
CATEGORY AND GENERALIZED HOPF INVARIANTS

BY
I. BERSTEIN AND P. J. HIITON

1. Introduction
The Lusternik-Schnirelmann category of a topological space X is usually

defined as follows: cat X =< n if X may be covered by n open sets each of
which is contractible in X. The general reference for the properties of this
homotopy invariant is [4]. It was observed by G. W. Whitehead in [9] that,
for a certain class of spaces including polyhedra, this definition is equivalent
to the one given below (Definition 2.1), which we make the starting point of
our investigation.

If we attach a cone CA to X by means of a map f:A X, it is trivial to
verify with the original definition of categorymand easy to verify with ours--
that cat Y =< cat X W 1, where Y X CA. Our interest centers in the
problem of establishing conditions under which, in fact, cat Y -<_ cat X. We
are motivated partly by the wish to compute the category of a 1-connected
polyhedron as a function of the terms in a homology decomposition (see [3])
and partly by the observation that, in the important case n 2, our problem
dualizes, in the sense of [2], a familiar problem of homotopy theory. Namely,
if X admits a multiplication and Y is the fibre space over X induced by a map
f’X -- A, under what circumstances does Y admit a multiplication. Answers
to this question, under certain restrictions, have been given by Copeland [1]
and others in terms of the concept of primitivity of cohomology classes. As
expected, our solution of the dual problem is primarily in terms of a concept
of primitivity which we introduce for homotopy classes. Moreover if ve
specialize A to be a Moore space K’(G, m 1), we get fairly complete results
in which the primitivity property of the map f turns out to be equivalent to
the vanishing of a generalized Hopf invariant which we define for elements of
homotopy groups (with coefficients) of spaces of specified category. Just
as in the dual situation, if X is a suspension space, all suspension elements of
rm-l(G; X) are primitive, but the converse is false. We are thus enabled to
construct spaces of category 2 which are not equivalent to suspensions, answer-
ing a question first raised by T. Ganea.
The definition of category which we give suggests a related notion of weak

category (Definition 2.2) which is a weaker hypothesis on a space X in that
w cat X -< n if cat X _<_ n, but the converse is, in general, false. Nevertheless
certain well-known properties of category generalize to weak category, includ-
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The Whitehead theorem (see [9]) on the nilpotency class of r(X, Y) where Y is a

group-like space also generalizes to spaces X of weak category n. See a forthcoming
paper by I. Berstein and T. Ganea.
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ing the fact, first pointed out by Eilenberg, that n-fold cup products vanish
if cat X -< n. We obtain a condition under which w cat Y -< cat X where
Y X ,.-s CA, which is expressed in terms of a homomorphism which also
deserves to be regarded as a generalized Hopf invariant. The last section of
the paper is largely devoted to a construction which gives rise to spaces Y
such that w cat Y 2 but, in general, cat Y 3.
Throughout the paper it is understood that maps and homotopies take

place in the "category" of spaces with base point.

2. Definitions and fundamental properties.
Let (X, .) be a space with base point. Let X be the Cartesian product

of n copies of X, and let T’(X) X be the subspace consisting of points
(Xl,’’’,Xn) such thatxi .forsomei, 1 -< i=< n. LetA’X--4Xnbe
the diagonal map

() (x, x,..., x);

let X(’) be the quotient space Xn/Tn(X), and let q’Xn- X(n) be the identi-
fication map. Let j: Tn(x) -- X be the inclusion map.

DEFINITION 2.1. X has category <= n (written cat X =< n) if there exists
a map ’X -- T’(X) with j A.

DEFINITION 2.2. X has wea category -<- n (written w cat X _<_ n) if qA
_____

0.

Since qj O, it follows trivially that w cat X =< n if cat X <- n. We offer
examples later to show that the converse does not hold.
To iustify the wording of these definitions we need

PROPOSITION. 2.3. (i) If cat X <= n, then cat X =< n-[- 1.
(ii) If w cat X <- n, then w cat X _<_ n - 1.

