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ON THE GAUSS MAP
OF AN AREA-MINIMIZING HYPERSURFACE

BRUCE SOLOMON

0. Introduction

Let S be an area-minimizing hypersurface of R .̂ By hypersurface, we mean a
codimension one, locally integral current. By area-minimizing, we mean that,
without introducing boundary, no compact piece of S can be replaced by a
piece having less area. The main concern of this paper is the relationship
between S and its spherical image under the Gauss map. For a more precise
treatment of our terminology, here and below, the reader should refer to §1.

In the 1960's, area-minimizing hypersurfaces provided the focus for a great
deal of research. Indeed, a major accomplishment of that period was the
discovery that, upon imposing the dimensional restriction N <%, one guaran-
tees to S several very strong properties which, generally, fail to hold as soon as
N > 7. Paramount among these properties are two: interior regularity and, its
alter ego, the parametric Bernstein property. The former states that spt(S) ~
spt^S) is a codimension one, real analytic submanifold of R ;̂ the latter, that
if dS = 0, then each connected component of spt(S) is a hyperplane.

Our paper here introduces a new condition which guarantees both of these
properties, independently of dimension. That is, we show that the dimensional
hypothesis N <S can be replaced by a different condition, one which involves
the topology and Gauss image of spt(S) ~ spt(3S). We thereby obtain a
regularity result (Theorem 3), and a parametric Bernstein result (Theorem 5),
which for example, imply the following: Suppose H\τeg S) = 0 and
Gauss(5) C SN~ι omits a thickened great SN~3. Then spt(S) ~ spt(3S) is
smooth, and ifdS = 0, consists of affine hyperplanes. A local version of this also
holds, estimating curvature when dS Φ 0 (Theorem 4).

Like our results, our methods follow a pattern developed in the classical
(dimensionally restricted) case. Recall that there, regularity is proved by
induction on N. The inductive step requires that a smooth minimal hyper-
surface M in S^"1 be an equator if the cone OXMis area-minimizing. That
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this fact fails when N > 7 is entirely responsible for the breakdown of
regularity/Bernstein in higher dimensions. Quite analogously, Theorem 2 here,
the basic tool we use to fashion our regularity result, is also proved by
induction on N. Moreover, the inductive step again requires that certain
smooth minimal hypersurfaces in SN~ι be equators. This time, however, the
necessary fact, provided by Lemma 1 of §2, holds in every dimension.
Consequently, so do all our results. Of course, our main contribution is to the
case N>Ί.

Lemma 1 has an additional consequence which, although incidental to our
main line of reasoning, we include as Theorem 1. This is a spherical Bernstein
result; stated roughly, if M C SN~ι is minimal, H\M) = 0, and Gauss(M)
omits a great SN~3, then M is an equator. Recall that the spherical Bernstein
problem [15, #99] asks whether a minimal SN~2 in SN~ι is necessarily
equatorial. That the answer is in general negative follows from actual counter-
examples, due to W. Y. Hsiang [9]. Thus, to obtain an affirmative result, one
needs to impose extra hypotheses. For example, the assumption N < 4 was
shown to suffice by Almgren [1]. Since Hι(SN~2) = 0 in all higher dimensions,
the Gauss map hypothesis of Theorem 1 provides an alternative sufficient
condition.

This Gauss map condition, which appears throughout our paper, may evoke
in the reader a sense of deja vu. Indeed, the requirement here, that a thickened,
totally geodesic, codimension two subvariety of the appropriate Grassmannian
be omitted, is not new. It appears in well-known papers of Osserman [11], [12],
Chern [4], and Chern & Osserman [5], in connection with minimal surfaces.
But while these authors obtain very sharp parametric Bernstein results which
are valid in any codimension, their methods and conclusions are strictly
two-dimensional. There seems to be little relationship to our work here,
beyond the obvious formal resemblance.

