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A weak functional framework

for applications in statistics

Adel Blouza1 , Dominique Fourdrinier2,† and Patrice Lepelletier3

Université de Rouen, Université de Rouen and ESITPA

Abstract: For the problem of estimating a general loss of the form c(‖x−θ‖2),
Stein’s identity is particularly relevant in deriving unbiased estimators of loss
when x is used as an estimate of θ and is distributed as Np(θ, I), and when c is
the identity function. In [3], Fourdrinier and Lepelletier show that extensions
to other distributions (actually, to spherically symmetric distributions) and to
general functions c are conceivable, but through another approach involving
a Green’s formula. Somewhat surprisingly, the statistical context induces an
unusual weak functional framework. The main goal of this paper is to present
such an analytic context.
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1. Introduction: a statistical motivation

Let X be a random vector in Rp from a distribution Pθ where the unknown pa-
rameter θ is a fixed vector in Rp. A basic statistical problem is to estimate θ
using an estimator, which is a function of X, say ϕ(X), under a loss function
L(θ, ϕ(X)). Actually, the evaluation of the estimator ϕ is made through the risk
function R(θ, ϕ) = Eθ[L(θ, ϕ(X))] (where Eθ denotes the expectation with respect
to Pθ).
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However it is often of interest to assess the loss L(θ, ϕ(X)) itself and a wide
literature is devoted to this subject. See Johnstone [7] for a rationale, Lu and
Berger [9], and Fourdrinier and Wells [6] for more details on this approach and
Fourdrinier and Strawderman [4] for a Bayesian perspective. Assessment of the loss
L(θ, ϕ(X)) is usually made through the use of a function of X, say γ(X), inducing
a new type of estimator, γ, called a loss estimator. For evaluating the precision of
γ, another loss is required and it has become standard to use the squared error

L∗
(
θ, ϕ(X), γ(X)

)
=

(
γ(X) − L (θ, ϕ(X))

)2

.

More precisely this evaluation is done through the new quadratic risk function

R(θ, ϕ, γ) = Eθ

[
L∗(θ, ϕ(X), γ(X))

]
= Eθ

[(
γ(X) − L(θ, ϕ(X))

)2]
.

Here we consider the general assumption that Pθ is a spherically symmetric
distribution around θ and, more specifically, that Pθ has a density with respect to
the Lebesgue measure on Rp of the form x �→ f(‖x − θ‖2) for some function f .
Furthermore, as an estimator ϕ of θ, we consider the usual estimator ϕ(X) = X
under a loss of the form

L (θ, ϕ(X)) = L(θ, X) = c(‖X − θ‖2)(1.1)

for a certain function c.
As a first estimate of c(‖X − θ‖2), a simple estimator is the constant (and hence

unbiased) estimator γ0 = E0

[
c(‖X‖2)

]
. In the Gaussian case (that is, Pθ = Np(θ, I)

where I is the p × p identity matrix) and when c is the identity function, we clearly
have γ0 = p. In that setting, Johnstone [7] considers alternative estimators γ of the
form γ(X) = p + s(X) and yields an unbiased estimator δ of the loss of γ (in the
sense that Eθ[δ(X)] = R(θ, X, γ)) through a repeated use of Stein’s identity [10].

Indeed, denoting by · the usual inner product in Rp, Stein’s lemma states that

Eθ [(X − θ) · g(X)] = Eθ [div g(X)](1.2)

for any suitable function g from Rp into Rp (for which, in an appropriate sense, the
divergence div g(x) =

∑p
i=1 ∂igi(x) exists) provided the above expectations exist

(see further for more details on the conditions on g). As a consequence, for any
suitable function s from Rp into R, we have

Eθ

[
‖X − θ‖2s(X)

]
= Eθ [p s(X) + Δs(X)] ,(1.3)

using (1.2) with g(X) = (X − θ)s(X) (here Δs(x) =
∑p

i=1 ∂iis(x) is the Laplacian
of s). Hence, expanding the terms in the expression of the risk of γ = p+s, we have

R(θ, X, γ) = Eθ

[
(p + s(X) − ‖X − θ‖)2

]
= Eθ

[
(p − ‖X − θ‖2) + 2

(
p − ‖X − θ‖2

)
s(X) + s2(X)

]
(1.4)

and it follows that

R(θ, X, γ) = Eθ

[
2p − 2Δs(X) + s2(X)

]
.(1.5)

Equality (1.5) means that δ(X) = 2p − 2Δs(X) + s2(X) is an unbiased estimator
of the loss and leads to a simple sufficient condition of domination of γ over γ0 = p,
that is,

− 2Δs(x) + s2(x) ≤ 0(1.6)
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for any x ∈ Rp, with a strict inequality on a set of positive Lebesgue measure.
Actually, the above condition implies that R(θ, X, γ) < R(θ, X, p), for every θ ∈ Rp.

