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ABSTRACT. The purpose of this paper is to clarify the conditions for consistency of
the log-likelihood-based information criteria in canonical correlation analysis of ¢- and
p-dimensional random vectors when the dimension p is large but does not exceed the
sample size. Although the vector of observations is assumed to be normally distributed,
we do not know whether the underlying distribution is actually normal. Therefore,
conditions for consistency are evaluated in a high-dimensional asymptotic framework
when the underlying distribution is not normal.

1. Introduction

Canonical correlation analysis (CCA) is a statistical method employed to
investigate the relationships between a pair of ¢- and p-dimensional random
vectors, x = (x1,...,%,) and y = (y1,...,»,)’, respectively. Introductions to
CCA are provided in many textbooks for applied statistical analysis (see, e.g.,
Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7), and it has widespread
applications in many fields (e.g., Doeswijk et al, 2011; Khalil et al, 2011;
Vahedi, 2011; Sweeney et al., 2013; Vilsaint et al., 2013). Let z = (x/,y") be a
(p + q)-dimensional vector with

E[4 (”) Covld (2 2) s
7] = =pu, ovlz] = =2,
:uy " E./xy E}’y

where u, and u, are mean vectors of ¢g- and p-dimensions, respectively; X'
and X, are ¢ x g and p x p covariance matrices of x and y, respectively; and
X, is the ¢ x p covariance matrix of x and y. The square of the correlation
between a pair of canonical correlation variables is obtained as the eigenvalue
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of X 'x.X y_ylZ 1, and the root of the k-th largest eigenvalue is called the k-th
canonical correlation.

In an actual data analysis, it is important to remove the irrelevant
variables for analysis. In CCA, the problem of removing irrelevant variables
can be regarded as the selection of the redundancy model, and thus it has been
widely investigated by many authors (e.g., McKay, 1977; Fujikoshi, 1982, 1985;
Ogura, 2010). Suppose that j denotes a subset of w = {1,...,¢} containing g;
elements, and x; denotes the ¢;-dimensional vector consisting of the elements of
x indexed by the elements of j, where ¢4 denotes the number of elements in a
set of 4, i.e., g4 = #(A). For example, if j = {1,2,4}, then x; consists of the
first, second, and fourth elements of x. Without loss of generality, x can be
divided into x = (x]f,xi)’, where x; and x; are ¢;- and g;-dimensional vectors,
respectively. Note that 4 denotes the compliment of the set A. Another
expressions of u,, 2, and X, corresponding to the division of x are

R _ | Xy — _ i XX — / I
H; 25 2y 2y

We are interested in whether the elements of x: are irrelevant variables in CCA.
Let z1,...,z, be n independent random vectors from z, and let 7 be the sample
mean of zj,...,z, given by z=n"" >,z and S be the usual unbiased
estimator of X given by § = (n — 1)"' 327 (z; — 2)(z; — 2)’, divided in the same
way as we divided X as follows:
S S Sjj ij Sjy
S = (S}“ S’”’) =| S Si S
v s, S8,
Jy Jy yy
Suppose that zj,...,z, ~i.id. Ny ,(u,2). Following Fujikoshi (1985), the
candidate model that x; is irrelevant is expressed as

Mi:(n—1)S~ W, ,(n—12)
st r(El XN ) = (X D2 ). (1)
The candidate model is called the redundancy model. If the model M; is

selected as the best model, then we regard that x5 is irrelevant. An estimator
of X under model M; in (1) is given by

L) =arg min{F($, X) st tr(Z XX 2X) = r(Z; 5, 2 X)) (2)

7y

where F(S,2) is the Kullback-Leibler (KL) discrepancy function (see Kullback
& Leibler, 1951) assessed by the Wishart density, and it is given by

F(S,2) = (n— 1){te(Z'S) — log|Z"'S| — (p + 9}, 3)
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except for the constant term. In the covariance structure analysis, the above
discrepancy function is frequently called the maximum likelihood discrepancy
function (see Joreskog, 1967) or Stein’s loss function (see James & Stein, 1961).
From Fujikoshi and Kurata (2008) or Fujikoshi er al. (2010, chap. 11.5), we
can see that an explicit form of fj in (2) is given by