(i) Define k’X-- Tn+(X) by k(x) ((x), x). Then if
k’T+(X) -- Xn+ is the inclusion, it is clear that

.X X+(ii) Definep -- byp(xl,...,x) (x,...,
induces a map (r’X(n) X(n+l) such that aq, qn+ P; and pan An+.
Thus qn+ An+ - 0 if qn An O.
We will henceforth take the view that to assign a bound n on the category

of X is to structure X with a map ’X
To establish the homotopy invariance of these definitions we show

PROPOSITION 2.4. If X is dominated by Y, then (i) cat X __< cat Y, (ii)
wcatX, =< wcat Y.

Let f"X -- Y, g" Y -. X be maps such that gf --- I"X -- X.
(i) Let cat Y _<- n, and let Y be structured by 4,,: Y "-* Tn(Y). Define

x Tn(g) o r f. Then jxCx
g Arof-- Axogof

_
(ii) Now qx Ax --- qx Zx gf gC’)f(’) qx Ax. On the other hand, *()qxhx

qrArf - O. Thus qxAx --- O.
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We next prove

PROPOSITION 2.5. Let X be a (q 1)-connected polyhedron of dimension
<- nq 1. Then cat X <-_ n. If dim X <__ nq 2, then the homotopy class of
the structure map X --> T’ X is uniquely determined.

The proof is a straightforward exercise in cellular approximation and will
be omitted. In particular let X be a Moore space K’(G, m 1), m >= 3.
Then if we exclude the case m 3, n 2, G not free abelian, there is a struc-
ture map :K’ --. T’(K’) whose homotopy class is uniquely determined.
We describe such a structure map as canonical.
Now let f:A -- X be a map, and let Y X CA be obtained from X

by attaching the cone CA to X by means of the map f. We prove

THEOREM 2.6. (i) If cat X <- n, then cat Y -<_ n + 1.
(ii) If w cat X <- n and Y is locally compact, then w cat Y _-< n 1.

Let X’ be the mapping cylinder of f, and f"A ---+ X’ the embedding. Let
Y’ X’ , CA. Then Y’

__
Y, X’

__
X, and Y’ has the property that there

exists a deformation l," Y’ ---+ Y’ with ]0 1, kl(CA) ,. Thus we may
suppose from the outset that Y itself has this property in proving (i) and (ii).
(i) We haveahomotopyh,’X --Xnwithh0 A, hl j. Now the

inclusion i’X Y is a cofibre map so we may extend h to a homotopy
l," Y Yn with lo A, li inj. Definem, "Y--+ yn+ by m,(y)
(kt(y), lt(y)). Then m0 A, and

m(y) (]c(y), l(y) ).

If y x e X then m(x) (]c(x) l(x) and l(x) T’(X) c T,( y)
Tn+lso that ml(X) e (Y). If y z e CA, then ml(z) (k(z), l (z)), and

Tn+k(z) ., so that m(z) Y). Thus m( Y) Tn+I( Y), and (i) is
proved.

(ii) Since Y is locally compact, the identity map Y X yn --> yn+ induces
i(n)a continuous map s" Y >< Y() --+ Y(+). We have a homotopy g "X -+

with g qA, g ,. We may extend g to g "Y-- Y(n) with go qA,
gl i ,. We consider the homotopy us s (ks >< g) o 52 Y -- Y(n+), where
A..Y ---+ Y >< Y is the diagonal map. Then plainly u0 qA. If x eX,
u,(x) S(kl(x),g(x)) s(k(x), ,) ,;if z CA, u,(z) s(}(z),g(z))
s(,, g(z)) ,. Thus u ,, and (ii) is proved.

This theorem shows that, by attaching a cone to a space, we can increase
the category by at most one. Our object in this paper is to describe circum-
stances under which the category fails to increase. This description will be
concerned with generalizations of the standard notions of primitivity (for
cohomology classes) and Hopf invariant. We defer the definition of n-primi-
tivity (of homotopy classes) till the next section and give now the required
generalization of the Hopf invariant.

Let M be any space (with base point), let G be an abelian group, and let
p -> 2 be an integer; we will suppose p -> 3 if G is not free abelian. We con-
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sider the exact homotopy sequence of homotopy groups with coefficients
(see [2])

(2.7) -- r+l(G; M, T’(M) ) 0 r(G; T’(M) j*

r(G; M=) --PROPOSITION 2.8. If n > 1, the sequence (2.7) splits. Precisely, there is a
homomorphism :rv(G; Mn) -- r(G; Tn(M)) with j, 1. Moreover,

is natural in the sense that, for any map f: Mo ----) MI,

(2.9) T’(f),
For let ix’M -- M=, px’M - M, k 1,... n, be the injection of and

projection onto the hth factor in M. Let also x "M T(M) be the injec-
tion of the hth factor. We put

Since the groups concerned are abelian, is a homomorphism. Also
oJ

3x ix, so that

Zj, j, x= x, Px, ix, px, 1.

