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Abstract: For a bivariate random vector (X,Y ), symmetry conditions are
presented that yield stochastic orderings among |X|, |Y |, |max(X,Y )|, and
|min(X,Y )|. Partial extensions of these results for multivariate random vectors
(X1, . . . , Xn) are also given.

1. Introduction

Jiang (2009) introduced a new estimator of value-at-risk (among other risk and
performance measures) for investment funds with short performance histories. In
deriving its large sample variance, Jiang made use of the following identity (with
some rearrangement; see Jiang (2009, Pg. 106, Eq. (3.6.2.4))):

(1) Φ2(x, x; ρ)− Φ2(−x,−x; ρ) = Φ(x)− Φ(−x), ∀x ≥ 0,

where Φ(·) is the cumulative distribution function (cdf) of the standard normal
distribution and Φ2(·, ·; ρ) is the cdf of the standard bivariate normal distribution
with correlation ρ.

The result (1) was somewhat unexpected because the left hand side is seemingly
dependent on ρ. Note that the left hand side is in fact the cdf of |max(X,Y )|, while
the right hand side is the cdf of |X|, where (X,Y ) is distributed as the standard
bivariate normal distribution with correlation ρ. Hence (1) implies that

(2) |max(X,Y )| d
= |X|.

It is natural to wonder whether this simple but elegant result extends to bivariate
distributions other than the standard bivariate normal distribution. Theorem 1
shows that it does hold for a broad range of bivariate distributions that are reverse
exchangeable.

Next we consider multivariate distributions. For any sequence X1, X2, . . . of
random variables, clearly max(X1, . . . , Xn) is nondecreasing in n, but this need not
be true for |max(X1, . . . , Xn)|: simply consider a non-random sequence that begins
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with −1, 0. Furthermore, as illustrated by Example 8, (2) need not hold even for
multivariate distributions with strong symmetries. In Theorems 2 and 5, however,
it is shown that |max(X1, . . . , Xn)| is stochastically nondecreasing in n under either
of two fairly non-restrictive multivariate extensions of reverse exchangeability.

A series of examples are presented that illustrate the general results.

2. Reverse Exchangeability for Bivariate Distributions

Definition 1. The bivariate random vector (X,Y ) is called reverse exchangeable

(RE) if (X,Y )
d
= (−Y,−X), that is, (X,Y ) and (−Y,−X) are identically dis-

tributed.

Reverse exchangeability simply means that the joint distribution of (X,Y ) is
symmetric about the line y = −x. Recognizing this allows us to state the condition
in terms of simple reflection. Imagine rotating the plane clockwise by 45◦, so the
symmetry line y = −x becomes the vertical axis. The point (X,Y ) is rotated to

(U, V ) :=

(
X + Y√

2
,
X − Y√

2

)
.

Then we have the following result:1

Proposition 1. (X,Y ) is RE if and only if the conditional distributions of U and
−U given V are the same, i.e.,

(3) (U | V = v)
d
= (−U | V = v), for a.e. v ∈ (−∞,∞).

Reverse exchangeability is a rather weak condition. For instance, if X,Y are iid

(independent and identically distributed) and X
d
= −X then (X,Y ) is RE, but the

converse is not true. A condition weaker than iid but still sufficient for RE is that the
distribution of (X,Y ) be ESCI, that is, exchangeable (E) and sign-change-invariant
(SCI).2 Clearly ESCI is strictly stronger than RE since ESCI also implies symmetry
about the line y = x, as well as symmetry about both coordinate axes. It is too
strong for our purposes, however, since it is not satisfied by the class of standard
bivariate elliptical distributions (i.e. with location parameter (0, 0) and identical
marginals) with nonzero correlation. Examples of interest include the standard
bivariate normal and bivariate t distributions.
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(c) ESCI

Fig 1: Three bivariate symmetry conditions.

There is a symmetry condition intermediate between RE and ESCI, namely that
(X,Y ) is both exchangeable (E) and reverse exchangeable (RE), designated by

1Condition (3) can be stated as (U, V )
d
= (−U, V ), but we use conditional distributions since

this allows for a natural generalization – see Definition 2.
2The ESCI condition is equivalent to group-invariance under the dihedral group generated by

all permutations and sign-changes of coordinates. See Eaton (1982, 1987); Eaton and Perlman
(1977) for discussions of group-invariance.
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ERE, i.e., it is symmetric about the line y = −x and the line y = x. See Figure 1
for a comparison of the three symmetry conditions. All standard bivariate elliptical
distributions are ERE, while any such distribution re-centered at any point on the
line y = −x except the origin satisfies RE but not ERE.

Example 1. A class of bivariate distributions that is ERE but not ESCI arises from
sampling without replacement from a finite set A of real numbers that is symmetric
about 0, i.e., A = −A. If (X,Y ) is such a sample from any finite set A with |A| ≥ 2,
then (X,Y ) is exchangeable since

(4) Pr[X = a, Y = b] =
1

|A| ·
1

|A| − 1
, ∀ a, b ∈ A, a �= b.

If in addition A = −A then (X,Y ) is RE:

Pr[−Y = a,−X = b] ≡ Pr[−X = a,−Y = b]

= Pr[X = a, Y = b]

by exchangeability and symmetry. Thus (X,Y ) is ERE, but it is not ESCI: for any
nonzero a ∈ A,

Pr[X = −a, Y = a] =
1

|A| ·
1

|A| − 1
�= 0 = Pr[X = a, Y = a].

�
Our first result states that if (X,Y ) is RE, its absolute marginal distributions

are identical to those of its extreme order statistics:

Theorem 1. If (X,Y ) is reverse exchangeable, then

(5) |max(X,Y )| d
= |min(X,Y )| d

= |X| d
= |Y |

Theorem 1 follows directly from Proposition 2, which holds under weaker RE
conditions.

Definition 2. The bivariate random vector (X,Y ) is called upper (lower) reverse
exchangeable, designated by URE (LRE), if the conditional distributions of U and
−U given V = v > 0 (v < 0) are the same, i.e.,

(U | V = v)
d
= (−U | V = v), for a.e. v > 0 (v < 0).

