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ON THE ASYMPTOTICS FOR THE VACUUM
EINSTEIN CONSTRAINT EQUATIONS

JUSTIN CORVINO & RICHARD M. SCHOEN

Abstract

In this paper we prove density of asymptotically flat solutions
with special asymptotics in general classes of solutions of the vac-
uum constraint equations. The first type of special asymptotic
form we consider is called harmonic asymptotics. This gener-
alizes in a natural way the conformally flat asymptotics for the
K = 0 constraint equations. We show that solutions with har-
monic asymptotics form a dense subset (in a suitable weighted
Sobolev topology) of the full set of solutions. An important fea-
ture of this construction is that the approximation allows large
changes in the angular momentum.

The second density theorem we prove allows us to approximate
asymptotically flat initial data on a three-manifold M for the vac-
uum Einstein field equation by solutions which agree with the
original data inside a given domain, and are identical to that of a
suitable Kerr slice (or identical to a member of some other admis-
sible family of solutions) outside a large ball in a given end. The
construction generalizes work in [C], where the time-symmetric
(K = 0) case was studied.

1. Introduction

We study the asymptotics of solutions to the vacuum constraint equa-
tions. In particular, we show how to approximate given initial data for
the Einstein vacuum equation by data which is exactly that of a space-
like slice of a suitably chosen Kerr metric outside a compact set. For the
time-symmetric case, the constraints reduce to the equation R(g) = 0,
and it was shown in [C] how a Schwarzschild exterior can be selected
and glued to asymptotically flat (AF) time-symmetric data and com-
pactly perturbed to a solution of the time-symmetric constraint. In the
non-time-symmetric case, one has to consider the second fundamental
form, and hence linear and angular momentum of the data at infinity,
for which the Kerr solution (for example) is aptly suited. We note that
these constructions show that a compact piece of the data dictates (in
some sense) only part of the asymptotic structure, namely that part
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186 J. CORVINO & R.M. SCHOEN

which is governed by the energy-momentum and angular momentum.
Having vacuum initial data which is identical to Kerr data outside a
compact set is important for understanding the global evolution for the
Einstein equations. In particular, such data evolves to produce a space-
time with particularly nice behavior at null infinity.

We briefly recall the basic setup of the constraint equations. A so-
lution of the vacuum Einstein equation is a Lorentzian four-manifold
(S, g) satisfying

Ric (9) ~ 3 R(9)g = 0.

In this equation, Ric(g) and R(g) denote the Ricci and scalar curva-
tures, respectively, of the metric g. By taking the trace we see that this
is equivalent to Ric(g) = 0. It is well-known that Einstein’s equation
admits an initial value formulation, in which the vacuum initial data
consist of an oriented three-manifold M, a Riemannian metric g and
a symmetric (0,2)-tensor K on M. The Gauss and Codazzi equations
provide the constraints upon ¢ and K in order that they form, respec-
tively, the induced metric and second fundamental form of M inside a
Ricci-flat spacetime (S, g); in the vacuum case these constraints are [W]

R(g) — |K[* + H? =0,
div¢(K) —dH = 0.
Here H = Try(K) = g K;; denotes the mean curvature, (div 4(K)); =
gijZ-j;k, and all quantities are computed with respect to g.
We rewrite these equations by introducing the momentum tensor
7 = KV — Trg(K)gij.
Note that we treat 7 as a tensor, following [FMZ2]; in the literature one

also finds 7 defined as the tensor density (K — Try(K)g"¥)+/det(g;;).
We also introduce functions H and ® by

H(g. ) = Rlg) + 5 (Trym)* = I,
®(g,7) = (H(g,m),div 4).

The constraints then take the form ®(g,7) = 0.

Two well-known solutions of the vacuum Einstein equation are the
Schwarzschild solution and the Kerr solution. The Schwarzschild metric
is characterized by rotational symmetry and is static; indeed outside the
horizon we have coordinates (¢,z) in which the Schwarzschild metric
takes the form (r = |z|)

2m 9 om\ 9 9 9
gg=—|1——|dt"+ (1 - — dr® 4+ r* dQ”.
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In particular we see that the metric is static, as % is a timelike Killing
field which is orthogonal to the time-slices. The Kerr solution is ax-
isymmetric and stationary; the analogous Killing field is not orthogonal
to the time-slices (physically, the black hole is rotating), and this can
be easily seen in Boyer-Lindquist coordinates [MTW], [W].

What is more important for us is that these solutions are actually
families of solutions of the Einstein equations. In fact by thinking of a
fixed asymptotically flat coordinate system near infinity in the space-
time, by varying the total mass and angular momentum, and considering
families of spacelike slices of these metrics, we get a ten-parameter fam-
ily of asymptotically flat solutions of the vacuum constraint equations
near infinity in R3. The purpose of considering this family is to control
the energy-momentum (F,P) and the angular momentum J at (space-
like) infinity, as well as a quantity C related to the center-of-mass. In an
asymptotically flat chart these quantities are defined as limits of inte-
grals over Euclidean spheres with surface measure do, and outer normal
v taken with respect to g

(1) E=— lim j{ Z Giji — iij) V' doy,

1671' R—o0
|z|=R ,J

R—>oo
|z|=R %]

— lim ?{ Z glky — GiV )dag

R—o0
jel=R

(4) lim %Zx Giji — Giij) vV’ dog

In the case when ¢ is AF, conformally flat near infinity and has zero
scalar curvature, the quantity C is proportional to mcg, where m is the
mass and cg is the coordinate translation which makes the |z|~2-terms
in the expansion of the conformal factor vanish [C]. We note that it
may be useful to shift the quantity C (for example an initial shift of
coordinates will do this), and also we note that the vector fields Y; are
the basic rotation fields in R3, for example

0 0
v, — 2.9 _ 3.9
S R ok
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The integrand for the angular momentum is essentially the cross product
of the position vector with the momentum tensor, in analogy with the
angular momentum of classical mechanics.

We can prescribe conditions under which the above asymptotic inte-
grals converge for solutions of the vacuum constraints. These conditions
are asymptotic even/odd conditions on the metric tensor and second
fundamental form of the initial data; we call this condition (AC). The
conditions are

(5) gij (@) = 0 + O(l2|™!)  Kij(x) = O(|=[7?),
9ii(@) = gij(—2) = O(|2[ %) Kyj(x) + Kij(—2) = O(|2[ ),
9ijk(x) + gija(—2) = O(|2|7°)  Kij(w) — Kiju(—2) = O(l2|™).

We require analogous conditions on successive derivatives as needed,
and these will be implied in the “O”-notation for the (AF) and (AC)
conditions. It is also worthwhile to remark that under these asymptotic
conditions on solutions of the constraints, the corresponding boundary
integrals above can also be computed with respect to the Euclidean
metric, and the limiting values are the same, a fact we may use without
further comment.

In Section 3 of this paper we show that the vacuum initial data
sets which satisfy (AC) are dense in a suitable weighted Sobolev space
(gi; — 6ij) € WE’; and m;; € Wi’f_(s for p > 3/2, § € (1/2,1) in the set
of all vacuum initial data which satisfy the standard decay assumptions
(but not the asymptotic symmetry). This space is strong enough that
the total energy and linear momentum are continuous on the space. (Of
course, the angular momentum is not continuous, nor does it appear to
be well-defined on this more general space.) This theorem is an ana-
logue for the full constraint equations of the theorem of Schoen-Yau
[SY] in the time-symmetric case (K = 0). It is however much more
subtle to prove because the general constraint operator is not as well
understood as the time-symmetric operator. We show that it is possible
to achieve a very special type of asymptotic behavior which in particular
satisfies (AC). These special asymptotic conditions require that outside
a compact set there exist a positive function v and a vector field X so
that g;; = u45ij and m;; = u?(Lxd — div5(X)6);; where Lxd denotes
the Lie derivative of the Euclidean metric § with respect to X. It is
not difficult to see that such data automatically satisfies (AC). An im-
portant feature of these asymptotic conditions is that the total energy
and momenta (both linear and angular) may be read off of the asymp-
totics of (u, X), and the behavior of these conserved quantities directly
affects the asymptotic geometry. This type of asymptotic behavior will
be discussed in detail by the second author in future work. The proof
of the density of solutions involves taking an arbitrary asymptotically
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flat solution (g, 7) of the vacuum constraint equations and patching g to
the Euclidean metric and 7 to 0 in a large annulus. It is then necessary
to reimpose the constraints by solving a partial differential equation for
(u, X). The cut-off data may be viewed as an approximate solution,
and one may attempt to use the inverse function theorem to correct it
to a solution. The problem which arises is that it is not clear whether
the corresponding linearization is an isomorphism in the natural spaces.
This problem is overcome by allowing the extra flexibility of addition of
a suitably chosen family of compactly supported deformations (of g, 7).
In order to make this work, we need to use the fact that the constraint
operator (at an arbitrary asymptotically flat initial data set) has sur-
jective linearization in these weighted Sobolev spaces. This result is
proven for maximal data by Choquet-Bruhat, Fischer, and Marsden in
[CFM], and the general case is due to Beig and O Murchadha [BO).

