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MAHARAM-TYPES AND LYAPUNOV’S THEOREM FOR
VECTOR MEASURES ON BANACH SPACES

M. ALI KHAN AND NOBUSUMI SAGARA

This paper is respectfully dedicated to the memory of Professor Jerry J. Uhl,
Jr. whose interest in the interplay between measure theory and the geometry

of Banach spaces is a constant inspiration

Abstract. This paper offers a sufficient condition, based on Ma-
haram (Proc. Natl. Acad. Sci. USA 28 (1942) 108–111) and re-
emphasized by Hoover and Keisler (Trans. Amer. Math. Soc. 286

(1984) 159–201), for the validity of Lyapunov’s theorem on the

range of a nonatomic vector measure taking values in an infinite-
dimensional Banach space that is not necessarily separable nor

has the Radon–Nikodym property (RNP). In particular, we ob-
tain an extension of a corresponding result due to Uhl (Proc.

Amer. Math. Soc. 23 (1969) 158–163). The proposed condition

is also shown to be necessary in the sense formalized by Keisler

and Sun (Adv. Math. 221 (2009) 1584–1607), and thereby closes a

question of long-standing as regards an infinite-dimensional gen-
eralization of the theorem. The result is applied to obtain short

simple proofs of recent results on the convexity of the integral of

a set-valued function, and on the characterization of restricted
cores of a saturated economy.

1. Introduction

Along with the Brouwer–Kakutani–Fan–Glicksberg fixed point theorems,
and versions of the Hahn–Banach theorem, Lyapunov’s theorem on the range
of a nonatomic finite-dimensional vector measure is a staple of modern math-
ematical economics, specifically general equilibrium and game theory; see the
references furnished in [22]. To be sure, the relevance of the result goes be-
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yond mathematical economics to several areas in applied mathematics, includ-
ing statistical decision and optimal control theory. Indeed, the impetus for
an infinite-dimensional generalization of the theorem has initially come from
these quarters; see [26, Chapters V and VI] and their references [25], [27],
[40], [46]. These references spell out the trajectory of how, with an additional
condition, the closure operation on the range in Uhl’s approximate version
of the Lyapunov theorem can be dropped, and the range space generalized
from a Banach space with the Radon–Nikodym property (RNP) to a general
Banach space. This additional condition used the concept of a thin set, based
on a notion that can be traced to [25] in its formulation of a requirement on
the noninjectivity of an integration operator; see Knowles’ theorem in [26,
Theorem V.1], in [2], and the discussion in Section 3 below.

It bears emphasis, however, that in mathematical economics, it is not so
much Lyapunov’s theorem itself that has proved to be the result of substan-
tive consequence and use, but rather its straightforward corollary pertaining
to the integral of a set-valued mapping (synonymously, multifunction) on a
nonatomic probability space. It is this result that is the vehicle for the for-
malization of the intuition that “aggregation eliminates nonconvexity,” and
thereby allows a substitution of a nonatomic multiplicity for the convexity as-
sumption. However, this convexity property, while true for a multifunction on
a nonatomic probability space with a finite-dimensional Euclidean space as its
range, is only approximately true in general if (i) the range space is infinite-
dimensional, or (ii) the domain consists of a “large but finite” index set; see
[20], [21] and their references. This approximation testifies to the fact that
Lyapunov’s theorem is false if either of the twin assumptions of nonatomicity
and finite-dimensionality are dispensed with; see [6], [46]. These approxima-
tion results rely on the Shapley–Folkman theorem in the first instance, and
on Uhl’s approximate Lyapunov theorem in the second where it is the closure
of the integral, rather than the integral itself, that is shown to be convex: see
[21] for the latter case and [22] for references to the former; [33] is the original
statement.

It is thus not surprising that in the last decade and a half, there has been
a sustained attempt in mathematical economics to eliminate the closure op-
eration in the theory of integration of a multifunction defined on a nonatomic
probability space and taking values in an infinite-dimensional Banach space.
This has proceeded in what can now be seen as two well-identified steps: work
on multifunctions defined on (i) a Loeb probability space, first introduced in
Loeb [31], (ii) a saturated probability space, first introduced in Hoover and
Keisler [14] (also see the comprehensive exposition in [11]) in the form of a sat-
urated filtration for the systematic study of the existence of strong solutions
for stochastic integral equations. There are two observations from [14] that
are relevant in this connection: first, the saturation property can be directly
connected to Maharam’s [34] classification of measure algebras; and second,
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in the context of single measure space, Loeb spaces satisfy the property, and
therefore can be regarded as a special case of a saturated space. Moreover,
as stressed in [18, Acknowledgement], and also in [45] and [32, Remarks 2.5
and 2.6], results on Loeb spaces can be transferred in a straightforward way
from Loeb spaces to saturated spaces. Indeed, Loeb spaces can be eschewed
altogether, and results on integration such as those in [44] proved directly
from the results furnished in [18] on distributions of multifunctions defined
on saturated spaces. To be sure, once the connection to Maharam’s work is
made, and the saturated property identified, loosely speaking, as the require-
ment that the restriction of the σ-algebra to any set of positive measure be
not countably-generated, one can ask whether results such as those in [43],
[44] proved solely from this identification, which is to say without relying on
the Hoover–Keisler definition at all. Such alternative direct proofs have been
systematically presented in [35]. Thus, whatever the route, all approaches
led to the same consequence and we now have a well-articulated theory of
the convexity of the integral, rather than the closure of the integral, of a set-
valued mapping taking values in an infinite-dimensional Banach space. What
is of especial and key interest in all of this work is the demonstration that
a saturated space is not only sufficient but also necessary for the result, as
summed up by Keisler and Sun [18] in their pithy aphorism that “any proba-
bility space that ‘out-performs’ the Lebesgue unit interval in almost any way
at all is already saturated”(see [18, p. 1585]).

A natural question pertains to the Lyapunov theorem itself: do its con-
clusions regarding the convexity and closure of the range hold for a vector
measure taking values in an infinite-dimensional Banach space but defined
on a saturated space, and dispensing with the noninjectivity condition of the
earlier control-theory literature? We answer this question in this paper. We
give a complete characterization of Lyapunov’s theorem, one that identifies
a saturated measure space to be necessary and sufficient for the validity of
its conclusions in the case of an infinite-dimensional Banach space that is not
necessarily separable nor has the RNP. To be sure, the equivalence of the ex-
act convexity results for the range of a vector measure with the RNP and the
integral of multifunction is quite standard; see [44, p. 132] for one precise ref-
erence. Thus, it is clear that the exact version of Lyapunov’s Theorem holds
for a saturated vector measure with the RNP, and thus for any vector mea-
sure with bounded variation taking values in a Banach space with the RNP;
for the case for vector Loeb measures, see [42, Proposition 4.5] in addition to
[44]. In sum, the principal contribution of the work reported here is to show
that the exact version of Lyapunov’s Theorem holds for a saturated vector
measure that may not have a Radon–Nikodym derivative, and thus holds for
vector measures in a Banach space without the RNP.

Our work takes off from the Knowles–Rudin condition on the noninjectivity
of an integration operator, as further utilized and emphasized in [35], [39] in
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terms of a requirement on the measure space. However this requirement has
provoked the observation that “there is no natural measure space satisfying
the required condition,” see [44, Remark on pp. 140–141]. Whereas this is
incontrovertibly true, and the requirement does not have direct relevance to
saturated spaces, it has an affinity to condition (3.1) below on higher order
Maharam-types that we utilize to derive the Lyapunov property in a setting
that goes beyond separable Banach spaces; also see Remarks 3.2 and 5.1
below in this connection. We may also note here that characterizations of the
Lyapunov property in terms of sign embedding operators and “small enough”
atoms are respectively available in [15], [16], [17], [40] and in [8]; and those of
nonatomicity in terms of strong continuity of a vector measure taking values
in a Fréchet space in [47] and his references; but they are all phrased in terms
of the closure operation. The point is that conditions on the measure space
itself that are necessary and sufficient for the Lyapunov property to hold
without this operator, as are furnished in this paper, have proved elusive,
and the condition that we offer here in this regard shifts attention from the
uncountable cardinality of the ambient space to the uncountability of the sets
generating its σ-algebra.

We also present two applications of our principal result. The first focuses
on the integration of multifunctions, and offers a short direct proof of the
convexity result recently established in [35], [45]. It is satisfying that the
proof simply rehearses the standard argumentation for the finite-dimensional
Euclidean case; see [5, pp. 369–370] and his references. The second focuses on
an application of Lyapunov’s theorem to show the irrelevance of a substantive
restriction on the core, a solution concept for the allocation of resources of an
exchange economy with a nonatomic continuum of agents; see [41] and the
references to subsequent work in [10], [19]. Our result allows us to recover
in its entirety the finite-dimensional, purely measure-theoretic intuition in an
infinite-dimensional setting, and here again enables a rehearsal of the standard
arguments without extraneous assumptions involving the closure operation
through the assumption of continuous preferences.