Such a situation does not recur when we depart from the normal case and, all
the more, when c is not necessarily the identity function. Although Fourdrinier
and Wells [6] could construct improved estimators γ = γ0 + s, in the framework of
spherically symmetric distributions, using an ad hoc version of Stein’s identity, they
had to use more involved arguments to exhibit a sufficient domination condition
similar to (1.6).

Note that the case where c is not the identity function is more complicated.
Recently, Fourdrinier and Lepelletier [3] gave formal improvements of γ = γ0 + s
over γ0 (that is, with no recourse to simulations) in the case where c is an indicator
function, say 1l[0, cα] (for some constant cα associated to a fixed number α ∈ [0, 1]).
This corresponds to a confidence level estimation of a confidence region with nom-
inal confidence coefficient 1 − α, and should be interpreted as a loss estimation
problem in a wide sense.

For the general estimation problem of c(‖X − θ‖2) under a spherical density
x �→ f(‖x − θ‖2), a calculus analogue to (1.4) shows that the risk expression of
γ = γ0 + s is

R(θ, γ, X) = V0 + δθ(1.7)

where V0 is the variance of c(‖X − θ‖2) when θ = 0 and δθ is the risk difference

δθ = Eθ

[
2

(
γ0 − c(‖X − θ‖2

)
s(X) + s2(X)

]
.(1.8)

The approach used in [3] consists in introducing the Laplacian of s in δθ and in
using a Green’s formula of the form∫

Rp

u(x) Δv(x) dx =
∫

Rp

v(x) Δu(x) dx(1.9)

for functions u and v satisfying suitable weak conditions. Note that these conditions
are imposed by the statistical problem.

The paper is organized as follows. In Section 2, we specify the spaces where the
functions u and v live and give accurate conditions for the Green formula (1.9) to
be valid. In Section 3, we make a link with Stoke’s theorem. In particular, we show
that the spaces used in Section 2 are the appropriate spaces for deriving Stein type
identities. We specify, in Section 4, how our result applies in the statistical context
described in Section 1. In Section 5, we give some conclusions and, finally, Section 6
is an appendix gathering analytic material (in particular, on Sobolev spaces) which
underlies to a Green’s formula in our context.

2. A Green’s formula in a weak functional framework

Our purpose, in this section, is to yield some weak frameworks for functions with
little regularity and in which a Green’s formula makes sense. Our main result,
consisting in a Green’s formula of the type (1.9) under weak analytic conditions,
is given in Theorem 2.5. For the material on functional spaces used in this section,
we refer to the appendix.

Let us first recall the well known Green formula (the second Green formula)
when the functions under consideration are regular enough and when the integration
domain is a Lipschitz domain (see [2] e.g.).
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Theorem 2.1. Let Ω be a Lipschitz domain with outward unit normal ν. Let u
and v two vectors fields whose components are in C2(Ω) and such that their normal

derivatives
∂u

∂ν
= ∇u · ν and

∂v

∂ν
= ∇v · ν are defined on the boundary ∂Ω of Ω.

Then

(2.10)∫
Ω

u(x) Δv(x) dx −
∫

Ω

v(x) Δu(x) dx =
∫

∂Ω

u(x)
∂v

∂ν
(x) dσ(x) −

∫
∂Ω

v(x)
∂u

∂ν
(x) dσ(x),

where σ is the superficial measure on ∂Ω.

The regularity of u and v in Theorem 2.1 is sufficient to give sense to the integrals
and ensures equality of the right and left hand sides of (2.10). When Ω = Rp, the
particular case of formula (1.9) (that is, when the right hand side of (2.10) vanishes)
occurs under the simple regularity assumption that u and v are twice continuously
differentiable on Ω with compact support.

In the following lemmas, we consider first the weakening of regularity conditions
on u and v which preserve (1.9). The case where u and v both belong to the Sobolev
space H2(Rp) is immediate.

Lemma 2.1. For p ≥ 1, if u and v are two functions of H2(Rp), then (1.9) is
satisfied.

Proof. Since the function u is in H2(Rp), its Laplacian Δu is in L2(Rp) and its
Fourier transform û verifies Δ̂u(ξ) = ‖ξ‖2 û(ξ) and is also in L2(Rp). Then, by
virtue of Lemma 6.10, the result follows from

(2π)p

∫
Rp

u(x) Δv(x) dx =
∫

Rp

û(x) Δ̂v(x) dx

=
∫

Rp

û(x) ‖x‖2 v̂(x) dx

=
∫

Rp

Δ̂u(x) v̂(x) dx

= (2π)p

∫
Rp

v(x) Δu(x) dx.