The naturality of is now an immediate consequence of its definition.

COROLLARY 2.10. There are natural homomorphisms

:r,(G; M) -- r,(G; Tn(M)),

o:r,(G; T’(M)) r,+(G; M’, T’(M))

such that j, 1, o0 1, and

1 j, -t- 0:r,(G; T’(M)) ---, r,(G; T(M)).

Dv,INTON 2.11. Let cat X =< n with structure map :X -- Tn(X),
and let a er,(G; X). The Hopf -invariant of a is the element
C(a) o,(a) e rp+l(G; Xn, Tn(x)). The crude Hopf -invariant of is
the element /(a) q, C(a) e r,+(G; X)).
The reader will remark that if we take G Z, X S, n 2, and

:S-- Sv S the map which pinches an equatorial S- to a point,
then C is a homomorphism which subsumes all the Hopf homomorphisms
H, i 0, 1, 2,... of [6] and is just the homomorphism H* of [5].

3. Primitive maps and category
We begin this section with the promised definition of n-primitivity.

DEFINITION 3.1. Let cat X =< n with structure map :X --, T’(X), and
letf:A ----> X be a map. Then (i) if cat A =< n with structure map
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b:A -, T (A), we say that f is n-primitive if the diagram

(D)

T’(A Tn(f)._ T’(X)

homotopy-commutes; and (ii) we say that f is n-quasiprimitive if there is some
map such that (D) homotopy-commutes.

Notice that in the definition of quasiprimitivity no assumption is made on
the category of A; and that an n-primitive map is n-quasiprimitive. We also
remark that if A is a Moore space, and if cat X =< 2 with structure map
:X -- X v X, then the notion of 2-primitivity for maps A -- X dualizes
the notion of primitivity for cohomology classes of H-space.s. Notice finally
that if A and X are suspension spaces with suspension structure maps
b:A-- A v A, :X -- X v X, then f is 2-primitive if it is in a suspen-
sion class.

PROPOSITION 3.2. Iff’A --> X is n-primitive and r(G; A), then

c(f..) f. c(.).

where f**n is the homomorphism induced by fn..A, T (A) -- Xn, T’(X)

For, by the naturality of , T’(f), f, o, for any f. Thus, since f is
n-primitive, f, () f,coC,(a) T’(f), b,(a) ,f,a C(f, ).

PROPOSITION 3.3. Let A K’ (G, m 1), where m >= 4 or m 3 and
G is free abelian. Let cat X <-_ n, where n 1, and let f:A ---> X be a map.
Then the following three statements are equivalent: (a) C(f) 0; (b)
f is n-primitive; (c) f is n-quasiprimitive.

Notice that, by Proposition 2.5, A has a canonical structure map
:A -- T(A), so that n-primitivity is well-defined. In fact {h} {41
since j, 1.

(a) (b). We are given ,lf} 0. If is the class of the identity
map A - A, we have

by (2.9),

T’(f),{}.

Thus f is n-primitive. Obviously (b) (c), so it remains to show
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(c) = (a). We are given that ,{f} T(f),() for some
fl e rm-l(G; T(A) ). By the cellular approximation theorem

j,:m_l(G; T(A)) _I(G; An)
is (1, 1) so that :v_(G; A) -- r_l(G; T(A) is an isomorphism.
Thus K() for some e v_(G; An), and

,{f} T(f), () f().
Since j, 1, b,{f} j, ,/f}, whence 0,{f} 0. Since 0 is (1, 1),
C(f) 0, and the proposition is proved.
We now return to the situation (and notation) of Theorem 2.6 and prove

THEOREM 3.4. Iff:A X is n-quasiprimitive, n ) 1, and if Y X s CA,
then cat Y <-_ n. Moreover we may structure Y with a map x: Y -- T( Y)
such that the inclusion i X Y is n-primitive.