The second density theorem (Theorem 5) will follow from a gluing
construction (Theorem 4) coupled with the first density theorem. We
now outline the basic approach to this gluing method, the proof of
which occupies Sections 4 and 5. Given asymptotically flat initial data
on M satisfying (AC) in an appropriate chart at infinity in a given
end, we take a sufficiently large radius R and within the annulus from
R to 2R, we smoothly patch the given metric and second fundamen-
tal form to the metric and second fundamental form coming from a
slice in Kerr, or from another suitable family satisfying (AC) near in-
finity (cf. Section 5). This will produce an approximate solution of
the vacuum constraints. The approximate solution is altered with a
smooth perturbation compactly supported within the closed annular
gluing region to data (g, 7), whose constraint function ®(g,7) lies in
a finite-dimensional vector space of dimension ten; of course we want
®(g, ) to be zero. (Note that outside the annulus the constraint func-
tion vanishes by design.) As in [C], the key to the proof is exploiting the
overdetermined-ellipticity of the adjoint of the linearization of ®. We
then show that there is a choice of data to glue on so that the result-
ing perturbed metric and second fundamental form are solutions to the
constraint equations. The ten-dimensional obstruction space is coun-
tered by the ten degrees of freedom afforded by (E,P,J, C); in fact the
method proves that suitable models near infinity are precisely those for
which we can effectively attain values of (E,P,J, C) by moving within
the family. The conclusion of the proof is the observation that the map
from the parameter space to the obstruction space, a map between two
ten-dimensional Euclidean spaces, has non-zero degree; this map is more
complicated than before (where only four parameters were needed), but
recognizing the (AC) condition affords some economy in computing this
map as compared to [C], where an expansion of the conformal factor is
used.
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We remark that the results of this paper are easily seen to allow M
to have multiple asymptotically flat ends. For example, the proof of
Theorem 4 is a construction local to any given end. For convenience
of notation we may write the proofs under the assumption that M has
only one end.

The results of this paper (with the exception of Section 3) were an-
nounced in the spring of 2000, and have been widely communicated to
the mathematical GR community. In the meantime, P.T. Chrusciel and
E. Delay [CD] have obtained a version of these results as well. Their
paper employs our basic techniques (and those of the first author in
[C]) to give a number of interesting applications; in addition their pa-
per gives an elegant and explicit description of the 10-parameter Kerr
family of initial data which we do not do here.

Acknowledgements. The first author was partially supported by an
NSF Postdoctoral Research Fellowship; the second author acknowledges
the partial support of the NSF through DMS-0104163.

2. Preliminaries

2.1. Basic Notation. Let Q@ CC M denote a compactly contained
domain (i.e., £ is compact) in a smooth three-manifold M. Unless
noted, we assume the boundary is smooth. We list here some notation,
and we define some function spaces which we will find useful.

e Ric(g) = Ri; and R(g) = ¢g” R;; denote the Ricci and scalar cur-
vatures, respectively, of a Riemannian metric g on M. We use the
Einstein summation convention throughout, as well as the conven-
tion of using a semicolon to denote covariant differentiation and
a comma to denote partial differentiation, and our convention for
the Laplacian is Ay f = \/ﬁ 9i(g9/191 05 f).

e We let dyuy denote the volume measure induced by g, do, the in-
duced surface measure on submanifolds, dx the Lebesgue measure
on Euclidean space, and d§ the Euclidean surface measure.

e We denote by H* the Hilbert space of tensor fields which are
square-integrable along with the first & weak covariant derivatives,
with the standard H*-inner product induced by the metric g. It
will be clear in context which type of fields are being discussed.
Hl’f)c denotes spaces of tensors which are in H* on each compact
subset. We may abbreviate products with mixed regularity by
using superscripts, like H>' = H? x H'.

Similarly we have the Holder spaces C*.
e We may wish to use symbols to distinguish various types of tensors.

For example, let M* (k > %) denote the open subset of H* of

Riemannian metrics, and M*< denotes the open subset of metrics
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in Ok, S(2,0) denotes the space of symmetric (2,0)-tensor fields,
and X denotes the space of vector fields. We use superscripts as
above to denote the desired Sobolev or Holder regularity of the
fields.

e Let p be a smooth positive function on €. Define Lg(Q) to be the
set of locally L?(du,) functions f such that fp'/? € L2(Q,dpu,).
The pairing

(f1, )20 = (102, f20" ") L2(0dpy)

makes L2(Q2) a Hilbert space. It is clear how to extend this defi-
nition to higher order tensors.

o Let H F’f (©) be the Hilbert space of tensor fields in L%(Q) along
with the first k covariant derivatives, the inner product defined
by incorporating the L%(Q)-pairings on the covariant derivatives
of order 0,..., k.

e We now want to define the weighted Holder spaces C}f’,o{ (Q) (0<
a < 1). We will consider p which near 9 decays as a power of
or exponentially in the distance to the boundary. The weighted
Holder space is defined as the subspace of C*(Q) comprised of
functions f for which the norm

1 kot = 1072 Ik
is finite; this is a Banach space. (Unless noted otherwise, norms
will be taken over ().)

e For an AF (M, g), we will use weighted Sobolev spaces Wf’f(M, 9)
to capture asymptotics of functions and tensors near infinity. The
weighted norm convention we are using is that the Wf’f norm is
given by

- Do 0+|al\p —Sd e
I llkp-s =" DSl g

0<a|<k
where in this context p is a function which equals |z| near infinity
(in an AF chart) and « is a multi-index.

The following lemma concerning the density of H*(Q) in H Zf(Q) will
be useful.

Lemma 2.1. Assume that p is bounded from above. For k > 1, the
subspace H*(Q) (and hence C*®(Y)) is dense in HZ,“(Q)

Proof. For small 7 > 0 let Q, be a slightly expanded domain com-
pactly containing €2. Let F : Qr — Q be a diffeomorphism which
is C*-close to identity map. Now suppose that f € H E(Q) and let
fr = fo F.. Note that the restriction of f, to Q is in H*(Q). We
will show that f, — f in H;f(Q) First note that by the chain rule
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we have |Df.| < ¢ Y. |DBf|o F, for |a|] < k, where ¢ is inde-
18I<|al
pendent of 7. Now, the dominated convergence theorem implies that
61ir(r]1+ fQ\Qa |Df|2pdpy = 0 for || < k, where 5 denotes the subset
of 2 consisting of points at least a distance 0 from the boundary. It
follows that for 7 > 0 we also have 5hm+ fQ\Qa |D £, > pdpy = 0, uni-
—0

formly in 7 small. Thus, given € > 0 we may choose J so small that
(IQ\ch |Df; — D f|?pdpu,)'/? < €/2, and then choose T so small that
(fﬂs |D* f, — D fpdy,)*/? < €/2. Summing these completes the proof.

q.e.d.

2.2. Linearization of the Constraint Map. We gather here a few
facts we will use in what follows [FM1], [FMZ2].

Lemma 2.2. The scalar curvature map is a smooth Banach space
map, as a map R : MT2(Q) — HY(Q) (I > 1), or R : MF22(Q) —
C*2(Q) (k> 0). The linearization Ly of the scalar curvature operator
s given by

Ly(h) = —Ag(Tre(h)) + div 4(div4(h)) — h - Ric(g)
in either of the above spaces. The formal L*(dug)-adjoint Ly of Ly is
given by
(6) Ly(f) = —(Agf)g + Hess 4(f) — f Ric(g).

Lemma 2.3. The constraint map ® is smooth Banach space map,

as a map ® : MH2(Q) x Sé;g)(ﬁ) — HY(Q) x XH1(Q) (I > 3), or
a(O) k+2,0 ' aO) a(O
d : ME2o(Q) x s(gg) Q) — CF*@Q) x XFt1L2@Q) (k > 0). The
formal L*(dug)-adjoint D@E‘g ) of the linearization D®, 1y is given by
D7, (f, X) = DH{, . (f) + Ddivy, (X) where
DHy (1) = ((Lyf)ij + (Trgm)myy — 2mer’)
((Trgm)g" —277) ),
1

Ddiv (g (X) = 5 <(LX7T)z‘j + (X§)miy — (Ximf + 7w X))

— X" gij — Xy gis, —(Lxg)ij>~

We point out here that the key terms we will use are the Ly f-term
in the first component above, and the Lie derivative term Lxg in the
second component. The formula is well-known and straightforward to
derive, although we note that in [FM2], for example, the negative of
the divergence operator is used, so some signs differ.

We note that in some sources, like [CFM], the tensor K is treated
as a (1,1)-tensor, and if we let the constraint operator in this form be
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U(g,K) = (R(g) — |K|* + H? div 4(K) — dH), then the adjoint of DV

is somewhat easier to compute and has the form
DV*(&,Z) = (Ly& — 1/2((KP"Zg) ) gij + 1/2(Kij ZP) p,

(7) —1/2(Lzg)ij + (div Z)gij — 26K;5 + 26(Trg K ) gij ).
The leading terms are of course the same as in the other formulation.

