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An optimal supply chain performance requires the execution of a precise set of actions, including coordination of the movement
of materials, products, and information flows among suppliers, manufacturers, distributors, retailers, and customers. However, a
supply chain usually involves several members who are primarily concerned with optimizing their own objectives.This self-serving
focus often results in poor channel performance. The present study used the Nash game and the cooperation game in an imperfect
production system to investigate the combined effects of lot-sizing integration, learning effect, and an imperfect production process
on a manufacturer-retailer channel. This paper also developed a search procedure to solve the problem described, and the optimal
properties and a numerical study were conducted to seek structural and quantitative insights into the relationship between the
upstream and downstream entities of the supply chain. Numerical results indicated that the cooperation game policy created a
higher cost reduction under a wide range of parameter settings.

1. Introduction

An adaptable supply chain system usually requires the
coordination of materials, products, and information flows
among suppliers, manufacturers, distributors, retailers, and
customers involved in producing and delivering a final
product or service. However, supply chain members are
independent actors who focus on optimizing their individual
objectives, thereby affecting the performance of other parties
in the supply chain. Many studies have demonstrated that
game theory is well suited to deal with the interactions among
firms and requires that these actions be well coordinated
(Fiestras-Janeiro et al. [1], Cachon [2]).

Game theory is a powerful tool for analyzing situations
in which the decisions of multiple agents affect each agent’s
payoff. Game-theoretic models, such as the cooperation in
inventory replenishment andproduction integration between
upstream and downstream entities in the supply chain, attract
much research. In earlier studies, Monahan [3] Lal and
Staelin [4] analyzed the one-vendor one-buyer supply chain

with constant demand and price discounts based on order
quantity. A Stackelberg game was used to determine the
optimal quantity discount schedule from the point of view
of the vendor for achieving the joint optimal solution for
the vendor and the buyer. J.-M. Chen and T.-H. Chen [5],
Zanoni and Zavanella [6], and Tsao [7] use Stackelberg
games to discuss similar problems and focused on the single-
vendor and single-buyer integration problem by determining
the optimal reorder point, order quantity, and number of
shipments. They found that channel coordination practices
can improve system-wide profits or cost effectiveness. Kohli
and Park [8] investigated joint ordering policies as a method
to reduce transaction costs between a single seller and a
homogeneous group of retailers. They showed that efficient
joint lot-sizes are independent of price, and are supported
by a range of average-unit prices that permit every possible
allocation of transaction cost saving between the buyers and
the seller. Cheung and Lee [9] considered a supplier serving
multiple retailers located within close proximity and exam-
ined the shipment coordination and stock rebalancing effects
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that are linked to vendor-managed inventory programs.They
found that the reduction in cost is significant when there
are more retailers who can participate in the coordination
program. T.-H. Chen and J.-M. Chen [10] proposed several
optimizationmodels adopting joint replenishment and chan-
nel coordination for a three-level inventory system. These
studies primarily explore cost-minimization in the supply
chain design, and they do not take a marketing stimulus or
promotion into account.

To examine the profit-maximization decision-making
phenomenon, Parlar andWeng [11] proposed game-theoretic
models of the effects of coordination between the marketing
and production departments within two competing firms.
Their models showed that coordinating the pricing and
production quantity decisions in a firm may lead to a
stronger position in terms of increasing expected profits.
J.-M. Chen andT.-H. Chen [12] extended the existingwork by
considering perishable or deteriorative products in a price-
endogenous supply chain, which leads to a more practical
profit-maximization decision policy in business operations.
More recently, Cai et al. [13] studied the impact of different
price discount contracts and pricing schemes on the dual-
channel supply chain, which includes an online direct chan-
nel owned by the supplier and a traditional retail channel.
The authors use a game theoretic framework from the
perspectives of supplier Stackelberg, retailer Stackelberg, and
Nash games to explore the coordination effort in the dual-
channel competition. The results of their research showed
that simple price discount contracts can effectively improve
both the supplier’s and retailer’s performance. Szmerekovsky
and Zhang [14] investigated a Stackelberg game in a decen-
tralized system with the manufacturer as the leader and the
retailer as the follower. Unlike to previous research, their
model allowed for a continuous level of promotion efforts
to be selected by both the manufacturer and the retailer.
Their results showed that cost sharing in local advertising
does not work well and that it is better for the manufacturer
to advertise only nationally and offer the retailer a lower
wholesale price.

Tsao [15] considered multiechelon multi-item channels
subject to the supplier’s credit period and the retailer’s
promotional effort. He analyzed two trade allowances, cost
sharing of the promotion and a cash discount, both of
which were designed for coordinating the behavior of the
channel partner. Tsao [15] showed that under the coordi-
nation scenario the profits for both parties increase when
the promotion cost sharing or the cash discount rate is kept
within an acceptable range. Chen andChang [16] investigated
the problem of jointly determining the optimal retail price,
the replenishment cycle, and the number of shipments
for exponentially deteriorating items. Both nonintegrated
and integrated policies were investigated while taking into
account the combined effects of channel coordination, joint
replenishment program, and lot-sizing integration for the
two-level supply chain. These realistic considerations made
their models more applicable. By incorporating the quantity
discount policy into the coordination model, Kamali et al.
[17] developed a multiobjective mixed integer nonlinear pro-
gramming model to coordinate the system of a single buyer

andmultiple vendors under an all-unit quantity discount pol-
icy for the vendors.They developedmetaheuristic algorithms
to solve the proposed problem, and a numerical example was
given to illustrate the behavior of the model. Cachon and
Netessine [18] provide a comprehensive overview of the game
theory for studying supply chain management problems.