The paper proceeds as follows: after collecting preliminaries in Section 2,
and some preparatory results in Section 3, the main results are presented in
Sections 4 and 5, with the two applications in Section 6.

2. Preliminaries

This section collects some basic notions and results employed in the sequel.
We begin with the saturation property for finite measure spaces in terms of
measure algebras, and observe that it reinforces the more conventional notion
of nonatomicity. Next, we define the notion of saturation for vector measures
via their control measures with the saturated property. A useful reference for
measure algebras is [12].



MAHARAM-TYPES AND LYAPUNOV’S THEOREM FOR VECTOR MEASURES 149

2.1. Saturated measure spaces. A measure algebra is a pair (F , μ), where
F is a Boolean σ-algebra with binary operations ∨ and ∧, a unary operation
c and a real-valued function μ : F → R satisfying the following conditions:
(i) μ(A) = 0 if and only if A=Ø, where Ø =Ωc and Ω=Øc are the smallest
and largest elements in F , respectively; (ii) μ(

∨∞
n=1An) =

∑∞
n=1 μ(An) for

every sequence {An} in F such that An ∧Am =Ø whenever m �= n.
Let (F , μ) and (G, ν) be measure algebras. A mapping Φ : F → G is an

isomorphism if it is a bijection satisfying the following conditions: (i) Φ(A∨
B) = Φ(A)∨Φ(B) for every A,B ∈ F ; (ii) Φ(A∧Bc) = Φ(A)∧Φ(B)c for every
A,B ∈ F ; (iii) μ(A) = ν(Φ(A)) for every A ∈ F . When such an isomorphism
exists, (F , μ) is said to be isomorphic to (G, ν).

A subalgebra of F is a subset of F that contains Ω and is closed under
the Boolean operations ∨, ∧ and c. A subalgebra U of F is order-closed
with respect to the order ≤ given by A≤B ⇐⇒A=A ∧B if any nonempty
upwards directed subset of U with its supremum in F has the supremum in U .
A subset U ⊂F completely generates F if the smallest order closed subalgebra
in F containing U is F itself. The Maharam type of (F , μ) is the smallest
cardinal of any subset U ⊂F which completely generates F .

Let (Ω,F , μ) be a finite measure space. Denote by L1(μ) the space of μ-
integrable functions on Ω and by L∞(μ) the space of μ-essentially bounded
functions on Ω. Let χE be the characteristic function of E ∈ F . Denote
by L1

E(μ) = {fχE | f ∈ L1(μ)} the vector subspace of L1(μ) consisting of μ-
integrable functions restricted to E and similarly, by L∞

E (μ) = {fχE | f ∈
L∞(μ)} the vector subspace of L∞(μ) consisting of μ-essentially bounded
functions on Ω restricted to E.

For a finite measure space (Ω,F , μ), an equivalence relation ∼ on F is given
by A∼B if and only if μ(A�B) = 0, where A�B is the symmetric difference

of A and B in F . The collection of equivalence classes is denoted by F̂ =F/∼
and its generic element Â is the equivalence class of A ∈ F . The lattice

operations ∨ and ∧ in F̂ are given in a usual way by Â∨ B̂ = Â∪B and Â∧
B̂ = Â∩B. The unary operation c in F̂ is obtained for taking complements in

F̂ by Âc = (̂Ac). Under these operations F̂ is a partially ordered set furnished
with the order ≤, and hence, a Boolean σ-algebra. Define the real-valued

function μ̂ : F̂ → [0,∞) by μ̂(Â) = μ(A) for Â ∈ F̂ . Then the pair (F̂ , μ̂) is
a measure algebra associated to (Ω,F , μ). The Maharam type of (Ω,F , μ) is

defined to be that of (F̂ , μ̂).

We define a metric ρ on F̂ by ρ(Â, B̂) = μ(A�B). Then (F̂ , ρ) is a com-
plete metric space (see [1, Lemma 13.13] or [7, Lemma III.7.1]). A measure

algebra (F̂ , μ̂) is separable if (F̂ , ρ) is a separable metric space. It is well known

that (F̂ , μ̂) is separable if and only if L1(μ) is separable (see [1, Lemma 13.14]).
Let FE = {A ∩E |A ∈ F} be a σ-algebra of E ∈ F inherited from F and

define the subspace measure μE : FE → [0,∞) by μE(A) = μ(A) for A ∈ FE .
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A finite measure space (Ω,F , μ) is (Maharam-type-)homogeneous if for every
E ∈ F with μ(E) > 0 the Maharam type of (E,FE , μE) is equal to that of
(Ω,F , μ).

By the Maharam theorem (see [34, Theorem 1] or [12, Theorem 331I]), if

(F̂ , μ̂) and (Ĝ, ν̂) are homogeneous measure algebras of finite measure spaces

with the same Maharam-type and the same mass, then (F̂ , μ̂) and (Ĝ, ν̂) are
isomorphic. The classical isomorphism theorem cited below (see [4], [13] and
[37, Theorem 15.3.4]) is a special case of the Maharam theorem.

Isomorphism Theorem. Every separable measure algebra of a nonatomic
probability space is isomorphic to the measure algebra of the Lebesgue unit
interval.

The notion of the saturation of measure spaces introduced in [14] is a for-
malization of the property embodied by nonatomic Loeb probability spaces
and the product spaces of the form {0,1}m and [0,1]m, where m is an un-
countable cardinal, {0,1} has the uniform measure and [0,1] has the Lebesgue
measure (see [11, Theorem 3B.12] and [12, Theorem 331K]).

Definition 2.1. A finite measure space (Ω,F , μ) is saturated if for ev-
ery E ∈ F with μ(E) > 0 the Maharam type of (E,FE , μE) is uncountable.
A measure μ is saturated if (Ω,F , μ) is saturated.

Measure algebras of {0,1}m and [0,1]m are Maharam type homogeneous of
m and isomorphic whenever m is an infinite cardinal (see [12, Theorems 331I
and 331K]), and they are separable if and only if m is countable. Thus, the
countable products of {0,1} and [0,1] are typical examples of nonsaturated
nonatomic probability spaces. It is known in the literature that saturation
is a much stronger condition on measure spaces than nonatomicity. It is
called “ℵ1-atomless” in [14], “nowhere separable” in [9], “super-atomless” in
[35] and “nowhere countably-generated” in [32]. For equivalent conditions on
saturation, see [18] and their references.

Here, we employ the following useful characterization on nonatomicity and
saturation (see [12, 365X(p)] and [35, Section 2.2(c) and Fact]).

Proposition 2.1.

(i) A finite measure space (Ω,F , μ) is nonatomic if and only if for every
E ∈ F with μ(E)> 0 the Maharam type of (E,FE , μE) is infinite.

(ii) An finite measure space (Ω,F , μ) is saturated if and only if L1
E(μ) is

nonseparable for every E ∈ F with μ(E)> 0.

Every countably-generated, nonatomic, finite measure space induces a ho-
mogeneous measure algebra of Maharam-type ℵ0. If μ and ν are finite mea-
sures, μ is saturated and ν is absolutely continuous with respect to μ, then ν
is also saturated. This is because the measure algebra induced by ν contains
the measure algebra induced by μ.
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2.2. Saturation and vector measures. Let (Ω,F) be a measurable space

and X be a Banach space. A vector-valued function m : F → X is count-

ably additive if for every pairwise disjoint sequence {An} in F , we have

m(
⋃∞

n=1An) =
∑∞

n=1m(An), where the series is unconditionally convergent

under the norm of X . Thanks to the Orlicz–Pettis theorem (see [6, Corol-

lary I.4.4] or [7, Theorem IV.10.1]), m is countably additive if and only if

x∗m is a finite signed measure on F for every x∗ ∈X∗. Throughout this pa-
per, a countably additive vector-valued function m : F →X is called a vector

measure.

A set A ∈ F is an atom of m if m(A) �= 0 and for every E ∈ F with E ⊂A,

either m(E) = 0 or m(A\E) = 0. If m has no atom, it is said to be nonatomic.

A set N ∈ F is m-null if m(A∩N) = 0 for every A ∈ F .