We consider, now, the case when the function u belongs to Lq(Rp) and v is a
C ∞-rapidly decreasing function of S.

Lemma 2.2. Let u ∈ Lq(Rp) with q ∈ [1, +∞] and v ∈ S. Then we have the
identities

< Δu, v >S ′,S =< u, Δv >S ′,S =
∫

Rp

u(x) Δv(x) dx .

Moreover, if Δu ∈ Lq(Rp), then (1.9) is satisfied.

Proof. These identities rely on the duality < , > introduced in the appendix (Defini-
tion 6.2) and on the fact that all (classes of) functions u belonging to some Lq(Rp)
are (identified to) tempered distributions through the continuity of the mapping
ϕ �→

∫
u(x) ϕ(x) dx on the space C ∞

c (for the topology induced by S, see Lemma
6.9 and Remark 6.1 for details).
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Combining a rapidly decreasing function v and a slowly increasing function u at
infinity gives a similar result (see Appendix, Definition 6.4).

Lemma 2.3. Let u ∈ OM (Rp) and v ∈ S. Then we have∫
Rp

Δu(x) v(x) dx =< Δu, v >S ′,S =< u, Δv >S ′,S =
∫

Rp

u(x) Δv(x) dx .

Above, we presented some situations where a Green formula of the type (1.9) is
relatively immediate. We now give our main result which, through the spaces where
the functions u and v live, is a weak version of this Green formulation.

Theorem 2.2. Assume that u ∈ W 2,1
loc (Rp) and that v ∈ W 2,∞ (Rp). Assume also

that there exist R0 and ε > 0 such that u ∈ C2
b (Rp \Bp

r ) and v ∈ S 2,p+ε (Rp \Bp
r ).

Then the functions u Δv and v Δu are in L1(Rp) and, furthermore, we have the
equality ∫

Rp

u(x) Δv(x) dx =
∫

Rp

v(x) Δu(x) dx .

The proof makes an essential use of a series of known results based on mollifi-
cation, a basic technique in analysis which is classically performed by convolution
with a compactly supported mollifier (see Appendix, Notations 6.1). We recall these
results in the following lemmas.

Lemma 2.4. Let f ∈ C ∞(Rp) and g ∈ L1
loc(R

p). Then f ∗ g ∈ C ∞(Rp) and
∂α(f ∗ g) = ∂αf ∗ g, for any multi-index α.

Lemma 2.5. Let f ∈ L1
loc(R

p) and let (ρn)n be a standard mollifier. Then, for all
compact K ⊂ Rp, the sequence (1lKfn)n = (1lK(f ∗ ρn))n approximates 1lKf in the
sense that 1lKfn → 1lKf strongly in L1(Rp).

Lemma 2.6. Let v ∈ W 2,∞(Rp). There exists a sequence (vn)n in C ∞(Rp) such
that vn −⇀ v weakly-∗ in W 2,∞(Rp).

Proof. We know that the sequence vn = v ∗ ρn ⇀ v weakly-∗ in L∞(Rp). Moreover,
since the sequence vn is bounded a.e., there exists a subsequence (still denoted by)
vn such that vn ⇀ w weakly-∗ in W 2,∞(Rp). Then vn ⇀ w weakly-∗ in L∞(Rp)
and v = w.

Lemma 2.7. The space W 1,∞ (Rp) is a multiplicator of W 1,1
loc (Rp), i.e., if f ∈

W 1,1
loc (Rp) and g ∈ W 1,∞ (Rp), then fg ∈ W 1,1

loc (Rp).

Lemma 2.7 is crucial in the sense that it allows us to derive a Leibniz formula

∂i(f g) = g ∂if + f ∂ig, ∀i ∈ {1, . . . , p} .(2.11)

Indeed, for a given non negative constant R ∈ R∗
+ and a sequence (fn)n of C ∞

c (BR)
such that fn → f in C ∞

c (BR) strongly, we have, for any i ∈ {1, . . . , p} and any
φ ∈ C ∞

c (Rp),

< fng, ∂iφ > = < g, fn∂iφ + φ∂ifn > − < g, φ∂ifn >

= − < fn∂ig + ∂ifng, φ >,

using the membership of fn and φ to C ∞
c (Rp) and Lemma 6.8. Now, since the

sequence fn converges strongly to f , we obtain, when n goes to infinity,

< fng, ∂iφ > → < fg, ∂iφ >



A weak functional framework in statistics 95

and hence
< fn∂ig + ∂ifng, φ > → < f∂ig + ∂ifg, φ > .