In fact, the two-dimensional theory makes one aspect of our work seem quite
unexpected. We refer to the hypothesis "Hι = 0", which is shared in some
form by all the results here. Such an assumption appears nowhere in the
former theory. But in §6, we give some examples to document the fact that, far
from being an artifact of our methods, this hypothesis cannot be deleted from
the results we prove.

Finally, we wish to make some acknowledgements. It was mentioned above
that our methods follow a pattern of argument dating back to the 1960's. The
papers of Fleming [8], Almgren [1], and Simons [13] are especially pertinent in
this regard. Short but lucid accounts of how these, along with several other
papers, successively pieced together the classical regularity/Bernstein theory,
can be found in the introductions to chapter five of Federer's book [6], and to
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the remarkable paper of Bombieri, De Giorgi, and Giusti [2]. In a more
personal vein, we want to thank the Mathematical Sciences Research Institute,
Berkeley, for its hospitality and support. This paper represents work which
took place in its first year of operation, when the author was fortunate to be a
member there. During that time, we benefitted from conversations with many
colleagues, but we especially wish to thank R. Schoen for his frequent sage
advice, and M. Micallef for helping us clarify the proof of Lemma 1.

1. Preliminaries

For easy reference, we collect here several remarks concerning our terminol-
ogy in this paper. For usage not covered here, the reader may consult Federer's
book [6], which is a basic reference for our work.

Let N > 1 be an integer. We shall denote by

U(p9R)9 B(p9R)9

respectively, the open and closed balls of radius R > 0 and center/? in R .̂
Our basic objects of study in this paper are the area-minimizing hyper-

surfaces of R .̂ The term "hypersurface " will generally refer to a current,

for some open U C R ,̂ though we will use the phrase "smooth hypersurface "
to signify a smoothly immersed submanifold of codimension one. While the
distinction may sometimes blur, hopefully our reasoning will not.

We say a hypersurface S is area-minimizing in an open set U CRN if,
whenever Z E lN_}(U) and dZ — 0, we have

\\S\\B(0, R) < H5 + Z p ( 0 , Λ),

for all sufficiently large R > 0. The most obvious area-minimizing hyper-
surfaces are the hyperplanes, i.e. those hypersurfaces S such that spt(S) is an
affine hyperplane in the linear algebraic sense.

With regard to any hypersurface 5, a point p E spt(S) ~ spt^S) is called
regular if it has a neighborhood in which spt(S) ~ spt(θ S) is an embedded
smooth hypersurface. If p E spt S ~ spt dS is not regular, it is termed singular.
We will denote the regular and singular sets of S respectively by reg S, and
singS. It is well known [7] that if S is area-minimizing, the Hausdorff
dimension of sing S does not exceed N — 8.

For the purposes of this paper, the Gauss map on a hypersurface S is a
smooth unit normal vector field defined on reg S;
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It is characterized uniquely by the requirement that for ||SΊ|-all x G reg S,

The image of vs will be denoted by Gauss(S), and we will typically impose the
condition that Gauss(S) omit a neighborhood of a totally geodesic SN~3 in
SN~ι. For the sake of brevity, this will usually be expressed as "omitting a
thickened great S*"3."

Of primary concern will be the geometric relationship between vs and an
arbitrary two-dimensional subspace of R .̂ In line with a common practice, we
often will fail to distinguish explicitly between a two-plane π and the corre-
sponding standard orthogonal projection onto π. Thus, notation such as

flr:R"->ir

is allowed. Moreover, we will frequently identify TΓ with R2 by choosing an
oriented basis.

Concerning R2, there is a one-form commonly referred to as "d0", defined
on R2 ~ (0,0). This form is closed, but it is not exact, and hence to avoid
confusion we will call it ω. That is, in coordinates,

_ xdy — ydx
ω — —.

x1 + y2

Finally, let us agree that the first cohomology groups appearing in this paper
and denoted by Hι, will represent de Rham cohomology.