A vector measure m : F → X is absolutely continuous (or μ-continuous)

with respect to a (scalar) measure μ if μ(A) = 0 implies that m(A ∩E) = 0

for every E ∈ F . A finite measure μ is a control measure of a vector measure

m whenever μ(A) = 0 if and only if m(A ∩ E) = 0 for every E ∈ F . The

Bartle–Dunford–Schwartz theorem guarantees that every vector measure in a

Banach space possesses a control measure (see [3, Corollary 2.4], [6, Corollary

I.2.6] or [7, Lemma IV.10.5]).

The significance of a control measure is exemplified by the observation that

a set in F is an atom of m if and only if it is an atom of a control measure

for m. This leads to the following characterization of the nonatomicity of m.

Proposition 2.2. Let μ be a control measure of a vector measure m :

F →X . Then m is nonatomic if and only if for every E ∈ F with μ(E)> 0

the Maharam type of (E,FE , μE) is infinite.

Definition 2.2. A vector measure is saturated if it has a control measure

that is saturated.

It follows from the definition that m is saturated if and only if it is ab-

solutely continuous with respect to a saturated finite measure. In view of

Proposition 2.2, the above definition obviously reinforces the nonatomicity of

vector measures. Saturated vector measures are nonatomic. Since any two

control measures for m are equivalent, they generate the same measure alge-

bra on F . Thus, the above definition is independent of the particular choice

of the control measures for m. For the role of control measures in the analysis

of the range of a vector measure, see [6], [17], [42].

Unless otherwise noted, for the remainder of this paper, (Ω,F , μ) is a finite

measure space, X is a Banach space and m : F → X is assumed to be a

μ-continuous vector measure.
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3. An operator-theoretic approach

In this section, we present a systematic treatment of the range of vector
measures in terms of the linear operators from L∞(μ) to X . The depen-
dence of the validity of Lyapunov’s theorem for infinite-dimensional Banach
spaces on the noninjectivity of the suitable linear operator, and hence, on
the dimensionality condition for L∞(μ) and X , is an important observation
that can be traced to Rudin’s [38] original reworking of Lindenstrauss’ [30]
finite-dimensional proof.

3.1. Lyapunov measures and Lyapunov operators. If f : Ω→ R is a
simple function of the form f =

∑n
i=1αiχAi with αi ∈ R and Ai ∩ Aj = ∅

for i �= j, define as usual the integral of f with respect to m by
∫
f dm =∑n

i=1αim(Ai). For any f ∈ L∞(μ), taking a sequence of simple functions
{fn} converging to f ∈ L∞(μ) in the essential sup norm allows us to define∫
f dm = limn

∫
fn dm (see [6, Definition I.1.12]). Thus, we may define the

integration operator Tm : L∞(μ)→X of m by Tmf =
∫
f dm for f ∈ L∞(μ).

The integration operator Tm is a continuous linear operator (see [6, Theorem
I.1.13]). The following continuity property of integration operators is well
known (see [6, Lemma IX.1.3]).

Lemma 3.1. The integration operator Tm : L∞(μ)→X is continuous for
the weak∗ topology of L∞(μ) and the weak topology of X .

We first characterize nonatomic vector measures in terms of integration
operators. To this end, we introduce the notion of nonatomic operators.

Definition 3.1. The integration operator Tm : L∞(μ)→X is an nonatom-
ic operator if for every E ∈ F with μ(E) > 0 and ε > 0 there exists f ∈
L∞
E (μ) \ {0} with signed values {−1,0,1} such that ‖Tmf‖< ε.

Theorem 3.1. A vector measure m : F →X is nonatomic if and only if
Tm : L∞(μ)→X is a nonatomic operator.

Proof. Suppose that Tm is a nonatomic operator. Then for every ε > 0
there exists f ∈ L∞

E (μ)\{0} with signed values {−1,0,1} such that ‖Tmf‖< ε.
If m has an atom E ∈ F , then m(E) �= 0 and E is an atom of μ by the absolute
continuity of m with respect to μ. Since measurable functions are constant
on atoms, either f = χE or f =−χE . We thus obtain ‖m(E)‖= ‖Tmf‖< ε
for every ε > 0, and hence, m(E) = 0, a contradiction.

Conversely, suppose that Tm is not a nonatomic operator. Then there exists
E ∈ F with μ(E)> 0 and ε > 0 such that ‖Tmf‖ ≥ ε for every f ∈ L∞

E (μ)\{0}
with signed values {−1,0,1}. Thus, for every A ∈ FE with μ(A) > 0, we
have ‖TmχA‖ = ‖m(A)‖ ≥ ε. If E is not an atom of m, then there exists
A ∈ FE such that m(A) �=m(E) and m(A) �= 0. By the μ-continuity of m,
we have μ(A)> 0. Hence, there exists δ > 0 such that for every B ∈ F with
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μ(A ∩B)< δ, we have ‖m(A ∩B)‖< ε, a contradiction. Therefore, E is an
atom of m. �

Definition 3.2.

(i) A vector measure m : F →X is a Lyapunov measure if for every E ∈ F
the set m(FE) is weakly compact and convex in X .

(ii) The integration operator Tm : L∞(μ)→X is a Lyapunov operator of m
if for every E ∈ F with μ(E)> 0 the restriction Tm : L∞

E (μ)→X is not
injective.

The range of a Lyapunov measure of m is weakly compact and convex in
X in view of m(F) = m(FΩ) with Ω ∈ F . If m has an atom E ∈ F , then
evidently, m(FE) is not convex in X . Therefore, every Lyapunov measure
is nonatomic. As the next result demonstrates, the nonatomicity of vector
measures is reinforced as well by the notion of Lyapunov operators.

Theorem 3.2. If Tm : L∞(μ) → X is a Lyapunov operator, then it is a
nonatomic operator.

Proof. If m is not a nonatomic operator, then m has an atom E ∈ F by
Theorem 3.1. Thus, m(E) �= 0 and E is an atom of μ. Since every f ∈ L∞

E (μ)
is constant on the atom E of μ, we have Tmf =

∫
E
f dm= αm(E) with α ∈R,

which implies that Tmf = 0 if and only if f = 0. Therefore, Tm : L∞
E (μ)→X

is an injection. �

Instead of using Tmf , denote by m(f) the integral of f with respect to m,
that is, m(f) =

∫
f dm. We next characterize Lyapunov measures in terms of

Lyapunov operators. The proof of the following proposition was found in [6,
Theorem IX.1.4].

Proposition 3.1. A vector measure m : F →X is a Lyapunov measure if
and only if Tm : L∞(μ)→X is a Lyapunov operator of m. The range of a
Lyapunov measure m is given by

m(F) =
{
m(f) ∈X | 0≤ f ≤ 1, f ∈ L∞(μ)

}
.

Next, we rework a celebrated example of Uhl [46].

Example 3.1. Let (I,L, λ) be the Lebesgue unit interval with I = [0,1]
and define m : L→ L1(λ) by m(A) = χA for A ∈ L. Then m is a nonatomic
vector measure with a control measure of λ. The closure of the range of m is
neither compact nor convex in L1(λ) (see [46]). Hence, by Proposition 3.1, the
integration operator Tm : L∞(λ)→ L1(λ) is not a Lyapunov operator. This
fact can be verified directly as follows.

Let f be a simple function of the form f =
∑k

i=1αiχAi , where A1, . . . ,Ak

are mutually disjoint sets in L and α1, . . . , αk are real numbers. It is easy to
see that Tmf = f . For an arbitrarily given f ∈ L∞(λ), choose a sequence of
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simple functions {fk} that converges to f in the norm topology of L∞(λ).
Then {fk} converges to f as well in the weak∗ topology of L∞(λ). Since
Tm : L∞(λ)→X is continuous for the weak∗ topology of L∞(λ) and the weak
topology of X by Lemma 3.1, we have Tmfk → Tf weakly in L1(λ). It follows
from L∞(λ) ⊂ L1(λ) that {fk} converges to f both in the norm and weak
topologies of L1(λ). Hence, 〈Tmf − f,ϕ〉= limk〈Tmfk − fk, ϕ〉= 0 for every
ϕ ∈ L1(λ) in view of Tmfk = fk for each k. Therefore, we obtain Tmf = f
for every f ∈ L∞(λ). This means that Tm is not a Lyapunov operator, but a
nonatomic operator.

Remark 3.1. The equivalence between Lyapunov measures and Lyapunov
operators were established first by [26] for the case where X is a quasicom-
plete locally convex space and then elaborated in [6] in the current simpler
form when X is a Banach space. An alternative notion of Lyapunov mea-
sures in which the closure of the range m(F) is convex was proposed in [17]
and characterized in terms of the “sign-embedding” operators from L∞(μ)
to X . For another characterization of Lyapunov measures in terms of the
sign-embedding operators from L1(μ) to X , see [16].