These studies use the unrealistic assumption of the items
being perfect in both the production and selling periods.
Most production systems produce items of perfect quality as
well as imperfect quality.The unit production cost is usually a
function of the product reliability parameter. A lower product
reliability parameter results in increased development costs of
production, reworking, and holding (Sana [19, 20]). Salameh
and Jaber [21] and Maddah and Jaber [22] assume that based
on extending the EPQ/EOQ inventory formulation, each lot
received contains a percentage of defective items, and has a
known probability density function. Their research results
showed that the quantity of the economic lot size tends
to increase with an increase in the average percentage of
imperfect quality item. Ben-Daya and Rahim [23] modeled
a multistage production system taking into consideration
process inspection and restoration as a means to improve
quality. Taking into account rework, Ojha et al. [24] devel-
oped three different policies.They showed that the cost of the
single-purchase-single-delivery case merges asymptotically
with that of the lot-for-lot case which has higher ratios of set-
up and ordering cost, and increases at amuch higher rate than
in the other two cases. Jaber et al. [25] extended the work
of Salameh and Jaber [21] assuming that the percentage of
defective items per lot is reduced based on a learning curve,
an assumption which was empirically validated by data from
the automotive industry. They showed that the number of
defective units, shipment size, and cost reduces as learning
increases and follows a form similar to the logistics curve.

Sana [26] proposed an integrated production-inventory
model for supplier, manufacturer, and retailer supply chain,
which considers perfect and imperfect quality items. The
author uses the leader-follower and integrated cases to for-
mulate the supply chain models and determine the optimal
production rate and raw material order size for maximizing
expected average profit. Sana found that close cooperation
can result in more cost-effective production and distribution
as well as faster response to customer demand.The integrated
profit function is also more profitable compared to the
profit of the whole chain by the Stackelberg approach. Tsao
et al. [27] extended the traditional production model by
considering reworking the imperfect items and trade credit
to reflect realistic situations. Unlike previous models, their
model calculated the interest earned based on the retail
price. The authors developed an easy-to-use algorithm to
solve the above described problem, and provided numerical
examples to illustrate the influence of interest charged,
interest earned, and the impact of the percentage of imperfect
items on both production and total cost. Das Roy et al.
[28] extended Maddah and Jaber’s [22] model by allowing
the occurrence of shortages at the end of an order cycle.
Optimal shortage period, optimal lot size, and expected
average profit for the model are developed for both finite
and infinite time horizons. Sana [29] extended the pricing
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policy for fishery and poultry. His model contributed in
several ways, considering the demand rates of both foods
and the effect of inflation and the time value of money on
costs and profits. Pal et al. [30–32] and Sana [33] developed
three-layer supply chain models considering the impacts of
perfect and imperfect quality items, production reliability,
and rework process. They determined the business strategies
such as optimal production time, rawmaterial order size, idle
times in different sectors, and number of shipments for each
of the supply chain members.

This body of research indicates that most industries
have shifted from isolated decision-making to a collaborative
decision alliance due to increasing competitive pressure,
shortened life-cycle products, rigorous quality demands,
and quicker response requirements. Sarkar et al. [34], Roy
et al. [35], and Pal et al. [36] extended previous studies
by investigating an economic production lot size model
under system process deterioration and uncertain demand
assumption. They developed the optimal buffer inventory,
product reliability, and production rate for maximizing total
profits or minimizing total costs. In an uncertain demand
market setting, Sana [37] generalized the framework for
order quantity when sales price and promotional costs are
shared by the manufacturer and the retailer. Sana [37] also
demonstrated how the coordinating contract of incentives
controls the performance of the whole supply chain.

The remainder of this study is organized as follows.
Section 2 outlines the problem and summarizes the necessary
assumptions and notations. In Section 3, we develop the
mathematical models for both the Nash game and the
cooperation game policies and provided the optimal prop-
erties of the underlying problem. In Section 4, we conduct
an extensive numerical study. It provides the reader with
qualitative insight into the structure of the proposed models
and analyzes the sensitivity of the solutions in relation to
the major parameters. Finally, conclusions are drawn in
Section 5.

2. Assumptions and Notations

To explore the connection between the decisions made
by enterprises in their self-interest, this paper adopted a
Nash game and a cooperation game model. These models
were used to investigate the combined effects of lot-sizing
integration, learning effect, and imperfect production for
a two-echelon supply chain. The supply chain consists of
one manufacturer who produces and sells a homogeneous
group of products to one retailer. The retailer replenishes
his stocks on an economic order quantity basis and sells
𝑘 items to the end customers who consume the items at a
fixed rate.Themanufacturer produces the products in batches
at a finite production rate and distributes the products to
a retailer in a number of shipments. The manufacturing
system considered in this study is imperfect and occasionally
produces finished goods along with undesirable items; that
is, the finished products contain a percentage of defective
items.These items cannot be reworked andmust be discarded
after the manufacturing period. In order to reflect that the

performance of a person or an organization engaged in
repetitive work improves with time, the learning effect was
taken into account in the models. In the model development,
we assume that the total production learning is lost due
to a manufacturing interruption between two consecutive
setups. Thus, the learning effect is not inherited from the
previous production cycle.Theproduction speed of a finished
item increases with the increase in familiarity with the work
required and the effective use of the tools involved. In this
paper, the production and inventory costs were influenced by
defective items as well as the learning effect.