Now i:X --+ Y is a cofibration. Thus we have (see [2]) a commutative
diagram

i* f*(ZA, T( Y) r( Y, vn( Y) r(X, T( Y) (A, T(Y)

i* f*r(ZA, Y) -+ r(Y, yn) r(X, Y) r(A, Y)

(2; suspension) in which the horizonal rows are exact. Notice that, ex-
cept on the extreme left of the diagrams, the sets ( are given no group
structure. However, j.’r(%A, T(Y)) --+ ’(A, Y) is a group-homo-
morphism. Indeed, since n > 1, it is an epimorphism; for we may still define
’(ZA, Y) --+ r(ZA, T’(Y) as in 2.8. Although in general fails to be a
homomorphism, it retains the property j. 1.
As observed by Puppe [8], there is an operation of (2A, Z) on (Y, Z)

with the property that, for , <g e(Y, Z), i*(a) i*(a) if and only if
a a for some e (ZA, Z). Moreover it is easy to see that the operation
is natural in the sense that, for any g’Z --+ Z,
(3.5) g,(a) (g, a)* a e r(Y, Z) e r(2;A Z)

After these preliminaries, we proceed to the proof of the theorem. Con-

If h’Y ---* Z represents a and u’ZA -+ Z represents , then a is represented by
h: Y Z where

hu(x) h(x), x X,

hu(a, t) h(a, 2t) aeA, 0-< t_-< 1/2,

u(a, 2t 1) a A, 1/2 -< -< 1.



CATEGORY AND GENERALIZED HOPF INVARIkNTS 443

sider the map u T(i) o’X T(Y). Then

f*/u} T (i) o b f}

T(i) o T(f) }, since f is n-quasiprimitive,

--{Tn(iof)

since i o f
___

0:A --. Y.

Thus {u} i*(), a e (Y, Tn(Y)). Also

j,{u} {jr Tn(i) ob} {inojxO} {ino Ax} {Ayoi}
Thus j.{u} i*{A}. It follows that i*{A} i*j.(a), so that

{A} j,(a)’,

for some v e(2;A, However as we have remarked, j. maps
(ZA, Tn(y)) onto z(ZA, Y), so that v j. for some e(ZA, T(Y)).

Thus, finally, {A} (j.a)* j.(a), so that cat Y n. Moreover
i.(a) i.(a) {u} Tn(i) o }, so that if we structure Y by any map in
the class a, i is n-primitive.
We may proceed from this theorem to construct examples of spaces of

category 2 which are not equivalent to suspensions. We first prove a lemma
which is probably well known but which we have not found in the literature.

eLEMMA 3.6. Let e_(Sq), m > q + 1 > 3, and let Y S be
the space obtained by attaching e to S by a map f in the class . Then Y is
equivalent to a suspension if and only if is a suspension class.

Clearly Y is equivalent to a suspension if a is a suspension class. Also it
is evident that a is a suspension class if m q + 1. Thus it remains to
consider the case in which m > q + 1 and Y is equivalent to a suspension, and
to prove that a is a suspension class.
The case q 2 is treated by a special argument (see 3.22), and we will

suppose q > 2. We complete the proof by establishing first that Y, being
2-connected and equivalent to a suspension, is actually equivalent to the
suspension of a 1-connected polyhedron. For suppose Y ZZ, where Z is
a 0-connected polyhedron. Then Z’ Z/Z is a 1-connected polyhedron
with

H(Z’) H(Z) F, here F is free abelian,

H(Z’) H(Z), r > 2.

Now Z’ admits a homology decomposition [3], initiated by
K’ (H.(Z) @ F, 2), where we may take

K’(H.(Z) @ F, 2) K’(H2(Z), 2) v K’(F, 2).
Then Z" Z’/K’(F, 2) is a 1-connected polyhedron such that the projection
Z - Z" induces homology isomorphisms. It follows that 2Z

___
2Zrt, so

that Y --_ 2Z’t, as asserted.
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In our special case Z" --- Sq-1
X...g em-1 for some g: S"-2 .-, Sq-, so that

there is a homotopy equivalence h: S ,,_f e S e where v Zg.
Moreover we may suppose that h(Sq) Sq. If h induces h" S Sq, then
h is a homotopy equivalence and, of course, in a suspension class; similarly,
by passing to quotients, h induces h":S S which is a homotopy equi-
valence and in a suspension class. Suppose h" Zk, k S-1 S-.