3.2. The dimensionality condition. Denote by ca(F , μ,X) the space
of μ-continuous, X-valued vector measures on F and by L(L∞

w∗(μ),Xw) the
space of linear operators from L∞(μ) to X which are continuous for the weak∗

topology of L∞(μ) and the weak topology of X .

Definition 3.3. A linear operator T : L∞(μ)→X is a local injection if
there exist E ∈ F with μ(E)> 0 such that the restriction T : L∞

E (μ)→X is
an injection.

Theorem 3.3. There exists a linear bijection from ca(F , μ,X) onto
L(L∞

w∗(μ),Xw).

Proof. By Lemma 3.1, for every m ∈ ca(F , μ,X) the integration operator
Tm : L∞(μ)→X is continuous for the weak∗ topology of L∞(μ) and the weak
topology of X . Hence, the mapping Ψ : ca(F , μ,X)→L(L∞

w∗(μ),Xw) defined
by Ψ(m) = Tm for m ∈ ca(F , μ,X) is a linear injection. Conversely, for given
T ∈ L(L∞

w∗(μ),Xw), define m ∈ ca(F , μ,X) by m(A) = TχA for A ∈ F . To
demonstrate the countable additivity of m, let {Ai} be a mutually disjoint

sequence in F and A=
⋃∞

i=1Ai. Since
∑k

i=1χAi converges weakly∗ to χA in
L∞(μ) as k→∞, we have

k∑
i=1

x∗m(Ai) = x∗T

(
k∑

i=1

χAi

)
→ x∗TχA = x∗m(A)

for every x∗ ∈X∗, where the weak convergence in X follows from the conti-
nuity of T with respect to the weak∗ and weak topologies. Therefore, x∗m is
a finite signed measure for every x∗ ∈X∗, and hence, m is countably additive
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by the Orlicz–Pettis theorem. It is obvious that m is absolutely continuous
with respect to μ.

Define the linear mapping by Φ : L(L∞
w∗(μ),Xw)→ ca(F , μ,X) by

Φ(T )(A) = TχA, A ∈ F .

Let Φ(T ) =m and consider the integration operator Tm. Then Tm coincides
with T on the set of all characteristic functions. Since the linear span of the
set of all characteristic functions is norm dense in L∞(μ), it is also weakly∗

dense in L∞(μ). Let f ∈ L∞(μ) be given arbitrary and {fk} be a sequence
of simple functions in L∞(μ) which converges weakly∗ to f . We then have
x∗Tmfk = x∗Tfk → x∗Tf for every x∗ ∈X∗ as k→∞ because T is continuous
for the weak∗ and weak topologies. Therefore, Tmf = Tf for every f ∈ L∞(μ).
This means that Ψ ◦ Φ(T ) = T for every T ∈ L(L∞

w∗(μ),Xw). Similarly, let
Ψ(m) = T and consider m′ ∈ ca(F , μ,X) given by m′(A) = TχA for A ∈ F .
Thenm′(A) = TmχA =m(A) for every A ∈ F . This implies that Φ◦Ψ(m) =m
for every m ∈ ca(F , μ,X). Therefore, Ψ = Φ−1 is a bijection. �

Corollary 3.1. Every vector measure in ca(F , μ,X) is a Lyapunov mea-
sure if and only if every linear operator in L(L∞

w∗(μ),Xw) is not a local injec-
tion.

We turn to a canonical situation in the literature where (Ω,F , μ) is satu-
rated and X is separable.

Proposition 3.2. If (Ω,F , μ) is saturated and X is separable, then every
linear operator in L(L∞

w∗(μ),Xw) is not a local injection.

Proof. As shown by [35, Lemma 1], if X is separable and L1
E(μ) is non-

separable for E ∈ F with μ(E) > 0, then for every T ∈ L(L∞
w∗(μ),Xw), the

restriction T : L∞
E (μ)→X is not an injection. By Proposition 2.1(ii), a sat-

urated measure space (Ω,F , μ) has the property such that L1
E(μ) is nonsepa-

rable for every E ∈ F with μ(E)> 0. Therefore, every T ∈ L(L∞
w∗(μ),Xw) is

not a local injection. �

Remark 3.2. The algebraic dimension of a Banach space X is the cardi-
nality of a Hamel basis in X . We denote by dimalgX the algebraic dimension
of X . Consider the algebraic dimensionality condition

(3.1) dimalgL
∞
E (μ)> dimalgX for every E ∈ F with μ(E)> 0.

This is obviously a sufficient condition for every T ∈ L(L∞
w∗(μ),Xw) not to

be a local injection. This algebraic dimensionality condition was introduced
first by Rudin [38, Theorem 5.5] in the proof of the Lyapunov theorem for the
case where X is finite dimensional so as to replace the induction argument
of the proof by Lindenstrauss [30]. The significance of condition (3.1) was
also recognized by Kluvánek and Knowles [26, Theorem V.2.1] when X is a
locally convex space, and as emphasized in [39, (A1)]), it plays a crucial role
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for demonstrating the existence of equilibria for economies with a measure
space of agents and an infinite-dimensional commodity space.

By the topological dimension of a Banach space X , we mean the smallest
cardinal corresponding to a subset of X with linear span norm dense in X ,
which is denoted by dimtopX to discriminate it from dimalgX . Note that
dimalgX ≥ dimtopX for every Banach space X (see [29, p. 110]). As ob-
served by [44, p. 140] and [35, p. 840], imposing the algebraic dimensionality
condition (3.1) rules out natural measure spaces. In particular, discrepan-
cies between the topological and algebraic dimensions lead to the existence
of a saturated measure space that violates (3.1) even if X is separable. To
illustrate this point, let [0,1]c be the product space of the Lebesgue unit in-
terval [0,1]. We then have dimtopL

1[0,1]c = c (see [36, Remark, p. 221]) and
cardL∞[0,1]c = dimtopL

∞[0,1]c = cℵ0 = (2ℵ0)ℵ0 = 2ℵ0 = c (see [36, Remark,
p. 222]). Thus, dimalgL

∞[0,1]c = dimtopL
∞[0,1]c = c. On the other hand, if

X is separable and infinite-dimensional, then dimalgX = c (see [28]).

4. Lyapunov measures in separable Banach spaces

In this section, we focus on separable Banach spaces, with the first subsec-
tion devoted to a sufficiency result, and the second to a necessity result. Our
results testify to the relevance of the saturation property for the conclusion
of Lyapunov’s theorem.

4.1. Saturation and Lyapunov measures: A sufficiency theorem.
The next theorem states that the saturation of m is a sufficient condition
for m to be a Lyapunov measure, or equivalently, for Tm to be a Lyapunov
operator, whenever X is separable.

Theorem 4.1. Let X be a separable Banach space and m : F →X be a
μ-continuous vector measure. If (Ω,F , μ) is saturated, then it is a Lyapunov
measure with its range m(F) given by

m(F) =
{
m(f) ∈X | 0≤ f ≤ 1, f ∈ L∞(μ)

}
.

Proof. Since Tm : L∞(μ)→X is not a local injection by Lemma 3.1 and
Proposition 3.2, it is a Lyapunov operator of m and the result follows from
Proposition 3.1. �

The separability of X is indispensable for Theorem 4.1. This can be demon-
strated easily by an examination of the counterexample of Uhl [46] as shown
below. (See also Example 3.1.)

Example 4.1. Let (Ω,F , μ) be a finite measure space and define the vector
measure m : F → L1(μ) by m(A) = χA. As shown in [6, p. 261] (see also [40,
Example 1.2]), m is of bounded variation with the total variation μ(Ω) and
the range m(F) is closed in L1(μ) by the dominated convergence theorem. It
is evident that μ is a control measure of m.
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Suppose that (Ω,F , μ) is nonatomic and F is countably generated. One
can choose A ∈ F with 0 < μ(A) < μ(Ω) by the nonatomicity of μ. Then,
χA, χΩ\A ∈m(F), and hence 1

2χA + 1
2χΩ\A = 1

2χΩ ∈ com(F). On the other
hand, for every A ∈ F , we have∥∥∥∥m(A)− 1

2
χΩ

∥∥∥∥
1

=

∥∥∥∥χA −
(
1

2
χA +

1

2
χΩ\A

)∥∥∥∥
1

=
1

2
‖χΩ‖1 =

1

2
μ(Ω),

where ‖ · ‖1 is the L1-norm. Therefore, the range m(F) is not convex in X .
It should be noted that L1(μ) is separable since F is countably generated.

