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MAPS PRESERVING ZERO JORDAN PRODUCTS ON
HERMITIAN OPERATORS

MIKHAIL A. CHEBOTAR, WEN-FONG KE, AND PJEK-HWEE LEE

Abstract. Let H be a separable complex Hilbert space and Bs(H)
the Jordan algebra of all Hermitian operators on H. Let θ : Bs(H) →
Bs(H) be a surjective R-linear map which is continuous in the strong
operator topology such that θ(x)θ(y)+θ(y)θ(x) = 0 for all x, y ∈ Bs(H)

with xy+yx = 0. We show that θ(x) = λuxu∗ for all x ∈ Bs(H), where
λ is a nonzero real number and u is a unitary or anti-unitary operator
on H.

1. Introduction

Given any (associative) ring R we can render it into a Jordan ring by
defining, for any two elements a, b ∈ R, the Jordan product a◦b = ab+ba. An
additive map ϕ : R→ R′ of rings is called a Jordan homomorphism if ϕ(a◦b) =
ϕ(a)◦ϕ(b) for all a, b ∈ R. In the case that 2 is invertible in R′ in the sense that
2x = a has a unique solution in R′ for every a ∈ R′, this condition is equivalent
to ϕ(a2) = ϕ(a)2 for all a ∈ R. Obviously, (associative) homomorphisms and
anti-homomorphisms are Jordan homomorphisms. Jordan homomorphisms
have been thoroughly investigated in the literature [1], [2], [5], [8], [9], [11],
[22]. The results proved usually read that a Jordan homomorphism must
be a homomorphism or an anti-homomorphism. For instance, Herstein [5]
showed that a Jordan homomorphism of any ring onto a prime ring is either
a homomorphism or an anti-homomorphism.

In the case that the ring R is endowed with an involution a → a∗, the
set S = S(R) = {a ∈ R | a∗ = a} of all symmetric elements of R is itself a
Jordan ring. In [10] Jacobson and Rickart proved that, given a matrix ring
R = Mn(A), where A is a ring and n ≥ 3, with a “canonical” involution ∗ such
that the symmetric elements are trace-valued, any Jordan homomorphism of S
can be lifted to a homomorphism of R in a unique way. At his 1961 AMS talk
[6] Herstein posed the problem of characterizing the Jordan homomorphisms
of the symmetric elements of a simple ring with involution. This problem was
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solved by Martindale [12] in the presence of orthogonal idempotents. Using
Zelmanov’s brilliant work on prime Jordan algebras [23], an idempotent-free
solution was later obtained by McCrimmon [14] and Martindale [13].

Let H be a complex Hilbert space and B(H) the algebra of all bounded
linear operators on H with the adjoint map a → a∗. The Jordan subalge-
bra Bs(H) = S(B(H)) of all Hermitian operators on H (i.e., the set of all
bounded observables) plays an important role in the mathematical descrip-
tion of quantum mechanics. As with any algebraic structure the study of the
automorphisms of this algebra is of considerable importance. It is well-known
(see, for example, [16, p. 99]) that every Jordan automorphism on Bs(H) is
of the form x→ uxu∗, where u is a unitary or anti-unitary operator on H. A
unified treatment of the Jordan automorphisms is presented in [4].

In many cases maps on Bs(H) defined by certain local properties or pre-
serving certain properties are exactly Jordan automorphisms [16], [17], [18],
[19]. In this note we shall show that Jordan automorphisms can be character-
ized by their action on zero Jordan products. More precisely, we show that a
surjective R-linear map θ : Bs(H)→ Bs(H) which is continuous in the strong
operator topology and preserves zero Jordan products must be of the form
x→ λϕ(x) where λ is a nonzero real number and ϕ is a Jordan automorphism
of Bs(H). Moreover, θ is a Jordan automorphism if, in addition, θ(1) = 1.

2. The results

Let C be a commutative ring with 1
2 (i.e., C is a unital ring in which 2 is

invertible), c → c an automorphism of order 1 or 2 on C, and R = Mn(C),
the n by n matrix algebra over C. We denote by eij the matrix which has 1
in the (i, j)-position and zeros elsewhere. Note that R can be equipped with
the involution ∗ defined by a∗ = a for a ∈ C and e∗ij = eji. For simplicity we
shall write aij = aeij for a ∈ C and put

M = {eii | 1 ≤ i ≤ n} ∪ {aij + aji | a ∈ C, 1 ≤ i 6= j ≤ n}.