We will also use the following fact, which is proved in an analogous
fashion to the lemmas above, using Sobolev embedding.

Lemma 2.4. Letp > 3/2 and § € (0,1). For (gij — dij, mi;) € Wz’f X
Wi’f_(;, the map (h,k) — ®(g+ h, 7 + k) is continuously differentiable
from a neighborhood of (0,0) in Wz’g’ X Wi’fﬂ; to ng’ﬂ;.

We now indicate the source of the ten-dimensional obstruction space
we mentioned in the previous section.

Lemma 2.5. Let Q be an open domain in R® with flat initial data
(6,0). Then on ) the kernel K of the operator D‘If(k(S 0) 1s the direct sum
of the span Ky of the functz’ons 1, 2* (i = 1,2,3) and the span K1 of
the vector fields X; = —Z (1=1,2,3) and Y}, = LUZ% — aai (i <7,
k#1i,5).

Proof. By Lemma 2.3, D<I>E‘5O (f,X) = (L:;f,—%(LX(S)ﬁ). Moreover,
by Eq.(2.2), L5 f = 0 implies Hesssf = 0, i.e., f € Ky. That Lxd =0
means X is a Killing field of the flat metric on R3, so X € K;. q.e.d.

We note that the kernel of DCI)’(k ) has a natural interpretation. We

first recall that it is straightforward to show [C] that a nontrivial element
J in the kernel of L} yields a warped product metric — f2dt? + g that
is Einstein, and if R(g) = 0 then this product metric is a solution to
the Einstein vacuum equations which is manifestly static. Moncrief [M]
showed that a nontrivial element (f, X) in the kernel of D7, ) at a

solution of the constraints corresponds to a Killing field (symmetry) in
the resulting vacuum spacetime.

3. Constructing Solutions with Good Asymptotics

In this section we show that any solution of the vacuum constraint
equations with g;; = &;; + O(1/r) and m; = O(1/r?) may be per-
turbed by an arbitrarily small amount on any compact set to a new
solution satisfying the condition (AC). We also show that the ADM
energy-momentum vector is stable under this approximation in that it
is perturbed by an arbitrarily small amount. This construction shows
that the gluing theorem (Theorem 4) of the paper applies to a very large
class of solutions of the vacuum constraint equations which are dense in
a suitable sense.
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The construction we are going to make may be viewed as a general-
ization of the deformation result of [SY] from the time-symmetric case
to the case of arbitrary data. We begin with any asymptotically flat
data (g,m) satisfying the vacuum constraint equations and such that
gij = 6ij + O(1/r) and m;; = O(1/r?). We are going to show how to ap-
proximate this data by new data (g, 7) satisfying the vacuum constraint
equations and such that outside a compact set we have

(8) Gij = u*6ij, Mg = u(L5X)i
where u tends to 1 at infinity and X is a vector field tending to 0 at
infinity, and where £, is the operator related to the Lie derivative Lxg
by

Ly X = Lxg —div4(X)g.
If such asymptotics can be achieved, then the constraint equations near
infinity become the equations (computed with respect to d)

8Au =u( — [LX >+ 1/2(Tr(LX))?),
AX' + du~ (LX) — 20w Tr(£X) = 0

where the second equation is written with respect to a Euclidean basis.
Standard asymptotics (see [B]) then imply that

u(z) =1+a/r+0(1/r?), X'=0b"/r+0(1/r?
for constants a,b’. These asymptotics clearly imply (AC).
In the following theorem we will generalize the above discussion to

allow solutions which are in the weighted Sobolev spaces Wlf’f defined
above.

Theorem 1. Let (gi; — 0ij, mij) € Wz’g’ X Wi{a be a vacuum initial
data set, where 6 € (1/2,1) and p > 3/2. Given any € > 0, there exists
a vacuum initial data set (g, 7) satisfying (8) which is within € of (g, )
in the Wz’f X Wi’f_(S norm. Moreover, the mass and linear momentum
of (g, ) are within € of those of (g, ).

Proof. In order to show that (8) can be achieved, we begin by modi-
fying (g, 7) to (g, 7) in the annular region from R to 2R so that § = ¢
and 7 = 0 outside the ball Bop. We then attempt to reimpose the
constraint equations by constructing a solution of the form § = u*§ and
7 = u?(f + LX), where the operator £ = L is computed with respect
to the metric g. We hope to find a solution u which is near 1 and X
which is near 0. The constraint equations then become the system

fi=H(g,7) = u °[-8Ayu + u(R(§) — |7 + LX
+1/2(Try(7 + LX))*)] =0,
(div (7)) = u™2[(div 4 (7 + LX)); + 4u" uj(7 + LX)]
—2u u Try(7 + LX)] = 0.

2
g
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We consider the map T'(u, X) = ®(g,7) = (fi,div 4(7)) and observe that
the linearization at (1,0) is given by

DT(n,Y) = ( — 8An — 4y — 477Y;; + (divY)Tr,
div (LY); + 4y — 29, Tr# — 2ndiv 77)

where each term is computed with respect to g. In order to solve the
equation T'(u,X) = 0, we wish to use the inverse function theorem.
Thus we would need to check that DT = DT{4 z) is an isomorphism
between appropriate spaces with bounded inverse (independent of R for
large enough R). To be precise, we consider DT as an operator from
Wz’f X Wz’f to WE’QP_ s- It is well known that DT is a Fredholm operator
of index 0 for p > 1 and ¢ € (0,1) (see [B]). Thus in order to check
that DT is an isomorphism, it would suffice to check that the cokernel
is trivial; i.e., that DT is onto. This seems to be difficult to check in
general, so we use a less direct approach. We consider enlarging the
domain and we look for solutions of the modified problem

d(utg + h,u? (7 + LX)+ k) =0

where h and k are suitably small symmetric (0, 2)-tensors with compact
support. If we can solve this problem, the desired asymptotics follow as
before.

We will need to use the fact that the operator D® = D® 4 is
surjective as an operator from Wz’f X Wi’f_d to ng_é for § € (0,1).
This result was proven by Choquet-Bruhat, Fischer, and Marsden in
[CFM] in the maximal case, and by Beig and O Murchadha [BO] in
the general case. We give a direct proof in the next proposition which
appears to work under weaker asymptotic assumptions than those of
[BOJ, although the same basic idea is employed.

Proposition 3.1. The operator D® g +) is surjective from the do-
main Wz’g’ X Wi’i& onto WE’;& forp>1andd e (0,1).

Proof. We will check the surjectivity for the initial data (g,7), and
the result for (g, 7) will follow by a perturbation argument. We first
note the range of D® contains that of DT (a closed finite codimension
subspace), and hence is of finite codimension in Wg’é’f s+ Therefore D®

has closed range. If there is an element (£, Z) in the dual space Wg’f 45

which annihilates the range of D® (which equals the range of DW¥), we
have that (£, Z) lies in the kernel of D¥* and hence by (7) satisfies the
equations:

§ij — (A§)gij — ERij — 1/2((KP1Zy)p) g5 + 1/2(KiZ%),p = 0,
—1/2(ZZJ —|— Zj;i) + (le Z)gij — QfKZ] + 2€(T7"K)g” = 0
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We may take the trace and rewrite the equations eliminating the terms
involving A¢ and div Z. We then have

(9)  &ij — &Ry + 1/2(K527)p
+ [1/2RE + 1/A(K™ Zg)p, — 1/4((TTK) Z7) g5 = 0,
1/2(Zi;j + Zjn‘) + 26K, = 0.

Note also that taking the trace of the first equation and the divergence
of the second, we get a system of linear equations of the form A(¢, Z) =
B(z)(VE,VZ) + C(x)(&,Z), where B,C are coefficient matrices. The
following estimates are true for any weight 7 > 0 and for any large
radius R (where (Lzg)ij = Zi;j + Zj; is the Lie derivative):

(10) / €07 Pp P dpg < O/ (IVVE[p*TT)2p3dpy,
M\Bg M\Bg

[z petdng < [ (Lagle'
M\Br M\Bgr

A proof of these inequalities will be given below. Using these inequal-
ities, we can show inductively that (£, Z) must vanish to infinite order
at infinity; i.e., [(£, Z)| < Cnp~" for any integer N > 1. To see this, we
know from simple initial asymptotics for the equations that £ and Z are
of order p~!. Putting this into the equations we have that VV¢ is of
order p~* and Lzg is of order p~3. Thus we may choose 7 < 2 and con-
clude that (&, Z) are of order at most p~7 for any 7 < 2. Note that the
pointwise bounds follow from the corresponding weighted L? bounds by
applying standard elliptic estimates (mean value-type inequalities) on
balls of the form Bj,|/o(x). Putting this information back into the equa-
tions, we find that VV¢ is of order p~" =3 and Lzg is of order p~ 72
Thus we may choose 7 < 3 and improve the decay on (£, 7). We thus
conclude inductively that (£, Z) vanishes to infinite order at infinity.