What happens if the measure space (Ω,F , μ) is saturated? The range
nonconvexity of m is still valid as it stands, but L1(μ) is nonseparable here.
Moreover, we have a following characterization: A vector measure m : F →
L1(μ) defined above is saturated if and only if for every E ∈ F with μ(E)> 0,
L1
E(μ) is nonseparable. We have a saturated vector measure taking values

in a nonseparable Banach space which is not a Lyapunov measure. Indeed,
this nonseparable Banach space can be taken to be a most natural one—
the one generated by the saturated control measure of the saturated vector
measure—generated in the L1-sense.

Remark 4.1. By Theorem 4.1, every vector saturated vector measure has
a convex range in a separable Banach space. A celebrated example of Lya-
punov’s exhibits the existence of an l2-valued vector measure on the Lebesgue
unit interval with a nonconvex range (see [6, Example IX.1.1]). The Lebesgue
unit interval is a typical example of a nonatomic probability space that is not
saturated. This example then suggests that the saturation property is indis-
pensable in guaranteeing the convexity of the range of a vector measure in
infinite-dimensional Banach spaces. It is worth noting that Lyapunov’s coun-
terexample is no longer a counterexample for a countably-generated Lebesgue
extension of the unit interval; see [24]. Such an extension is of course not sat-
urated, and yet furnishes the convexity of the range of the “specific” l2-valued
vector measure.

4.2. Saturation and Lyapunov measures: A characterization.

Lemma 4.1. Let X be an infinite-dimensional Banach space. If a nonatom-
ic finite measure space (Ω,F , μ) is not saturated, then there exists E ∈ F with
μ(E)> 0 and m ∈ ca(FE , μE ,X) such that m is not a Lyapunov measure.

Proof. Let (Ω,F , μ) be a nonatomic finite measure space that is not sat-
urated. Then by Proposition 2.1(ii), there exists E ∈ F with μ(E) > 0 such
that L1

E(μ) is separable. Without loss of generality, we may assume that μ
is a nonatomic probability measure because it is finite. Since the measure

algebra (F̂E , μ̂E) is separable, by the isomorphism theorem, it is isomorphic

to the measure algebra (L̂, λ̂) of the Lebesgue measure space (I,L, λ) on the

unit interval I = [0,1]. Denote by Φ : F̂E → L̂ the isomorphism from (F̂E , μ̂E)
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onto (L̂, λ̂). Then Φ is a σ-isomorphism, that is, it satisfies Φ(
∨∞

n=1 Ân) =∨∞
n=1Φ(Ân) for every sequence {Ân} in F̂E (see [37, Problem 15.3.11]).
By virtue of [6, Corollary IX.1.6], there exists a vector measure G : L→X

of bounded variation and a set J ⊂ I with J ∈ L such that the set {G(S ∩
J) | S ∈ L} is not a weakly compact convex set in X and λ is a control

measure for G. Define Ĝ : L̂ → X by Ĝ(Ŝ) = G(S) for Ŝ ∈ L̂. If Ŝ = Ŝ′,
then λ(S�S′) = 0, and hence, S�S′ ∈ L is a G-null set. We then have

Ĝ(Ŝ) = G(S) = G(S′) = Ĝ(Ŝ′). Thus, Ĝ is well defined. Define the vector

measure m : FE →X by m(A) = Ĝ(Φ(Â)) for A ∈ FE . We claim that μE is
a control measure for m, and hence, m ∈ ca(FE , μE ,X). To this end, recall
the construction of m and note the following equivalence for A ∈ FE .

μE(A) = 0 ⇐⇒ μ̂E(Â) = 0 ⇐⇒ λ̂
(
Φ(Â)

)
= 0

⇐⇒ λ(S) = 0 ∀S ∈Φ(Â)

⇐⇒ G
(
S ∩ J ′)= 0 ∀S ∈Φ(Â) ∀J ′ ∈ L

⇐⇒ Ĝ
(
Φ
(
Â∧ Ê′

))
= 0 ∀Ê′ ∈ F̂E

⇐⇒ m
(
A∩E′)= 0 ∀E′ ∈ FE ,

where the second equivalence employs the fact that Φ is measure-preserving
and the forth equivalence follows from the fact that λ is a control measure for
G ∈ ca(L, λ,X). �

As illustrated by [18], the power of saturation arises prominently in ne-
cessity results in various applications. We present here a necessity result on
saturation for vector measures that provides a characterization of saturated
measure spaces in terms of Lyapunov measures and Lyapunov operators.

Theorem 4.2. Let X be an infinite-dimensional separable Banach space.
Then the following conditions are equivalent.

(i) (Ω,F , μ) is saturated.
(ii) Every vector measure in ca(F , μ,X) is a Lyapunov measure.
(iii) The integration operator Tm : L∞(μ) → X is a Lyapunov operator for

every m ∈ ca(F , μ,X).

Proof. (i) ⇒ (ii) ⇔ (iii): See Theorem 4.1 and Proposition 3.1.
(ii) ⇒ (i): Take any g ∈ L1(μ,X) with g(ω) �= 0 a.e. ω ∈Ω. Then the vector

measure mg : F → X defined by mg(A) =
∫
A
g dμ for A ∈ F is a Lyapunov

measure in ca(F , μ,X) with control measure μ. Since mg is nonatomic, μ
is also nonatomic. If μ is not saturated, then by Lemma 4.1, there exists a
non-Lyapunov measure mE ∈ ca(FE , μE ,X) for some E ∈ F with μ(E)> 0.
Extend mE from FE to F by m(A) =mE(A ∩ E) for A ∈ F . Then m is a
non-Lyapunov measure in ca(F , μ,X), a contradiction. �
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Remark 4.2. One cannot remove the infinite-dimensionality of Banach
spaces from Theorem 4.2. Suppose that X is a finite-dimensional Banach
space. If (Ω,F , μ) is a nonatomic finite measure space with F countably gen-
erated, which is satisfied for the Lebesgue unit interval, then the Maharam
type of (Ω,F , μ) is countable by Proposition 2.1(i), and consequently, μ is
not saturated. If m ∈ ca(F , μ,X), then the range m(F) is compact and con-
vex by the classical Lyapunov theorem. This leads to a counterexample of
Theorem 4.2 whenever the infinite-dimensionality requirement is violated.

5. Lyapunov measures in nonseparable Banach spaces

The aim this section is to provide a classification of Banach spaces for which
Lyapunov’s theorem holds in terms of the Maharam-types. It is now well-
understood that the Maharam theorem identifies the basic “building blocks”
for measure spaces, and our investigation relies on them to go beyond Lya-
punov’s theorem for separable Banach spaces established in Theorem 4.1 and
opens the door to Lyapunov’s theorem for their nonseparable counterparts.
We also present an exact version of the Lyapunov theorem for Banach spaces
with the Radon–Nikodym property along the lines of [42], [46].

5.1. Maharam-types and the Lyapunov property.

Definition 5.1. A Banach space X has the Lyapunov property with re-
spect to a finite measure space (Ω,F , μ) if every vector measure in ca(F , μ,X)
is a Lyapunov measure.

The next result reveals an ambivalence of the Lyapunov property in infinite-
dimensional Banach spaces.

Proposition 5.1. No infinite-dimensional Banach space has the Lyapunov
property with respect to a countably-generated, nonatomic probability space.
However, for every Banach space there exists a nonatomic probability space
with respect to which it has the Lyapunov property.

Proof. It follows from the isomorphism theorem that the measure algebra
of a countably-generated, nonatomic probability space is isomorphic to the
measure algebra of the Lebesgue unit interval. The first part of the proposition
draws from Uhl’s celebrated example (already referred to above) whereby, for
every infinite-dimensional Banach space X , there exists an X-valued vector
measure defined on the Lebesgue unit interval such that its range is not convex
in X .

For the second part, in view of Proposition 3.1, Corollary 3.1 and Theo-
rem 3.2, it suffices to show that for every infinite-dimensional Banach space
X , there exists a saturated probability space such that condition (3.1) is
satisfied. Let m = dimalgX and take any infinite cardinal n > m. Con-
sider the probability space (Ω,F , μ) with the product space Ω = [0,1]n of
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the Lebesgue unit interval. Since [0,1]n is isomorphic to {0,1}n, by the Ma-

haram theorem, [0,1]n is a Maharam-type-homogenous, of Maharam type

n (see [12, Theorem 331K]). That is, for every E ∈ F with μ(E) > 0, the

Maharam type of (E,FE , μE) is n. Since n is uncountable, (E,FE , μE) is sat-

urated. Without loss of generality, we may assume that μE is a probability

measure on FE . Again by the Maharam theorem (see [12, Theorem 331I]),

the measure algebra (F̂ , μ̂) of (Ω,F , μ) is isomorphic to the measure algebra

(F̂E , μ̂E) of (E,FE , μE). This means that there is a linear isometry from

L∞(μ) onto L∞
E (μ) for every E ∈ F with μ(E)> 0 (see [12, Theorem 363F]).