2. Spherical Bernstein results

This section is primarily devoted to proving Lemma 1, which plays for us a
role analogous to that played by Simons' calculation [13] in classical regularity
theory. As discussed in the Introduction, however, an additional feature of
Lemma 1 is the fact that it directly implies the following theorem of spherical
Bernstein type.

Theorem 1. Let M C SN~ι be a smooth, compact minimal hypersurface. If
H\M) - 0 andGauss(M) C SN~λ omits a great SN~3, then M is an equator.

Remark. M need not be orientable, for if not, we merely interpret Gauss( M)
as referring to the Gauss image of an oriented double cover. In the oriented
case, Gauss(M) refers to the image of the map

defined to coincide on M with the Gauss map of the minimal cone OXM.
Note that M is not assumed to be embedded.



THE GAUSS MAP OF AN AREA-MINIMIZING HYPERSURFACE 225

Proof of Theorem 1. Using the fact that any great SN~3 C SN~ι is the
kernel of an orthogonal projection

the reader will easily deduce Theorem 1 from Lemma 1 below, passing to an
oriented double cover if necessary, q.e.d.

Let π C RN be any fixed two-dimensional subspace.
Lemma 1. Suppose M C SN~ι is a compact, oreinted, smooth minimal

hypersurface. If\πvM\>Q and(πvM)#ω is exact on M, then M is an equator.
Proof. Assuming \πvM\>0 and (πvM)#ω is exact, we will show that the

second fundamental form of M in SN~~\ denoted by A, vanishes identically.
Hence M is totally geodesic. Our proof twice employs the well-known fact that
since M is minimal, the identity

(t) (AM + \A\2)(ι>M.a) = 0

holds for every a E R .̂ (Here AM~ * rf * d is the intrinsic Laplacian on M.)
Indeed, we will exhibit a E RN such that vM a > 0 throughout M. By integrat-
ing (f) over M, we thus obtain a contradiction unless A = 0 on M as desired.

For this purpose we simply take, with/? E M chosen arbitrarily,

and define a unit vector b so that (α, b) forms an oriented orthonormal basis
for the two-plane m. Letting

we thus have

for some u: M -> R, because (πpM)#ω is exact. Using (f), a short calculation
similar to one in [3, Theorem 8] then shows

* d*\πvM\2du = 0.

Multiplying by u and integrating over M by parts, we now find | du |2 = 0,
hence d{vb/va) = 0. But this implies

Consequently vb = 0, so that va=\itvM\>Q, and we have the desired positive
solution of (f).



226 BRUCE SOLOMON

3. A closure lemma

A crucial link between the spherical differential geometry of §2, and our
regularity/Bernstein results in §5, is forged by Lemma 2 here. This lemma
enables us to take limits within certain spaces of hypersurfaces which are
precisely tailored to our needs. We refer to the spaces

which are defined as follows.
Fix η > 0. Let 0 < R < oo, and abbreviate ί/(0, R) = UR. Recalling from §1

the definitions of ω and vs, we select any two-dimensional subspace π C R ,̂
and proceed to define &(N9 π, R) as the collection of hypersurfaces S E
1N_X(UR) which satisfy the following four conditions:

(1) S = d(ENLM)lUR for some measurable M C RN,
(2) S is area-minimizing in UR,
(3) \πvM\>η on regS,
(4) (πvs)*ω is exact on reg S.
Let us also define &(N9 ir9 oo) C Ij^L^R^), by assigning it all hypersurfaces

5 such that SLUR E &(N9 π, R) for every 0 < R < oo.
Although our notation suppresses the fact, these spaces do of course depend

on the choice of η > 0. Our intention is simply that the reader assume a fixed
value for η until indicated otherwise.

