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ABSTRACT. We give a description of confluence for the general Schlesinger systems
(GSS) from the view point of twistor theory. GSS is a system of nonlinear differential
equations on the Grassmannian manifold G x(C) which is obtained, for any partition
A of N, as the integrability condition of a connection V, on P! x G, y constructed
using the twistor-theoretic point of view and is known to describe isomonodromic
deformation of linear differential equations on the projective space P'. For a pair
of partitions 4, u of N such that u is obtained from A by making two parts into one
parts and leaving other parts unchanged, we construct the limit process V; — V, and as a
result the confluence for GSS.

1. Introduction

In the study of nonlinear differential equations in the complex domain,
Painlevé equations and their generalizations form an important class in the
sense that they define new special functions and play important roles in various
research fields of mathematics and theoretical physics. Historically, P. Pain-
levé and B. Gambier [1, 9] classified equations of the form

q,,:R(t7(/I7ql)7 RGC(quvq,)

having no movable branch point and, as a result, they obtained six equations
Py, ... Py called Painlevé equations. It is known that the Painlevé equations
are also obtained from the isomonodromic deformations of systems of linear
differential equation on P! with regular and/or irregular singular points, and
from this view point they are widely generalized. For example, for Py, we
consider the isomonodromic deformation of a Fuchsian system of rank 2:

dy _ (4:1(1)  As(
dC_< . T7-

A}(Z)
{—1t

t
1) + >y, A;(t) € M>(C) (L.1)
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with 4 regular singular points {=0,1,¢,00. The linear equation which
controls the dependence of y on the parameter ¢ is
day A1)

Fri C—ty' (1.2)

The equations (1.1) and (1.2) can be written as
dy = (A1d log { + Axd log({ — 1) + Azd log({ — 1)) y (1.3)
and its integrability condition gives the system of nonlinear equations

d4, _ [43,4)] ddy _ (A3, 4] dAs A3, A4)]  [43,4)] (14)
dt t dt r—1" dt t r—1"7 '

which is a particular case of Schlesinger system [2, 10]. It is explained in [2]
that if we define ¢(¢) from a solution (A(¢),Ax(¢),A3(¢)) of (1.4) by

g = 1(A1)),
(t+1)(A1)12 + 1(A2) 15 + (43)15

where (4;),, is the (1,2)-entry of A4;, then ¢(¢) satisfies Py;. The situation for
the other Painlevé equations is similar.

The Painlevé equations Py,..., Py can be obtained from Py; by certain
limit process called degeneration (or confluence). The degeneration scheme is
expressed as

Py

7N
PV[—>PV P[[—>P[. (15)

N /!
Py

This degeneration for P; is induced from the confluence of singularities for the
linear systems which are deformed isomonodromically. Hence we can asso-
ciate the above diagram with the diagram consisting of partitions of 4 which
encode the nature of singular points of linear systems:

(2,2)
/ N
(L1,1,1) — (2,1, 1) 4) (1.6)
N /!
(3,1)

As for the lack of corresponding part for P; in the above diagram, we make
a comment at the end of this paragraph. In the above diagram, a partition
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(2,1,1) means, for example, that the linear system corresponding to Py has 3
singular points in P!, two of them are regular singular points and one is an
irregular singular point of Poincaré rank 1. In fact, it is given by

dy ( Bs(s) B3(s))

—=|Bi(s)+—=+——=)y 1.7
= (B = (17)
where # = 0,s are regular singular points and # = oo is an irregular singular
point, and the dependence on s in the isomonodromic deformation is con-

trolled by

dy _ Bs(s)

= — . 1.
a5 p—s’ (1.8)
Note that (1.7) and (1.8) can be written as
dy = (B dn+ Byd log(n) + Bsd log(n — s)) y (1.9)

and the integrability condition gives the degenerated Schlesinger system corre-
sponding to Py. The arrow (1,1,1,1) — (2,1,1) in the diagram (1.6) means
the system (1.9) is obtained from (1.3) by the confluence of singularity { =1,
oo —n=o0. The explicit form of this process will be given in Section 4.
Notice that there is no partition corresponding to P; in the diagram (1.6).
This comes from the fact that the linear differential equation, which gives P;
by isomonodromic deformation, has only one singular point { = co where we
need functions and power series of {72 to obtain the formal fundamental
system of solutions. This situation is different from the other Painlevé
equations and the degeneration P;; — P; should be treated separately.