Since cardL∞(μ) = dimtopL
∞(μ) = nℵ0 (see [36, Remark, p. 222]), we obtain

dimalgL
∞
E (μ)≥ dimtopL

∞
E (μ) = nℵ0 >m= dimalgX . �

Let (Ω,F , μ) be a Maharam-type-homogeneous, finite measure space and

let (F̂ , μ̂) and (F̂E , μ̂E) be measure algebras induced by μ and μE respectively.

Since for every E ∈ F with μ(E) > 0 the Maharam type of (E,FE , μE) is

equal to that of (Ω,F , μ), by the Maharam theorem (see [34, Theorem 1] or

[12, Theorem 331.I]), there is an isomorphism Φ : F̂E → F̂ for every E ∈ F
with μ(E)> 0 with the measure-preserving property μ̂E(Φ

−1(Â)) = μ̂(Â) for

every A ∈ F .

Denote by (Ωm,Fm, μm) a finite measure space that induces a homogeneous

measure algebra of Maharam-type m. Then μm is nonatomic whenever m≥ ℵ0

and moreover m = ℵ0 if and only if Fm is countably generated modulo the

null sets. By definition, (Ωm,Fm, μm) is saturated whenever m ≥ ℵ1. By

Theorem 4.1, if m ≥ ℵ1, then separable Banach spaces have the Lyapunov

property with respect to (Ωm,Fm, μm). Thus, the smallest cardinal satisfying

the Lyapunov property for infinite-dimensional separable Banach spaces is

m= ℵ1 in view of Proposition 5.1.

When X is nonseparable, condition (3.1) guarantees that the Lyapunov

property for X is satisfied if mℵ0 > dimalgX because (Ωm,Fm, μm) is isomor-
phic to [0,1]m by the Maharam theorem and dimtopL

∞(μm) =mℵ0 (see [36,

Remark, p. 222]). Since the class of all cardinals is well-ordered with respect

to cardinality, the smallest cardinal satisfying the Lyapunov property for X

indeed exists.

For any Banach space X , let m(X) be the smallest cardinal m such that X

has the Lyapunov property with respect to (Ωm,Fm, μm). Then m(X) = ℵ0

if X is a finite-dimensional Banach space; m(X) = ℵ1 if X is an infinite-

dimensional separable Banach space; m(X) ≥ ℵ1 if X is a nonseparable Ba-

nach space.

We summarize the above observations through the following characteriza-

tion of the Lyapunov property for Banach spaces.
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Proposition 5.2. A Banach space X has the Lyapunov property with re-
spect to a Maharam-type-homogenous, finite measure space if and only if its
Maharam type is greater than or equal to m(X).

Denote by m+ the smallest cardinal strictly greater than m. Under the
generalized continuum hypothesis, m+ = 2m, in particular, c= ℵ1. (However,
we do not assume it here.) For nonseparable Banach spaces, we have the
following estimate of m(X).

Theorem 5.1. If X is a nonseparable Banach space with dimalgX = m,
then ℵ1 ≤m(X)≤m+.

Proof. Let (Ω,F , μ) be a homogeneous finite measure space of Maharam
type m+. By the Maharam theorem, every measure space (E,FE , μE) with

μ(E) > 0 is isomorphic to the product space [0,1]m
+

of the Lebesgue unit
interval [0,1]. We thus have:

dimalgL
∞
E (μ)≥ dimtopL

∞
E (μ) =

(
m+

)ℵ0 ≥m+ >m,

where the second equality follows from [36, Remark, p. 222]. Take any m ∈
ca(F , μ,X). By Corollary 3.1 and the dimensionality condition (3.1), Tm is a
Lyapunov operator. Therefore, m(X)≤m+. �

Corollary 5.1. If (Ω,F , μ) is Maharam-type-homogeneous, then the fol-
lowing conditions are equivalent.

(i) X has the Lyapunov property with respect to (Ω,F , μ).
(ii) Every linear operator in L(L∞

w∗(μ),Xw) is not a local injection.
(iii) The Maharam type of (Ω,F , μ) is greater than or equal to m(X).

The significance of the Maharam type homogeneity in measure theory is
emphasized by Fremlin [12, p. 131] as follows.

Maharam’s theorem belongs with the Radon–Nikodym theorem, Fubini’s the-

orem and the strong law of large numbers as one of the theorems which make
measure theory what it is. Once you have this theorem and its consequences

[...] properly absorbed, you will never again look at a measure space without
classifying its measure algebra in terms of the types of its homogeneous prin-

cipal ideals. As one might expect, a very large proportion of the important
measure spaces of analysis are homogeneous, and indeed a great many are

homogeneous with Maharam type ℵ0.

5.2. Saturation and the Radon–Nikodym property. By L1(μ,X) we
denote the space of X-valued Bochner integrable functions on Ω. Uhl’s [46]
“approximate” version of the Lyapunov theorem for Banach spaces with the
RNP has already been referred to, and for the reader’s convenience we note
that Banach space X has the Radon–Nikodym property (RNP) with respect
to (Ω,F , μ) if for every μ-continuous vector measure m : F →X of bounded
variation, there exists g ∈ L1(μ,X) such that m(A) =

∫
A
g dμ for every A ∈ F .
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A Banach space has the RNP if it has the RNP with respect to every finite
measure space.

We can now recall Uhl’s theorem (see also [6, Theorem IV.1.10]): Let X be
a Banach space with the RNP. If m : F →X is a nonatomic vector measure of
bounded variation, then the norm closure of the range of m is norm compact
and convex in X. When the underlying vector measures are saturated, we
obtain an “exact” version of the Lyapunov theorem for Banach spaces with
the RNP, in which the closure operation is removed.

Theorem 5.2. Let X be a Banach space with the RNP. If m : F →X is
a saturated vector measure of bounded variation, then the range of m is norm
compact and convex in X .

Proof. Since m is of bounded variation, its control measure μ is given by its
variation (see [6, Proposition I.1.9]). By the RNP of X , there exists a function
g ∈ L1(μ,X) such that m(A) =

∫
A
g dμ for every A ∈ F . Since Bochner inte-

grable functions are μ-essentially separably valued (see [6, Theorem II.1.2]),
we may assume without loss of generality that g takes values in a separable
Banach space X . (Consider the linear span generated by the essential range
of g.) By Theorem 4.1, the range m(F) is weakly compact and convex in X .
Since m is nonatomic, the norm closure of m(F) is norm compact by Uhl’s
Theorem. Therefore, m(F) is norm compact and convex in X because on
convex sets in X norm closedness is equivalent to weak closedness. �

Remark 5.1. Theorem 5.2 is an extension of [44, Remark to Theorem 2],
who obtained the same exact result for nonatomic Loeb probability spaces.
For a discussion of the importance of the bounded variation assumption on
vector measures in Uhl’s theorem, see the discussion in [40] and in [16, In-
troduction and Theorem 1]. The bounded variation condition is needed in
Theorem 5.2 to obtain a Radon–Nikodym derivative from the RNP, but the
proof does not require the control measure to be the variation of the given vec-
tor measure. In Section 6, we also present an alternative proof of Theorem 5.2
that revolves on these considerations.

6. Two applications

In this final section, we turn to two applications that bring out the power
of the saturation property. The first applies our principal result to show the
convexity of the integral of a multifunction under the saturation assumption
and to present an alternative proof of Theorem 5.2; for details as to the
importance of this result in mathematical economics and in control theory,
see [5], [26] and their references. The second applies our principal result
to an application of Lyapunov’s theorem in mathematical economics that has
proved to be rather influential and leads us to richer notions of restricted cores
allocations of saturated economies; see [41], and subsequent work referenced
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in [10], [19]. It bears emphasis that our primary motivation is to argue for
the relevance Lyapunov’s theorem on saturated spaces in applied work, and
that comprehensive investigations of both applications in their substantive
registers will be presented elsewhere.

6.1. On convexity of the set-valued integral. Let BX be the Borel
σ-algebra of a Banach space (X,‖ · ‖). A set-valued mapping from Ω to X
with nonempty values is called a multifunction. A multifunction Γ : Ω�X is
measurable if its graph is F ⊗BX -measurable. It is integrably bounded if there
exists ϕ ∈ L1(μ) such that Γ(ω)⊂ ϕ(ω)B a.e. ω ∈Ω, where B is a closed unit
ball in X . If X is a measurable multifunction from a finite measure space
(Ω,F , μ) to a separable Banach space X , then by the measurable selection
theorem (see [1, Corollary 18.27]), there exists a measurable function g : Ω→
X such that g(ω) ∈ Γ(ω) a.e. ω ∈ Ω. Denote by S1

Γ the set of all Bochner
integrable selections of Γ, that is,

S1
Γ =

{
g ∈ L1(μ,X) | g(ω) ∈ Γ(ω) a.e. ω ∈Ω

}
.