Clearly RE =⇒ URE and LRE. The converse need not be true if Pr[V = 0] > 0,

i.e. if Pr[X = Y ] > 0, since neither URE nor LRE ensures that U
d
= −U | V = 0.

For any x ≥ 0, define the events (see Figure 2)

Nx := {|X| ≤ x < Y },(6)

Sx := {|X| ≤ x < −Y },(7)

Ex := {|Y | ≤ x < X},(8)

Wx := {|Y | ≤ x < −X},(9)

Cx := {|X| ≤ x, |Y | ≤ x}.(10)
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For any random variable Z, let FZ denote its cdf. Clearly

F|X|(x) = Pr[Nx] + Pr[Cx] + Pr[Sx],(11)

F|Y |(x) = Pr[Wx] + Pr[Cx] + Pr[Ex],(12)

F|max(X,Y )|(x) = Pr[Wx] + Pr[Cx] + Pr[Sx],(13)

F|min(X,Y )|(x) = Pr[Nx] + Pr[Cx] + Pr[Ex].(14)

Therefore,

F|X|(x)− F|max(X,Y )|(x) = Pr[Nx]− Pr[Wx] = F|min(X,Y )|(x)− F|Y |(x),(15)

F|X|(x)− F|min(X,Y )|(x) = Pr[Sx]− Pr[Ex] = F|max(X,Y )|(x)− F|Y |(x).(16)

Fig 2: The union of the two closed strips {|X| ≤ x} and {|Y | ≤ x}. The regions
Nx, Sx, Ex, Wx, and Cx are disjoint.

Proposition 2.

(i) (X,Y ) URE =⇒ |max(X,Y )| d
= |X| and |min(X,Y )| d

= |Y |;

(ii) (X,Y ) LRE =⇒ |max(X,Y )| d
= |Y | and |min(X,Y )| d

= |X|;

(iii) (X,Y ) URE and LRE =⇒ |max(X,Y )| d
= |min(X,Y )| d

= |X| d
= |Y |.

Proof. Since (X,Y ) URE ⇒ Pr[Nx] = Pr[Wx] and (X,Y ) LRE ⇒ Pr[Sx] =
Pr[Ex], the results follow from (15) and (16)

Example 2. If X,Y are iid standard normal random variables, then (X,Y ) is RE.

Thus if M = min(X,Y ) or M = max(X,Y ), then Theorem 1 implies |M | d
= |X| d

=
|Y |, hence

(17) M2 d
= X2 d

= Y 2 ∼ χ2
1.

This result appeared in Casella and Berger (2002, Exercise 5.22). �
This example can be extended by relaxing normality and/or relaxing indepen-

dence:

Example 3. If X,Y are iid whose common distribution is symmetric about 0, then
clearly (X,Y ) is ESCI, hence RE. For M = max(X,Y ), Theorem 1 implies that

|M | d
= |X|. This can be verified directly from the iid assumption, as follows.
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For any x ≥ 0 let u = Pr[X > x]. Then

Pr[|M | ≤ x] = Pr[M ≤ x]− Pr[M < −x]
= (Pr[X ≤ x])

2 − ( Pr[X < −x])2

= (1− u)2 − u2

= (1− u)− u

= Pr[|X| ≤ x].

Therefore |M | d
= |X|. A similar proof holds if M = min(X,Y ). �

Example 4. (Example 2 extended). Suppose that

(X,Y ) ∼ N2

(
(μ,−μ),

(
1 ρ
ρ 1

))
,

the bivariate normal distribution with means μ and −μ (−∞ < μ <∞), variances
1, and correlation ρ ∈ (−1, 1). Then (X,Y ) is not ESCI but is RE, so Theorem 1
implies that for M = max(X,Y ) or min(X,Y ),

(18) M2 d
= X2 d

= Y 2 ∼ χ2
1(μ

2),

the noncentral chi-square distribution with noncentrality parameter μ2, extending
(17). Note that this result does not depend on the value of ρ.

For μ = 0, (18) reduces to (17) as in Example 2, and is equivalent to (1). It
seems difficult to verify (1) directly in this case. �
Example 5. (Example 4 extended). Suppose that (X,Y ) has a bivariate elliptical
pdf on R2 given by

f(x, y) = |Σ|−1/2g
[
(x− μ, y + μ) Σ−1(x− μ, y + μ)′

]
,

where

Σ = σ2

(
1 ρ
ρ 1

)
.

Then (X,Y ) is RE so M2 d
= X2 d

= Y 2 for all ρ ∈ (−1, 1). �
Example 6. (Example 1 continued). Suppose thatX,Y represent two random draws
without replacement from a finite set A of real numbers that is symmetric about 0,

i.e., A = −A. As noted in (4), (X,Y ) is RE, so |max(X,Y )| d
= |X| by Theorem 1.

If 0 �∈ A then

Pr[|X| = a] =
2

|A| , for a ∈ A, a > 0,

while if 0 ∈ A then

Pr[|X| = a] =

{
1
|A| , a = 0,
2
|A| , a ∈ A, a > 0,

so these are the distributions of |max(X,Y )| (and of |min(X,Y )|) as well. �
There is an obvious relation between bivariate RE and bivariate E:

Proposition 3. (X,Y ) is reverse exchangeable if and only if (X,−Y ) is exchange-
able.
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Thus Theorem 1 has the following corollary:

Corollary 1. If (X,Y ) is exchangeable then

|max(X,−Y )| d
= |min(X,−Y )| d

= |X| d
= |Y |.

Example 7. Sign-change invariance is not sufficient for the conclusion of Theorem 1
to hold. Suppose that (X,Y ) = (1, 0) and (−1, 0), each with probability 1/2. Then
|X| ≡ 1 while |max(X,Y )| = 0 and 1 each with probability 1/2, so (5) fails, even
though (X,Y ) is SCI. �

3. Reverse Exchangeability for Multivariate Distributions

It is natural to ask if Theorem 1 extends to three or more variables. That is, is

|max(X1, . . . , Xn−1)| d
= |max(X1, . . . , Xn)|

for n ≥ 3 under a general symmetry condition?
The short answer to this question is “no”, as seen by the following simple exam-

ple:

Example 8. Consider the random vector Xn ≡ (X1, . . . , Xn) with (discrete) prob-
ability distribution specified by

Pr[Xn = ei] = Pr[Xn = −ei] =
1

2n
, i = 1, . . . , n,

where ei denotes the ith coordinate unit vector (0, . . . , 0, 1i, 0, . . . , 0) in Rn. Clearly
Xn satisfies the strong symmetry condition ESCI. However,

Pr[|X1| = j] =

{
1− 1

n , j = 0,
1
n , j = 1,

while for l = 2, . . . , n,

Pr[|max(X1, . . . , Xl)| = j] =

{
1− l

2n , j = 0,
l
2n , j = 1,

so that
(19)

|X1| d
= |max(X1, X2)| <st |max(X1, X2, X3)| <st · · · <st |max(X1, . . . , Xn)|.