Then the Jordan ring S = S(R) is the linear span of M over the subring
F = {c ∈ C | c = c} of C.

Let J be an arbitrary Jordan algebra over F and θ : S → J an F -linear
map which preserves zero Jordan products, that is, θ(x) ◦ θ(y) = 0 whenever
x, y ∈ S satisfy x◦y = 0. To begin with, we investigate the product θ(x)◦θ(y).
A relation between θ(x ◦ y) and θ(x) ◦ θ(y) will be established for arbitrary
x, y ∈ S. As a consequence, we see that the map θ which preserves zero Jordan
products also preserves equal Jordan products, that is, θ(x)◦θ(y) = θ(u)◦θ(v)
for all x, y, u, v ∈ S with x ◦ y = u ◦ v.

Theorem 2.1. Let S be the Jordan algebra defined above, J a Jordan al-
gebra over F and θ : S → J an F -linear map preserving zero Jordan products.
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Then

(2.1) θ(x) ◦ θ(y) =
1
2
θ(1) ◦ θ(x ◦ y)

for all x, y ∈ S. In particular, we have θ(x) ◦ θ(y) = θ(u) ◦ θ(v) for all
x, y, u, v ∈ S with x ◦ y = u ◦ v.

Proof. Since S is spanned by M over F and θ is F -linear, it suffices to
verify (2.1) for x, y ∈ M . Note that (2.1) is obvious if x ◦ y = 0. Thus we
need only consider the following cases:

(a) x = y = eii.
From (eii − 1) ◦ eii = 0 it follows that θ(eii − 1) ◦ θ(eii) = 0 and hence

(2.2) θ(eii) ◦ θ(eii) = θ(1) ◦ θ(eii).

Now x ◦ y = 2eii, so we have

θ(x) ◦ θ(y) = θ(1) ◦ θ(eii) =
1
2
θ(1) ◦ θ(x ◦ y).

(b) x = eii, y = aij + aji, where i 6= j and a ∈ C.
From (eii−ejj)◦ (aij +aji) = 0 it follows that θ(eii−ejj)◦θ(aij +aji) = 0,

or equivalently,

(2.3) θ(eii) ◦ θ(aij + aji) = θ(ejj) ◦ θ(aij + aji).

Since θ(ehh) ◦ θ(aij + aji) = 0 for h /∈ {i, j}, this together with (2.3) yields

θ(1) ◦ θ(aij + aji) =
n∑
h=1

θ(ehh) ◦ θ(aij + aji)

= θ(eii) ◦ θ(aij + aji) + θ(ejj) ◦ θ(aij + aji)

= 2θ(eii) ◦ θ(aij + aji),

and hence

(2.4) θ(eii) ◦ θ(aij + aji) =
1
2
θ(1) ◦ θ(aij + aji).

Now x ◦ y = aij + aji, so (2.4) means exactly θ(x) ◦ θ(y) = 1
2 θ(1) ◦ θ(x ◦ y).

(c) x = aij + aji, y = bij + bji, where i 6= j and a, b ∈ C.
Let c = 1

2 (ab+ ab) ∈ F . From

(eii + aij + aji − ejj) ◦ (−cii + bij + bji + cjj) = 0

it follows that

θ(eii + aij + aji − ejj) ◦ θ(−cii + bij + bji + cjj) = 0.

Expansion of the last identity yields A+B = 0, where

A = θ(eii − ejj) ◦ θ(−cii + cjj) + θ(aij + aji) ◦ θ(bij + bji),
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and
B = θ(aij + aji) ◦ θ(−cii + cjj),

since θ(eii − ejj) ◦ θ(bij + bji) = 0 by (2.3). Replacing a by 2a, we get
2A+ 4B = 0. Therefore, A = B = 0. By (2.2) it follows from A = 0 that

θ(aij + aji) ◦ θ(bij + bji) = θ(eii − ejj) ◦ θ(cii − cjj)
= cθ(eii − ejj) ◦ θ(eii − ejj)
= c(θ(eii) ◦ θ(eii) + θ(ejj) ◦ θ(ejj))
= cθ(1) ◦ (θ(eii) + θ(ejj)).