To show that (£, Z) vanishes identically, we use a standard unique
continuation result (see Kazdan [K] for a version written in the most
convenient form). To see this, we consider doing an inversion (Kelvin
transform). That is, we let # = (2',22, 23) denote asymptotically
Euclidean coordinates and we introduce y = |z|~2x where |z| is the
Euclidean norm of 2. Now observe that the metric § = |z|~%g has
scalar curvature R = |z[°(=8A(|xz|™!) + |#|7'R) and this is of order
|x| at infinity. We then observe that the metric g expressed in the y
coordinates has Lipschitz components near y = 0, and that g;;(0) =
0ij. The conformal transformation for the Laplace operators is then
Au—1/8Ru = |y|3(A(ly|~tu) —1/8R(|y| " u)). Tt follows that the quan-
tities (£, 2) = (|y|7'¢, |y| ' Z) satisfy a linear system of the form

A(€,Z2) = B(y)(VE,VZ) + C(y)(§, Z)
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with B is bounded near y = 0 and C' is bounded by a constant times
ly|=*. The unique continuation theorem then implies that (¢, Z) van-
ishes identically.

Proof of (10). We choose a smooth cutoff function ¢ which takes
values between 0 and 1 with {(z) = 0 for || < R and ((z) = 1 for
|z| > 2R. The following inequalities for the Euclidean metric § on R3,
and for functions f and vector fields X in the appropriate weighted
spaces, are standard and can be proved using integration by parts:

/ \foT PP da C/ (IVflp" )2 p~ 2 da,
R3 R3

L pae <€ [ (nxdle )2 e
Thus we may take f = (£ and X = (Z to obtain

/ e Pptdr < C / (IV(¢O)lo™m)2p 3,
M M

IN

IN

| (czipotie < c [ (Leotlet 20
M M

where all quantities are taken with respect to the Euclidean metric on
the end M \ Bg. Using the choice of ¢ and easy manipulations, these
inequalities clearly imply

(11) / €p7Pp da
M\Br

<c [ (et [
M\BRg Bar\Br

/ (1219720 de
M\Bgr

<C (|Lz6|p )2 p3da + CR2T3/ | Z|dx.
M\Br Bar\Br

We may now prove (10) for the Euclidean metric by contradiction. For
example, to prove the second inequality, suppose we have a sequence Z,,
with

|zl tae =1
M\Bgr
but
| (Lasiptie b
M\Br

We may assume that the Z, converge H'-weakly and in Ll20 . to a limit
Z. By the inequality (11) above we see that Z # 0, and we must
have Lzd = 0. Therefore Z is a nonzero Killing vector field for §
with [ M\ 52| p7)2p~3dx < co. This is a contradiction which proves
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the second inequality of (10) for the Euclidean metric. By a similar
argument, one proves

/ EpT?p%dz < C (IVEIp )2 p 3 da,

M\Bg M\BRr

and the first inequality of (10) follows from applying this with £ replaced
by V¢ and 7 replaced by 7 + 1. Using the fact that g approaches the
Euclidean metric on approach to infinity, the inequalities (10) follow.
This completes the proof of the surjectivity of D®. q.e.d.

We are now in a position to complete the proof of Theorem 1. It is
well known (Lemma 2.4) that (h, k) — ®(g+ h, 7+ k) is a continuously
differentiable map from a neighborhood of (0,0) in Wz’g’ X Wi’ﬁ s to
WE’; s forp>3/2andd € (0,1). We further observe that the truncated
data (g, ) are arbitrarily close (for R large) to (g, 7) in the Wz’g’ xWi’f_é
norm. Thus the linearization D® is also surjective at (g, 7). We may
choose a basis Vi,...,Vy for the cokernel of DT, and choose (0,2)-
tensors (h1, k1), ..., (hy, kn) in WP x WP so that D®(hs, ks) = Vs
fors =1,..., N. We now perturb the (hsg, ks) to make them of compact
support. The corresponding images under D® are close to the V;, and
hence they still span a complementing subspace for the closed subspace
Im(DT). We let W5 be the linear span of (hy,k1),...,(hn,kn). We
note that the null space U C WZ’f X Wz’f of DT is N-dimensional
since the index of DT is 0. We let W be a closed complementing
subspace to U, and we let W = W; x Ws, so that W is a Banach space.
We then define the map T on an open neighborhood of ((1,0), (0,0)) €
((1,0),(0,0))+W by setting T((u, X), (h, k)) = ®(u*g+h, u?(7+ LX)+
k). We see by construction that DT is an isomorphism at ((1,0), (0,0)),
so we may apply the standard inverse function theorem to assert that
T is an isomorphism from a fixed (independent of R) neighborhood
of ((1,0),(0,0)) and covers a fixed neighborhood of ®(g, 7). It then
follows that this image contains (0,0), so we may find v near 1, X near
0, (h, k) near (0,0) in the appropriate spaces so that ®(g,7) = 0, where
g=u'¢+hand # =u? (7 + LX)+ k.

We now show that the ADM energy and linear momentum are per-
turbed by a small amount under this perturbation of (g, 7). If E,P;
denote the total energy and linear momentum of a solution (g, 7) of the
vacuum constraint equations, we need only show that E, P; are contin-
uous with respect to the ng X Wi’ﬂ s norm for § > 1/2. For example,
to see this for the P;, observe that by the divergence theorem we have
for R1 > R

)] _ )] _ J
f i dog ?{ mijvldoyg —/ T i;jdug
Br,\Br

IX|=R: Ix|=FR
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where 77/, ; represents the divergence of the vector field . :0/0x7. Using
the constramt equation, we see that the volume integrand is a sum of
Christoffel symbol times components of 7. Symbolically we write

1/p
/ [Tl dpry < ( / <|r|p1+5>pp—3dug>
M\Bgr M\Bpg

1/q
- ( / <|w|p2—5>qp—3dug) -
M\Bg
Now if § > 1/2 we have

q/p
/ (Imlp* %) p ™ dpy < (/ (Iﬂlpl+5)”p‘3dﬂg>
M\Bg M\Bgr

(p—q)/p
. (/ pegd/ig>
M\Bg

where € = (25 — 1)pg/(p — q) > 0. Thus we have

Pi— f mjl/jdag SCR_6
|x|=R

where the constant ¢ depends only on the WE’(%D X Wi’f_ s norm of (g —
9, 7). The continuity now follows from continuity of the approximating
surface integral. This completes the proof of Theorem 1. q.e.d.

4. Solving the Deformation Problem

Let k£ be a nonnegative integer. Given a compactly contained domain
2 C M, we let d denote the distance function to 92. We let ( € C°(Q2)
be a bump function (identically one on most of 2), and let p < 1 be
a function which is positive in © and supported in Q, and which is
identical to d or e~/ near Q. We can require p to be C¥ if Q is
a C*-domain (for N > k in case p = dV), and using the exponentially
decaying weight we can have p smooth for smooth €.

In this section we prove the following local deformation theorem for
the Einstein constraints.

Theorem 2. Let Q C M be a compactly contained C*+2-domain, and
let ¢ € C°(Q) be a bump function and p € C*T2(M) be a weight func-
tion as above. Let go be a CKTH%(M) metric and w9 a C*+3%(M) sym-
metric (2, 0)-tensor. Suppose that the linearization D® 4 -y of the con-

straint map ® : CF+22(Q) x S(k;oz)a(Q) — OF2(Q) x X*+12(Q) has an

injective formal L?-adjoint D@(go o) O (90, m0), where we can consider
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DCIY(“QO o)+ Hioe (Q). Then for N sufficiently large, there is an
€ > 0 such that for any function v € C**(Q) and any vector field W €
XEFL(Q) for which (v, W) — @(go, 70)) € CI(Q) x X1 (Q) with
the support of ((v,W) — ®(go, 7)) contained in Q and with || (v, W) —
; k+2,« .
(I)(go’FO)HCS’,al(Q)XX;“ff’a(Q) < €, there is a C*T2%(M) metric g and a

CHEN(Q) — L2

loc

Ck+2.2( M) symmetric tensor = on M with ®(g,7) = (v, W) in Q and
(g,7) = (g0, m0) outside Q. Moreover, (g, m) € CF22(M) x CF*+22 (M)
depends continuously on ((v, W) — ®(go,m0)) € CS’_O{ (Q) x Xf_ﬁl’a(ﬁ).

If in addition ((v,W) — ®(go,m0)) € C=(Q), and (go, ™) and O
are smooth, and if we use an exponential weight, then we can solve for
(g, m) smooth.

If the adjoint of the linearization has nontrivial kernel K, then K is
finite-dimensional, and the analogous theorem holds for solving ®(g,m)—

(v,W) e (K.

The analogous result for the scalar curvature operator is found in [C];
in particular it is shown there that at generic metrics gy, for functions
S so that the difference S — R(go) vanishes outside 2 and is sufficiently
small (in a weighted Holder norm), there is a metric g with R(g) = 5,
so that g — go is small and supported in Q. The regularity statements
are analogous to those above.