The purpose of this paper is to give this process in a more general
situation, namely for the systems analogous to (1.3) or (1.9) corresponding to
arbitrary partitions of integer N. To describe these systems, we use the
viewpoint of twistor theory due to Mason and Woodhouse [6, 7, 8]. In their
theory, a partition A of N implies a maximal abelian subgroup H, of GLy(C)
which is obtained as a centralizer of regular element of GLy(C) indexed by
the partition A, see Section 2. We remark that the same group appeared in
the theory of general hypergeometric functions on the Grassmannian mani-
fold [5].

This paper is organized as follows. We review the result of [4] about the
general Schlesinger system or the corresponding isomonodromic deformation
in Section 2. In Section 3, we construct the process of confluence for the
isomonodromic deformation and prove the main theorem. In the last section,
we discuss the confluence process for Painlevé equations as examples to
illustrate the theorem.
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2. General Schlesinger system

We give in this section the definition of general Schlesinger systems. See
also [4].

2.1. Maximal abelian subgroup. Let G = GLy(C) be the complex general
linear group of N x N matrices. For ge G, let Ad, : G — G be defined by
a— Ady(a) = gag™", which gives the adjoint action of G on itself. Denote
the orbit of a € G by O(a) = {Ad,(a)|g € G} and the centralizer of a € G by
Zg(a) ={g € G|Ady(a) = a}. We know that both O(a) and Zgs(a) are com-
plex manifolds and dim¢ G = dim¢ O(a) + dime Zg(a).

DEFINITION 2.1.  An element a€ G is said to be regular if dim O(a) is
maximum, in other words, dim Zg(a) is minimum.

It is seen that dim Zg(a) = N if a is a regular element and that a € G is a
regular element iff the Jordan cells of the Jordan normal form of ¢ have distinct

eigenvalues, i.e., for some partition 1 = (ny,...,n,) of N, a is conjugate to
Ay daj 1
Az . .
, Ay = C (2.1)
o1
Ay ay
with distinct ay,...,a, € C, where A; € GL,, (C). We call such element a a

regular element of type A.

What we concern is the groups obtained as centralizers of regular elements,
which are given explicitly as follows. When « € G itself is the Jordan normal
form as in (2.1), then

h
Zg(a) = - W e J(n) 3, (2.2)
h()

where J(n) is an abelian subgroup of GL,(C) of the form
ho hy - hy

Jn) =4 h= .”f' Al 20 (2.3)

called n-dimensional Jordan group. We also write he J(n) as

h=hol +hAd+ -+ h,_ A"
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using the shift matrix 4 = (di1,j)g<; j<, Of size n. The group Zg(a), which is
isomorphic to the product group J(n;) x --- x J(ns), and is irrelevant to the
eigenvalues of a, will be denoted as H, so as to emphasize that the group is
determined by the partition A.

Let j(n) and b, be the Lie algebras of J(n) and H;, respectively:

in)={e=&l+&A+ - +& 4" & eC~C"
and
5(1)
b, = W eilm) p=im) @ @iln).
é(/)

In order to make explicit the relation between H, and its Lie algebra [);, we
introduce the following functions.

DerINITION 2.2.  Let T be an indeterminate. Define the functions 6,,(x)
of x = (xo,x1,...) by

log(xo + X1 T+ x, T +++) = > O(x)T". (2.4)
m=0

We see that 0y = log xy and, for m > 1,

ik 1 (kL h = DU\
O(x) = (—1)frt o 1k o ) (-1) (-) . (2.5

X0 X0

where the sum is taken over all (ki,... ky)e ZZ, satisfying k\ 4 2ky +---+
mk,, = m.

For example, first few of them are

0o (x) = log xo,

X
Gl(x):x—(l),
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From these explicit form we see that 0,,(x), m > 1, has a pole along xo =0
of order m and is a weighted homogeneous polynomial of x;/xg, ..., X,/xo of
weight m when the weight of x; is set to be i.