Upon completion of the production process, the man-
ufacturer delivers the finished products to the retailer in a
number of shipments. Another assumption is that there is no
in-transit inventory between the upstream and downstream
entities in the supply chain. The production cycle of the
manufacturer is a multiple of the replenishment cycle at the
retailer, and the procurement cycle of the manufacturer is a
multiple of the production cycle.

The costs incurred by the retailer include the inventory
cost for holding the finished items, a major set-up cost for
placing a replenishment order, and a minor set-up cost for
each additional item added into the replenishment.Themajor
set-up cost represents a lump-sum fee for transportation and
delivery, regardless of its composition, and the minor set-
up cost represents order-processing and item-specific ware-
housing costs, for each specific item in the replenishment.
The end items are assumed to belong to the same category or
family of products and share a common production facility.
Thus, the manufacturer incurs a major cost for setting up the
production line and a minor set-up cost for each additional
item placed on the production schedule. The inventory
holding costs per unit time are similar between distinct
items in the same product family and are influenced by the
imperfect items and the learning effect. In order to fulfill the
requirements of the make-to-stock policy, the manufacturer
also incurs major and minor set-up costs for purchasing raw
materials from outside vendors in the quantity sufficient to
last for exactly an integer multiple of the production cycle.

Under these conditions, the aim of the supply chain is
to minimize the channel-wide costs by finding the optimal
replenishment cycle of the finished items for the retailer,
the optimal number for shipping the finished items, and the
raw materials of the manufacturer. Figure 1 illustrates the
changes in the inventory levels for the end items and the raw
materials stocked by the retailer and the manufacturer. Here,
the quantity of purchased raw materials is double that of the
production quantity, while the production quantity is three
times the retailer’s order. All notations used in this paper are
defined and summarized in Table 1.

3. The Model

In this paper, the cost models for the two-echelon supply
chain were derived under the settings of the Nash game and
the cooperation game. In the Nash game policy, the objective
of each entity within the supply chain is to minimize its
own cost. An entity does not take into consideration any
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Figure 1: Changes in inventory level of the raw materials and the
finished items stocked by the retailer and the manufacturer.

cooperative mechanism or damage that may occur to its
counterpart as a result of its decisions. On the other hand,
in the cooperation game, the entities jointly determine the
common optimal replenishment cycle of the finished items,
the number of shipments of the finished items, and their raw
material needs, with the aim of minimizing the channel-wide
cost. We will first demonstrate the model of the Nash game
policy and then present the cooperation game policy.

3.1. The Nash Game. In the Nash game model, the manufac-
turer and the retailer have the same decision-making power.
They simultaneously and noncooperatively minimize their
own cost, without negotiating with the channel members.
In this self-interested decision-making process, the problem
facing the retailer is to determine the optimal replenishment
cycle for the finished items in order to minimize his own
cost. The anticipated costs of the retailer include a major
replenishment set-up cost due to lump-sum charges for
transportation and delivery, a minor set-up cost for order
processing, warehousing expenses, and inventory holding
cost.Thus, the costmodel of the retailer under theNash game
can be expressed as follows:

TC
𝑁,𝑅

=

𝑘

∑

𝑖=1

TC
𝑖
(𝑇
𝑁,𝑖
) =

𝑘

∑

𝑖=1

(
(𝑅 + 𝑟

𝑖
)

𝑇
𝑁,𝑖

+
ℎ
𝑖
𝐷
𝑖
𝑇
𝑁,𝑖

2
) . (1)

The optimal replenishment cycle for each item can be
obtained by solving the first-order differential equation of
the cost model of the retailer. Since the convex property
of the cost model of the retailer can be easily verified by
taking the second-order derivative of (1) with respect to 𝑇

𝑖

it can be omitted, and, the following expresses the optimal
replenishment cycle under the Nash game:

𝑇
∗

𝑁,𝑖
= √

2 (𝑅 + 𝑟
𝑖
)

ℎ
𝑖
𝐷
𝑖

. (2)

After receiving the order from the retailer, the manu-
facturer produces the items in batches to fulfill the retailer’s

Table 1: Summary of notations.

System
𝑘 The number of finished items
𝑖 The index of the finished items, 𝑖 = 1, 2, . . . , 𝑘

𝑗

The index of the decision policies,𝑗 ∈ {𝑁, 𝐶},
where N denotes the Nash game policy and 𝐶

denotes the cooperation game policy

𝐷
𝑖

The demand rate of finished item i in the
marketplace

TC
𝑗,𝐶

Total cost for the channel per unit time under
policy 𝑗

Manufacturer
𝑡
𝑝 Production time for each production cycle

𝑛
𝑗,𝑖

The number of shipments of item i per batch
production run under policy j

𝑚
𝑗,𝑖

The number of shipments of raw material i per
batch production run under policy 𝑗

𝑢
𝑖

The usage rate of raw material for finished item 𝑖

𝐹 Themajor set up cost per production cycle

𝑓
𝑖

Theminor set up cost for adding finished item 𝑖

into the production schedule

𝑠
𝑟𝑖

The ordering cost of the raw material for finished
item 𝑖 per production cycle

ℎ
𝑓𝑖

The inventory holding cost of finished item 𝑖 per
unit time

ℎ
𝑟𝑖

The inventory holding cost of the raw material for
finished item i per unit time

𝑙
The learning rate in the production line, where

0.5 < 𝑙 < 1

𝑏
The learning coefficient, which decreases over the
production time required per unit, 𝑏 = log 𝑙/𝑙𝑜𝑔2