Now x ◦ y = 2c(eii + ejj), so we have

θ(x) ◦ θ(y) = cθ(1) ◦ (θ(eii) + θ(ejj))

=
1
2
θ(1) ◦ θ(2c(eii + ejj))

=
1
2
θ(1) ◦ θ(x ◦ y).

(d) x = aij + aji, y = bjk + bkj , where i, j, k are distinct and a, b ∈ C.
From

(aij + [ab]ik + aji + [ab]ki) ◦ (−[bb]jj + bjk + bkj − ekk) = 0

it follows that

θ(aij + [ab]ik + aji + [ab]ki) ◦ θ(−[bb]jj + bjk + bkj − ekk) = 0.

Expansion of the last identity yields A+B = 0, where

A = θ(aij + aji) ◦ θ(bjk + bkj)− θ([ab]ik + [ab]ki) ◦ θ(ekk),

and
B = θ([ab]ik + [ab]ki) ◦ θ(bjk + bkj)− θ(aij + aji) ◦ θ([bb]jj),

since θ(aij + aji) ◦ θ(ekk) = 0 and θ([ab]ik + [ab]ki) ◦ θ([bb]jj) = 0. Replacing
b by 2b, we get 2A+ 4B = 0. Therefore, A = B = 0. By (2.4) it follows from
A = 0 that

θ(aij + aji) ◦ θ(bjk + bkj) = θ(ekk) ◦ θ([ab]ik + [ab]ki)

=
1
2
θ(1) ◦ θ([ab]ik + [ab]ki).

Now x ◦ y = [ab]ik + [ab]ki, so the last identity means exactly θ(x) ◦ θ(y) =
1
2θ(1) ◦ θ(x ◦ y).

Thus we have proved that θ(x) ◦ θ(y) = 1
2θ(1) ◦ θ(x ◦ y) for all x, y ∈

S. Therefore, if x, y, u, v ∈ S satisfy x ◦ y = u ◦ v, then it is obvious that
θ(x) ◦ θ(y) = θ(u) ◦ θ(v). �

Using an argument similar to that for [3, Theorem 3.2], we may apply the
preceding theorem to the case of Hermitian operators.
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Corollary 2.2. Let Fs(H) be the Jordan algebra of all Hermitian oper-
ators of finite rank on a complex Hilbert space H, J a Jordan algebra over R
and θ : Fs(H) → J an R-linear map preserving zero Jordan products. Then
θ(x) ◦ θ(y) = θ(u) ◦ θ(v) for all x, y, u, v ∈ Fs(H) with x ◦ y = u ◦ v.

Proof. Fix x, y, u, v ∈ Fs(H). There is a projection p ∈ Fs(H) such that
pxp = x, pyp = y, pup = u and pvp = v. Let {e1, e2, . . . , en} be an orthonor-
mal basis of the range of p and A the subalgebra of B(H) consisting of all
operators a on H defined by a(w) =

∑n
i,j=1 αij〈w|ej〉ei for w ∈ H, where

αij ∈ C and 〈w|ej〉 denotes the inner product of w and ej . Note that A is
isomorphic to R = Mn(C) via the isomorphism a →

∑n
i,j=1 αijeij and we

may assume that x, y, u, v ∈ S = S(R), the Jordan algebra of all Hermitian
matrices. Therefore for the restriction of θ to S we may apply Theorem 2.1.
Hence θ(x) ◦ θ(y) = θ(u) ◦ θ(v) for all x, y, u, v ∈ Fs(H) with x ◦ y = u ◦ v and
the proof is complete. �

We are now in a position to prove the main theorem of the present paper
using some ideas from the proof of [3, Theorem 3.3].

Theorem 2.3. Let Bs(H) be the Jordan algebra of all Hermitian operators
on a separable complex Hilbert space H and θ : Bs(H)→ Bs(H) a surjective
R-linear map which is continuous in the strong operator topology. Suppose that
θ preserves zero Jordan products. Then λ = θ(1) is a nonzero real number
and there exists a unitary or anti-unitary operator u on H such that

θ(x) = λuxu∗ for all x ∈ Bs(H).