Let J(n) be the universal covering group of J(n). Then we see that
log : J(n) — i(n) defined by

Ho(h) 91(/1) (9,1_1(/’!)

h—logh=
01 (h)
0o (h)

gives a biholomorphic map.

2.2. General Schlesinger systems. Let PV~ be the (N — 1)-dimensional com-
plex projective space which we call the twistor space. Let x = (xo,...,xy_1)
be the homogeneous coordinates of PY~! and [x] denote the point of P¥~!
with the homogeneous coordinates x. Define the right action of H; on P!
by

PVl Hy - PN ([x], h) — [xA]. (2.6)

If we write the homogeneous coordinate x block-wise as

/ k k
x=(xW, ... x¥), k) = (xé )7"'7x;5k>71) (2.7)
according as the partition A = (ny,...,n,), then the action of # = (h(V,... 1))

€ H, is written as

i) = xWaM, L xOp).

We prepare the space whose elements parametrize lines in the twistor space
PY~! and define the action of H, on this space. Given a matrix z € M, n(C),
we write z block-wise as

z= (z“), . ,Z(/)), z0 = (z(k>, e zflill) eM,,, (C),
where sz) is a two dimensional column vector. Define an open subset Z; of
M27N(C) by

Z)v = {Z S MZ,N(C)

det(z09 29y 20 (e = 2),
detz 2y 20 (k2D |
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It is seen that the map My y(C) x H, > (z,h) — zh € M x(C) defines an action
of H, on Z;, see [5].
Let @:P! x Z, — PY~! be the holomorphic map

(8, 2) — [C2] = [E=, ..., ), (2.8)
where z = (1,¢) and { denotes the affine coordinate of Pl

THEOREM 2.3 ([4, 7]). Let U C PN~! be an open set containing a projective
line and let 7w : E — U be a holomorphic vector bundle on U of rank r. Assume
that

(i) U is invariant by the action of H, on PN~' defined by (2.6),

(i) E is trivial on any projective line contained in U,

(iii) the action of H; on U can be lifted to E.

Then the infinitesimal action of Hy on U gives a flat connection V,; on E and
the induced connection V;, = &V, on ®*E is locally written as V;, = d — w,A,
where

= AP (2)d0,(Z1), iAé’”(z) =

k=1 a=0 k=1

The integrability of the connection V, gives the isomonodromic deformation of
a system of linear differential equation

/ me—1
4o (L e, 29

with unknown vector y € C'.

REMARK 2.4. (i) d0j(22<k>)/dé, as a function of {, has a pole { = —ZOO>/Z10
of order j+ 1, and hence the equation (2.9) has ¢ singular points of Poincaré
rank ny —1,...,n, — 1.  When these ¢ points are in a finite plane, { = oo is not
a singular point of (2.9) because of Z,f;l A(()k)(z) =0.

(i) By the action (2.6) of H,, the twistor space PN~! is expressed as a
union of orbits. There is an open dense orbit O(a) passing through [a] € PV
where

a= @V, .. ,.aec”, 4™ =(1,0,...,00eC™ (2.10)

b))

and there are codimension 1 orbits O(b;), j=1,...,/, where b; = (b}l), b

with

(k) _ - ) _
b =(1,0,...,0),  (k#j), b’ =(0,1,0,...,0).
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When U = O(a)U O(b))U---UO(by), the set Z, is the space which para-
metrizes all the projective lines contained in U.

DerINITION 2.5.  The system of nonlinear differential equations for Aék)
obtained as the complete integrability condition of the comnection V; is called
the general Schlesinger system (GSS) of type A

3. Confluence

In this section we construct a process of confluence of the connections
V, given in Theorem 2.3. This construction is a concrete realization of
adherence relations among strata of a natural stratification in the space of
regular elements G,, of G =GLy(C). So we describe first the adherence
relation among strata.

3.1. Stratification of the set of regular elements. Let %y denote the set of
partitions of N. Then we have the decomposition of G, as

Geg= | | G (3.1)

LePy
where G, is the set of regular elements of type A.

DerINiTION 3.1, Let A,ue Py. p is said to be adjacent to A when u is
obtained from ) by making two parts of 1 into one parts and leaving the other
parts unchanged. In this case we denote it as A — p.

ExamPLE 3.2. In the set of P4, the adjacency is described as in (1.6).