The integral of Γ with respect to μ is defined by∫
Γdμ=

{∫
g dμ ∈X

∣∣∣ g ∈ S1
Γ

}
.

We denote by G(Ω,X) the space of multifunctions from Ω to X . If (Ω,F , μ) is
a finite measure space and Γ ∈ G(Ω,X) is measurable and integrably bounded,
then S1

Γ is nonempty.
In [35, Theorem 1], the following result is proved: If X is an infinite-

dimensional Banach space, then (Ω,F , μ) is saturated if and only if the integral∫
Γdμ is convex in X for every Γ ∈ G(Ω,X). We demonstrate the sufficiency

of saturation for any Banach space with a simpler proof. We invite to the
reader to compare our convexity result with that presented in the literature:
with the availability of Theorem 4.1, the sufficiency proof simply mimics that
for the case of the multifunction taking values in a finite-dimensional Eu-
clidean space as in [5]; also see [35], [44], [45].

Theorem 6.1. If (Ω,F , μ) is saturated, then the integral
∫
Γdμ is convex

in X for every Γ ∈ G(Ω,X).

Proof. Choose any g0, g1 ∈ S1
Γ and α ∈ [0,1]. Since Bochner integrable

functions are μ-essentially separably valued (see [6, Theorem II.1.2]), we may
assume without loss of generality that g0 and g1 take values in a separable
Banach space X . It suffices to show that there exists g ∈ S1

Γ such that
∫
g dμ=∫

(αg0+(1−α)g1)dμ. To this end, define the vector measure m : F →X×X
by:

m(A) =

(∫
A

g0 dμ,

∫
A

g1 dμ

)
, A ∈ F .
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Since m is saturated by its μ-continuity, the range of m is convex by Theo-
rem 4.1. Then there exists A ∈ F such that m(A) = αm(Ω), which is equiv-
alent to

∫
A
gi dμ= α

∫
gi dμ for each i= 0,1. Define g = g0χA + g1χΩ\A. We

then have g ∈ S1
Γ and:∫

g dμ=

∫
A

g0 dμ+

∫
Ω\A

g1 dμ= α

∫
g0 dμ+ (1− α)

∫
g1 dμ. �

To present an alternative proof of Theorem 5.2, we cite the following result
from [45, Proposition 1] (see also [44, Theorem 2]).

Proposition 6.1. If (Ω,F , μ) is saturated, then the integral
∫
Γdμ is norm

compact in X for every integrably bounded, norm compact-valued multifunc-
tion Γ ∈ G(Ω,X).

An alternative proof of Theorem 5.2. By the RNP of X , there is a function
g ∈ L1(μ,X) such that m(A) =

∫
A
g dμ for every A ∈ F , where μ is a control

measure of m. Define the multifunction Γ : Ω�X by Γ(ω) = {0, g(ω)} for
ω ∈ Ω. Then, Γ is obviously integrably bounded and norm-compact valued.
Moreover, any measurable selection of Γ is of the form gχA with A ∈ F , and
hence,

∫
Γdμ=m(F). An appeal to Theorem 6.1 and Proposition 6.1 yields

the norm compactness and convexity of m(F). �

This alternative proof leads us to record the validity of the following corol-
lary.

Corollary 6.1. Let m : F → X a vector measure such that m(A) =∫
A
g dμ for every A ∈ F with g ∈ L1(μ,X). If (Ω,F , μ) saturated, then the

range of m is norm compact and convex in X .

Corollary 6.1 is an exact version of the Lyapunov theorem for vector mea-
sures with a Radon–Nikodym derivative in L1(μ,X). In this context, Uhl’s
evaluation is worth keeping in mind. (We quote from [46, p. 162], but use the
notation of this paper.)

If X is allowed to be a general Banach space and m is an X-valued measure
of bounded variation, then one can assert that the range of m is precompact

and that, in the nonatomic case the closure of the range of m is convex if
[...] m has the representation m(A) =

∫
A g dμ, A ∈ F for some measure μ and

some measurable g with
∫
‖g‖dμ <∞. However, this restriction appears, to

the author, to be too severe for a general result.

6.2. On restricted cores of a saturated economy. We present an appli-
cation of Theorem 6.1 to a characterization of the restricted core allocations
of an economy with a measure space of agents and an infinite-dimensional
commodity space; we follow the formulations of [10], [23]. The following pre-
liminary result clarifies the power of the saturation assumption.
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Lemma 6.1. Let (Ω,F , μ) be a nonatomic finite measure space, X be a
Banach space, Y be a Banach space with the RNP with respect to (Ω,F , μ)
and m : F → Y be a μ-continuous vector measure of bounded variation. If∫
E
f dμ = 0 for f ∈ L1(μ,X) and E ∈ F with μ(E) > 0, then for every α ∈

[0,1] there exists a sequence {Fn} in F with Fn ⊂E for each n such that

lim
n→∞

(∫
Fn

f dμ,m(Fn), μ(Fn)

)
=
(
0, αm(E), αμ(E)

)
.

Proof. Since Y has the RNP regarding to (Ω,F , μ), there exists g ∈ L1(μ,
Y ) such that m(A) =

∫
A
g dμ for every A ∈ F . Define ϕ ∈ L1(μ,X×Y ×R) by

ϕ(ω) = (f(ω), g(ω),1) for ω ∈Ω and the nonatomic vector measure m̃ : FE →
X × Y × R by m̃(A) =

∫
A
ϕdμ for A ∈ FE . An appeal to Uhl’s theorem

[46, p. 162] guarantees that the closure of m̃(FE) is convex in X × Y × R.
Take any α ∈ [0,1]. Since (0, tm(E), αμ(E)) = αm̃(E) + (1−α)m̃(∅) is in the
closure of m̃(FE), there exists a sequence {Fn} in FE such that m̃(Fn) →
(0, αm(E), αμ(E)). �

Lemma 6.2. Let (Ω,F , μ) be a saturated finite measure space, X be a Ba-
nach space, Y be a Banach space with the RNP with respect to (Ω,F , μ)
and m : F → Y be a μ-continuous vector measure of bounded variation. If∫
E
f dμ = 0 for f ∈ L1(μ,X) and E ∈ F with μ(E) > 0, then for every α ∈

[0,1] there exists F ∈ F with F ⊂E such that(∫
F

f dμ,m(F ), μ(F )

)
=
(
0, αm(E), αμ(E)

)
.

Proof. Let ϕ be the function and m̃ be the vector measure respectively
given in the proof of Lemma 6.1. Define Γ ∈ G(E,X × Y × R) by Γ(ω) =
{0̃, ϕ(ω)} for ω ∈E, where 0̃ is the origin of X×Y ×R. Since any measurable
selection of Γ is of the form ϕχA with A ∈ FE and m̃(A) =

∫
A
ϕdμ for every

A ∈ FE , we have
∫
E
Γdμ= m̃(FE). In view of the saturation of (E,μE ,FE),

an appeal to Theorem 6.1 guarantees that m̃(FE) is convex inX×Y ×R. Take
any α ∈ [0,1]. Since (0, αm(E), αμ(E)) = αm̃(E) + (1− α)m̃(∅), there exists
F ∈ FE such that (0, αm(E), αμ(E)) = m̃(F ) by the convexity of m̃(FE). �

Remark 6.1. The above lemmas are significant extensions of [41] to the
case where the underlying space is an arbitrary Banach space. When X =Rn

and Y = R in Lemma 6.1, {Fn} is shown to be a constant sequence equal to
some F ∈ F with F ⊂E by applying the classical Lyapunov’s theorem, which
is the case precisely covered by [41]. Lemma 6.1 is also a generalization of
[10, p. 1188] who treat the case that X is a Banach space and Y =R. Under
the saturation assumption, the approximation result in Lemma 6.1 can be
strengthened to the exact result in Lemma 6.2.
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We can now turn to the substantive formulation of an economy. Let
(Ω,F , μ) be a finite measure space of agents with its generic element de-
noted by a ∈Ω. A commodity space X is a Banach space. A consumption set
X (a) of each agent is described by a multifunction X : Ω�X with X (a)⊂X
for every a ∈ Ω. A Bochner integrable function f ∈ L1(μ,X) is an allocation
if f(a) ∈ X (a) a.e. a ∈ Ω. A preference relation on X (a) is a multifunction
Pa : X (a)�X (a) such that f(a) /∈ Pa(f(a)) for every allocation f . An initial
endowment e(a) is given by a function e ∈ L1(μ,X) with e(a) ∈ X (a). An
economy E is a quadruple E = [(Ω,F , μ),X , (Pa)a∈Ω, e]. When (Ω,F , μ) is
nonatomic, E is called an nonatomic economy and (Ω,F , μ) is saturated, it is
called a saturated economy.