The proof of Theorem 2 will be carried out over the next few sections.

For future use, if K is the kernel of D<I>2‘g0 o) We define S, to be the

L*(du,)-orthogonal complement of (K, and we take Sy = S5 where
appropriate. We will emphasize the case we require to prove Theorem 4,
for which we consider (v, W) = 0 and (go, 7o) = (9, 0) is the Minkowski
data. In this case K is ten-dimensional, and so we are solving the
vacuum constraints up to the finite-dimensional error, i.e., ®(g, ) € (K.

4.1. The Basic Estimate. We prove an elliptic estimate in the p-
weighted Sobolev spaces in a C?-domain . Since p decays at 9, the
boundary decay is imposed by p~!, not p, in the sense that tensors
in p~!'-weighted spaces will have to decay suitably at the boundary.
We remark that we get a global estimate, even though the functions
in the p-weighted spaces may not decay at the boundary. The key to
achieving this estimate is using the overdetermined-ellipticity correctly.
We first state the estimate in the form needed for the asymptotic gluing
(Theorem 4), and later remark how to get the estimate required for
Theorem 2.

Theorem 3. Let Q be a compactly contained C?-domain in R3, and
the weight p is defined as above. For N sufficiently large, there is a
constant C' and an € > 0 so that for all data (g,m) within € of the
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Minkowski data (6,0) in C*(Q) x C1(Q), and for all (f,X) € Sy,
12 1Dz g < CID®, () 0

Proof. We first prove estimates on the vector field X. By Lemma 2.1
it suffices to prove these estimates for X a smooth vector field on €.
Furthermore we define Dy X = Lxg, to emphasize we are thinking of
the operator acting on X.

Lemma 4.1. For p as above with N sufficiently large, there is a
constant C' so that for all X orthogonal (or merely in some fixed subspace
transverse) to the Killing fields of a metric g, the following estimate
holds:

(13) 1 X t10) < ClIDgX | 120 -

Proof. We first note that since the Killing fields are Jacobi fields
along geodesics, they are locally determined by their first order jet at
a point, and so the space of Killing fields on 2 is finite-dimensional
and the fields in the kernel will be smooth (as much as the smoothness
of the metric and domain will allow) up to the boundary of €. Let
Qe ={z € Q:d(xz,00) > e}. The Lie derivative is an overdetermined-
elliptic operator; that is, it has injective symbol. By standard elliptic
theory, then, one gets an interior estimate of the form

(14) X[m0y < CUDgX I 22020) + X1 22(020))

where Qy CC Q and C depends on d(€p,952), but is independent of
€< %d(ﬂo, 09) small. To get a global estimate we foliate 2 near 9 by
level sets ¥, = {z € Q: d(xz,00) = r} of the distance function to 9¢;
there is an 7o > 0 depending on €2 for which these level sets are regular
hypersurfaces. By standard elliptic theory on these closed hypersurfaces
> we get

1 Xslla sy < C (IDgX 2wy + 1 X L2(s))

since the difference between (DyX)|rs and Dy, Xy is zero"-order in
X g» is the induced metric, and Xy, is the projection of X onto TX.
The constant C' in this estimate can be taken uniform in the distance
to 0N sufficiently small. Recall that since |Vd(-,09)| = 1, the co-area

formula, gives for positive functions or L!-functions G: [ Gdu,=

r1<d<ra
T2

| | G dog dr. Applying that here yields

1 X,

H(XT7VEXT)HL2(A) < C(IDg X120y + 1 X I 22(a))
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where X7 = X — (X,Vd)Vd is the vector field on A = {x € Q :
r1 < d(z,00) < ra} given by the projections Xy. Since the constant is
uniform in 71, we see that combining with the interior estimate we get

(15) (X", VeX D)2 < C (IDgX 200 + 1 X 1 22(0.))

where C' is uniform in € small. We can use the co-area formula to
integrate the square of this estimate against p’(e) (which is positive for
e small), and integrate by parts to get the desired weighted estimate, as
in [C].

It remains to estimate the terms involving components of X and VX
normal to ¥. We compute in a local orthonormal frame eq, e2, e3 adapted
to X; we take e3 = Vd, well-defined in a neighborhood of 92. We have
estimates for X;,; for 4, 7 = 1,2, and hence by taking the trace of Dy X,
we can also estimate X3.3 as above. It suffices then to estimate X;.3 for
i =1,2. Let E; denote a set of the form {z € Q : 0 < d(z,00) < r;},
and let & be a cut-off function of the distance to the boundary, which is
identically one for d < ro < r; < 1, and vanishes outside F;. We first
note

2

/Z (Xis + X3,)pdpg < 2/§Z(Xi2;3 + X3,)pdpg
o =1

E2zl

2
< [ 10X pdisy ~ 1 [ €3 XiaXauoduy,
Q E =1

We now want to integrate by parts to make the latter integrand
Xi.3iX3. We note that by the arithmetic-geometric mean inequality

(AM-GM) ab < % <62a2 + IZ—;), terms in the integrand of the form X3 .X;

or X3.,X; can be replaced (up to a constant factor) by |X|?, with the
other term being absorbed on the left side of the above inequality. This
observation allows us to switch between covariant derivatives (on ¥ and
Q) and partial derivatives as needed. By integration by parts (diver-
gence theorem on X)) and the co-area formula, and using AM-GM as
needed, we get (since for i = 1,2, (; =0 = p;)

/Z 2+ X34)pdpy < /\Dledug

+4/£ZX131X3PCZN9+CHXHL2 ()"
=1
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We now use the Ricci formula to commute covariant derivatives: Xj.;x —
Xikj = Xlngji. So we now have

/) Sk X < 19,

Q

+4/£ZX”3X3,odug+c||X||L2
=1

If we integrate by parts again (this time on ), we get (since the bound-
ary integrals vanish)

/Z 3+ X3 pdug
2
< /\DgX\2Pdug —4/§ZX1';¢X3;3PCZM9
Q o =1

2
- 4/(€ﬂ),3 Y XiiXadpg + ClIVeX T35 ) + CIX |72 (q).
Q =1

We can estimate the second and third summands on the right side
above by the AM-GM inequality together with the weighted estimate
on (X7, V= XT), bounding them by (in case p = d”¥ near the boundary;
a similar argument holds for p exponentially decaying)

C [ 1D,XPoduy + CIX 3y + [ 1XPa 0,
Q Q

We now claim there is a constant C' (depending on N, as well as g
and Q) so that

/|X|2d_2pdpg §C/|DQX|2pd,ug.
Q

If this were not the case, we could find a sequence X}, of vector fields so
that

/\Xk|2d2pdug =1

but for which
/|D9Xk]2pdug — 0.
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Now by the previous estimates, then,

(16) /|ngk\2pdug <C /|Dng|2pd,ug+/|Xk|2pdpg +1.
Q Q Q

Thus we see that Xjp'/? is bounded in H'(), and so we can assume
(by taking a subsequence) that there is a vector field X so that Xjp!'/?
converges weakly in H' and strongly in L? to X p'/2. So X is in H} (Q),
and X}, converges to X locally in L?, so that DyX = 0 weakly. But
the X} are transverse to the Killing fields, and so X = 0, and thus
X;p'/? — 0 in L?. Now we note that there is an r; and a constant C
(independent of N) so that on Fy,

Agp > CN?d~2%p

(again, in case p is exponentially decaying we have a similar estimate).
So we get by integration by parts

(a1 OV [ NP pduy <2 [ XV, XN p
Q Q

+ /f’]Xk\QNd_lpdug.
Q

Since ¢’ is compactly supported in €2, the second integral on the right
side goes to zero in k. By Cauchy-Schwarz we also have

2/§|Xk\|Vng]Ndlpdug
Q
1 1
2 2
< 2N /élngkl2pdug /E!Xk|2d‘2pdug
Q Q
Now using the previous estimates (16), (17), we get that

CN? /ka|2d_2pd#g < 2N(1 + o(1)) + No(1)
Q

where o(1) denotes a function which goes to zero as k — oo. So for N
sufficiently large, we have for large k

_ 1
[ epazpdu, < 5
Q

But we also have by the Ll20 .~convergence that

k11r+n /(1 — )| X12d % pdp, = 0.
Q
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So far large enough £,

[ 1XuPa oy <1
Q

which is a contradiction. q.e.d.

We continue the proof of the Basic Estimate, Theorem 3. As we
noted above (Lemma 2.5), the kernel of DO; ) is Ko @ K. (f,X) e So

precisely if f is orthogonal to (Ky and X is orthogonal to (K. By the
preceding lemma, then, to prove the Basic Estimate at the Minkowski
data, we now just need to estimate f by Ljf. We do have an estimate
of the form

12y < C (1L fll 2 + 1l 22@) -
Indeed using Eq. (2.2) and taking a trace, we see that

Hess,f = —% (Trg(L;f) + fR(g)) g — f Ric(g).