𝛽
The production rate of defective items per unit

time

𝛾
The time required to produce the first unit of the

production cycle

𝑡 (𝑥)
The time to produce the xth unit item of the

production cycle
TC
𝑗,𝑀 The total cost per unit time under policy 𝑗

Retailer

𝑇
𝑁,𝑖

The individual replenishment cycle of finished
item𝑖 under the Nash game policy

𝑇
𝐶

The common replenishment cycle of all finished
items under the cooperation game policy

𝑅 Themajor set up cost per replenishment cycle

𝑟
𝑖

Theminor set up cost for adding finished item
𝑖into the order

ℎ
𝑖

The inventory holding cost of finished item𝑖per
unit time

TC
𝑗,𝑅 The total cost per unit time under policy 𝑗

request by adopting amake-to-stock production policy.Thus,
the manufacturer’s production quantity is an integer multiple
of the retailer’s ordering quantity. During the production
cycle, each batch of item 𝑖 is dispatched to the retailer
in 𝑛
𝑁,𝑖

shipments. This results in a major set-up cost for
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restarting the manufacturing line, a minor set-up cost for
each additional item being produced in the line, and an
inventory holding cost for the finished items. In addition,
the manufacturer incurs inventory holding and ordering
costs for the raw materials needed to produce the finished
items. Under Wright’s [38] learning curve setting, the time
to produce 𝑥th unit item is a power function and can be
represented by

𝑡 (𝑥) = 𝑎𝑥
𝑏
, (3)

where 𝛼 is the time to produce the first unit, 𝑥 is the
production count, and 𝑏 is the learning curve exponent. The
learning effect indicates that the time required to perform
a task declined at a decreasing rate as experience with the
task increased (Hackett 39, Towill 40). The learning effect
curve was first proposed by Wright [38], who formulated
the relations between the learning variables in quantitative
form.Many researchers have compared a number of learning
models and concluded that Wright’s learning curve model
is a good method for general use since it nicely fills a wide
range of observed data. This paper uses a similar learning
curve model of previous studies to obtain the quantity the
manufacturer needs to produce. Based on the above, the
cumulative time to produce 𝑛

𝑗,𝑖
𝑄
𝑖
units of item 𝑖 during the

production cycle can be expressed as

𝑡
𝑝
= 𝑡 (1) + 𝑡 (2) + ⋅ ⋅ ⋅ + 𝑡 (𝑛𝑗,𝑖𝑄𝑖)

= 𝛼 + 𝛼2
𝑏
+ 𝛼3
𝑏
+ ⋅ ⋅ ⋅ + 𝛼(𝑛

𝑗,𝑖
𝑄
𝑖
)
𝑏

= 𝛼

𝑛𝑗,𝑖𝑄𝑖

∑

𝑥=1

𝑥
𝑏
.

(4)

For the sake of convenience, we take the approximation
value of (4) and express it as follows:

𝑡
𝑝
≈ ∫

𝑛𝑗,𝑖𝑄𝑖

0

𝛼𝑥
𝑏
𝑑𝑥 =

𝛼 (𝑛
𝑗,𝑖
𝑄
𝑖
)
𝑏+1

(1 + 𝑏)
. (5)

The production quantities of the manufacturer of item 𝑖

can be obtained as follows:

𝑛
𝑗,𝑖
𝑄
𝑖
= (

(𝑏 + 1) 𝑡𝑝

𝛼
)

1/(𝑏+1)

. (6)

The change in the inventory level for the finished item 𝑖

is the result of a combination of production, learning, and
defects during the production cycle and can be expressed by
the following equation:

𝐼
𝑓,𝑖 (𝑡) = (

(1 + 𝑏) 𝑡

𝛼
)

1/(1+𝑏)

− 𝛽𝑡 for 0 ≤ 𝑡 ≤ 𝑡
𝑝
. (7)

In each production cycle, the inventory holding cost per
unit time of the finished item 𝑖 can be written as follows:

(
ℎ
𝑓𝑖

𝑛
𝑁,𝑖
𝑇
𝑁,𝑖

)(∫

𝑡𝑝

0

𝐼
𝑓,𝑖 (𝑡) 𝑑𝑡 +

𝑛
𝑁,𝑖
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𝑁,𝑖
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2

𝑁,𝑖
𝐷
𝑖

2
)
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ℎ
𝑓𝑖

𝑛
𝑁,𝑖
𝑇
𝑁,𝑖

)

× (
(((1 + 𝑏) /𝛼)

1/(𝑏+1)
(1 + 𝑏) 𝑡

(2+𝑏)/(1+𝑏)

𝑝
)

(2 + 𝑏)

+
(𝑛
𝑁,𝑖

(𝑛
𝑁,𝑖

− 1) 𝑇
2

𝑁,𝑖
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− 𝛽𝑡
2

𝑝
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(8)

In this context, the total cost for all finished items and
all raw materials per unit time of the manufacturer can be
expressed as follows:

𝐼
𝑟,𝑖 (𝑡) = (

(1 + 𝑏) 𝑡

𝛼
)

−1/(1+𝑏)

− 𝛽𝑡 for 0 ≤ 𝑡 ≤ 𝑛
𝑁,𝑖
𝑚
𝑁,𝑖
𝑇
𝑁,𝑖
.

(9)

In this context, the total cost for all finished items and
all raw materials per unit time of the manufacturer can be
expressed as follows:

TC
𝑁,𝑀

=

𝑘
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− 1) 𝑢
𝑖
𝐷
𝑖
𝑛
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𝑇
𝑁,𝑖

2
) .