We may now state our closure lemma.
Lemma 2. Suppose π C R^ is a two-dimensional subspace, and let 0 < R <

oo. Then &(N, π9 R) is closed in Ij£L,.
Proof. Let us assume R < oo, as the case R = oo then follows without

difficulty. We leave the reader to verify that the first two defining conditions
for &(N9 7r, R) are themselves closed. (In this regard [6, 5.4.2] may be helpful.)
It then remains to establish the closedness of conditions (3) and (4) on the set
defined by (1) and (2). The main content of Lemma 2 resides in condition (4).

Accordingly, let S E lN_λ be a boundary point of &(N9 m9 R). Then S is an
area-minimizing hypersurface satisfying condition (1). By a standard argument
based on the classical regularity theory [6, 5.3.14], we consequently obtain the
following fact:

For every p E reg S and c > 0, there exists δ > 0 and a
neighborhood Θ of S in I^_i, with the following properties.
For each T E 0 Π &(N9 π9 R), spt(Γ) Π B(p, δ) is the graph
of a smooth function over the hyperplane tangent to reg S at
p. Moreover,

\vs-vτ\<€ inB(p9δ).
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Though we mainly seek to apply this in reference to condition (4), we may
note in passing that S is now easily seen to satisfy condition (3).

Let K C reg S be any compact subset. The above fact then conveniently
provides us with the existence of neighborhoods

UoiKinRN, ΎoίSinlN_u

such that, first, (spt(S) Π U) C reg S. Secondly, whenever Γ e Ύ n
&(N,π,R)9 there is a smooth function

fτ: (spt(S) Π U) -> R

so that spt(Γ) Π ί/is the graph of fτ with respect to vs. That is,

spt(Γ) nU=R"n {x + fτ(x)vs(x): x <Ξ spt(S) Π U}.

Using this, we then fix a particular T EΎD &(N,π, R) with the additional
property that for all x E spt(S) Π U9

\rT(x + fτ{x)vs(x)) ~ Vs(x)\<V.

But now there is an obvious homotopy,

H:(spt(S) ΠU)X [ 0 , 1 ] - » R 2 ,

defined via the formula

H(x9 0 = 0 - 0*^00 + tπvτ(x+fτ(x)vs(x))9

and the above inequality implies

H((spt(S) ΠU)X [0,1]) C R 2 ~ ( 0 , 0 ) .

H#ω is therefore well defined. Since 7/( , l)#ω = (πvτ)*ω is by hypothesis
exact, the homotopy formula for differential forms [6, 4.1.9] allows us to
conclude that on spt(S) Π ί/(and hence on K) so is if( ,0)#ω = (πvs)*ω.

It now follows immediately that condition (4) holds for S, as can be seen by
considering the case in which K "captures" any given closed loop in reg S. The
proof of Lemma 2 is thus complete.

Corollary. &(N9 TΓ, OO) is a closed cone.
Proof. In calling &(N9 TΓ, OO) a cone, we mean that when S G (£(N9 m9 oo),

the homothetic image μr#S also belongs to &(N9 π9 oo) for every r ^ 0. Since
, 7Γ, R) clearly equals &(N9 m9 rR)9 the corollary is immediate.

4. The basic tool

Theorem 2 of this section is the basic tool we shall use in the following
section to obtain our main results.
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As before, we fix an arbitrary η > 0, and let π C R^ be a two-dimensional
subspace.

Theorem 2. All cones in &(N9 π9 oo) are hyperplanes.

Proof. Let C E <£(N9 π, oo) be a cone. It will suffice to show that spt(C) ~ 0
(0 being the origin of R^) is in fact a smooth hypersurface. For in this case,
spt(C) Π SN~ι is smooth in SN~\ and satisfies the hypotheses of Lemma 1 in
§2.

We will establish the desired smoothness inductively, assuming N > 2 and
that Theorem 2 (which is elementary when N = 2) holds in dimension N — 1.
Moreover, with the help of [6, 5.4.6], we can reduce our problem to that of
showing, whenever p E spt(C) ~ 0, that every oriented tangent cone to C at p
is a hyperplane.