Since f is orthogonal to Ky, we can apply standard theory (basically
the Rellich theorem) to get the estimate

(18) 1 fllz2(00) < CllLyfllz2(00)

where C is uniform in e small, and so we get the desired weighted
estimate as indicated above following (15).

We now have the following estimate for (f, X) € Sp:

(19) 1 X2 05) < CIDDs 00 (£ X360
For data (g, 7) close to the Minkowski data in C%(Q) x C'(Q2), Theorem
3 follows by perturbation. q.e.d.

4.2. Variational Method. In this section we show how solutions to
M5, D® (g ) (h,w) = (¢, V) for (¢,V) € Li_l(Q)ﬂSo, (and (g, ) close to
Minkowski data), can be obtained from standard variational arguments.

We let IIg, denote the orthogonal projection onto Sy with respect to
the metric 0, and we define the operator R, ) to be the linearization of
the map Ilg, o @, so that R, r) = lIg, 0o DP(y r). We want to show this
map surjects from a suitable space onto Sy N Lz_l (Q). In fact it is easy
to see this will be true if we can show the map P, r) := Ilg, o DP(
is surjective to Sy N Li_l(Q), for (g, ) near the Minkowski data.

g,m)

We define the formal adjoint 79(* 9.7) with respect to the metric g, and

for p(f, X) € szfl (2) NSy we define the functional G by

(20) G(u,Z) = / (% | Plgmy(w, Z) 12 —(f,X) 4 (u, Z)> p dpy.
Q



206 J. CORVINO & R.M. SCHOEN

We consider the infimum p = p 5, xy < Oover all (u, Z) € V, = Hg’l(Q)ﬂ
Sg. For any (u,Z) € V,, and any (¢, W) with compact support in ,
we have

(21) <Pz<g77r) (uv Z)v (wv W)>L2(dug) = <(u7 Z)? 7D(g,ﬁ) (wv W))LQ(dug)
= <(u7 Z)a D(I)(g,Tr) (7/)7 W)>L2(d,ug)
= <D(b>(kg,7r) (U, Z)7 (¢7 W))Lz(dug)

where the second inequality follows from (u, Z) € V. So on V, we have
D(If(" gm) = 77(*g ) and thus the Basic Estimate yields a minimizer to our
variational problem, as we now recall. We first note that p is finite.

Lemma 4.2. For any (f, X) € L3(Q), p > —o0.

Proof. We simply note that the Basic Estimate, along with Cauchy-
Schwarz, yields the estimate

1
6, 2) > 5, 2) a1 X gl (0 2)l gz
q.e.d.
Corollary 4.3. For any (f,X) € L%(Q), = lim G(u;, Z;) for some
sequence {u;, Z;} with {||(u;, Zl’)”Hg,l(Q)} bounded.

Standard functional analysis now gives the existence of a minimizer
(uo, Zo) in the Hilbert space Vg, [C]. In fact by the convexity of the
functional G the minimizer is unique. In any case, since the orthogonal
complement of S, is composed of C2°(€)-functions, we see that the
Euler-Lagrange equations will hold on all of C2°(1), yielding the weak
formulation of

P(gyﬂ)pp(*gm) (up, Zp) = HggD(I)(gm)pD(I)zkgm) (uo, Zo) = p(f, X).

A simple argument comparing the L%-projections shows that

pD®F  (ug, Zp) is also a weak solution of the equation

(g,m)
HSOD(I)(Q:”)pD(I)Ekg,w) (u07 ZO) = (Qb, V)

where (¢, V) € Sy ﬂLi_l (©2) and where we take PgmpDe(, W)(uo, Zy) =
p(f, X) to be the L?(du,)-projection of (¢,V) to S,.

4.3. Pointwise estimates and the nonlinear problem. Assuming
we start with tensors (go, ) on R3, sufficiently smooth and sufficiently
close to Minkowski data on  cC R3, and which solve the constraint
equations outside  (and in a neighborhood of the boundary), we pro-
duce tensors (g,7) which agree with the original data outside 2 and
which satisfy IIg,®(g,7) = 0. The basic procedure is straightforward:
we use the variational procedure to solve the problem at the linear level,
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and we iterate the process of correction. In this section we write down
the estimates needed to show convergence of the iteration.
gO,ﬂ'O)pD(I)zkgo,ﬂ'o)(uo’ ZO) =

—TlIs,®(go, m0) as above. Assuming (go, 7o) € MF42(Q) x Sgro:s),a(ﬁ),

we get regularity and interior elliptic estimates on the solution (ug, Zp).
We will invoke the weighting scheme for elliptic systems of mixed orders
due to Douglis and Nirenberg [DN]. Note that for notational simplicity
we will omit the subscript (go, mp) on the operators below.

We start by solving the equation ILg, D®(

Now the operator p~'D®pD®* is uniformly elliptic, and gives a 4 x 4
system, which we will symbolically write as L;U = L;,(D)U k and the
weights s; and ¢, are defined so that the order of L is sj+t; the elliptic

4 .
estimate comes from bounding the Holder semi-norm [U"L] + o Up to
i=1 b

si.0- Inour case U stands for (u, Z), and

4
a constant factor by > [L;U]_
i=1

so we want the weights to satisfy the following conditions: s1 + t1 = 4;
for j,k > 1, s1 +t; = 3 = s +t1 and s; +t;, = 2. With this in mind we
let 1 = 4, and the other t;, = 3, we let s = 0 and the other s; = —1.
Then for ' CcC Q

| (ho, wo)k+2,a.9/
= ||pD®* (uo, Z0)||k+2,0,00 < C ([uollk+a,0,00 + 1 Z0|k43,0.07)

< C( (0, Z0) 30 + | DH(pD®* (0, Z0) I

+ ||Ddiv (pDP* (o, ZO))HkH,a,Q)-

If the weight p is d"V near the boundary, then the interior estimates

local to the boundary (B’ = B(xz, @) C B = B(x, @)) are

oy wo)llks20,50 < Ca¥ ) (o, Zo) | 2(s)
+ |lp ' DH(pD®* (uo, Z0)) |k.0.B
+ Hp_lDdiV (pDD* (up, ZO))Hk+1,a,B)-

Here 1¢(k, ) is linear in k and «, and also note that the lower-order
coefficients in the operator p~!D®pD®* have powers of 1/d that are
accommodated by scaling in the estimate, or can also be subsumed into
Y (k, ). Using the estimate

_N
1(uo, Zo)llz2(5) < Cd™> [uo, Zo)l| 20
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we then have

(22)  [[(ho,wo)llk+2,0,B
N 1
< Ca5 =0 (| (ug, Zo)llz + I~ DH(pD®* (0, Z0)) 0.5

1 . %
+ |~ Ddiv (pD®* (0, Z0)) 1,05 )

In fact we need to do the above estimates in terms of the projected op-
erator. Because the difference between the operators p~'D®pD®* and
p IRpD®* on V, (see (21)) is finite-dimensional, we get the following
interior estimate
(23)  [[(ho, wo)llk+2,a.07

= [pD®* (uo, Zo) k42,0, < C (luollkraae + | Zollkt3,0.0)
<C (H(“O’ZO)HLf,(m + [IRp DO (uo, Zo)\of,_al(g)xxfjll,a(m> :

Here €0 is taken to be a “large” fixed domain containing the support of
the fields in (K. We have used that there is a constant C so that for
all (¢, V) € (K

[(0, V) loro @y xamt ey < Cll(0, V)l 2o

in particular for (¢, V) of the form II¢x D®pD®*(u, Z). We then use
that by compactness, for all € > 0 there is a C'(€) so that

[ (u, Z) |l cagnyx a3
< €|l(u, Z) || erraaryxarrsary + Cl6)|[(u, Z)| L2 (qr)-

Since the fields in (K are supported away from the boundary, R = D®

near the boundary. Thus the estimates we have local to the boundary

are as in (23), except for the appearance of the factor 4> () o the

right-hand side, which yields the decay of the deformation tensors at
9.

Next we note that we can bound (hg,wp) in Li,l(Q) by the basic

injectivity estimate for D®*, and we can bound the lower order term in
the estimate by the variational inequality G(ug, Zy) < 0, obtaining

||(h0,000)||L,23_1 < Cl|(uo, Zo)llrz < C"HSO(I)(.QO?WO)HLi_l
< C[|(g0, ™)l 2, -
P

This inequality can be inserted into the decay estimates near the bound-
ary (22), and it can also be used now to get a global estimate on (hg, wp):

(24) H(hO’WO)HLi_l + [[(ho, wo)llk+2.0 < Cl[®(g0, M)l ohoa o bt
P p

We now iterate the process of linear correction. We linearize only
about the initial metric and momentum tensor, since the coefficients in
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the fourth-order system depend on derivatives of (go,m); for example
in computing D<I>(go77m)pD<I>z*go7ﬂO), one differentiates the Ricci curvature
twice, which involves four derivatives of the metric (¢f. Lemmas 2.2 and
2.3). The above estimates show a gain of two derivatives in the metric
deformation tensor, not four. Hence we cannot apply Newton’s method
to produce a solution. However, we can still produce solutions by linear

correction, as we now describe. We use Taylor’s formula in the form
q’(go + h7 mo + w) = CI)(QO') 770) + Dq)(go,ﬂo) <h7 w) + O(”(h7w)Hz+2,a)

where
IO (R ) Iy 2,00l ke x rtra < Cll(hyw) I 4o,

and the constant C' can be taken uniformly for data near (go, 7o) and
on subdomains of ). We also have the following Taylor’s theorem for
the projected operator on €2:

(25) IIs, @ (g0 + h, ™o + w)
= Hsoq)(g(]a 7T0) + R(goﬂro)(h7 w) + O(H(h? w) Hz+2,o¢)'
By solving the equation

Mg, D® (g ) PD Py oy (105 Z0) = —TL5,®(g0, o)

90,70) (90,70

as above, then, we have that

L, ® (g1, 7)o savrstiec < C ([l (o, wo) 17 12,0)

where (ho,wo) = pD®7, \(uo, Zo) and (g1,m1) = (go,m0) + (ho,wo);
this estimate holds locally near the boundary as well, outside the sup-

port of (.