Let ]:E, S- Sq e, Sq; :E, S- S Sqe be characteristic
maps, let " S- S-.E E extend k, and let stand for each of the
projections Sq e S, S e S. Then h" h and
h" V. Thus

h] ’E,-S

But 0* "m(S je :(S),sothat

hi
Restricting the homotopy to S-1 we find

h’f vk" S- S.
Thus f f’vk where f’ is a homotopy inverse of h’. Since f’, v, and k are
all in suspension classes, so is f, and the lemma is provedJ

Let us take in particular the case q 3, m 2p + 1, where p is an odd
prime, and let a e v2v(Sa) be an element of order p. Then a is not a suspen-
sion class since :v_(S2) contains no element of order p. On the other hand
it follows readily from the general left distributive law [6; (6.1)] that a is
primitive (i.e., 2-primitive); for 2v(S2+) contains no element of order p

3 e2p+lif k > 1 Thus if f a, is of category 2 (Theorem 3.4) but is
not equivalent to a suspension (Lemma 3.6).
We now return to the hypotheses of Proposition 3.3 with a view to es-

tablishing a partial converse of Theorem 3.4. Let A K’(G, m 1), where
m 4orm 3andGisfreeabelian. Let catX n, wheren > 1, with
structure map ’X Tn(x), and let f’A X be a map. We construct
Y X CA with inclusion map i"X Y inducing

in.xn, Tn(x) ---> y’, Tn(y),

i(n). X(n)
--> y(,O.

We also have a characteristic map ]: CA, A ---> Y, X. Further we have a
homotopy Ax --- j’X -- X’, which may be extended to a homotopy
Ar /’Y -- yn, where 7i inj jT’(i). We regard as a map

so that X T’(i).

: Y, X -* Y", Tn(Y)

Then ]: CA, A -- Y’, T’( Y) represents a certain

Except in the case q 2; but see 3.22.
It has also been observed by E. H. Brown and A. H. Copeland that Theorem 3.4

would reveal the existence of such examples.
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element 71 e rm(G; Y’, T"(Y) ), and qX] represents v q, 71 e ,rm(G ;y(n)).
Notice that 01 T’(i) o o f} so that 071, and hence 1 and , is entirely
determined by and f.
PnoPOSlTION 3.7. (i) 71 z**(f);
(ii) , i,’)t(f).
It is plainly sufficient to prove (i). Further it is .sufficient to prove

that 071 Oi,C(f) or

(3.8) Tn(i),,lfl Tn(i), OC(f).
Now 05C 0, (1 Kj,)O,. Thus it remains to prove

(3.9) Tn(i), J,,tf} O.

But T(i), Kz, and j, , A,. Thus

T(i), j,,{f} i$ A,{f} A, i,{f} 0.

This establishes (3.9) and hence the proposition.

PnOeOSlTION 3.8. (i) If O, then cat Y <- n, and we may structure
Y so that the inclusion i" X - Y is n-primitive.

(ii) If n O, then w cat Y <_-n.

(i) We simply reproduce the proof of Theorem 3.4; the only use we made
of the n-quasiprimitivity of f was to conclude that f*{u} 0, but f*{ u} 0.

(ii) We are given qX
___

O:CA, A -- y(,O, ,. Since ] is a relative ho-
meomorphism, we conclude that q/ 0" Y, X -, Y(), ,. Thus certainly
qA 0"Y -- ,sothatwcat Y =< n.

COnOLLAnY 3.9. (i) If (f) O, then cat Y <= n, and we may structure
Y so that i is n-primitive.

(ii) If ft(f) O, then w cat Y -< n.