Here U <st V indicates that U is strictly stochastically less than V , that is,
FU (x) ≥ FV (x) for all x with strict inequality for at least one x. �

This example shows that Theorem 1 does not extend to three or more dimensions.
However, we shall show in Theorems 2, 3, and 5 that stochastic inequalities like
those in (19) do hold under multivariate extensions of reverse exchangeability.

Definition 3. The random vector or sequence (X1, . . . , Xn) (n ≤ ∞) is said to be
stochastically increasing in absolute maximum (= SIAMX) if

(20) |max(X1, · · · , Xl−1)| ≤st |max(X1, . . . , Xl)|, for l = 2, . . . , n,

where U ≤st V means that U is stochastically less than V , i.e. FU (x) ≥ FV (x) for
all x. It is stochastically increasing in absolute minimum (= SIAMN) if (20) holds
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with max replaced by min. It is strictly SIAMX (= SSIAMX) or strictly SIAMN
(= SSIAMN) if the stochastic inequalities are strict. It is designated SIAMX* or
SSIAMX* if the stochastic inequalities hold for l = 3, . . . , n but for l = 2 the

stochastic inequality is replaced by |X1| d
= |max(X1, X2)| (e.g. see (19)). It is

designated as SIAMN* or SSIAMN* if, similarly,|X1| d
= |min(X1, X2)|.

Definition 4. The random vector (X1, . . . , Xn) is said to be RE(k, l) for indices
1 ≤ k < l ≤ n if its distribution is unchanged when (Xk, Xl) is replaced by
(−Xl,−Xk), i.e.,

(21) (X1, . . . , Xk, . . . , Xl, . . . , Xn)
d
= (X1, . . . ,−Xl, . . . ,−Xk, . . . , Xn).

Also, (X1, . . . , Xn) is called RE(n) if it is RE(k, n) for some k < n.

Proposition 4. (i) If (X1, . . . , Xn) is RE(k, l) then for m = k and for m = l,

|max(Xi | 1 ≤ i ≤ n, i �= m)| ≤st |max(Xi | 1 ≤ i ≤ n)|,(22)

|min(Xi | 1 ≤ i ≤ n, i �= m)| ≤st |min(Xi | 1 ≤ i ≤ n)|.(23)

(ii) Strict stochastic inequality holds in (22), respectively, in (23), if

Pr[Xm > max(|Xi| | 1 ≤ i ≤ n, i �= m)] > 0, respectively,(24)

Pr[Xm < −max(|Xi| | 1 ≤ i ≤ n, i �= m)] > 0.(25)

Proof. (i) Without loss of generality take (k, l) = (1, n) and m = l = n, so (21),
(22), and (23) become

(X1, X2 . . . , Xn−1, Xn)
d
= (−Xn, X2 . . . , Xn−1,−X1),(26)

|max(X1, . . . , Xn−1)| ≤st |max(X1, . . . , Xn)|,(27)

|min(X1, . . . , Xn−1)| ≤st |min(X1, . . . , Xn)|,(28)

respectively. For x ≥ 0 define the event

Ωn(x) := {|max(X1, . . . , Xn)| ≤ x} = {−x ≤ max(X1, . . . , Xn) ≤ x} .

To prove (27) we need to show that

(29) Pr[Ωn(x)] ≤ Pr[Ωn−1(x)].

For any subset D ⊆ N := {1, . . . , n}, define the event

Tn(D) ≡ Tn(D;x) := {Xi < −x ∀i ∈ D} ∩ {|Xi| ≤ x ∀i /∈ D}.

Note that the events Tn(D) are disjoint for D ⊆ N . Then

Ωn(x) =
⋃

D⊂N

Tn(D)

=

⎛⎝ ⋃
D⊂N,n∈D

Tn(D)

⎞⎠ ∪

⎛⎝ ⋃
D⊂N,n/∈D

Tn(D)

⎞⎠
=

⎛⎝ ⋃
D⊂N\{n}

Tn(D ∪ {n})

⎞⎠ ∪

⎛⎝ ⋃
D⊆N\{n}

Tn(D)

⎞⎠
=

⎛⎝ ⋃
D⊂N\{n}

(
Tn(D ∪ {n}) ∪ Tn(D)

)⎞⎠ ∪
(
Tn(N\{n})

)
.(30)
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For any D ⊆ N\{n} define

T̃n(D) ≡ T̃n(D;x) := {Xi < −x ∀i ∈ D} ∩ {|Xi| ≤ x ∀i /∈ D, i �= n} ∩ {Xn > x},

also a family of disjoint events. Note too that Tn(D)∩ T̃n(D′) = ∅ for any D,D′. If
D ⊂ N\{n}, it is straightforward to verify that

Tn−1(D) = Tn(D ∪ {n}) ∪ Tn(D) ∪ T̃n(D),

a union of three disjoint events. Thus

Ωn−1(x)

=
⋃

D⊂N\{n}
Tn−1(D)

=
⋃

D⊂N\{n}

(
Tn(D ∪ {n}) ∪ Tn(D) ∪ T̃n(D)

)

=

⎛⎝ ⋃
D⊂N\{n}

(
Tn(D ∪ {n}) ∪ Tn(D)

)⎞⎠ ∪

⎛⎝ ⋃
D⊂N\{n}

T̃n(D)

⎞⎠ ,(31)

where all the events involving Tn and T̃n are mutually disjoint. But the RE(1, n)
condition (21) implies that

(32) Pr[Tn(N\{n})] = Pr[T̃n(N\{1, n})] ≤ Pr

⎡⎣ ⋃
D⊂N\{n}

T̃n(D)

⎤⎦ ,

which, together with (30) and (31), yields (29) and thence (27).