Thus the formula (2.11) is satisfied.
Note, however, that the space W 1,1

loc (Rp) is not an algebra. Indeed, the function
f defined on (Rp)∗ by

f(x) = ‖x‖ −3

belongs to W 1,1
loc (Rp) when p = 6 while f2 does not.

Proof of Theorem 2.2. Thanks to Lemma 2.4, the sequences (un)n = (u ∗ ρn)n and
(vn)n = (v ∗ ρn)n are in C ∞(Rp). Since L∞(Rp) ⊂ L1

loc(R
p), for R > 0, the classical

Green formula on the ball BR states that

(2.12)∫
BR

[un(x) Δvn(x)−vn(x) Δun(x)] dx =
∫

SR

[
un(x)

∂vn

∂ν
(x)−vn(x)

∂un

∂ν
(x)

]
dσR(x)

where SR = ∂BR is the sphere of radius R and σR is the superficial measure on SR.
Now, by Lemmas 2.6 and 2.5 respectively, we have vn −⇀ v weakly-∗ in W 2,∞(Rp)
and, for a given compact K of Rp, we also have the strong convergence 1lKun → 1lKu
in L1. Since (L1(Rp))′ = L∞(Rp), for K = BR, it follows that∫

BR

un(x) Δvn(x) dx −→
∫

BR

u(x) Δv(x) dx

and ∫
BR

vn(x) Δun(x) dx −→
∫

BR

v(x) Δu(x) dx .

Furthermore, as the functions u and v are in C2(Rp\Br), for R > r, we also have
the following convergences∫

SR

vn(x)
∂un

∂ν
(x) dσR(x) −→

∫
SR

v(x)
∂u

∂ν
(x) dσR(x)

and ∫
SR

un(x)
∂vn

∂ν
(x) dσR(x) −→

∫
SR

u(x)
∂v

∂ν
(x) dσR(x) .

Thus, with n going to infinity in (2.12), we obtain as a preliminary result

(2.13)∫
BR

[u(x) Δv(x) − v(x) Δu(x)] dx =
∫

SR

[
u(x)

∂v

∂ν
(x) − v(x)

∂u

∂ν
(x)

]
dσR(x) .

In a second step, we prove that the right hand side of (2.13) vanishes when R
goes to infinity. First, estimate it as

AR =
∣∣∣∣∫

SR

v(x)
∂u

∂ν
(x) dσR(x) +

∫
SR

u(x)
∂v

∂ν
(x) dσR(x)

∣∣∣∣
≤

∫
SR

|v(x)| | ∇u(x) · ν(x)| dσR(x) +
∫

SR

| ∇v(x) · ν(x)| |u(x)| dσR(x)

≤
p∑

i=1

‖∂iu‖1,∞,Rp

∫
SR

|v(x)| dσR(x) + ‖u‖2,∞,Rp

∫
SR

p∑
i=1

|∂iv(x)| dσR(x)
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using (6.22) (see Appendix, Definition 6.6) since u ∈ C2
b (Rp \Bp

r ) and R > r. Mul-
tiplying through by ‖x‖p and dividing through by Rp inside the two last integrals
give

AR ≤ (p + 1)‖u‖2,∞,Rp ‖v‖S
2,p+ε,Rp \Sr

σR(SR)
Rp

.

Thus, as σR(SR)
Rp = 2πp/2

Γ(p/2)
1
R , we have limR→∞ AR = 0, which is the desired result.

It remains to show that the left hand side of (2.13) converges, when R goes to
infinity, towards the corresponding integral on Rp. First, let us prove that u Δv and
v Δu are in L1(Rp). Note that, on the ball BR, we have

‖u ∂iiv‖1,Br ≤ ‖u‖1,Br | |∂iiv‖∞,Br < +∞

since u ∈ L1
loc(R

p) and ∂iiv ∈ L∞(Rp). As, on Rp\BR, the function u is bounded
by a positive constant M , it follows that

‖u ∂iiv‖1,Rp \BR
≤ M

∫
Rp \BR

|∂iiv| dx ≤ M ‖v‖S
2,p+1,Rp \BR

∥∥∥ 1
‖x‖p+1

∥∥∥
1,Rp \BR

< ∞

since v ∈ S 2(Rp\BR). Thus u ∂iiv and v ∂iiu are in L1(Rp) and hence u Δv and v Δu
are in L1(Rp) as well. Finally, the desired convergence follows from an application
of the Lebesgue dominated convergence theorem.