DerINITION 3.3, Let u € Py be obtained from A€ Py by successive chains
of adjacent partitions, namely, there are Ai,..., A, € Py such that A= 11 — A
— o= Ay =pu  In this case we write u < i

The relations < defines a partial order in the set Zy. We notice a well-
known fact that (3.1) defines a stratification of G, in the sense that each G,
is a complex manifold of dimension N> — N + /(1) and we have

G, = Gu

n<i

where /() denotes the number of parts of 4 and G, denotes the closure of G;
in G, with respect to the usual topology of G,,. What we want to do is to
construct, for A,ue #y such that 4 — u, the confluence V; — V, explicitly.
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The first step is to give explicit realization of the adjacency. Namely, for
a e G,, we construct a(e) € G, depending holomorphically on ¢ e C* in some
neighbourhood of 0 such that lim,  a(¢) = a. Before entering the general
situation, we explain this step by a simple example.

ExampLE 3.4. Consider the case G = GLy(C). Only partitions of 2 are
1
A=(1,1) and p=(2) and we have . — u. Let a= (OC > € G, be given.
11 g
Put g(e) :< ) Then we define a(e) € G, depending holomorphically on
€

eeC*:

(“ :c> = (o, 1) = (o, 1)g(e) = (o, + &) —

(a a+£>_)g(8)<a a+6>9(5)1 =:a(e),

o 1
where the vector (o,1) is constructed from < ) by arraying the element
o

in the main diagonal, and then that in the upper subdiagonal. Computation
shows

a@:<“ 1>. lim a(e) = a.

o+é e—0

Since we are considering the situation 4 — ux, namely u is obtained from
A by making some two parts of A into one parts, our construction reduces to
the case where A,u e Py are of the form A= (p,q) and u= (N).

Define g(¢) e My (C) by
(D g1(e)
CR

where gi(¢) e M, 4,(C), g2(e) e My(C) are given by
60
<g1<s>) o] O ()
(¢) : : :
(Hgfl) (p+11/*1> (17251)

Dyy(¢) denoting diag(1,¢,¢%,...,¢” ") and () denoting the binomial coefficient
which is equal to 0 when i < j by usual convention. Then we have
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(2)er
q—1
1 p—1)gp-1 =1\ ep—q
0 q—1
D) ep P )gp—atl
0 q—1
= eptg-1 .. a1 op
0 q—1

It is seen from the expression of g;(g), ga(e) that det g(e) =&”?. Hence
C* 3¢+ ¢g(e) e GLy(C) is a holomorphic map. Take

a = ) . . € G(N).
o1
o

P q
Taking account of (o, 1,0,...,0)g(e) = (o,1,0,...,0,0+¢1,0,...,0), we put

al, + 4,

a(e) = g(e) (a4, + Aq)?i(a)_l € G

for ¢ e C*, where A, = (Ji+1,/)9<; j-, 15 the shift matrix of size p. Then we
can show that lim, .y a(e) = a, see [3].

3.2. Confluence of the connections. Let A,ue Zy be given by A= (p,q)
and x4 = (N). Using the above g(¢), we construct the confluence V; —V,.
Suppose we are given the connection V, described in Theorem 2.3. Write the
connection form w, of V, as

W, = Z Bj(w)dﬁj(zw), weZ,

0<j<N

We construct V,(¢) :=d — w;A with the connection form w;(¢). Consider a
change of variables

z=w-g(e) (3.2)
and a change of gauge potentials

A=B-("9()"' ®L), (33)
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where 4 = (Aél)7 . ,Al()l_)l,Aéz), .. .,A;z_)l) € glr(C)N and B=(By,...,By_1) €
gl.(C)". Since z and the gauge potentials A4 depend on ¢ by (3.2) and (3.3),

we denote them as

Ale) = (437 (e), .., A4, (2), 457 (e), . AP ()
Put
0;(e) = 0} (&) + 0 (2) (3.4)
= Y A4V@d0E=V @)+ > AP (a0 =P ). (3.3)
0<j<p 0<j<q

Note that, for we Z,, we have z(¢) € Z; for any ¢ € C* in a neighbourhood
of 0.