An allocation f for an economy E is feasible if
∫
f dμ=

∫
edμ. A coalition

is a set A in F with μ(A)> 0. A coalition A ∈ F blocks a feasible allocation
f if there exists a feasible allocation g such that g(a) ∈ Pa(f(a)) a.e. a ∈ A
and

∫
A
g dμ=

∫
A
edμ. Such a coalition A is called a blocking coalition to f .

The set of all feasible allocations that no coalition in F can block is the core
of the economy E , denoted by C(E).

The following definition of the core with restricted coalitions is due to [19].
Let ε ∈ (0,1) be given arbitrarily. A coalition A ∈ F is an upper ε-coalition
(resp. a lower ε-coalition) if μ(A) ≥ εμ(Ω) (resp. μ(A) ≤ εμ(Ω)). The set of
all feasible allocations that no upper ε-coalition (resp. lower ε-coalition) in F
can block is the upper ε-core (resp. lower ε-core) of the economy E , denoted
by Cε(E) (resp. Cε(E)). It follows from the definitions that C(E) ⊂ Cε(E)
and C(E) ⊂ Cε(E) for every ε ∈ (0,1) and ε1 < ε2 with ε1, ε2 ∈ (0,1) implies
Cε1(E)⊂ Cε2(E) and Cε2(E)⊂ Cε1(E).

Theorem 6.2. Let E = [(Ω,F , μ),X , (Pa)a∈Ω, e] be a saturated economy.

(i) If f is a feasible allocation that is blocked by a coalition A ∈ F via a
feasible allocation g, then for every ε ∈ (0,1) there exists a coalition E ∈
F with E ⊂A and μ(E) = εμ(A) such that E blocks f via g.

(ii) C(E) = Cε(E) for every ε ∈ (0,1).
(iii) C(E) =

⋂
ε∈(0,1) Cε(E).

Proof. (i) Since A ∈ F is a blocking coalition to f , there exists a feasible
allocation g such that

∫
A
(g − e)dμ = 0. By Lemma 6.2, for every ε ∈ (0,1)

there exists a coalition E ∈ F with E ⊂A satisfying
∫
E
(g− e)dμ= 0. Hence,

f is blocked by the coalition E via the feasible allocation g.
(ii) Take any ε ∈ (0,1). If f /∈ C(E), then there exist a coalition A ∈ F and a

feasible allocation g such that g(a) ∈ Pa(f(a)) a.e. a ∈A and
∫
A
(g−e)dμ= 0.

By the condition (i) above, there exists a subcoalition E ⊂ A with μ(E) =
εμ(A)≤ εμ(Ω) satisfying

∫
E
(g − e)dμ= 0. Hence, f is blocked by the lower

ε-coalition E via g, and thus f /∈ Cε(E). Therefore, Cε(E)⊂ C(E).
(iii) If f /∈ C(E), then there exist a coalition A ∈ F and a feasible allocation

g such that g(a) ∈ Pa(f(a)) a.e. a ∈ A and
∫
A
(g − e)dμ = 0. When μ(A) <
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μ(Ω), choose ε ∈ (0,1) sufficiently small such that μ(A) ≥ εμ(Ω). Then f
is blocked by the upper ε-coalition A via g, and hence f /∈ Cε(E). When
μ(A) = μ(Ω), take any ε ∈ (0,1). By the condition (i) above, there exists a
subcoalition E ⊂A with μ(E) = εμ(A) satisfying

∫
E
(g − e)dμ= 0. Hence, f

is blocked by the upper ε-coalition E via g, and thus f /∈ Cε(E). Therefore,⋂
ε∈(0,1) Cε(E)⊂ C(E). �

Condition (i) implies that if A is a blocking coalition to a feasible allocation
f via a feasible allocation g, then there is an arbitrary small blocking coalition
E ⊂A with μ(E)< ε to the same feasible allocation f also via g. Condition
(ii) means that for every positive number ε, the core coincides with the set of
all feasible allocations that are not blocked by any coalition of measure less
than ε. Condition (iii) is the continuity property of the upper ε-core in the
sense that Cε(E) is monotone decreasing as ε ↑ 1 and converges to C(E).

Remark 6.2. We stress that Theorem 6.2 retains the original spirit of
[41], and that, unlike the treatment in [10] which involves an approximation
argument based on the special case of Lemma 6.1, there is no additional
assumption on the underlying data of the economy: the commodity space,
consumption sets, preferences and initial endowments. However, note the
asymmetry between the upper and lower cases of the ε-core, and one needs
further assumptions to strengthen the “shrinkage” result reported here to
one asserting the coincidence of the upper and exact cases, as in the finite-
dimensional setting.
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[4] C. Carathéodory, Die homomorphieen von Somen und die Multiplikation von Inhalts-

funionen, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 8 (1939), 8–130. MR 1556820

http://www.ams.org/mathscinet-getitem?mr=2378491
http://www.ams.org/mathscinet-getitem?mr=0668170
http://www.ams.org/mathscinet-getitem?mr=0070050
http://www.ams.org/mathscinet-getitem?mr=1556820


168 M. A. KHAN AND N. SAGARA

[5] G. Debreu, Integration of correspondences, Proc. fifth Berkeley sympos. math. statist.
probability, vol. II: Contributions to probability theory, part 1, Univ. California Press,

Berkeley, 1967, pp. 351–372. MR 0228252

[6] J. Diestel and J. J. Uhl Jr., Vector measures, Amer. Math. Soc., Providence,
1977. MR 0453964

[7] N. Dunford and J. T. Schwartz, Linear operators, part I: General theory, Wiley, New

York, 1958. MR 1009162

[8] A. Dvoretzky, On Liapunov’s convexity theorem, Proc. Natl. Acad. Sci. USA 91 (1994),
2145. MR 1264123
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[26] I. Kluvánek and G. Knowles, Vector measures and control systems, North-Holland,

Amsterdam, 1975. MR 0499068

[27] G. Knowles, Lyapunov vector measures, SIAM J. Control Optim. 13 (1975), 294–
303. MR 0388216

[28] H. E. Lacey, The Hamel dimension of any infinite dimensional separable Banach space

is c, Amer. Math. Monthly 80 (1973), 298. MR 0320717

http://www.ams.org/mathscinet-getitem?mr=0228252
http://www.ams.org/mathscinet-getitem?mr=0453964
http://www.ams.org/mathscinet-getitem?mr=1009162
http://www.ams.org/mathscinet-getitem?mr=1264123
http://www.ams.org/mathscinet-getitem?mr=1348722
http://www.ams.org/mathscinet-getitem?mr=2456475
http://www.ams.org/mathscinet-getitem?mr=1939107
http://www.ams.org/mathscinet-getitem?mr=2459668
http://www.ams.org/mathscinet-getitem?mr=0006617
http://www.ams.org/mathscinet-getitem?mr=0756035
http://www.ams.org/mathscinet-getitem?mr=1167727
http://www.ams.org/mathscinet-getitem?mr=1211141
http://www.ams.org/mathscinet-getitem?mr=1202728
http://www.ams.org/mathscinet-getitem?mr=2522428
http://www.ams.org/mathscinet-getitem?mr=0452542
http://www.ams.org/mathscinet-getitem?mr=0650675
http://www.ams.org/mathscinet-getitem?mr=0833482
http://www.ams.org/mathscinet-getitem?mr=3090669
http://www.ams.org/mathscinet-getitem?mr=2855087
http://www.ams.org/mathscinet-getitem?mr=0224768
http://www.ams.org/mathscinet-getitem?mr=0499068
http://www.ams.org/mathscinet-getitem?mr=0388216
http://www.ams.org/mathscinet-getitem?mr=0320717


MAHARAM-TYPES AND LYAPUNOV’S THEOREM FOR VECTOR MEASURES 169

[29] H. E. Lacey, The isometric theory of classical Banach spaces, Springer, Berlin,
1974. MR 0493279

[30] J. Lindenstrauss, A short proof of Liapounoff’s convexity theorem, J. Math. Mech. 15
(1966), 971–972. MR 0207941

[31] P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications
in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 0390154

[32] P. A. Loeb and Y. N. Sun, Purification and saturation, Proc. Amer. Math. Soc. 137
(2009), 2719–2724. MR 2497484

[33] A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci.
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