It is worth noting that, for a function v ∈ W 2,∞ (Rp) ∩ S 2(Rp\Bp
r ), with p > 2,

the Green formula in Theorem 2.2 does not remain valid if, for a function u, we
choose the fundamental harmonic function. This reflects the fact that this function
does not belong to the space W 2,1

loc (Rp). However note that the choice of a constant
function u leads to ∫

Rp

Δv(x) dx = 0 .

As a last remark, the fact that the function v in Theorem 2.2 has derivatives
of order 2 which, multiplied by ‖x‖p+ε, converges towards 0 for ‖x‖ → ∞ is a
minimal assumption for the theorem to work. A simpler assumption is naturally
that v ∈ S 2(Rp \Bp

r ) or, more specifically, that v ∈ S(Rp \Bp
r ).

3. A link with Stoke’s theorem

A proof of the Green formula given in Section 2 can be established through the
Stokes theorem. Recall that, with the notations of Section 2, this theorem states
that ∫

Ω

div g(x) dx =
∫

∂Ω

g(x) · ν(x) dσ(x)(3.14)

for a suitable open set Ω in Rp and for a sufficiently regular function g from Rp into
Rp. For what we need, Ω will be a ball in Rp while, classically in the literature, the
function g is continuously differentiable with compact support.

In [8], Lepelletier gives an extension of (3.14) to the case where g ∈ W 1,1
loc (Rp)

which corresponds to the functional framework of Section 2. Thus, in this context,
coming back to the functions u and v in Theorem 2.2, note that, for g = u∇v −v∇u,
formula (3.14) yields formally

(3.15)∫
Ω

(u(x) Δv(x) − v(x) Δu(x)) dx =
∫

∂Ω

(u(x) ∇v(x) − v(x) ∇u(x)) · ν(x) dσ(x) .



A weak functional framework in statistics 97

Choosing Ω = BR (the ball of radius R centered at the origin) Lepelletier [8] proves
that, under the conditions of Theorem 2.2, the right hand side of (3.15) goes to 0
when R goes to infinity, which is exactly the result of Theorem 2.2. This proof is
less direct than the one given in Section 2 and we refer to [8] for more details.

The fact that Stoke’s Theorem is underlying to our context is interesting in the
sense that this theorem also intervenes naturally in Stein’s identity (1.2) and in
its extensions to spherically symmetric distributions. This is the purpose of the
following proposition for which we follow the line of Fourdrinier and Strawderman
[5].

Proposition 3.1. Let X be a random vector in Rp with density of the form x �→
f(‖x − θ‖2) for some function f . For g ∈ W 1,1

loc (Rp) such that

Eθ

[
|(X − θ) · g(X)|

]
< ∞(3.16)

we have
Eθ [(X − θ) · g(X)] = Eθ

[
Q(‖X − θ‖2) div g(X)

]
(3.17)

where, for any t ≥ 0,

Q(t) =
1

2f(t)

∫ ∞

t

f(u) du.

Proof. By definition, we have

Eθ [(X − θ) · g(X)] =
∫

Rp

(x − θ) · g(x) f(‖x − θ‖2) dx

=
∫ ∞

0

R

∫
SR,θ

x − θ

‖x − θ‖ · g(x) dσR,θ(x)f(R2) dR

where SR,θ is the sphere of radius R centered at θ and σR,θ is the superficial measure
on SR,θ. Then, using the Stokes theorem, we obtain

Eθ [(X − θ) · g(X)] =
∫ ∞

0

∫
BR,θ

divg(x) dxR f(R2) dR

=
∫

Rp

∫ ∞

‖x−θ‖
R f(R2) dR divg(x) dx

=
1
2

∫
Rp

∫ ∞

‖x−θ‖2
f(u) du divg(x) dx

by Fubini’s theorem and with the change of variable u = R2. Finally, according to
the definition of Q, we have

Eθ [(X − θ) · g(X)] =
∫

Rp

Q(‖x − θ‖2) div g(x) f(‖x − θ‖2) dx

which is the desired result.

Note that, in the normal case
(
f(t) = (1/(2π)p/2) e−t/2

)
, we have Q ≡ 1 and

the proof of Proposition 3.1 is an alternative to the proof of Stein [10]. Note also
that the assumption g ∈ W 1,1

loc (Rp) is the smoothness needed in the extension of
the Stokes theorem mentioned above. This weak regularity was required by Stein
[10], as noticed by Johnstone [7], and, through (3.15), the role of the Sobolev spaces
membership in the Green formula of Theorem is perceptible.
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As a complement of this section, let us see how Proposition 3.1 can be used
to derive improved estimators ϕ(X) of θ which dominate the standard estimator
X under quadratic loss. Provided that Eθ[X] < ∞ and that Eθ[‖g(X)‖2] < ∞,
any estimator of the form ϕ(X) = X + g(X) has a finite risk function R(θ, ϕ) =
E[‖ϕ(X) − θ‖2]. Then its risk difference with X equals

δθ = 2Eθ [(X − θ) · g(X)] + Eθ

[
‖g(X)‖2

]
and it is easy to show that (3.17) applies and, hence, that

δθ = 2Eθ

[
Q(‖X − θ‖2) divg(X)

]
+ Eθ

[
‖g(X)‖2

]
.