THEOREM 3.5 (Confluence). If we put

Op = Z B_,(w)d@_,-(ZW), weZy,

0< j<N
then
(&) = w, + O(e).
Hence,

lim w, (&) = w,.
e—0

3.3. Proof of Theorem 3.5. We need the following lemma.

LEmMMA 3.6 [3]. Let x = (xo,X1,...) and let y(x,t) = (yo(x, 1), y1(x,1),...)
be a sequence of formal power series of t defined by

i+ k .
yi(x, 1) = Z(j « )xj+k[ka J=0.

k>0

Then we have
j+k k .
Qj(yo(x, t)vyl(xa t)v"') :Z k Hj+/c(x0axl,-'~)t 5 J 207
k>0

where 0; are functions defined by (2.4).
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By the relation (3.2), z(¢) is written as

1 .
De)y=w, 0<j<p,

i+ k _
Z_}z)(s) = Z(J K >wj+kek, 0<j<q.

k>0

Note also that the relation (3.3) is written as

1 VAWHE .
A}><e>+2(k)A,E><s>efk B, 0<j<p,

0<k<gq
2 <1]c)A/<c2)(8)8j" =B, p=<j<N.
0<k<q

Then wf)(s) of (3.4) is written as

= 3 AP (a0, (2))

0<j<q

= Z A} )d0; (CZ( >Wj+k£k>
0< j<q k>0
= > AP(&)d0, (30w, ), »1(Qw,e), .. )
0</<q

-3 A,@(g)Z(j+k)d6_;+k(5w)sk-
0<j<q AN

Here we used Lemma 3.6 in the last equality. Then, using this and the

identities (3.6), (3.7), we have

0i(e) = 3 <A}“<e>+ 2. (,{)Af)(s)ef-k)dof@w)

0<j<p 0<k<gq

+ Z <Z (li)A,iz)(e)ef‘k>d0j(Z»v)+0(g)
P<j<N \0<k<q

> By do;(Tw) + O(e)

0<j<N
=w, + O0(¢).

Thus we proved Theorem 3.5.
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4. Examples

Using Theorem 2.3, we have obtained [4] the general Schlesinger systems
which give Painlevé equations P; (J =1I,...,VI) in particular cases r =2,
N = 4 through reduction of the systems using first integrals. We give in this
section the process of confluence for these GSS.

4.1. GSS for Painlevé equations. At first we list up, for each Painlevé
equation, the following data:
(1) a partition A of 4 which specifies the abelian group H; C GL4(C),
(2) the subspace X; of Z; which is a realization of GL,(C)\Z,/H; and
parametrizes lines in an invariant open subset U of the twistor
space P?,
(3) the connection form w of the flat connection V;, =d — wA,
(4) the GSS equivalent to the Painlevé equation obtained as the zero-
curvature condition of V; (see [8] for the equivalence).
Note that in each of the following cases, the invariant open subset U C P? in
Theorem 2.3 is a union of the open dense orbit and the orbits of codimension
one.

4.1.1. Painlevé Py;.
hy
hy

(1) A= (lalalv ); H). =
hy
hy

1 -1 0 -

_ d( d¢ dl — dt
(3) CO—A1C_—1+A2?+A3 =

with A9+ A} + A, + A3 = 0.

4)
da, _ [43, 4] dd; _ [A3, 4] dds (A5, 4]  [43, 4] @.1)
dt r—1"7 dt o dt r—1 r

4.1.2. Painlevé Py.

hy I
ho
(1) VS (27171)9 H), =
hy
h3
1 0 0 —¢
(2) Xi_{z_(o L1 1> t;éO,oo}.
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(3) w:Aldc+A2%+A3%with Ao+ Ay + 45 = 0.
4)
A, dA, [As, 4] dAs [43, A5]
I A R R At
4.1.3. Painlevé Pyy.
ho h h
hy h
(1) 2=(,1), H, = oo
ho
h3
1 00 —¢
2) XA—{Z—(O Lo 1):;&00}.

(3) w=4, dc—AzcduAgdg‘d’

with 4y + A3 = 0.

%Z[/ﬁw‘lz], %:0, %: [A] —tAz,A3].
4.1.4. Painlevé Pyy.
hy M
(1) A=(2,2), H, = o
. hy  hs
hy

0 nf=(3 00 )

3) w=4, dC+A2%+A3d(é> with Ay + A, = 0.