Now suppose X to be a (q 1)-connected polyhedron, m 1 >_- q => 2.
We then bring Proposition 3.8 and Corollary 3.9 very close by showing

PROPOSITION 3.10. Exclude the case n 2, q 2, G not free. Then
(i) i, ",(G; X’, T(X)) ._ r(G; Y’, T"(Y))
(ii) i(,)’r(G; X(n)) (G" Y()).
(Notice that no use is made of the assumption on cat X.)
This is an immediate consequence of the universal coefficient theorem for

homotopy groups" [2] and

LEMMA 3.11. If p <= ra 2 + (n 1) q, then
(i) i, "-p(Xn, Tn(x))

__
.p(yn, T(y));

(ii) i(,) "r(X()) ----- r(Y()).We may assume that the (q 1)-section of X is reduced to ,. Then
Y() X(n) has no cells of dimension < m + (n 1)q, so that (ii) is proved.
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Proof of (i). Let X(n) E(Xn; Tn(x), ,) be the space of paths on X
beginning in Tn(x) and terminating in ,, and let Y(n) be defined similarly.
Let EX be the space of paths on X ending in ,, so that X c EX. Then
7r(X(n)) 71-rwl(Xn, Tn(x)), and

(3.12) (EX, X) EXn, X(n)

A similar statement holds for Y. Now r(X) rr(Y) 0, r _-< q 1,
and

i, "(X) -v(Y), r =< m- 2,
i, rm-l(X) m-l(Y).

We infer by classical arguments that H(EX, X) H(EY, Y) O,
r =< q- 1, and

i, "Hr(EX, X) --- H(EY, Y), r <-_ m -.2,
(3.13)

i, H,_I(EX, X) H,_(EY, Y).

We now apply the relative Ktinneth formula to (3.12); this is justified
since X, Y are polyhedra. Leaving the details to the reader, we infer that

(3.14)

Thus

(3.15)

i, "H(EX, X(n)) --- H(EY, Y(n)),

i, Hr(EXn, X(n)) H(EY, Y(n)),

i, "Hr(X(n)) --- Hr(Y(n)),

i, Hr(X(n) H( Y(n)

r_-< m-- 2 - (n-- 1)q,

r m-- 1 -- (n-- 1)q.

r _-< m-- 3 -- (n-- 1)q,

r- m-- 2-l- (n-- 1)q.

Now X() and Y(n) are 1-connected. For ?l-l(X(n)) y2(Xn, T(X)), and
X T(X) has no cells of dimension nq; the same argument applies to
Y(n). Thus from (3.15) we infer

(3.16) i, "-r(X(n)) ---’r(Y(n)), r <= m- 3 + (n- 1)q,
and this establishes (i).
We may now prove a converse of Corollary 3.9(i). First we observe

PROPOSITION 3.17. Suppose Y X Js CA where A K’(G, m 1)
and cat X =< n, cat Y <-_ n. Then if i’X -- Y is n-primitive, i, 3C(f) O.

We are given that T’(i) o
_
xi for some x’Y - T(Y).

i,3C(f) m (3.7(i)), so that i,3C(f) 0 if and only if 0m 0.
Om Tn(i) o f} lX i f} O, so the proposition is proved.

Now
But

COROLLnnY 3.18. If in addition X is a (q 1)-connected polyhedron,
m 1 >- q >- 2, and if we exclude the case n 2, q 2, G not free, then if
i’X --+ Y is n-primitive, 3C(f) O, and f is n-primitive.

For notational simplicity in this argument we use i, for any homomorphism effec-
tively induced by i.
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This is an immediate consequence of 3.3, 3.10(i), and 3.17. Again using
3.10 we now prove a converse of 3.9 under somewhat different hypotheses.
We recall from Proposition 2.5 that if X is a (q 1)-connected polyhedron
of dimension <= nq 2, then it possesses a canonical structure map
X ---> T (X) which is unique up to homotopy. We prove further

THEOREM 3.19. If X is a (q 1)-connected polyhedron, m 1 >- q >= 2,
and if dim X <- nq 2, then, provided we exclude the case n 2, q 2, G not
free,

(i) if cat Y _-< n, 3C(f) 0 and f is n-primitive;
(ii) /fwcat Y =< n,(f) 0.

(Recallthat Y X s CA, A K’(G, m 1).)
(i) We know that A, and hence 7:y yn is deformable into Tn(y).

Now maps X into Tn(y), and yn Tn(y) has no cells of dimension < nq.
Thus we may choose the deformation to keep X in Tn(y) SO that

7 ._ -" Y, X--- yn, Tn( y

with A (Y)

_
T (Y). Thus

]
_

y:CA, A Y’, T(Y)
with ](CA) Tn(y). This implies that Z] represents the zero element of
(G; yn, T (y) or w 0. Apply 3.10 (i).

