zero set

of &1 (see [7, IV.4] for details).

In order to show that our new zero set is still compact we need the following

lemma of Donaldson.

Lemma 5.4 [3, p. 293]. If R_+ σ is a compact perturbation of R_ over 0 V ί β ,

then for any r > 0 and any closed set N c Θ v >c, the set

is compact (in the L\-topology on Θv ε).

This combined with the above perturbation argument yields

Theorem 5.5. Let M be a smooth closed oriented 4-manifold with positive

definite intersection form and Hι(M; Z 2 ) — 0. // Wl is compact there is a

compact perturbation Ψ = R_+ σ of the self-duality equations on *%so that the

new moduli space Wl' = {[ V] Ξ <%\Φ( v ) = 0} is a compact smooth manifold of

dimensional 2pλ(E) — 3 = 2e 2 — 3 with μ(e) \Hλ(M; Z)| singular points such

that each has a neighborhood which is a cone on the complex projective space

CP 2 2

We are now in a position to prove a theorem which has a direct bearing on

our conjecture.

Theorem 5.6. Let M be a smooth closed oriented 4-manifold with positive

definite intersection form and Hλ(M\ Z 2 ) = 0. Suppose e e H2(M\ Z) such that

e2 > 1. Let E = Le® ε1 and suppose that 2)ΐ, the moduli space of self-dual

connections on E, is compact. Then μ(e) is even.

Proof. If e2 > 1, after perturbation the moduli space becomes a manifold

3DΪ' of dimension 2e 2 - 3 with a finite number,

μ(e)'\Hι(M;Z)\^μ(e) (mod 2),

of point singularities whose neighborhoods are cones on CP* ~2. Removing the

interiors of these cones, we obtain a smooth 2e 2 - 3 dimensional manifold W
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whose boundary is a disjoint union of copies of CPe ~2. Mod 2, there are μ(e)
boundary components of W. If e2 is even this immediately implies that μ(e) is
even, since an odd number of CP2/c's cannot bound a smooth manifold. (CP2/ :

has odd Euler characteristic.)
If e2 is odd, consider ^ 0 , the subgroup of ^consisting of those g which are

the identity on the fiber of E over a basepoint x of M. The normal subgroup ^ 0

acts freely on # * and <$/% s SO(£J = SO(3). The fibration 77: ^ * -> ^ *
factors into π0: # * -> V*/&0 a principal ^0-bundle projection and T^: %*/%
-> ^ * a principal 5Ό(3)-bundle projection.

Consider a reducible self-dual connection V on E. By (4.1) there is a slice
0 v ε and by (4.2) and (5.5) in Θ v ε there is a real vector space 0 of dimension
2e 2 - 2 on which Γ v = S1 acts in the standard manner, and such that Θ/Sι is
a neighborhood of [ v ] in Wl'. Let 5 denote a sphere in 0 which is invariant
under the Sι = Γv-action. If g e ^ moves a connection in S to another
connection in 5, then (since Θv ε is a slice) g e Γ v . So g(S) = »S.

Recall that Γ v acts on ^ = L θ ε1 (where V = D θ J ) by action as SΌ(2)
on L and trivially on ε1. Thus Γ v n ^ 0 = {id}. So each g e ^ 0 moves 5" off
itself. Thus the projection π0: <€-* V/ΦQ is 1-1 on S (and in fact 0 v E). In
^y^ 0 a g e S0(3) takes a connection in 77-0(5) to another connection in πo(S)
if and only if g e Γ v (as above). Let V e 5 and consider the S0(3)-orbit
5O(3)(τ70(v)). The intersection 5O(3)(τr0( V)) Π TΓoί̂ ) = Γv(ττ0( V)) is a
circle. Hence the SO(3)-bundle

reduces to an S ̂ bundle

S = ττo(S) -•

This is just the Hopf bundle. So this SΌ(3)-bundle over π(S) has

w2 = w2(Hopf-bundle) H e H2(π(S); Z 2) = // 2(CP e 2~ 2; Z 2 ) .

Hence vt^2"2 # 0 E i/ 2 e 2 ~ 4 (CP e 2 " 2 ; Z2). This means that an odd number of
these 5O(3)-bundles cannot bound a principal 5Ό(3)-bundle over a smooth
(2e2 — 3)-manifold. Of course this is just what occurs in π{\W) -* W. So
/i, (e) must be even, q.e.d.

For a smooth closed 4-manifold M we can surger out the free part of
HX{M\ Z) and the intersection form is unaffected. From Theorem 5.6 and the
Compactness Theorem we obtain Theorem 2.8, which we restate for the
convenience of the reader.
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Theorem 2.8. // U is a positive definite unimodular inner product space over

Z and if there is a vector u e U such that u2 = 2 or 3 and μ(u) is odd, then U is

not the intersection form of any oriented 4-manifold M, with Hλ(M\ Z) containing

no 2-torsion.

If there is a minimal vector u with u2 = 4 and μ(u) is odd then U is not the

intersection form of any oriented 4-manifold M with Hλ{M\Έ) containing no

2-torsion and H2(<πλ{M)\ Z 2) = 0.

For example this implies that Es Θ (any positive definite form) cannot be

the intersection form of such an M4 (see Example 2.5). Also since each even

form of rank < 48 has a minimal u with u2 < 4 [8, p. 29], the theorem applies

to these forms as well.

We close with a conjecture whose truth would give compactness of W for a

general minimal e.

Conjecture 5.7. Let M be a smooth oriented closed Riemannian 4-manifold

with positive definite intersection form. Let e e Fr H2(M\ Z) be minimal. If E' is

an SO(3)-vector bundle such that w2(Ef) = e (mod2) andpλ(E') < e2, then Er

supports no self-dual connections.
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