Now (28) follows from (27) because

(X1, . . . , Xn) is RE(k, l) ⇐⇒ (−X1, . . . ,−Xn) is RE(k, l) and(33)

|min(X1, . . . , Xn)| = |max(−X1, . . . ,−Xn)|.(34)

(ii) Because the events T̃n(D) are disjoint, it follows from (32) that strict in-
equality holds in (29) iff

(35) Pr
[
T̃n(D;x)

]
> 0, for some D ⊂ N\{n}, D �= N\{1, n}.

In particular, set D = ∅ to see that (35) holds if

(36) Pr[|Xi| ≤ x, ∀ i = 1, . . . , n− 1, Xn > x] > 0.

Thus a sufficient condition for strict stochastic inequality to hold in (27) is that
(36) hold for at least one x, which is equivalent3 to the condition that

Pr[Xn > max(|X1|, . . . , |Xn−1|)] > 0,

thus confirming (24). By (34), it follows that a sufficient condition for strict stochas-
tic inequality to hold in (28) is that

Pr[Xn < −max(|X1|, . . . , |Xn−1|)] > 0,

thereby confirming (25)

3Since {Xn > max(|X1|, . . . , |Xn−1|)} = ∪({Xn > x ≥ max(|X1|, . . . , |Xn−1|)} | x ∈ Q).
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Remark 1. The distribution of |max(Xi | 1 ≤ i ≤ n, i �= m)| in Proposition 4 is
not necessarily the same for m = k and m = l. With n = 3, k = 1, and l = 2,
consider the random vector (X1, X2, X3) that assigns probability 1/4 to each of
the four points (−1, 0, 0), (0, 1, 0), (0,−1, 1), and (1, 0, 1). Then this distribution is
RE(1, 2) but

Pr[|max(X1, X3)| = r] =

{
1
2 , r = 0
1
2 , r = 1,

Pr[|max(X2, X3)| = r] =

{
1
4 , r = 0
3
4 , r = 1.

The same is true for |min(Xi | 1 ≤ i ≤ n, i �= m)|. �
Theorem 1 and Proposition 4 yield the following multivariate result:

Theorem 2. Let the random vector (X1, . . . , Xn) be such that (X1, . . . , Xl) is RE(l)
for each l = 2, . . . , n. Then (X1, . . . , Xn) is SIAMX* and SIAMN*. It is SSIAMX*
or SSIAMN* if

Pr[Xl > max(|X1|, . . . , |Xl−1|)] > 0, l = 3, . . . , n,(37)

or Pr[Xl < −max(|X1|, . . . , |Xl−1|)] > 0, l = 3, . . . , n,(38)

respectively.

It is easy to see that the discrete multivariate distribution in Example 8 satisfies
condition (37), thereby confirming the strict stochastic inequalities in (19). (The
same holds true if max is replaced by min in (19).)

Remark 2. For (X1, X2), RE(2) is simply RE, which is weaker than ESCI as noted
before. For (X1, . . . , Xn) with n ≥ 3, the conjunction of RE(2), . . . , RE(n) in The-
orem 2 is weaker than ESCI in general. Consider, for example, an infinite sequence
X1, X2, X3, . . . of iid but non-symmetric rvs (random variables). For any n ≥ 2,
(−X1, X2, X3, . . . , Xn) is RE(n) but not ESCI. �
Example 9. [Example 3 continued] If X1, ..., Xn are iid random variables whose
common distribution is symmetric about 0, then (X1, ..., Xn) is ESCI hence RE(n)
for every n ≥ 2. Here the conclusions of Theorem 2 can be verified directly: To

show that (X1, . . . , Xn) is SIAMX*, for any x ≥ 0 set ux = Pr[Xi > x] ≤ 1
2 . Then

as in Example 3,

Pr[ |max(X1, ..., Xn)| ≤ x] = (1− ux)
n − un

x ,

which is decreasing in n since

(1− ux)
n−1 − un−1

x ≥ (1− ux)
n − un

x

�
(1− ux)

n−1ux ≥ un−1
x (1− ux)

�(
1− ux

ux

)n−1

≥ 1− ux

ux
.

The last inequality holds since (1− ux)/ux ≥ 1.
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This inequality is strict if n ≥ 3 and 0 < ux < 1
2 , i.e., if Pr[|Xi| ≤ x] > 0.

Thus for such x, Pr[ |max(X1, ..., Xn)| ≤ x] is strictly decreasing in n for n ≥ 2.
A necessary and sufficient condition for this to hold for at least one x ≥ 0, and
therefore for (X1, . . . , Xn) to be SSIAMX*, is that the distribution of |Xi| be non-
degenerate. Note that this condition is equivalent to both (37) and (38) in this
example, so under this condition, (X1, . . . , Xn) is SSIAMN* as well. �

For independent random variables, however, the requirements of identical distri-
butions and symmetry in Example 9 are not necessary for RE(n) to hold:

Example 10. Let (X1, X2, . . .) be an infinite sequence of independent random vari-
ables such that

(39) X1
d
= −X2

d
= X3

d
= −X4

d
= X5

d
= · · · .

Then for each n ≥ 2, (X1, ..., Xn) is RE(n) with k = n − 1 (or n − 3, n − 5, . . .).
Thus Theorem 2 implies that (X1, X2, . . .) is SIAMX* and SIAMN*. If in addition
both (37) and (38) hold, then by Proposition 4(ii), (X1, X2, . . .) is SSIAMX* and
SSIAMN*. (These results can again be verified directly, as in Example 9.)

In fact, the same conclusions holds if (39) is weakened to the condition

(40) Xi
d
= εiX1, i = 2, 3, . . . ,

where

ε2 = −1, εi = ±1, for i ≥ 3.

Now (X1, ..., Xn) is RE(n) with either k = 1 or k = 2. �
We now present an example where it seems difficult to circumvent Theorem 2.

Such examples arise when X1, X2, . . . are not independent. (Also see Examples 17
and 18.)