4)

t;éO,oo}.

dA, dd, dA; _ [A>, 43]
a0 a ~ A, ¢t

4.1.5. Painlevé Py;.

(1) 2=4), Hy=

(4.2)

(4.4)
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(2) X}:{z:(é ? é 8)[#%0}

(3) @=Ayd{+ Axyd(t —10) + Asd ({1 + 1) with 4p = 0.
(4)

dA, dA,
— =145, A — tA — = [A43,4
0 [42, 41 3, 0 (43, A1],

dAs;
o 0. (4.5)
In the subsequent subsections, we use the following notations. In the case
A— u,Aue Py, we denote a point of X; as z, the variable parameter in z as
t, the connection form of V, as w, the coordinate of P! describing the lines
in the forms w as { and the vector consisting of potentials in the form w as
A = (Ag, A1, A2, A3). Correspondingly, for the partition u, we use the symbols
w, s, @, n and B = (Bo,Bl,Bz,Bg).

4.2. From Py; to Py. In this case, the partitions are A= (1,1,1,1) — u=

1 00 —
(2,1,1). For w:(o 11 ls)eXﬂ, put z(e) = wg(e) € X;:

()710073 e 71107s
M=o 11 1 1 o ¢ 1 1

and consider the change of potentials A(e) = B- (‘g(¢) ' ® L). Explicitly we
have

Ao(e) =By—¢'B;,  Ai(e)=¢'B;,  Ay(e) =By,  Ai(e)=B;. (4.6)

Then we consider the connection form w(e) defined by

w(e)= Y Aj(e)d log(iiz(e))

0<,/<3

= ¢ 'Byd log(1 + &n) + Bad log(n) + Byd log(n — s)

d dn — ds
=B dﬂ+327’7+33 n

—+ 0(e).
Hence we have lim,_ w(¢) = @.

To derive the confluence on the level of nonlinear equations, we try
to transform z(¢) to the normal form of elements in X, by the action of
GL,(C) x H):
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Rl OO | B

This computation implies that the form w(e) can be obtained from w by the
change of variables { = —en, t = —e&s and the change of potentials (4.6). From
this observation, we can conclude that the system (4.2) can be obtained from
(4.1) by the change of variable t = —¢&s and the change of potentials (4.6).

4.3. From Py to P;y. In this case, the partitions are A= (2,1,1) - u=

1 0 0 —
(3,1). For W:(O Lo ls)eXﬂ, put z(e) = wy(e) € Xj:
1 1
() = 1 0 0 —s 1 ¢ (1 0 1 —s
7 o1 0 1 2 | 7\o 1 e 1

1

and consider the change of potentials A(e) = B- (‘g(¢) ' ® L). Explicitly we
have

Ao(e) = By — e 2By,  Ay(e) = B) — ¢ ' By,
Ax(e) =& °By,  As(e) = Bs. (4.7)
Then we consider the connection form w(e) defined by using z(¢). Then
w(g) = (B1 — &' By)dn + ¢ >Byd log(1 + en) + Byd log(n — s)

dn —ds
=B di’]—Bzi’]d?’]—FB3 1

+ 0(¢)

n—=s

— .

To derive the confluence on the level of nonlinear equations, we transform
z(¢) to the normal form of elements in X; by the action of GL,(C) x H;:
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_ /1 0 1 —s
172(8)=f70181

1IN/ Tt 0 —s—g!
=1 eJ\0 &1 1 g1
1 —¢!
4(1 1><1 0)(1 00 —s—81> 1
DA e J\o 11 1 ¢
1
1 —&!
_ 1 0 0 —(s+e&!) 1
—(1.¢7!
(1e +’7)<0 11 | ) ¢

This computation implies that the form w(e) can be obtained from w by the
change of variables { =5 +¢~!, t =s+¢ ! and the change of potentials (4.7).
Then we can conclude that the system (4.3) can be obtained from (4.2) by the
change of variable 1 =s+&~! and the change of potentials (4.7).