(10)

In the Nash game decision process, the retailer deter-
mines the optimal replenishment cycle of finished item 𝑖, and
the manufacturer determines the optimal number of ship-
ments of the finished items and the raw materials required
with the aim of minimizing their own costs. The following
lemma provides the analytic form and the optimality of the
solutions for the manufacturer.
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Lemma 1. For a given replenishment cycle 𝑇
𝑁,𝑖

, the optimal
number of shipments 𝑛∗

𝑁,𝑖
for finished item 𝑖 is

𝑛
∗

𝑁,𝑖
= ⌈(

−1

2
) + ((

1

2
) + 4𝐶

−1
𝑇
−2

𝑁,𝑖

× (𝐴 + 𝐵 + 𝐹 + 𝑓
𝑖
+ (

𝑆
𝑟𝑖

𝑚
𝑁,𝑖

)))

1/2

⌉ .

(11)

Proof. Please see appendix.

The optimality of the integer multiple number of ship-
ments of raw materials also can be verified by the method
shown above and may thus be omitted. The analytic form of
the optimal number of shipments for each raw material can
be expressed as follows:

𝑚
∗

𝑁,𝑖
= ⌈(

−1

2
) + ((

1

2
) + 8𝑆

𝑟𝑖
(𝑇
2

𝑁,𝑖
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𝑖
𝑢
𝑖
𝐷
𝑖
𝑛
2

𝑁,𝑖
)
−1

)

1/2

⌉ .

(12)

The cost model of the supply chain under the Nash game
model can be obtained by summing (1) and (10) and can be
expressed as follows:

TC
𝑁,𝐶

= TC
𝑁,𝑅

+ TC
𝑁,𝑀

. (13)

3.2. The Cooperation Game Model. Here, we focus on a
cooperative game model in which both the manufacturer
and the retailer agree to share business information with
each other, try not to interfere with their counterpart’s profits
through any of their decisions, and jointly make decisions
that will minimize the total channel cost. In this decision
policy, the anticipated cost of the channel as a whole may be
written as

TC
𝐶,𝐶

=

𝑘

∑

𝑖=1

(
(𝑅 + 𝑟

𝑖
)

𝑇
𝐶

+
ℎ
𝑖
𝐷
𝑖
𝑇
𝐶

2

+ (
(𝐹 + 𝑓

𝑖
)

𝑛
𝐶,𝑖
𝑇
𝐶

+
𝐴

𝑛
𝐶,𝑖
𝑇
𝐶

+
ℎ
𝑓𝑖
𝑇
𝐶
𝐷
𝑖
(𝑛
𝐶,𝑖
− 1)

2

+
𝑆
𝑟𝑖

𝑚
𝐶,𝑖
𝑛
𝐶,𝑖
𝑇
𝐶

) +
𝐵

𝑚
𝐶,𝑖
𝑇
𝐶

+
𝑛
𝐶,𝑖
𝑇
𝐶
𝐸

2
) ,

(14)

where

𝐴 = ℎ
𝑓𝑖
(

((1 + 𝑏) 𝑡
(2+𝑏)/(1+𝑏)

𝑝
((1 + 𝑏) /𝛼)

1/(1+𝑏)

)

(2 + 𝑏)
−
𝛽𝑡
2

𝑝

2
) ,

𝐵 = ℎ
𝑟𝑖
𝑏
−1
(1 + 𝑏) 𝑡

𝑏/(1+𝑏)

𝑝
(
(1 + 𝑏)

𝛼
)

(1+𝑏)

,

𝐸 = (ℎ
𝑟𝑖
𝑢
𝑖
(𝑚
𝐶,𝑖
− 1))𝐷

𝑖
.

(15)

Again, since the optimality of the solutions under the
cooperation game model is similar to that of the Nash game
model, it can be omitted. Using a similar method to the one
developed in the Nash game model, the optimal solutions
of the replenishment cycle, the number of shipments for
each finished item, and the raw materials required can be
expressed as follows:

𝑇
∗

𝐶
=√

2 (𝑅 + 𝑟
𝑖
+∑
𝑘

𝑖=1
(1/𝑛
𝐶,𝑖
) (𝐹 +𝑓

𝑖
+ 𝐴 + 𝐵+(𝑆

𝑟𝑖
/𝑚
𝐶,𝑖
)))

∑
𝑘

𝑖=1
(𝐷
𝑖
(ℎ
𝑖
+ ℎ
𝑓𝑖
(𝑛
𝑛,𝑖
− 1)) + 𝑛

𝐶,𝑖
𝐸)

,

(16)

𝑛
∗

𝐶,𝑖
= ⌈−

1

2
+ (

1

2
+ 4𝑇
−2

𝐶
(𝐷
𝑖
ℎ
𝑓𝑖
+ 𝐸)
−1

×(𝐴 + 𝐵 + 𝐹 + 𝑓
𝑖
+

𝑆
𝑟𝑖

𝑚
𝐶,𝑖

))

1/2

⌉ ,

(17)

𝑚
∗

𝐶,𝑖
= ⌈−

1

2
+ (

1

2
+ 4𝑆
𝑟𝑖
(𝑇
2

𝐶
𝐷
𝑖
ℎ
𝑟𝑖
𝑢
𝑖
𝑛
2

𝐶,𝑖
)
−1

)

1/2

⌉ . (18)

4. Search Procedure

Since the objective functions proposed in this study involved
multiple interplay variables, we develop an iterative search
procedure to delineate the optimal solutions of the problems.
In the following, we only present the search algorithm for
the cooperation game model; the algorithm for the Nash
game model follows a similar pattern and has therefore been
omitted. The notations used for recording the optimal values
of the search algorithm are defined as follows:

loc {𝑛
𝑖
} = local optimal integer multiple set of

shipments for the finished items;
loc {𝑚

𝑖
} = local optimal integer multiple set of

shipments for the raw materials;
loc 𝑇

𝐶
= local optimal replenishment cycle for the

finished items;
gol {𝑛

𝑖
} = global optimal integer multiple set of

shipments for the finished items;
gol {𝑚

𝑖
} = global optimal integer multiple set of

shipments for the finished items;
gol 𝑇
𝐶
= global optimal replenishment cycle for the

finished items;
loc TC

𝑐,𝑐
= variable to record the total cost generated

by the local minimum;
gol TC

𝑐,𝑐
= variable to record the total cost generated

by the global minimum.