Example 11. Consider a Gaussian sequence (X1, X2, . . .) with E(Xi) = μi, Var(Xi) =
σ2, and Corr(Xi, Xj) = ρi,j . Then (X1, ..., Xn) satisfies RE(n) if and only if for some
1 ≤ k(n) ≤ n− 1,

μn =− μk(n),(41)

ρn,j =− ρk(n),j , ∀ j < n, j �= k(n).(42)

If these conditions hold for every n = 2, 3, . . ., then Theorem 2 implies that the
sequence is SIAMX* and, by Proposition 4(ii), is SSIAMX* if the Gaussian sequence
is nonsingular.

Since k(n) < n, the functional iterates k(q)(n) strictly decrease with q. Let qn
be the smallest q such that k(q)(n) = 1; note that q2 = 1. Thus, if (41) holds for
all n = 2, 3, . . . then μn = (−1)qnμ1, so the sequence of means μ∞ := (μ1, μ2, . . . )
takes the form

μ∞ = μ ·
(
1,−1, (−1)q3 , (−1)q4 , . . .

)
for some scalar μ.

If (42) holds for all n = 2, 3, . . ., the structure of the correlation matrix R∞ :=
(ρi,j | 1 ≤ i, j <∞) is more complicated to describe. We present two special cases:

Case 1. k(n) = 1 for each k ≥ 2: Here each qn = 1 so

μ∞ = μ · (1,−1,−1,−1, . . .)
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and R∞ has the form

R∞ =

⎛⎜⎜⎜⎜⎜⎝
1 ρ1 ρ2 ρ3 · · ·
ρ1 1 −ρ1 −ρ1 · · ·
ρ2 −ρ1 1 −ρ2 · · ·
ρ3 −ρ1 −ρ2 1 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .

Case 2. k(n) = n− 1 for each k ≥ 2: Here qn = n− 1 so

μ∞ = μ · (1,−1, 1,−1, 1, . . .)

and R∞ has the form

R∞ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ1 −ρ1 ρ1 −ρ1 · · ·
ρ1 1 ρ2 −ρ2 ρ2 · · ·
−ρ1 ρ2 1 ρ3 −ρ3 · · ·
ρ1 −ρ2 ρ3 1 ρ4 · · ·
−ρ1 ρ2 −ρ3 ρ4 1 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus (X1, X2, . . .) is SIAMX* and SIAMN*, and is SSIAMX* and SSIAMN* if the
Gaussian sequence is nonsingular. �

Lastly, we have the following result for an exchangeable random vector:

Corollary 2. If (X1, . . . , Xn) is exchangeable, then (−X1, X2, . . . , Xn) is SIAMX*
and SIAMN*.

Proof. Exchangeability implies that (−X1, . . . , Xl) is RE(1, l) for l = 2, . . . , n, so
this result follows from Theorem 2.

Example 12. Suppose that X = (X1, ..., Xn) represent n random draws (without
replacement) from a finite set of real numbers. Since (X1, . . . , Xn) is exchangeable,
it follows from Corollary 2 that (−X1, X2, . . . , Xn) is SIAMX* and SIAMN*. �

4. Reverse Sub(Super)exchangeability

Example 13. (Example 6 extended). Suppose that X1, . . . , Xn represent n random
draws without replacement from the finite symmetric set A ⊂ R, where n ≤ |A|.
In Example 1 it was shown that (X1, X2) is RE ≡ RE(2). However, (X1, . . . , Xl)
is not RE(l) for 3 ≤ l ≤ n ∧ (|A| − 1): for example, if l = 3 and a, b ∈ A, a, b > 0,
a �= b, then (X1, X2, X3) is not RE(1, 3):

0 = Pr[X1 = −a, X2 = −a, X3 = b]

< Pr[X1 = −b, X2 = −a, X3 = a]

= Pr[−X3 = −a, X2 = −a, −X1 = b],

where the strict inequality holds since −b,−a, a are distinct. Similarly (X1, X2, X3)
is not RE(2, 3), hence (X1, X2, X3) is not RE(3). Thus the condition of Theorem 2 is
not satisfied. Nonetheless, (X1, . . . , Xn) is SSIAMX and SSIAMN in this example.
�
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To establish this fact we introduce the notions of reverse subexchangeability and
reverse superexchangeability, weaker conditions than reverse exchangeability. For
simplicity we shall restrict attention to random vectors (X1, . . . , Xn) whose distri-
butions are determined by f(x1, . . . , xn), which is either a discrete probability mass
function (pmf) or a probability density function (pdf) w.r.to Lebesgue measure. We
begin with the bivariate case.

Definition 5. The bivariate random vector (X,Y ) is called upper (lower) reverse
subexchangeable, denoted by URE (LRE), if

(43) f(x, y) ≥ f(−y,−x), for |x| < y (|y| < x).

The rv (X,Y ) is called upper (lower) reverse superexchangeable, denoted by URE

(LRE), if

(44) f(x, y) ≤ f(−y,−x), for |x| < y (|y| < x).

Proposition 5.

(i) (X,Y ) URE =⇒ |X| ≤st |max(X,Y )| and |min(X,Y )| ≤st |Y |;
(ii) (X,Y ) LRE =⇒ |Y | ≤st |max(X,Y )| and |min(X,Y )| ≤st |X|;
(iii) (X,Y ) URE =⇒ |X| ≥st |max(X,Y )| and |min(X,Y )| ≥st |Y |;
(iv) (X,Y ) LRE =⇒ |Y | ≥st |max(X,Y )| and |min(X,Y )| ≥st |X|.

The stochastic inequalities in (i) (resp., (iii)) are strict if and only if

(45) Pr[ |X| < Y ] > (<) Pr[X < −|Y | ].

Likewise, the stochastic inequalities in (ii) (resp., (iv)) are strict if and only if

(46) Pr[ |Y | < X ] > (<) Pr[Y < −|X| ].

Proof. Because (X,Y ) URE ⇒ Pr[Nx] ≥ Pr[Wx] and (X,Y ) LRE ⇒ Pr[Sx] ≤
Pr[Ex], (i) and (ii) follow from (15) and (16) respectively. Parts (iii) and (iv) follow
similarly with the inequalities reversed.