To obtain that δθ ≤ 0 (with strict inequality for some θ), note the two following
ways. Either there exists a positive constant c such that Q(t) ≥ c, for any t ≥ 0,
and it suffices that the function g satisfies, for any x ∈ Rp,

2 c divg(x) + ‖g(x)‖2 ≤ 0

(with strict inequality on a set of positive Lebesgue measure). Or the function Q is
non-increasing (respectively non-decreasing) and the function g is such that divg is
a sub-harmonic (respectively super-harmonic) function.

4. Application in statistics

A statistical context to which the Green formula established in Section 2 applies
is the loss estimation problem mentioned in Section 1 (see [3] for more details).
Recall that we wish to estimate a function of ‖X − θ‖2 when X has a spherically
symmetric distribution around θ ∈ Rp. More precisely, we estimate c(‖X − θ‖2) in
(1.1) and X has a density of the form x �→ f(‖x − θ‖2). Comparing the standard
estimator γ0 = E0[c(‖X‖2)] to a competitive estimator γs = γ0 + s(X), for some
function s, leads to the difference in risk between γs and γ0

δθ = Eθ

[
2

(
γ0 − c(‖X − θ‖2)

)
s(X) + s2(X)

]
under the finiteness risk condition E0[c2(‖X‖2)] < ∞ and Eθ[s2(X)] < ∞. Obtain-
ing a more tractable expression of δθ was possible in [3] using Theorem 2.2 with
u(x) = s(x) and v(x) = K(‖x − θ‖2) where

K(t) =
1

p − 2

∫ ∞

t

[(y

t

)p/2−1

− 1
]

(γ0 − c(y)) f(y) dy .

The statistical context does not right away impose strong regularity conditions
on the functions u and v. Indeed, although we have the choice of the function u
(which is the correction s brought to γ0) and may consider a regular function of the
form u(x) = a

‖x‖2+b where a and b are positive constants, it is usual in the literature
to consider the case b = 0 for which the function a

‖x‖2 blows up at 0. Note that,

in that case, the corresponding function u is in W 2,1
loc (Rp) ∩ C2

b (Rp\ Br) for some
r > 0 as required in Theorem 2.2. As for the regularity of v, it is worth noting that
the fact that v ∈ W 2,∞(Rp) ∩ S 2,p+ε(Rp\ Br) for some ε > 0 is obtained through
regularity conditions on the functions f and c (f and fc are in S 0,p/2+1+ε(R∗

+\ T )
where T is a finite set). We see how the statistical framework imposes the specific
conditions of our Green type formula.
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5. Conclusions

Statistical motivation led us to establish a Green type formula. Somewhat surpris-
ingly, the natural statistical context imposes a functional framework that is weaker
than the classical one. We also made a link with Stoke’s theorem and showed how
this theorem is related to the famous Stein’s identity.

The main goal of this paper was to specify this context and to provide a full
proof of the Green formula at hand. It seems to us that such an approach is also
potentially important for further applications in Statistics.

6. Appendix

We aim to provide, here, a selection of the most important results in the theories of
Sobolev and distributions spaces used throughout the paper. For more details we
refer to [1] and [11], for example.

Notations 6.1. Throughout we reserve the symbol Ω for a non-empty open subset
of Rp, p ≥ 1, with closure Ω̄ and boundary ∂Ω which is assumed to be regular enough.
We denote by D(Ω) the space of functions of class C ∞ with compact support. The
function ρ defined, for any x ∈ Rp, by

ρ(x) =

{
exp

(
− 1

1− ‖x‖2

)
if ‖x‖ < 1,

0 else

where ‖x‖ denotes the euclidean norm of x defined by ‖x‖2 =
∑p

i=1 x2
i , is a well

known example in D(Rp). For any ε > 0 and for any x0 ∈ Rp, it allows to derive
the standard mollifier ρε defined, for any x ∈ Rp, by

ρε(x) =
1
εp

ρ
(x − x0

ε

)
.