The step-by-step procedure for the search algorithm is
summarized below.

Step 1. Let loc {𝑛
𝑖
} = {0}, loc {𝑚

𝑖
} = {0}, loc 𝑇

𝐶
= 0,

gol {𝑛
𝑖
} = {0}, gol {𝑚

𝑖
} = {0}, gol 𝑇

𝐶
= 0, loc TC

𝑐,𝑐
= 0,

and gol TC
𝑐,𝑐
= 0.
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Step 2. Start the search from item 1 to 𝑘. At each item, do the
following steps.

(a) Substitute the random sets {𝑛
𝑖
} and {𝑚

𝑖
} into (16)

and solve it to obtain the corresponding optimal
replenishment cycle 𝑇∗

𝐶
.

(b) Substitute 𝑇∗
𝐶
and 𝑚

𝐶,𝑖
obtained in Step 2(a) into (17)

and solve it to obtain a set of integer multiples of
shipment {𝑛∗

𝐶,𝑖
}.

(c) Substitute 𝑇
∗

𝐶
and 𝑛

∗

𝐶,𝑖
obtained in Step 2(b) into

(18) and solve it to obtain a set of integer multiples
of shipment {𝑚∗

𝐶,𝑖
}. Then, 𝑇∗

𝐶
, {𝑛∗
𝐶,𝑖
}, and {𝑚

∗

𝐶,𝑖
} are

substituted into (14) and solve it to obtain the corre-
sponding total cost, TC

𝐶,𝐶
.

(d) Compare the total costs TC
𝐶,𝐶

and loc TC
𝑐,𝑐
. After

making this comparison, let loc TC
𝑐,𝑐

denote the
minimal total cost; the corresponding optimal replen-
ishment cycle and integermultiples are represented by
loc 𝑇

𝐶
, loc {𝑛

𝑖
}, and loc {𝑚

𝑖
}.

(e) Compare the total costs loc TC
𝑐,𝑐

and gol TC
𝑐,𝑐
.

After making this comparison, let gol TC
𝑐,𝑐

denote
the global minimal total cost; the corresponding
optimal replenishment cycle and integer multiples
are represented by gol 𝑇

𝐶
, gol {𝑛

𝑖
} and gol {𝑚

𝑖
}. If

the entire items are examined, then go to Step 3;
otherwise, go to Step 2(a).

Step 3. Report the optimal solutions: the optimal replenish-
ment cycle 𝑇∗

𝐶
, the optimal integer multiples 𝑛∗

𝐶,𝑖
and 𝑚

∗

𝐶,𝑖

of each item, and the optimal objective value TC∗
𝐶,𝐶

, and
terminate the search procedure.

5. The Numerical Study

The decision-making policies proposed in this study can be
applied in solving the integration of inventory lot-sizing and
replenishment management problem for the supply chain
that involves one retailer and one manufacturer. In this sec-
tion, a numerical study provides a qualitative insight into the
interplay between lot-sizing integration, the learning effect,
and the imperfect production process, with a particular focus
on the effects of cost improvements on the manufacturer,
the retailer, and the entire channel under different parameter
settings. Consider the case of a retailer who requires three
different items from a manufacturer. The number of items
demanded by the retailer are assumed to be 3600, 2800,
and 3400/month, respectively. The raw material usage per
unit for each finished item is 0.3, 0.18, and 0.2, respectively.
The major set-up cost for each order placed by the retailer
is $320. The minor set-up costs of the items are $22, $20,
and $28, respectively. The costs of holding the items are
$1.6, $1.3 and $1.9/month, respectively. The manufacturer’s
major set-up cost for each production run is $140, while
the minor set-up costs of the items are $36, $30, and $38,
respectively. The raw materials’ ordering costs are $36, $30,
and $38, respectively. The costs of holding the items are
$0.72, $0.62, and $0.8/month, respectively. The costs of
holding the raw materials are $0.41, $0.36, and $0.58/month,

respectively. Finally, the learning rate, the percentage rate of
defective items, and the time required to produce the first unit
during the production cycle are 82%, 8%, and 0.003 day/unit,
respectively.

The first experiment was performed to analyze the behav-
iors of the channel-wide costs with respect to the number
of shipments of raw materials and finished items under the
Nash game policy and the cooperation game policy. Figures
3 and 4 show that the cooperation game model results in
a greater cost improvement than for the Nash game model
under a wide range of parameter settings. Figures 3 and 4
show that the surfaces of the channel-wide costs are convex
in the number of shipments of raw materials under both
policies. The small number of finished items shipped under
the Nash game policy enables it to generate a greater cost
saving for the whole supply chain.