To establish strict stochastic inequality in (i), define N : {|X| < Y } and, for any
measurable A ⊆ N , define

Ã := {(−y,−x) | (x, y) ∈ A},

the reflection of A across the line y = −x. Note that Ñ = {X < −|Y |} =: W and
Ñx = Wx for x ≥ 0 (recall (6) and (9)).

For any measurable subset A ⊆ N , define

σ(A) := Pr[A]− Pr[Ã],

so that (recall (6) and (9),

σ(N) = Pr[N ]− Pr[W ] = Pr[ |X| < Y ]− Pr[X < −|Y | ],(47)

σ(Nx) = Pr[Nx]− Pr[Wx].(48)

Clearly σ is a countably additive set function. Since (X,Y ) is URE, we have that

σ(A) ≥ 0, ∀ measurable A ⊆ Ω,
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so σ is a nonnegative measure. Thus, because N is the countable union

N =
⋃

(Nx | x ≥ 0, x rational),

it follows that

σ(N) > 0 ⇐⇒ σ(Nx) > 0, for at least one rational x ≥ 0.

The result now follows from (47), (48), and (15).

Cases (ii), (iii), and (iv) are treated similarly.

Example 14. (Example 5 extended). Suppose that (X,Y ) has a bivariate elliptical
pdf on R2 given by

f(x, y) = |Σ|−1/2g
[
(x− μ, y − ν) Σ−1(x− μ, y − ν)′

]
,

where

Σ = σ2

(
1 ρ
ρ 1

)
,

−1 < ρ < 1. Assume that g is nonincreasing and strictly positive on [0,∞). (This
includes the case where (X,Y ) ∼ N2((μ, ν), Σ)). After some algebra we find that

(x+ y)(μ+ ν) ≥ 0 =⇒ f(x, y) ≥ f(−y,−x),

regardless of the value of ρ, so

(49) μ+ ν > 0 =⇒ (X,Y ) is URE and LRE.

Furthermore (X − μ, Y − ν) is RE, so

Pr[X < −|Y | ] = Pr[ (X − μ) + μ < −|(Y − ν) + ν| ]
= Pr[−(Y − ν) + μ < −| − (X − μ) + ν| ]
= Pr[Y − (μ+ v) > |X − (μ+ ν)| ]
= Pr[Y > X, X + Y > 2(μ+ ν) ].

Thus, if μ+ ν > 0 then

Pr[ |X| < Y ]− Pr[X < −|Y | ]
=Pr[Y > X, Y > −X ]− Pr[Y > X, X + Y > 2(μ+ ν) ]

=Pr[Y > X, X + Y > 0 ]− Pr[Y > X, X + Y > 2(μ+ ν) ]

=Pr[Y > X, 0 < X + Y ≤ 2(μ+ ν) ],

which is strictly positive since g is strictly positive on [0,∞). It follows from Propo-
sition 5 that

(50) μ+ ν > 0 =⇒ |min(X,Y )| <st
|X|
|Y | <st |max(X,Y )|.

Similarly,

μ+ ν < 0 =⇒ (X,Y ) is URE and LRE(51)

=⇒ |max(X,Y )| <st
|X|
|Y | <st |min(X,Y )|.(52)

(Note that if μ + ν = 0 then (X,Y ) is RE so Example 5 applies, hence these
stochastic inequalities become stochastic equalities.) �
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Example 15. Suppose that (X,Y ) has joint pmf or pdf given by

f(x, y) = g(x)h(y),

where in addition, g and h are symmetric about 0, i.e., g(x) = g(−x) and h(y) =
h(−y). Thus X and Y are independent and SCI, but neither E nor RE if g �= h.
Here

f(x, y) ≥ f(−y,−x) ⇐⇒ g(|x|)h(|y|) ≥ g(|y|)h(|x|),(53)

⇐⇒ f|X|(|x|)f|Y |(|y|) ≥ f|X|(|y|)f|Y |(|x|),(54)

where f|X| and f|Y | denote the pmfs or pdfs of |X| and |Y |, respectively.
Now specialize to the case where f|X| = fθ′ and f|Y | = fθ′′ are pmfs or pdfs

in a one-parameter family {fθ} of pmfs or pdfs on [0,∞) with strictly monotone-
increasing likelihood ratio. Then for θ′ < θ′′, the inequalities (53)-(54) hold whenever
0 < x < y while the opposite inequalities hold whenever 0 < y < x. Thus (X,Y ) is
URE and LRE if θ′ < θ′′. Furthermore by symmetry

Pr[ |X| < Y ] = Pr[Y < −|X| ] = 1

2
Pr[ |X| < |Y | ],

Pr[X < −|Y | ] = Pr[ |Y | < X] =
1

2
Pr[ |Y | < |X| ],

and

Pr[ |X| < |Y | ] > Pr[ |Y | < |X| ]

by the strict monotone likelihood ratio assumption for |X| and |Y |. Thus by Propo-

sition 5 (also note (X,Y )
d
= (−X,−Y )),

(55) |X| <st |min(X,Y )| d
= |min(−X,−Y )| d

= |max(X,Y )| <st |Y |.

The scale-parameter families {N(0, θ) | θ > 0} and {C(0, θ) | θ > 0} of centered
normal and Cauchy pdfs satisfy the assumptions of this example, hence satisfy (55)
when 0 < θ′ < θ′′. �
Example 16. (Example 5 extended). Suppose that (X,Y ) has a centered bivariate
elliptical pdf on R2 given by

f(x, y) = |Σ|−1/2g
[
(x, y) Σ−1(x, y)′

]
= |Σ|−1/2g

[
d(σ, τ, ρ)(x2τ2 − ρστxy + y2σ2)

]
,

where

Σ =

(
σ2 ρστ
ρστ τ2

)
is positive definite and d(·, ·, ·) > 0. Assume that g is nonincreasing on [0,∞). (This
includes the case (X,Y ) ∼ N2((0, 0), Σ)). Then

(y2 − x2)(τ2 − σ2) ≥ 0 =⇒ f(x, y) ≥ f(−y,−x),

regardless of the value of ρ, so

(56) τ2 > σ2 =⇒ (X,Y ) is URE and LRE.
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Furthermore, (τX, σY ) is RE, so

Pr[X < −|Y | ] = Pr[−σY/τ < −|τX/σ| ]
= Pr[Y > (τ/σ)2|X| ].