Proof. First we show that

(2.5)
1
2
θ(1) ◦ θ(x ◦ y) = θ(x) ◦ θ(y)

for all x, y ∈ Bs(H).
Let x0, y0 ∈ Fs(H). Since H is separable, Fs(H) is dense in Bs(H) in the

strong operator topology. In particular, there exists a sequence {pn} in Fs(H)
converging to 1 in the strong operator topology. We may assume further that
pn(x0 ◦ y0) = (x0 ◦ y0)pn = x0 ◦ y0 for all n. According to Corollary 2.2 the
restriction of θ to Fs(H) preserves equal Jordan products, so it follows from
1
2pn ◦ (x0 ◦ y0) = x0 ◦ y0 that

1
2
θ(pn) ◦ θ(x0 ◦ y0) = θ(x0) ◦ θ(y0)

for all n. Since θ is continuous in the strong operator topology, we obtain

(2.6)
1
2
θ(1) ◦ θ(x0 ◦ y0) = θ(x0) ◦ θ(y0)

by passing to the limit in the previous equation.
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Let x ∈ Bs(H) and {xn} a sequence in Fs(H) converging to x. It follows
from (2.6) that

1
2
θ(1) ◦ θ(xn ◦ y0) = θ(xn) ◦ θ(y0)

for all n. Passing to the limits in this equation we get

(2.7)
1
2
θ(1) ◦ θ(x ◦ y0) = θ(x) ◦ θ(y0).

Finally, let y ∈ Bs(H) and {yn} a sequence in Fs(H) converging to y. It
follows from (2.7) that

1
2
θ(1) ◦ θ(x ◦ yn) = θ(x) ◦ θ(yn)

for all n. Passing to the limits in this equation we obtain (2.5).
For any projection p in Bs(H) we have

(2.8) θ(1) ◦ θ(p) = θ(p) ◦ θ(p) = 2θ(p)2.

Thus
[θ(1) ◦ θ(p)]θ(p) = θ(p)[θ(1) ◦ θ(p)],

and its expansion yields

θ(1)θ(p)2 = θ(p)2θ(1).

This together with (2.8) gives

θ(1)[θ(1) ◦ θ(p)] = [θ(1) ◦ θ(p)]θ(1).

Since every element of Bs(H) is an R-linear combination of projections [20,
Theorem 3], we have

θ(1)[θ(1) ◦ θ(x)] = [θ(1) ◦ θ(x)]θ(1)

for all x ∈ Bs(H), and, a fortiori,

θ(1)[θ(1) ◦ θ(x ◦ y)] = [θ(1) ◦ θ(x ◦ y)]θ(1)

for all x, y ∈ Bs(H). In view of (2.5), we conclude that θ(1) commutes with
θ(x) ◦ θ(y) for all x, y ∈ Bs(H). Since θ : Bs(H) → Bs(H) is surjective, this
implies that θ(1) commutes with x◦ y for all x, y ∈ Bs(H), and, in particular,
commutes with every projection p in Bs(H). In other words, θ(1) is a central
element in Bs(H), that is, a real number. Note that θ(1) is nonzero by (2.5).
Set λ = θ(1). Then (2.5) reduces to

λθ(x ◦ y) = θ(x) ◦ θ(y),

and hence ϕ = λ−1θ is a surjective Jordan homomorphism on Bs(H) which is
also continuous in the strong operator topology. We claim that ϕ is injective.
Suppose on the contrary that ϕ(a) = 0 for some nonzero a ∈ Bs(H). Let J
be the Jordan ideal of Bs(H) generated by a. Then the restriction of ϕ to
the Jordan ideal J is zero. Let I be a nonzero ∗-ideal of B(H) such that J
contains all the symmetric elements of I. (For instance, take I to be the ideal
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generated by all the x4 for x ∈ J ; see the proof of [7, Theorem 2.6].) Since the
nonzero ∗-ideal I contains F (H), the ideal of all finite-rank operators on H,
we have Fs(H) = S(F (H)) ⊆ J and so ϕ is zero on Fs(H). Recall that ϕ is
continuous and Fs(H) is dense in Bs(H) in the strong operator topology, so
we conclude that ϕ is zero on Bs(H), a contradiction. Therefore ϕ is a Jordan
automorphism. As we mentioned in the introduction, there exists a unitary
or anti-unitary operator u on H such that ϕ(x) = uxu∗ for all x ∈ Bs(H) and
the proof is thereby complete. �

Acknowledgement. We would like to thank the referee for her/his valu-
able comments.

References
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