At the next stage, we again use the linearization at (go,mo) (as ex-
plained above) and solve IIg,D®pD®*(u1,Z1) = —Ilg, ®(g1,71). We
obtain (hy,w;) = pD®*(u1, Z1) and (g2,m2) = (91,71) + (h1,w1). The
quadratic decay at the first step does not propagate (since we linearize
about the initial data only) but the estimates above show that a Picard
iteration converges; indeed it is straightforward to check that the error
terms we get by using the fixed linear operator to correct the nonlinear
term at each stage still allow the iteration to converge geometrically at
a rate better than linear, but worse than quadratic. In fact we have the
following iteration lemma, a straightforward adaptation of Prop. 3.9
from [C]. (We remark that there are a few harmless typos in [C]; in
particular, Cﬁ’ﬁ should be defined as we have done here, and so the

norm one uses on (h,w) (simply A in [C]) in the Picard iteration is the
norm on the left side of (26) below.)

Lemma 4.4. Let C be as in (24). Suppose we have recursively ob-
tained (ho,wo), - -, (hm—1,wWm—1) 50 that go, . . ., gm are CFT2 metrics.
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Suppose there is a constant K and a § € (0,1) so that for all | < m,

1, w2, + 110, ) 42,0 < CK (90, mo) o

1

k,a k+1,a
C/f1 ></’V/rl
and for all j < m

1450
HHSO(I)(gja 7Tj) Hcf,jﬁ Xijll‘a < K||(I)(90> FO)HCk’jf" Xij—ll,a'

P
Then for sufficiently small ||®(go, m0)|| sk.c  yh+1.a (independent of m)
1 X 1

the iteration can proceed, and the above inequalities persist.

The local estimates ((22), and the local version of (23)) near the
boundary (outside the support of ¢) allow us to show the limiting tensors
can be made to decay as much as we like as we approach 9€) by choosing
N large enough; we can even get all derivatives decaying if we choose
smooth data ®(go, mp) sufficiently small, supported away from 02, and
if we use an exponential weight p. Moreover we have a bound on the

o0

limiting tensors (h,w) = > (hk,wk):

(26) 1 )z, + ()2 < ClIR(90, M)l ghey s e
P 2

This bound comes straight from the estimates done above (and the
geometric convergence).

We remark that for the smooth case we solve the nonlinear equation
in some finite regularity class to start, but using an exponentially decay-
ing weight. We use standard bootstrapping on the quasilinear elliptic
condition ®((go, m0) + pDP*(u, Z)) € (K C C* to see that the solution
pD®*(u, Z) is smooth on the interior, and then use the decay of p to
prove that all the derivatives decay near the boundary; we note that we
have assumed that ®(go, mo) is supported away from the boundary, and
we are considering the case (v, W) = 0 of Theorem 2.

4.4. The General Case of Theorem 2. We now indicate how to
finish the proof of the full version of Theorem 2. We need only prove the
Basic Estimate (12) in the general case (i.e., not just for perturbations of
the Minkowksi data), as the analogous variational method and nonlinear
iteration will proceed as above.

The general version of the Basic Estimate is proved by first observing
that the inequality HXHH%(Q) < C(HDgXHL%(Q) + HXHL%(Q)) follows by
combining Lemma 4.1 with the fact mentioned earlier that the kernel of
D, is finite-dimensional and smooth up to the boundary. The condition
that (f, X) is in the kernel of D®* can be written (using equation (9)) as
a second-order system of ordinary differential equations along geodesics,
and so the kernel is also finite-dimensional and smooth (as smooth as
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allowed by the other data). Elementary manipulation using Lemma 2.3
then yields the estimate

1 Xl g2y < C(IDRg iy (£ X)Lz + 10 X) 3y )

We can remove the lower-order term in the estimate by essentially the
usual Rellich argument; to do this, one first shows the left side of the
above estimate can be promoted to ||(f, X)p% | z72.1(2)- This estimate in-
corporates different weights for different derivatives. In fact we already
have the required estimate for the vector field X above, and the analo-
gous estimate for f in terms of Lj f is a straightforward modification of
that argument. This completes the proof of Theorem 2. q.e.d.

5. Handling the cokernel

We apply the preceding analysis to solve the constraint equations
with given model near infinity up to a finite-dimensional obstruction.
Given any AF solution of the constraints on R?, we fix AF coordinates
at infinity, and at a sufficiently large radius R we smoothly patch (using
a smooth cut-off function whose k" derivative is O(R™¥)) our origi-
nal data to the model data, the transition occurring in the annulus
Apg from R to 2R. To apply the preceding section, we will pullback
and scale our glued data to the unit annulus A;. Under this scaling
the relevant geometric quantities (derivatives, curvatures) are O(R™1),
the (AC) conditions hold to order O(R~?), and the vacuum constraint
equations are scale-invariant. For large enough R the data will be suf-
ficiently close to the flat data on the fixed annulus A1, so the data can
be perturbed to make the constraint functions lie in (K on A;.

It is at this point we need to be clear about what are suitable families
of solutions to glue on near infinity. We define a family of solutions on
the exterior of a fixed ball and smoothly parametrized on an open set
O C R to be admissible if, with reference to a fixed coordinate chart
near infinity, the family satisfies (AC) locally uniformly with respect to
the parameters, and the map © : @ — R0 which associates to each
member of the family its energy-momenta (F,P,J, C) is a homeomor-
phism onto an open subset of R1Y.

We note that slices in Kerr form an admissible family, parametrized
by the total mass m, the angular momentum parameter a, and an el-
ement in the Poincaré group to control Euclidean motions of the AF
coordinate system as well as boosts. It is well-known that under the ac-
tion of the Poincaré group the energy-momentum transforms as a four-
vector, and the center and angular momentum enjoy a similar transfor-
mation rule (they comprise a skew-symmetric M, with M, a constant
times C*) cf. [ADM], [BO], [RT], which allows one to see that vary-
ing the slices near the given one gives a local homeomorphism from a
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ten-dimensional family of slices to the ten-dimensional space of energy-
momenta. Note that time translations and rotations about the axis of
symmetry of the Kerr are isometries, so we really mod out by the closed
two-parameter subgroup they generate to parametrize the slices, leav-
ing eight effective parameters from the group. Please see [CD] for an
explicit formula and other examples.

Let Er C M correspond the the exterior {x € R3 : |x| > R} in an
AF chart. We now state the gluing theorem.

Theorem 4. Let (g, m) solve the vacuum constraint equations on
M, and satisfy (AC) in an AF coordinate chart in a given end. Let O
parametrize an admissible family of solutions, with \g € O so that O(\g)
is the energy-momenta of (g, 7). There is a radius R and a solution
(g, ™) of the constraints so that (g,7) = (g,7) on M \ ERr, and (g,7)
agrees with a suitably chosen member of the admissible family on EoR.

Coupled with Theorem 1, we have the following approximation result.

Theorem 5. Let (g, ) be any AF solution of the vacuum constraints.
Given any € > 0, there is a solution (g,7) within € of (g,m) in the
Wz’f X Wi’fﬂ; norm, whose ADM energy-momentum (E,P) is within e
of that of (g,7), and so that near infinity, (g,7) agrees with a member
of an admissible asymptotic model family.