The purpose of the second experiment was to investigate
the sensitivity of the effects of cost improvement on the whole
channel with respect to themajor parameters, including𝑅, 𝑡

𝑝
,

𝑏, 𝛾, 𝛽, and 𝐹. The experiment was performed by changing
the above parameters up to ±60% from their basic settings.
The numerical results obtained from the Nash game model
were used as the baseline to compute the improvements as
a result of the cooperation game model. Table 2 shows the
effects of cost improvement after varying the parameters.
Based on the results of Table 2, we found that the cooperation
game policy created a higher cost improvement than the
Nash game policy under a wide range of parameter settings,
and that the channel-wide costs of both game policies are
highly sensitive to the learning coefficient, the time required
to produce the first unit, and the major set-up cost of the
manufacturer. Table 2 also shows that the cost improvement
under the cooperation game policy decreases as the learning
coefficient and the time required to produce the first unit
increase.

6. Conclusions

This study dealt with the problem of determining the optimal
replenishment cycle, the optimal number of shipments of the
raw materials, and the finished items for a manufacturer-
retailer chain with an imperfect production system. During
the imperfect production period, the inventory holding costs
were influenced by the defective items and the learning
effect. Both the Nash game policy and the cooperation
game policy were developed taking into consideration the
effects of lot-sizing integration, the imperfect production
process, and the learning effect, providing structural and
quantitative insights into these research streams, as well as
improving the applicability of the proposed models. This
paper also developed a search procedure to solve the problem
described and demonstrated the optimality of the solutions.
The numerical study showed that the cooperation game
policy is always superior to the Nash game policy in terms
of cost improvement and that the channel-wide costs of both
game policies are highly sensitive to the learning coefficient,
the time required to produce the first unit, and the major set-
up cost of the manufacturer.
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Table 2: Summary of the sensitivity analysis of the parameters on the cost improvement.

Percentage change of 𝑅 TCn TCc Cost improvement (%) Percentage change of 𝑡
𝑃

TCn TCc Cost improvement (%)
−60 12642 11464 9.32% −60 12283 11078 9.81%
−40 12516 11328 9.49% −40 12278 11072 9.82%
−20 12390 11192 9.67% −20 12272 11065 9.84%
20 12138 10920 10.03% 20 12254 11043 9.88%
40 12012 10784 10.22% 40 12236 11024 9.91%
60 11886 10648 10.42% 60 12218 10996 10.00%
Percentage change of 𝑏 TCn TCc Cost improvement (%) Percentage change of 𝛾 TCn TCc Cost improvement (%)
−60 12240 10082 17.63% −60 12217 9472 22.47%
−40 12244 10312 15.78% −40 12243 10151 17.09%
−20 12259 10621 13.36% −20 12252 10527 14.08%
20 12278 11510 6.26% 20 12282 11857 3.46%
40 12300 11702 4.86% 40 12303 12107 1.59%
60 12346 11885 3.73% 60 12706 12646 0.47%
Percentage change of 𝛽 TCn TCc Cost improvement (%) Percentage change of 𝐹 TCn TCc Cost improvement (%)
−60 12245 11050 9.76% −60 12714 12590 0.98%
−40 12251 11052 9.79% −40 12564 12212 2.80%
−20 12258 11054 9.82% −20 12414 11634 6.28%
20 12270 11058 9.88% 20 12114 10478 13.51%
40 12277 11060 9.91% 40 11964 9900 17.25%
60 12283 11062 9.94% 60 11814 9322 21.09%

IN,i{nN,i} IN,i{nN,i − 1}

TCN,M{nN,i + 1} TCN,M{nN,i − 1}TCN,M{nN,i}

C
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Figure 2:The cost function of the manufacturer under the different
sets of the shipping numbers of finished items.
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Figure 3: The behavior of the channel-wide cost with respect to 𝑛
𝑖

and𝑚
𝑖
under the Nash game policy.
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Figure 4: The behavior of the channel-wide cost with respect to 𝑛
𝑖

and𝑚
𝑖
under the cooperation game policy.

The numerical study in this paper showed that the
cooperation gamepolicy provides a greater cost improvement
than the Nash game model under a wide range of param-
eters settings. However, the cooperation game policy may
increase the cost to the retailer, and it is obvious that the
retailer would not accept such policies, although channel-
wide performance, as a whole, is better. To compensate
the retailer for his loss and persuade the damaged entity
to accept the cooperation game model, a saving-sharing
contract, such as a quantity discount schedule, may be an
acceptable mechanism for coordinating channel members.
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Themajor contribution of this study is its investigation of the
combined effects of lot-sizing integration, learning effect, and
imperfect production processes on a manufacturer-retailer
channel. The subjects of the coordination mechanism or the
saving-sharing contract are not included in this study and are
worth exploring in the future. The manufacturing system is
assumed to be imperfect and to occasionally produce finished
goods that are defective. These defective items cannot be
reworked and are to be discarded after the manufacturing
period. In order to eliminate waste and effectively control the
cost of manufacturing, the reworking of these defective items
should be investigated in the future.

Appendix

In the appendix, we provide the optimal values of the
replenishment cycle and the optimal number of shipments,
which can minimize the cost functions. The derivation of
optimal solutions for each item is also given.

For a given replenishment cycle 𝑇
𝑁,𝑖

, the optimal number
of shipments 𝑛∗

𝑁,𝑖
for finished item 𝑖 is

𝑛
∗

𝑁,𝑖
= ⌈(

−1

2
) + ((

1

2
)

+ 4𝐶
−1
𝑇
−2

𝑁,𝑖
(𝐴 + 𝐵 + 𝐹 + 𝑓

𝑖
+ (

𝑆
𝑟𝑖

𝑚
𝑁,𝑖

)))

1/2

⌉ .