(ii) We know that qA, and hence q’Y y(n), is nullhomotopic and
qZ(X) .. But Y() has no cells of positive dimension < nq, so we may
choose the nullhomotopy to keep X at Thus q
whence q] O’CA, A y(n) *, nd 0. Apply 3.10(ii)

It may be helpful to the reder t this stage for us to resume the conditions
for the validity of the conclusions of 3.18 nd 3.19. X is (q 1)-connected
polyhedron, A K’(G, m- 1), Y X CA, ct X n where n > 1;
further m 1 q 2. Then if G is free, the conclusion of 3.18 holds, nd
that of 3.19 under the dditionl hypothesis dim X nq 2. If G is not
free, we Mso need, for both 3.18 nd 3.19, that m 4 nd nq > 4.
The following special cse should be mentioned explicitly.

THEOREM 3.20. Let S ._se be obtained by attaching e to S by
f’S’-i-- Sq,ra- 1 >= q >- 2. Then

the following four statements are equivalent"
e 2,(i.1) cats
e and we may structure S(i.2) cats < 2, ] e so that the in-

clusion of S is primitive,
(i.3) 3C(f) =0,
(i.4) f is primitive;

(ii) the following two statements are equivalent"
em2(ii.1) wcatSqj]

(ii.2) /(f) 0.
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M. G. Barratt has recently elucidated the relationship between the gen-
eralized Hopf invariants in the sense of Hilton and those defined by James.
It follows from his results that H(f) 0 if C(f) 0, where
H: rm-l(S) -- rm-l(S-) is the homomorphism defined by James [7].
It thus follows from James’s exact sequence that if q is even or if f} be-
longs to the 2-component of rm_(S), then {f} 2;r_(S-1) if 3C(f) 0.
We conclude

PROPOSITION 3.21. Let f: S’- S where q is even or f} belongs to the
2-component of -,_(S). Then f is primitive if and only if it is in a suspension
class.

COROLLARY 3.22. /f f: S"- -- S, m _>_ 4, then cat S _f e _-< 2 if and
only if f O.

By this corollary we complete the proof of Lemma 3.6.

4. Weak and strong category
In this section we provide a recipe for constructing spaces Y such that

w cat Y =< 2 but, in general, cat Y 3.
Let X’, X" be two spaces, and X’ v X" their wedge. We may regard

elements of r,(X’) or r,(X") as elements of r,(X’ v X’) by means of the
natural inclusions; we then consider elements e r,(X’ v X") which are
representable as Whitehead products of elements drawn from r,(X’) or
r,(X"). The length of the representation is the number of elements in the
product expression for ; and is pure if it admits a representation as a product
of elements all drawn from r,(X’) or from r,(X"), and is mixed otherwise.
By abuse we will also talk of the length of . Let X’ X" be the quotient
space X’ X’/X’ v X’, and let q:X’ X X", X’ v X" X’ X’, be
the identification map.

PRO’OSITON 4.1. If is a mixed product, then e Or,(X’ X X’, X’ v X’).
If, moreover, is of length >- 3, then q, 0- O.

If is a mixed product, it is clearly annihilated by the projections
X’ v X" -- X, X’ v X" -- X". It is thus annihilated by the inclusion
X’ v X" -- X’ X X" and so belongs to Or,(X’ X X’, X’ v X").
Now suppose $ is mixed and of length __< 3. Then ff [a,/], and
(i) a or is mixed, or
(ii) a and are pure.

In case, (i) we may suppose a mixed so that a 0,,. e r,(X’ X X’, X’ v X’). Then [a, f] 0[,, ], where [,, t] is the relative
Whitehead product and q,[,, ] 0 since q, 0. In case (ii) we may
suppose a of length -> 2. Then a [p, a], so that

We may also prove this without invoking Barratt’s results; the latter may be found
in the notes of the Chicago Summer Conference in Algebraic Topology, 1957.

At this point we suppose dim p, , -> 2; a mild modification of the argument sus-
tains the conclusion in any case.
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[, 1 lip, ], ] +/-[[, 1, ,] +/- [[,, ],

by the Jacobi identity. Since a, t3 are pure and [a,/3] is mixed, it follows that
[p, t3], [, t3] are mixed. We are thus effectively back in case (i), and the
proposition is proved.
Now let cat X =< 2 with structure map ’X -- X v X. We will find it

convenient to write X’, X" for the two copies of X in X v X, so that is a
map :X -+ X’ v X". We will also write a’, a" for the copy of a r,(X)
in r,(X’), r,(X"). Now let e r,(X) be representable as a Whitehead
product W(a, a,... a), a ’,(X), where the a are primitive
elements (i.e., represented by 2-primitive maps).