Proof of Theorem 4. For sufficiently large R, we have a continuous

map Z from an open set O C R to R as follows: take data corre-
sponding to A € O, glue it to the given data in Ar, and then perturb
using the above techniques to data (g, 7) with ®(g,7) lying in a fixed
ten-dimensional vector space; we let Z(A) correspond to ®(g, 7). By de-
sign, (g, 7) is identical to the member of the asymptotic model family in
the exterior end Esg. In the next section we show that this map Z has
a zero near the parameter \g € O corresponding to the given initial AF
data (g, 7) with which we started, and thus this data solves the vacuum
constraints. Notice that we cannot arbitrarily glue on anything we like,
but the procedure finds a suitable exterior that will lead to a solution
of the constraints.
5.1. Computing the parameter map. In this section we verify that
the compactly supported deformation which puts the constraint data
into the approximate kernel preserves the asymptotic symmetry con-
ditions (AC) on the annulus. This will allow us to conclude that the
projection of the data onto the cokernel is given to leading order by the
change in parameters across the annulus from those of original data set
to those of the model we glued on; i.e., the deformation does not induce
any extra error terms. This simplifies the computations in [C], where
less precise estimates were used along with explicit calculations in the
conformally flat case; we note that a similar analysis could be carried
out here.
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5.1.1. Preservation of the AC Condition. Starting with g and 7
satisfying the asymptotic condition (AC) (in an AF chart, including
several derivatives), we glue on a model solution on Apg, using a sym-
metric cut-off function which is zero near one of the boundary spheres,
and one near the other; this produces an approximate solution (g, 7).
We note that the model solutions which we consider satisfy (AC), uni-
formly near a given one. Next, we pullback and scale to the unit annu-
lus A1: (9r)ij(z) := ¢ij(Rx), and (7R)i;j(x) := Rm;j(Rx). We see that
(9r)ij ()= (gr)ij(—x) = O(R™?), (nR)ij(x)+(nR)ij(—x) = O(R™?), and
similarly the derivatives will satisfy the appropriate even/odd condition
to order O(R~?), and hence the Christoffel symbols and curvatures do
as well. For a k-tensor T we let T' = (—1)*a*T, where « is the antipodal
map; note that if 7' is a (0, 2)-tensor, then ﬁj(x) = T;j(—x) (Euclidean
coordinates). We also recall that “O” will include several derivatives of
the quantity in question (as required in the next section), and on the
annulus A; the derivatives will decay at the same rate by the scaling.

Let (h,w) = pD<I>(gR 7rR)(u, Z) solve the nonlinear projected problem;
(o)
in particular, (h,w) is obtained by iteration, so that (h,w) = Y (hg,wk),
k=0
[o.¢]
where (u, Z) = > (uk, Zy) and (hg,wy) = pD(I’( RwR)(uk"Z’f and
k=0

(g +h, TR +w) = ZchCZanC—FZkakC

on Ay, with 2° := 1. Since ®(gg,7r) = O(R_1 ), we have by (26) that
(h,w) = O(R™1).
Lemma 5.1. (h — h,w+®) = O(R™2).

Proof. We find that the anti-symmetric part of ®(gr + h, TI'R + w)
%), by =

is relatively small. Indeed, for ¢ = 1,2,3 we have ¢; = O(R~
O(R™2):

H(gr + h, TR + w)a' da
Aq

- /A [R(gR) + Lon(h) + O(hl[2.) + O(R~?)]* da

o —

= [ R - Ranlet de+ [ Ly ety +O(R)
Alﬂ{l‘l>0} Aq

where we have used the fact that |dz — du,,| = O(R™!). The first term

above is O(R_2) by the symmetry of R(gg), as is the second integral,
since Ly, (') = O(R™1); indeed we note

(Hesng:Ui)jk =— ﬂ(dw’)m = O(R™Y).
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Similarly, integration by parts yields

/ div gp1n (7R +w) -5Yidﬂc:/ div 5(mr + w) -5 Yidz + O(R™?)
Al A1

= O(R™?).

It directly follows that D®, ) (h, w) — (D @y, np) (B w)) =
BI/QO(R_Q). With a little computation, we alsi) see that D® ;. +.y(h—
h,w+©) and D®,, ) pDP] (u—1,Z — Z) are also O(R™2). Here

(gRJTR)
we use the fact that we have uniform bounds on pV*u (k = 0,1,2) and

pVFZ (k = 0,1) and their derivatives from the elliptic estimates (and
the decay of p).
Now we estimate (h—h, w+©) = p(D@?gR’WR) (u, 2)=D7,  _(u, Z))

+O(R™2). By the elliptic estimates of Section 4.3, using the interior es-
timate near the boundary to establish decay and global bounds, we see

that it suffices to show that (u,Z) — (u, Z) is O(R™?) in L3(A;). To
show this, we note that the above symmetry discussion, coupled with lin-
earization and the decay estimates obtained from the elliptic estimates
. . ~ =~ 2

in Section 4.3, shows that Dé(gR’WR)qu)?gRJR)(u—u, Z-7) € Lo (Ay)
and that we have by Cauchy-Schwarz (and integration by parts, to han-

dle the difference between the terms D, -y (h,w)—(D® (g, 7y (b, w))

~

and D@y, . \pDP? (u—1u,Z—2))

(9r>7R)
/A (w0, 2) = (u, 2)) D® gy, ) pPDR] o (00— T, Z — Z)dlpagy,
1

_92 TN
< CR2(0,2) = (0, D)l
Furthermore, (u, Z) and hence m are transverse to (K. This allows
us to apply integration by parts (using Lemma 2.1) and the basic elliptic
estimate transverse to the cokernel (Theorem 3) to get

/A (4, 2) = (u, 2)) DR gy, ) pPDR], o (00— T, Z — Z)dpigy,
1

_ /A DV, (u— 00,7 — Z)Pdpgy
1

o —

> CH(U, Z) - (’LL, Z)‘|12‘I§’1(A1)'

q.e.d.

5.1.2. Controlling the resulting constraint data. The preserva-
tion of the (AC) condition implies that the projection of the constraint
functions in the direction of the cokernel after solving the nonlinear
projected problem is given, up to lower-order error terms, by boundary
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integrals; of course the boundary data and its derivatives are unchanged
by the perturbation in the annulus. In particular, this means that the
constraint functions can be controlled by varying the parameters of the
solution we glue on, and so as long as the family we glue on has enough
degrees of freedom, we can make the Hamiltonian and momentum con-
straints zero. Indeed, we let (gp,Tr) = (9r + h, 7R + w), we let (g, 7)
be the re-scaled version on Ag, and we note for k =1,2,3

/A 2" H(gg, Tr)dz —/ kZ (Tr)iji; — (Gr)iii]dz + O(R™?)
! i.J

= R2 z* Z (?ij,ij - gz‘z‘,jj)dx + O(Rig)

An
=R7? " Z (Giji — Giaj) v dg
dAr 3

_ p—2 ~ i~k —3
R f;ARZ(gsz gV )d€+O(R )-

i

Here we have used the fact that the difference between R(gp) and
> [@r)ijij — (@r)iij;] is O(R™?) and is even to O(R™3), and similarly
Z'vj

for the quadratic terms in 7 in the Hamiltonian constraint. We now

note the other projections, starting with the mass term, the projection
onto the constant functions:

H(QR,WR )dr = ; Z Gr)ijij — (Gr)iijj]dz + O(R™?)
1
= R Z gz] ij g“”)dflf-i-O(R )
AR
=R O > (Giji — Giig) 1 dE + O(RT2).
94n

Integrating the momentum constraint against the translation fields X
yields

/ dngR(fR) - X dox = / div§(7TR) - X dx + O(RfQ)
A1 Al
= 7{ (TR)ij - Xpr? dé + O(R™?)
0A;

=R™! éA 7 Xivd dé+ O(R™2).
R
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Finally, we project the momentum constraint onto the rotation fields
Y.

/ divy, (7r) - Yi do = / div 5(7p) - Vi da + O(R™)
A1 Al

— § @)y Vv g+ O(RY)
0A;

=R 724 7 Yiv! d€ + O(R™?).
R

Note that we could also have used the measures from the metric gp
in these integrals (cf. Egs. (1)—(4)). Also recall that (g,7) agree with
the given data (g, 7) on the inner boundary, and agree with the data of
the asymptotic model on the outer boundary of the annulus. To show
the map 7 has a zero, we show the associated map Zr : A —

(R H(?RaﬁR) dzx, R/ dngR <7R) - Xp dx,
A1 Al

R2/ divg, (Tgr) - Vi dz, RQ/ ka(gR,ﬁR)d:c>
A1 Al

has a zero.

5.2. Solving the constraints. We now finish the proof of Theorem
4. Thus far, we have not chosen which member of the model family
(e.g., which slice in which Kerr) to use near infinity. We understand
that the model will have ADM energy-momentum, and angular and
linear momentum, near that of the original data. Suppose Ay € O
parametrizes a solution whose energy-momenta ©()\g) agrees with that
of (g, 7). We then consider A near Ao.

The computation in the previous section shows then that the map
Zr(A) = ©(N) —O(Ag) +0(1), where o(1) — 0 as R — oo, uniformly for
A near \g. Fix a small ball B about \g. Let Zr(t,\) = ©(\) — O (o) +
to(1) be a homotopy defined on [0, 1] x B, between the homeomorphism
©(A\) — ©(N\g) and the map Zr. For sufficiently large R, we have 0 ¢
Zr([0,1] x OB). By degree considerations [N], for large R, Zr must hit
zero for some A € B. For such a )\, the constraints are satisfied, with
the model near infinity corresponding to A for which Zr(A) = 0, and
with O(A) near ©(\). q.e.d.
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