This is a positive C∞ function on Rp such that
∫

Rp ρε(x) dx = 1 with support the
ball Bp

ε,x0
= {x ∈ Rp | ‖x0 − x‖ ≤ ε} of center x0 and radius ε.

For any multi-index α = (α1, . . . , αn) ∈ Nn, we set

|α| =
n∑

j=1

αj , α! =
n∏

j=1

αj !, xα =
n∏

j=1

x
αj

j , Dα =
n∏

j=1

D
αj

j ,

where D
αj

j = ∂αj /∂x
αj

j is the i-th partial derivative operator of order αj.
There is a locally convex topology on the space D(Ω). That topology is defined

sequentially as follows and leads to the notion of distribution.

Definition 6.1. Let (ϕi) be a sequence of functions of D(Ω). We say that

ϕi −→ ϕ in D(Ω)

if, for all i ≥ 0, ϕi has its support included in a compact subset K of Ω and if

Dαϕi −→ Dαϕ in D(Ω) uniformly on K, ∀α ∈ Nn.

A distribution T is a linear form on D(Ω) such that

lim
i

T (ϕi) = T (ϕ) ,

for any sequence ϕi converging towards ϕ in D(Ω).
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Thus a distribution is an element of the topological space of D(Ω). We denote
such a space D ′(Ω) and also adopt the common notation

T (ϕ) = 〈T, ϕ〉D ′,D

or
T (ϕ) = 〈T, ϕ〉

for sake of simplicity.
If f is locally integrable on Ω, that is, if f belongs to the space

L1
loc(Ω) = {v : Ω → R | v ∈ L1(K), ∀ K compact of Ω} ,

then
〈Tf , ϕ〉 =

∫
Ω

f(x) ϕ(x) dx

defines a distribution, Tf , on Ω. Indeed the continuity of Tf is an easy consequence
of

| 〈Tf , ϕi − ϕ〉| =
∣∣∣ ∫

Ω

f(x)(ϕi(x) − ϕ(x)) dx
∣∣∣ ≤ max

K
|ϕi − ϕ|

∫
Ω

|f(x)| dx ,

where K is the compact subset of Ω containing the supports of the ϕi’s.
One key feature of distributions is the fact that one can differentiate them, in

some sense, indefinitely.

Lemma 6.8. Let T ∈ D ′(Ω). Then we have

〈DαT, ϕ〉 = (−1)|α| 〈T, Dαϕ〉 ∀ϕ ∈ D(Ω).

We now give some definitions and results about the so-called Schwartz space.

Definition 6.2. A function ϕ in C ∞(Rp) is called rapidly decreasing if any deriva-
tive of ϕ, multiplied by any power of ‖x‖, converges towards 0 when ‖x‖ → ∞. In
other words, for all k ∈ N and for any couple of multi-indices (α, β), we have

sup
x∈Rp,|α|,|β|≤k

|xβDαϕ(x)| −→ 0 as ‖x‖ → ∞ .

The Schwartz space S(Rp) is the space of all infinitely differentiable rapidly decreas-
ing functions ϕ on Rp.

The Schwartz space is a complete topological vector space with a suitably defined
family of semi-norms, that is,

‖ϕ‖k,S = sup
x∈Rp,|α|,|β|≤k

|xβDαϕ(x)| .

It is clear that the functions of D(Rp) are elements of S(Rp). Another well known
subclass of S(Rp) is the space of Gaussian functions, that is, the functions of the
type e−a|x|2 where a is a non-negative number.

The main feature of the functions in S(Rp) is that they decrease towards 0 as fast
as any polynomial. Requirement about differentiability can be weakened in some
cases and the following space of functions on Ω may be sufficient for applications:

S l,r(Ω) =

{
ϕ ∈ Cl(Ω) | sup

x∈Ω,|α|≤l;β≤r

‖x‖β |Dαϕ(x)| < ∞
}

for fixed (l, r) ∈ N2.
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The Schwartz space gives rise to a subspace of D ′(Rp) through the following
definition.

Definition 6.3. A tempered distribution T is a linear form on the space S(Rp)
which is continuous is the following sense: there exist an integer k and a constant
C such that

| < T, ϕ > | ≤ C| |ϕ| |k,S ,

for all ϕ in S(Rp). We denote by S ′(Rp) the space of tempered distribution. Finally,
we say that Ti converges to T in S ′(Rp) if < Ti − T, ϕ >→ 0, for any function ϕ
in S(Rp).

For q ∈ [1, +∞], we denote by Lq
M (Rp) the set of locally integrable functions

f such that there exists an integer d for which the function x → (1 + ‖x‖)−df(x)
belongs to Lq(Rp).