4.4. From Py to Py;. This is the case where A = (2,1,1) — = (2,2). For

1 0 0 s
w:<0 L1 8>€Xﬂ, put z(e) = wy(e) € X;:

|
()71005 1 71008S
M=o 11 0 117 \o 11 1
&

and consider the change of potentials A(e) = B- ("g(e) ' ® L). Explicitly we
have

Ao(e) = By,  Ai(e) =By,  Ay(e)=By—¢ 'By,  Aj(¢)=¢ 'B;. (4.8)
Then we consider the connection form w(¢) defined by using z(¢). Then
w(e) = By dn+ (By — ¢ ' B3)d log n + ¢ ' Byd log(n + &s)
— B dy+ BZ%+ Bsyd (;) +0(e)

— .
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Here we used
dn S 2
dlog(ﬂ-l—ss):?—&-ed Z +0(8 )

We derive the confluence on the level of nonlinear equations. Since z(g) is
already of the normal form in X, it is only necessary to make a change of
parameter = —e&s and a change of potentials (4.8). Then we obtain the
system (4.4) from (4.2) if we take a limit ¢ — 0.

4.5. From P;y to Pj. In this case, the partitions are A = (3,1) — u= (4).

1 0 s 0
For w:(o 1 (; 0>6X’“ put z(e) = wg(e) € X;:

and consider the change of potentials A(¢) = B- (‘g(e) ' ® I). Explicitly we
have

A()(E,‘) = By — 8_333, A1(8) =B — 8_233,

Az(é‘) =B — 87133, A3(8) = 87333. (49)

Then we consider the connection form w(e) defined by using z(¢). Then
1
w(e) = (By — e 2B3)dn + (B, — 6133)d(s - 2172) + &3 Bsyd log(1 + en + &°5)

= By dn+ Byd (s - %;72> + B3d<%713 - sn) + O(e)

— Q.

Here we used

1 1
log(1 +en +¢&%s) =ne + (s — 5772>82 + (§’73 — sn)83 + 0(e%).
To derive the confluence on the level of nonlinear equations, we transform
z(¢) to the normal form of elements in X; by the action of GL»(C) x Hj.
We have
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10 /n -
’_7,2(8):’_7,(1 0 s+h h3(1+82s)> 1 0
0 1 0 hse 1
Iy
10 h !
(1 0 0 —(—&!—es) 1 0
= <0 10 1 > 1
I3
10 m\"
Here we determined /», h3 as hy = —s, i3 =¢~!. Put h = 1 0 =
1 0 s 1
1 0 ]. The above computation implies that the change of parameter
1
should be t = —&~! —es.  So, to obtain the form w(e) from w, first we modify

w as o+ Ay dOr(h) = w — e ' 4, dt, and then make a change of parameter
t = —&~! —¢s and of potentials (4.9). From this observation, we can conclude
that the system (4.5) can be obtained from (4.3) as follows. First we modify
(4.3) as

dd, o dd, dd; _1
g [A3,A2] +e¢ [Al,Az], g 0, g [Al tAz,A3] +¢é [A37A2]
according as the modification of w. Then the change of variable t = —¢~! — &5

and of potentials (4.9) together with the limit ¢ — 0 gives the system (4.5).

4.6. From Pj; to Py. In this case, the partitions are A = (2,2) — u= (4).
1 0 0
For w= (0 X (S) O) € Xy, put z(e) = wy(e) € X;:
1 1
1 ¢ 1 (1 0 1+4é3s 2ss>
2

e 0 1 e 1
& 3e?

and consider the change of potentials A(e) = B- (‘g(e) ' ® L). Explicitly we
have

A()(&‘) + Az(e) = By, A1(8) =B — 26_132 + 8_233, (410)

Ay(e) =3¢72By —2e B3, As(e) = —e !By + 7By, (4.11)



308

Hironobu KiMURA and Damiran TSEVEENNAMIIL

Then we consider the connection form w(e) defined by using z(e). Then we
can check that

= 2 ot
w(e) = Ai(e)dn + Aa2(e)d log(1 + en + &°s) + A3(a)d<1 e 32s>

1 1
= By dn + Byd (s — 5772) + B3d<§773 - sn) + O(e)

— Q.

The confluence on the level of nonlinear equations can be carried out in a
similar way as in the case P;y — Py.
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