Thus if τ2 > σ2 then

Pr[ |X| < Y ]− Pr[X < −|Y | ] = Pr[ (τ/σ)2|X| ≥ Y > |X| ],

which is strictly positive for any bivariate elliptical distribution. It follows from

Proposition 5 that (also note (X,Y )
d
= (−X,−Y ))

(57)

τ2 > σ2 =⇒ |X| <st |min(X,Y )| d
= |min(−X,−Y )| d

= |max(X,Y )| <st |Y |,

regardless of the value of ρ. Similarly,

(58) τ2 < σ2 =⇒ |Y | <st |min(X,Y )| d
= |max(X,Y )| <st |X|.

�
We now turn to the multivariate case; take n ≥ 3 for the remainder of this

section.

Definition 6. The random vector (X1, . . . , Xn) is said to be URE(k, l) for indices
1 ≤ k < l ≤ n if f(x1, . . . , xn) decreases when (xk, xl) is replaced by (−xl,−xk),
i.e.,

(59) f(x1, . . . , xk, . . . , xl, . . . , xn) ≥ f(x1, . . . ,−xl, . . . ,−xk, . . . , xn),

whenever |xk| < xl and xi < −|xk| for all i �= k, l. It is LRE(k, l) if (59) holds
whenever |xl| < xk and xi < −|xl| for all i �= k, l. The rv (X1, . . . , Xn) is called
URE(l) (LRE(l)) if it is URE(k, l) (LRE(k, l)) for some k �= l. Then URE(k, l),
LRE(k, l), URE(n), and LRE(n)) are defined like their counterparts but with the
inequality reversed in (59).

Proposition 6. For 1 ≤ k < l ≤ n,

(i) (X1, . . . , Xn) URE(k, l) =⇒ |max(Xi | i �= l)| ≤st |max(X1, . . . , Xn)|;
(ii) (X1, . . . , Xn) LRE(k, l) =⇒ |max(Xi | i �= k)| ≤st |max(X1, . . . , Xn)|;
(iii) (X1, . . . , Xn) UR

E(k, l) =⇒ |min(Xi | i �= k)| ≤st |min(X1, . . . , Xn)|;
(iv) (X1, . . . , Xn) LR

E(k, l) =⇒ |min(Xi | i �= l)| ≤st |min(X1, . . . , Xn)|.

The stochastic inequalities in (i)–(iv) become strict under the four conditions

Pr[Xl > max(|Xi| | 1 ≤ i ≤ n, i �= l)] > 0,(60)

Pr[Xk > max(|Xi| | 1 ≤ i ≤ n, i �= k)] > 0,(61)

Pr[Xk < −max(|Xi| | 1 ≤ i ≤ n, i �= k)] > 0,(62)

Pr[Xl < −max(|Xi| | 1 ≤ i ≤ n, i �= l)] > 0,(63)

respectively.

Proof. The proof of (i) is identical to the proof of (22) in Proposition 4, except that
in (32) the equality (=) is replaced by inequality (≤), which is justified by (59). The
implications (ii)-(iv) are established in similar fashion. An argument similar to that
used for Proposition 4(ii) verifies the conditions for strict stochastic inequality.
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Proposition6 yields the following theorem:

Theorem 3. If (X1, . . . , Xl) is URE(l) for l = 2, . . . , n, then (X1, . . . , Xn) is
SIAMX. If in addition

Pr[X2 > |X1| ] > Pr[X1 < −|X2| ](64)

and Pr[Xl > max(|X1|, . . . , |Xl−1|)] > 0, for l = 3, . . . , n,(65)

then (X1, . . . , Xn) is SSIAMX. If (X1, . . . , Xl) is LRE(l) for l = 2, . . . , n, then
(X1, . . . , Xn) is SIAMN. If in addition

Pr[ |X2| < X1] < Pr[X2 < −|X1| ](66)

and Pr[Xl < −min(|X1|, . . . , |Xl−1|)] > 0, for l = 3 . . . , n,(67)

then (X1, . . . , Xn) is SSIAMN.

Example 17. (Example 13 continued). Let X1, . . . , Xn be n random draws without
replacement from the finite symmetric set A ⊂ R, with n ≤ |A|. It was seen in
Example 13 that (X1, . . . , Xl) need not be RE(l) for 3 ≤ l ≤ n. However, it is
URE(l), which is seen as follows:

The pmf f(x1, . . . , xl) takes the value c := 1/(|A|(|A| − 1) · · · (|A| − l + 1)) on
the range

(68) Ãl := {(x1, . . . , xl) | x1, . . . , xl ∈ A and are mutually distinct},

and is 0 for (x1, x2, . . . , xl) /∈ Ãl. Thus, to verify via (59) that (X1, . . . , Xl) is
RE(1, l) it suffices to show that

(x1, x2, . . . , xl) ∈ Ãl

whenever

(−xl, x2, . . . , xl−1,−x1) ∈ Ãl

and |x1| < xl and xi < −|x1| for all i �= k, l. These two strict inequalities imply
that x1, xi, xl are mutually distinct for all i = 2, . . . , l − 1, while x2, . . . , xl−1 are
distinct by (68). The assertion follows since −xi ∈ A =⇒ xi ∈ A by the symmetry
of A.

It follows from Theorem 3 that (X1, . . . , Xn) is SIAMX and, by symmetry,
is SIAMN. Furthermore, conditions (65) and (67) hold unless l = n = |A|, so
(X1, . . . , Xn) is SSIAMX and SSIAMN, except possibly for the case l = n when
n = |A|. �
Example 18. (Example 5 extended). Let (X1, . . . , Xn) have a centered multivariate
elliptical distribution with pdf of the form

f(x1, . . . , xn) = |Σ|−1/2g
[
(x1, . . . , xn) Σ

−1(x1, . . . , xn)
′] ,

where Σ ≡ {σij} is positive definite with intraclass correlation structure: σii = σ2

and σij = σ2ρ for all 1 ≤ i �= j ≤ n, where −1/(n − 1) < ρ < 1. Then f has the
form

f(x1, . . . , xn) = |Σ|−1/2g

⎡⎣c(σ, ρ) · ∑
1≤i≤n

x2
i − ρ d(σ, ρ) ·

∑
1≤i<j≤n

xixj

⎤⎦ ,
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where c(·, ·) > 0 and d(·, ·) > 0. Assume that g is nonincreasing on [0,∞). Then
for ρ �= 0,

ρ (x1 + xn)(x2 + · · ·+ xn−1) ≥ 0

=⇒ f(x1, . . . , xn) ≥ f(−xn, x2, . . . , xn−1,−x1),

hence

(69) (X1, . . . , Xn) is

{
URE(1, n), if ρ < 0,

LRE(1, n), if ρ > 0.