Selecting such a tangent cone, at some p E spt(C) ~ 0, we label it P. To
simplify matters, let us adopt the convention that R^~λ is the subspace of R^
on which the Nth coordinate function vanishes. Without loss of generality, we
then assume/? is a unit vector orthogonal to R^"1. According to well-known
theory [6, 4.3.16, 5.4.8], P is a cylinder (with direction/?) on an area-minimiz-
ing cone β G l j J i ^ " 1 ) . The corollary to Lemma 2 now implies P E
&,(N,π9ao). Subject to verification of the following claim, our proof may
therefore be completed by induction on N.

Claim. For a suitably chosen two-dimensional subspace π C R ^ 1 , the
area-minimizing cone Q belongs to &(N — 1, #, oo).

To verify this, we first observe that since vQ — vP on reg ζ>, and P E
(t(N, 7r, oo), (77Tg)#ω is necessarily exact on reg Q.

Next, noting that dim(π Π R^"1) > 0, we fix a unit vector a E π Π R^~ι. It
is then not difficult to find an angle φ E [-ττ/2,7r/2], and a curve bt E SN~\
satisfying, for every t E [0,1],

bt=psm(tφ) + Z?0c

(a, Z?j) is an oriented orthonormal basis for π.

We may consequently set

9Γ, = sρan{α,Z?,},

and compute

(vQ'bt)2 = (VQ' bof cos2 tφ > (vQ - bof cos2 φ= (vQ bλ)
2.

Since ττλ — 7Γ, this yields

\πtvQ\= (vQ * a) 2 + (vQ ' btf >\πvQ\2.
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In particular,

\πovQ\2>η onregQ,

and H*ω is well defined for the homotopy

H: r e g g X [0,1] -> R2 via # ( * , / ) = πtvQ(x).

But then, by the homotopy formula for differential forms [6, 4.1.9], the

exactness of (7r,^)#ω = (πvg)*ω on reg(> implies that of (TTQVQ)*U. Clearly

the defining conditions for &(N — 1, π9 oo) are now satisfied for (> with

7r = 77O. This establishes our claim and completes the proof of Theorem 2.

5. Main results

We are now ready to state and prove three theorems which, together,

comprise our principal reason for undertaking this paper. The first two,

establishing regularity (Theorem 3), and estimating curvature (Theorem 4), are

of a local nature. The third, a parametric Bernstein result (Theorem 5), is

global.

Theorem 3. Suppose U CRN is open and S E 1551,(1/) is area-minimizing.

If H\τegS) = 0 and Gauss(S) omits a thickened great SN~3 in SN~\ then

sing S - 0 .

Proof. Arbitrarily choosing 0 E spt(5) ~ spt(ΘS), we will show 0 E reg S.

For this purpose we may assume, after suitably translating and restricting, that

0 is the origin of R^, that U = C/(0, R) for some R > 0, and that spt(35) C dU.

We then select a two-dimensional subspace π C RN such that Gauss(S') omits a

neighborhood of the great SN~3 defined by ker m Π SN~ι.

In this situation, there clearly exists η > 0 such that \πvsf>η, and since

H\τegS) — 0, (πvs)*ω is exact. Moreover, arguing via [6, 4.5.17] and the

maximum principle (as in the second part of the proof of [6, 5.4.15]), our task

is then further reduced; we need only consider the case S = d(ENLM)IU for

some measurable M C R^. But in this case, we have S E &(N9 π9 R).

Consequently, letting C be any oriented tangent cone to S at 0 E spt(S) ~

spt(ΘS), we infer from Lemma 2 (our closure lemma), that C E (t(N, π, oo).

By Theorem 2 of §4, C is then a hyperplane. According to [6, 5.4.6], S is

therefore regular at 0. q.e.d.

In the following, κ,, •,%_, denote the principal curvature functions of the

smooth hypersurface M.