Lemma 6.9. Let f ∈ Lq
M (Rp). The linear form Sf defined, for any ϕ ∈ S(Rp), by

| < Sf , ϕ > | =
∫

Rp

f(x) ϕ(x)dx

is a tempered distribution.

Proof. Let d ∈ N such that (1+ ‖x‖−d)f(x) ∈ L1(Rd). The continuity of Sf follows
immediately from

| < Sf , φ > | ≤ ‖(1 + ‖.‖)−d‖L1 ‖φ‖d,S .

Remark 6.1. For all q ≥ 1, the Lq(Rp)-functions are in L1
M (Rp). Then the Lq(Rp)-

functions are identified to the distributions in S(Rp).

In contrast to the rapidly decreasing functions are the slowly increasing functions.

Definition 6.4. A function f in C ∞(Rp) is said to be slowly increasing at infinity
if

∀k ∈ N ∃N ∈ N ∃C > 0 sup
|α|=k

|Dαf(x)| ≤ C(1 + |x|)N .(6.18)

We denote by OM the space of C ∞(Rp)-functions which are slowly increasing at
infinity.

For n ∈ N fixed, an example of an element of OM is the function fn defined, for
any x ∈ R, by

fn(x) =
1

| |x| |2 + 1/n
.

The space OM induces multiplicative operators in S = S(R) and S ′ = S ′(R).
Indeed, for fixed f in OM , the multiplication ϕ ∈ S �→ fϕ (respectively S ∈ S ′ �→
fS) is a continuous linear mapping from S into S (respectively from S ′ into S ′).

Definition 6.5. (Algebraic operations on S ′) For S ∈ S ′, we define

i) the derivation by

< DαS, φ >= (−1)|α| < S, Dαφ > ;
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ii) the convolution with a function f in L1
M by

< f � S, φ >=< S, f � φ > ;

iii) the Fourier transform by

< Ŝ, φ >=< S, φ̂ > .

Lemma 6.10. For any function f and g in L2, we have∫
Rp

f(x) g(x) dx = (2π)−p

∫
Rp

f̂(x) ĝ(x) dx,(6.19)

and, in particular,

| |f | |L2(Rp) = (2π)−p/2| |f̂ | |L2(Rp) .(6.20)

Proof. Recall first that, for any function φ in S, Plancherel’s formula states

| |φ| |L2(Rp) = (2π)−p/2| |φ̂| |L2(Rp).

Now let (fn)n be a sequence of functions in S which converges strongly to f in L2.
Since the norm | |.| |L2 and the Fourier transform are continuous, we have

| |f̂ | |L2(Rp) = lim
n→∞

| |f̂n| |L2(Rp) = lim
n→∞

(2π)p/2| |fn| |L2(Rp) = (2π)p/2| |f | |L2(Rp).

So that we first obtain (6.20). Then formula (6.19) follows from the classical identity∫
Rp

f(x) g(x) dx =
1
4

(
| |f+g| |2L2(Rp)− | |f −g| |2L2(Rp)+i| |f+ig| |2L2(Rp)−i| |f −ig| |2L2(Rp)

)
.

The Sobolev spaces are a very useful tool to solve partial differential equation.
The definition of such spaces makes an essential use of the derivation in the sense
of D ′ or S ′ seen above.

Definition 6.6. For m ∈ N and 1 ≤ n ≤ +∞, the Sobolev space of integrable
functions of order m and n on Ω is defined by

Wm,n(Ω) = {u ∈ Ln(Ω) | Dαu ∈ Ln(Ω), ∀α, |α| ≤ m}

so that, for u ∈ Wm,n(Ω), we have∫
Ω

u(x) Dαφ(x) dx = (−1)|α|
∫

Ω

Dαu(x) φ(x) dx .

Similarly, the Sobolev space of locally integrable functions of order m and n on Ω
is defined by

Wm,n
loc (Ω) = {u ∈ Ln

loc(Ω) | Dαu ∈ Ln
loc(Ω), ∀α, |α| ≤ m} .

These spaces are equipped with the following norms

‖u‖m,n,Ω =

⎛⎝ ∑
0≤ |α|≤m

‖Dαu‖n
n,Ω

⎞⎠1/n

if 1 ≤ n < ∞(6.21)

and
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‖u‖m,∞,Ω = max
0≤ |α|≤m

‖Dαu‖ ∞,Ω .(6.22)

As an important case for applications, the space Wm,2(Ω) is an Hilbert space
whose the norm (6.21) derives from the scalar product

(u, v)m,2 =
∑

|α|≤m

∫
Ω

Dαu(x)Dαv(x) dx .

This space is usually denoted by Hm(Ω).
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