(A.1)

Proof. For a given replenishment cycle, the optimal number
of shipments of the finished item 𝑖 can be derived as follows.
Since the derivation of the optimal number of shipments of
the cooperation game model is similar to that of the Nash
game model, we derived this property from the Nash game
model only and omitted the cooperation game model. As
shown in Figure 2, the cost function of themanufacturer has a
different shape when given different sets of shipping numbers
for the finished items.The intersection of the two consecutive
cost curves, TC

𝑁,𝑀
{𝑛
𝑁,𝑖
} and TC

𝑁,𝑀
{𝑛
𝑁,𝑖

+ 1}, is defined as
𝐼
𝑁,𝑖
{𝑛
𝑁,𝑖
}, where {𝑛

𝑁,𝑖
} denotes a set of shipping numbers of

the finished items. The intersection provides information on
the value of 𝑇

𝑁,𝑖
to which the number of shipments, 𝑛

𝑁,𝑖
,

should be altered to obtain the optimal value of TC
𝑁,𝑀

. The
closed form of the intersection can be located by setting the
result of the difference of TC

𝑁,𝑀
{𝑛
𝑁,𝑖
} and TC

𝑁,𝑀
{𝑛
𝑁,𝑖

+ 1}

to zero.
Consider the following:

𝐼
𝑁,𝑖

{𝑛
𝑁,𝑖
} = (2 (𝑛

𝑁,𝑖
(𝑛
𝑁,𝑖

+ 1)𝐶
−1
)

× (𝐹 + 𝑓
𝑖
+

𝑆
𝑟,𝑖

𝑚
𝑁,𝑖

+ 𝐴 + 𝐵))

1/2

,

(A.2)

where

𝐴 = ℎ
𝑓𝑖
(

((1 + 𝑏) 𝑡
(2+𝑏)/(1+𝑏)

𝑝
((1 + 𝑏) /𝛼)

1/(1+𝑏)

)

(2 + 𝑏)

−
𝛽𝑡
2

𝑝

2
) ,

𝐵 = ℎ
𝑟𝑖
𝑏
−1
(1 + 𝑏) 𝑡

𝑏/(1+𝑏)

𝑝
(
(1 + 𝑏)

𝛼
)

(1+𝑏)

,

𝐶 = (ℎ
𝑓𝑖
+ℎ
𝑟𝑖
𝑢
𝑖
(𝑚
𝑖
− 1))𝐷

𝑖
.

(A.3)

As shown in Figure 2, themanufacturer incurs an optimal
cost, TC

𝑁,𝑀
{𝑛
𝑁,𝑖
}, and a corresponding integermultiple set of

shipments, {𝑛
𝑁,𝑖
}, for a replenishment time between 𝐼

𝑁,𝑖
{𝑛
𝑁,𝑖
}

and 𝐼
𝑁,𝑖
{𝑛
𝑁,𝑖

− 1}. Using the closed form of the intersection,
we have

√2𝑛
𝑁,𝑖

(𝑛
𝑁,𝑖

+ 1)𝐶−1 (𝐹 + 𝑓
𝑖
+

𝑆
𝑟,𝑖

𝑚
𝑁,𝑖

+ 𝐴 + 𝐵)

≤ 𝑇
𝑁,𝑖

≤ ( (2𝑛
𝑁,𝑖

(𝑛
𝑁,𝑖

− 1)𝐶
−1
)

×(𝐹 + 𝑓
𝑖
+

𝑆
𝑟,𝑖

𝑚
𝑁,𝑖

+ 𝐴 + 𝐵))

1/2

.

(A.4)

Since 𝑛
𝑁,𝑖

is a positive integer, the range of 𝑛
𝑁,𝑖

can
be obtained by executing some mathematical operations in
(A.4).

Consider the following:

−
1

2
+ (

1

2
+ 4𝐶
−1
𝑇
−2

𝑁,𝑖
(𝐴 + 𝐵 + 𝐹 + 𝑓

𝑖
+

𝑆
𝑟𝑖

𝑚
𝑁,𝑖

))

1/2

≤ 𝑛
𝑁,𝑖

≤
1

2
+ (

1

2
+ 4𝐶
−1
𝑇
−2

𝑁,𝑖

× (𝐴 + 𝐵 + 𝐹 + 𝑓
𝑖
+

𝑆
𝑟𝑖

𝑚
𝑁,𝑖

))

1/2

.

(A.5)

Since the difference between the two inequalities in
(13) is equal to 1, it implies that one integer is between
(−1/2) + ((1/2) + 4𝐶

−1
𝑇
−2

𝑁,𝑖
(𝐴 + 𝐵 + 𝐹 + 𝑓

𝑖
+ (𝑆
𝑟𝑖
/𝑚
𝑁,𝑖
)))
1/2

and (1/2)+((1/2) + 4𝐶−1𝑇−2
𝑁,𝑖
(𝐴 + 𝐵 + 𝐹 + 𝑓

𝑖
+ (𝑆
𝑟𝑖
/𝑚
𝑁,𝑖
)))
1/2

or that they are both integers. In either case, taking the entire
upper portion of the expression in the left-hand side yields
the integer 𝑛

𝑁,𝑖
thereby satisfying (A.5). Therefore, given
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the replenishment cycle, a corresponding optimal number of
shipments, 𝑛∗

𝑁,𝑖
, can be obtained and is given as follows:

𝑛
∗

𝑁,𝑖
= ⌈(−

1

2
) + ((

1

2
) + 4𝐶

−1
𝑇
−2

𝑁,𝑖
(𝐴 + 𝐵 + 𝐹 + 𝑓

𝑖

+(
𝑆
𝑟𝑖

𝑚
𝑁,𝑖

)))

1/2

⌉ .

(A.6)
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