Theorem 4. Let M C R^ be a smooth area-minimizing hypersurface. Suppose

H\M) = 0 and Gauss(Λf) omits a neighborhood U of some great SN~3 in



230 BRUCE SOLOMON

SN~\ Then there exists a constant C = C(N, U) such that for allp E M,
N-\ r.

dist(/?,3Mf

As in the proof of Theorem 3, we choose a two-dimensional
subspace TΓ C RN

y orthogonal to a great SN~3 C ( / C SN~\ Also, we define

TJ = η(U) > 0, via η = d i s t ^ " 1 ~ f/, kerTr).

It is then not difficult to see that the failure of Theorem 4 would imply the
following:

There exists a sequence of smooth hypersurfaces {Sn} C
(t(N, 7Γ, 1), with principal curvature functions κw z, such that
for each n = 1,2,3, ,

Λ Γ - 1

0Espt(S)w, 2 κΛίl.(0)2>π,
ί = l

with 0 the origin of R .̂
But this statement leads to a contradiction. Indeed, if it were true, one could
deduce, using the argument of L. Simon in [14, Theorem 1], the existence of a
subsequence of {Sn} converging to a limit S E lN_x(U(0,1)), with 0 E sing 5.
On the other hand, it follows from our closure lemma (Lemma 2) that
S E &(N, π, 1), hence satisfies the hypotheses of Theorem 3. Therefore 0 E
reg 5, a contradiction, and Theorem 4 is established.

Theorem 5. Let S be an area-minimizing hypersurface in RN with dS — 0. //
i/ι(reg 5) = 0 and Gauss(S) omits a thickened great SN~3 in SN~\ then each
component ofspt(S) is a hyperplane.

Proof. Applying Theorem 3 with U = RN

9 we see that sing 5 = 0 , hence
spt(5) is a smooth hypersurface. Applying Theorem 4 to any component M of
spt(5), in conjunction with our assumption that Θ5 = 0, we see that M is
totally geodesic. This proves Theorem 5.

6. A class of examples

We conclude with some examples. Our purpose is thereby to demonstrate
that the hypothesis "Hι = 0", so characteristic of our results, is necessitated by
considerations of truth, as opposed to proof.

First, let
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and recall that whenever 0 < p G Z, there is a smooth minimal hypersurface
MpΛ C Sp+2, obtained by setting

MpΛ = S'(p/p + 1)1 / 2 X S\\/p + 1)1 / 2 C S'+ 2 C R' + 1 X R2.

It is then easily determined that for certain constants α, β > 0 with a2 + β 2 =
1, we have

This set manifestly omits 5^(1) X (0,0), which is a great Sp in S^+2. Thus,
except for the obvious fact that Hι(Mpl) φ 0, the hypotheses of our spherical
Bernstein result, Theorem 1, all obtain. Yet Mp x is not an equator. In other
words, if the hypothesis "H\M) — 0" is deleted from Theorem 1, the resulting
statement becomes false.

A similar situation exists with regard to the results of §5. Indeed, according
to Lawson [10], the cone

is, for sufficiently large p E Z, an area-minimizing hypersurface. The same
reasoning used above then shows: // the hypothesis "771 = 0" is deleted from
any of Theorems 3, 4, or 5, the resulting statements become false. In fact, for
Theorems 4 and 5, this holds even within the class of smooth hypersurf aces. To
see the latter fact, we first recall the proof that Cp x is minimizing. In that
proof, the existence of a homothetically invariant foliation of R^+3 ~ s p t ^ λ)
by smooth area-minimizing hypersurfaces is established. Each leaf of this
foliation is asymptotic to Cp x at infinity, and if M is a leaf in the component of
Rp+3 ~ CpΛ containing (0,0, ,0,1), it is not difficult to see that M is
diffeomorphic to R ^ 1 X Sι. At the same time, we must have that Gauss(M)
is precisely the component of Sp+2 - Gzuss(MpX) which omits 5^(1) X (0,0).
Thus, if not for the fact that H\M) Φ 0, M would present a smooth
counterexample to our last two theorems.
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