I!PROPOSITION 4.2. .() W(a’l + al, ak + ak).

We first take for X the universal example space Xo for the homotopy opera-
tion W. Thus Xo is a union of spheres $1 v v S, and o’X0 -- X’0 v X’

I!
is in the class (1 + + ), where is the class of the identity
map of S and (, ,) is the class which restricts to , on S. Then if

If If

0 w(, ..., ), 0.(0) ( + , -.., + o w(, ..., )
If ffW( + ,..., + ).

We now consider the general case. Put a (a, ak), and consider
the diagram

Xo ()o )Xo v Xo

X X’ X"

The primitivity of the elements ai corresponds precisely to the commuta-
fivit relation

(’ ") {0} {} o .
Thus

.() {} - 0 (-’ ,") {00} o
If(,’ v ,’)oW( + ,..., + ).

tt tt tt tt tt
But(.’ v ")o(+.)= (’v )o.+ (.’v )o. =+.
Invoking this and the naturality of the Whitehead product, we conclude that
,() w( ,..., , + ).
We remark in passing that this proposition has some inherent interest

since the expression on the right appears at first sight to depend on the choice
of representation of . We use Propositions 4.1 and 4.2 to prove

Toan 4.3. Let cat X 2, let W(a,... ) be a Whitehead
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product of primitive elements ci of r.(X) of dimension >= 2, and let tc >= 3.
Then iffeandY Xsem, wcat Y_-< 2.

:Now

,() ,_ ,,
w(, + + w( ,) w( ).

By the linearity of the Whitehead product this is a sum of mixed Whitehead
products of length k 3. Thus q.O-($.()- ’- ")= 0. But
0-(.() ’ ") (), so that B() q.() 0, and we apply
3.9(ii).
On the other hand, it is clearly false in general that () 0. If, for

example, wetakeX S v Sqand [,, [,, ,]],then$.() ’ ’is a sum of triple Whitehead products in .(X’ v X’) which, by the formula
for the homotopy groups of a union of spheres, is an element of infinite order.
It then follows from 3.19 that cat X e $ 2, so that, by 2.6,
catXe= 3.
We mention here another rule for producing spaces of weak category 2

whose category exceeds 2. Let X be a connected but not simply-connected
polyhedron of dimension 2n 1 such that H(X) O, 0 < r < n, where
n > 1. (Such a polyhedron, with n 2, may be obtained by cutting an
open 3-cell out of a Poincar6 3-sphere.) Since (X v X) injects onto
(X X X), and since X X is equivalent to the space obtained from X X X
by erecting a cone on X v X, it follows from van Kampen’s theorem that
X Xis 1-connected. Onthe otherhnd sinceHr(X) 0,0 < r < n,
it follows that the injection H(X v X) H(X X X) is an isomorphism
ifr < 2n. ThusH(X X) 0,0 < r < 2n, sothatX Xis (2n- 1)-
connected. It follows therefore that any map X X $ X is nullhomotopic,
so that w cat X 2. On the other hand, it may be shown by a purely
algebraic argument that if cat X 2, then z(X) is free. This is certainly
false since z(X) # 1 but H(X) 0. Thus cat X > 2.
We close with a remark (touched on in the Introduction) intended to elicit

interest in the concept of weak category. It is a standard result that if X
is a polyhedron with cat X n, then n-fold cup products of elements of
positive dimension of the cohomology of X are zero. This result also holds
under the assumption w cat X n. For an element of H*(X; R) which is
expressible as the n-fold cup product of elements of positive dimension cer-
tainly belongs to (qA)*H*(X("); R). Thus such an element is zero if qA 0.
On the other hand it is clear that polyhedra X may be constructed such that
n-fold cup products vanish but w cat X > n. Indeed the polyhedron
X S e constitutes such an example, where {f} generates m(S); for
then(f) # 0, B(f) # 0, sothat catX wcatX 3, but 2-fold cup
products vanish.
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