Since (X1, X2) is RE for all ρ, it follows from Theorems 1 and 3 that (X1, . . . , Xn)

is SSIAMX* when ρ < 0 and is SSIAMN* when ρ > 0. However, (X1, . . . , Xn)
d
=

(−X1, . . . ,−Xn) for all values of ρ, so |max(X1, . . . , Xn)| d
= |min(X1, . . . , Xn)|.

Thus (X1, . . . , Xn) is SSIAMX* and SSIAMN* for all ρ.

Note that (X1, . . . , Xn) is also exchangeable, so by Corollary 2 and Theorem 3,
(−X1, X2, . . . , Xn) is SIAMX* and SIAMN*. �

5. Results for Independent Symmetric Random Variables.

As noted earlier, if X1, . . . , Xn are iid and symmetric about 0 then (X1, . . . , Xn)
is ESCI, hence RE(k, l) for all 1 ≤ k < l ≤ n, so the conclusions of Theorem 2
hold. Under independence, however, stochastic comparisons for the extreme order
statistics can be obtained under a weaker assumption than identical distributions,
namely stochastic ordering. This is illustrated by the following bivariate result:

Theorem 4. Suppose that X and Y are independent and symmetric about 0. If
|X| ≤st |Y | then

(70) |X| ≤st |min(X,Y )| d
= |max(X,Y )| ≤st |Y |.

These stochastic inequalities are strict iff |X| <st |Y |.
Proof. We may either pattern the proof after that of Proposition 2 or use this direct
approach:

If F and G are the cdfs of X and Y , respectively, then the cdfs of |X| and |Y |
are 2F − 1 and 2G− 1 on [0,∞). Furthermore, the cdf of |max(X,Y )| is

FG− (1− F )(1−G) =F +G− 1

=
1

2
[(2F − 1) + (2G− 1)],

the average of 2F − 1 and 2G− 1. But |X| ≤st |Y | implies that 2F − 1 ≥ 2G− 1,
hence this average lies in the interval [2G − 1, 2F − 1], and strictly inside this
interval for some x iff |X| <st |Y |. This yields the stochastic inequalities in (70)
and the statement regarding strict stochastic inequality. The equality in (70) follows
by symmetry.

Note that the stochastic ordering assumption |X| ≤st |Y | in Theorem 4 is weaker
than the monotone likelihood ratio assumption in Example 15. For example, let |X|
take the values 0 and 1 with probability 1/2 each, and let |Y | take the values 0, 1,
and 2 with probabilities 1/2, 1/4, and 1/4 respectively.



100 Y. Jiang and M. D. Perlman

In three or more dimensions we have the following partial complement to Propo-
sition 6 and Theorem 3:

Theorem 5. Let X1, . . . , Xn be independent symmetric random variables. If |Xk| ≤st

|Xl| for a pair (k, l) with 1 ≤ k < l ≤ n, then

|max(Xi | 1 ≤ i ≤ n, i �= l)| ≤st |max(Xi | 1 ≤ i ≤ n)|,(71)

|min(Xi | 1 ≤ i ≤ n, i �= l)| ≤st |min(Xi | 1 ≤ i ≤ n)|.(72)

If |Xk| <st |Xl|, the stochastic inequalities in (71) and (72) are strict.

Therefore, if |X1| ≤st · · · ≤st |Xn| then (X1, . . . , Xn) is SIAMX and SIAMN. If
|X1| <st · · · <st |Xn|, then (X1, . . . , Xn) is SSIAMX and SSIAMN.

Proof. Without loss of generality take k = 1 and l = n. Set Fi(x) = Pr[Xi ≤ x],
the cdf of Xi, and set F̄i = 1 − Fi. Similarly, let Gi denote the cdf of |Xi| and
Ḡi = 1−Gi. By symmetry, for i = 1, . . . , n and x ≥ 0 we have

(73) F̄i(x) =
1

2
Ḡi(x).

If we let Hn denote the cdf of |max(Xi | 1 ≤ i ≤ n)|, then by independence,

(74) Hn(x) =

n∏
i=1

Fi(x)−
n∏

i=1

F̄i(x), for x ≥ 0.

Therefore, by (74) and (73),

Hn(x)−Hn−1(x)

= F̄1(x)Fn(x)

n−1∏
i=2

F̄i(x)− F1(x)F̄n(x)

n−1∏
i=2

Fi(x)

=
1

4

[
Ḡ1(x)(2− Ḡn(x))

n−1∏
i=2

F̄i(x)− (2− Ḡ1(x))Ḡn(x)

n−1∏
i=2

Fi(x)

]
.

Since F̄i(x) ≤ Fi(x) for i = 2, . . . , n− 1 and |X1| ≤st |Xn| =⇒ Ḡ1(x) ≤ Ḡn(x), it
follows that Hn(x) ≤ Hn−1(x) for x ≥ 0, which confirms (71).

If |X1| <st |Xn| then Ḡ1(x) < Ḡn(x) for some x ≥ 0. Since Fi(x) ≥ 1
2 > 0 for

i = 2, . . . , n − 1, it follows that Hn(x) < Hn−1(x) for this x, hence the stochastic
inequality in (71) is strict. The remaining assertions are straightforward.

Example 19. Let X1, . . . , Xn be independent symmetric random variables, and let
|Xi| (i = 1, . . . , n) take the values 0, 1, . . . , i with probability 1

2 ,
1
2i , . . . ,

1
2i , respec-

tively. Then it is clear that |X1| <st · · · <st |Xn|. It follows from Theorem 5 that
(X1, . . . , Xn) is SSIAMX and SSIAMN. �
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