S Sz Sy
= -1
L=|S8; Sy SpSSy | 4)
/ / —1
Sy SpS; S_/:/’ Syy

Choosing the model by minimization of an information criterion is one
of the primary selection methods. The most famous information criterion
is Akaike’s information criterion (AIC), which was proposed by Akaike
(1973, 1974). Fujikoshi (1985) identified that the selection of the redundancy
model in CCA is the selection of the covariance structure, and proposed using
the AIC to select the structure for CCA. Many other information criteria
have been proposed for CCA (see, e.g., Fujikoshi, 1985; Fujikoshi ez al,
2008; Hashiyama et al 2011). The AIC is included in the family of log-
likelihood-based information criteria (LLBICs); these are defined by adding
a penalty term that expresses the complexity of the model for a negative
twofold maximum log-likelihood. The family of LLBICs includes the bias-
corrected AIC (AIC,) proposed by Fujikoshi (1985), the Bayesian information
criterion (BIC) proposed by Schwarz (1978), the consistent AIC (CAIC)
proposed by Bozdogan (1987), and the Hannan-Quinn information criterion
(HQC) proposed by Hannan and Quinn (1979). The LLBIC for CCA is
written as

IC,,(j) = F(S, %)) + m())

|Syy:i|
|Syy~X|

= (n—1) log +m(j), (5)

where S,,., =S, — S}},S;/lS/y (¢ = Jj,x) and m(j) is a positive penalty term
that expresses the complexity of the model (1). The relations between LLBIC
and most well-known information criteria are as follows:

AIC:m(j)=p2+q2+p+q+2qu,

) p+q; q qj Pty
AIC. : m(j) = (n—1)° - By

BIC : m(j) = {(p i q)(gﬂﬁ b_ rlg— q/)} log n,




178 Keisuke Fukul

CAIC : m(j) = {(p + Q)(I;+ atl)_ plq— q/)}(l + log n),
HoC: m(j) = 2{ LEDLEIED g g togrogn. (@

When the asymptotic probability of an information criteria selecting the
true model approaches 1, it is said to be consistent; this is one of its most
important properties. In model selections, the true model is the candidate
model with the set of true variables. The set of true variables is the smallest
subset of variables which satisfies the condition in (1). In general, AIC is not
consistent under the large-sample (LS) asymptotic framework in which only the
sample size approaches co (see e.g., Shibata, 1976; Nishii, 1984; Fujikoshi,
1982, 1985). When the AIC is used for model selection, its lack of consistency
sometimes becomes a target for criticism, even though its purpose is not
necessary to choose the true model.

Recently, the consistencies of various information criteria have been
reported for multivariate models under a high-dimensional (HD) asymptotic
framework. A HD asymptotic framework is one in which the sample size
and dimension p simultaneously approach co under the condition that ¢, , =
p/n— co € (0,1] (for simplicity, we will write this as “c,, — ¢”’). Yanagi-
hara et al. (2012) derived the conditions for consistency of the LLBIC for model
selection in a multivariate linear regression model under the HD asymptotic
framework, and they found that the AIC meets these conditions. Since, by
definition, HD data have a large dimension p, evaluating the consistency of an
information criterion under the HD asymptotic framework is more natural for
HD data than evaluating it under the LS asymptotic framework.

The purpose of this paper is to clarify the conditions under which the
LLBIC is consistent for model selection in CCA when the HD asymptotic
framework is used. In previous works, many results were obtained under the
assumption that the true distribution of the observation vector was the normal
distribution (e.g., Shibata, 1976; Nishii, 1984; Yanagihara et al., 2012, 2014;
Fujikoshi et al., 2014). However, we are not able to determine whether this
assumption is actually correct. Hence, a natural assumption for the generating
mechanism of the true model of y is

y=m+ 5 - m) + 5 ()
where ¢ is a p-dimensional vector with Efg] =0,, Covlg]=1,, 0, is a p-
dimensional vector of zeros, x; is a ¢; -dimensional vector with Elx; | =u;,
Covlx;] =2 and j. denotes the set of the true variables.

In deriving the conditions for consistency under the HD asymptotic
framework, a primary problem is to prove the convergence in probability
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of the two log-determinants of estimators of X, because the size of the matrix
increases with an increase in the dimensions. Yanagihara et al (2012, 2014)
avoided this problem by using a property of a random matrix distributed
according to the Wishart distribution (see Fujikoshi er al, 2010, chap. 3.2.4,
p. 57). In the present study, this method is unavailable, because the true
distribution of the observations in (7) is nonnormal.

Yanagihara (2013) derived the conditions under the LLBIC is consistent in
multivariate linear regression models with the assumption of a normal distri-
bution when the HD asymptotic framework is used, even though the distri-
bution on the true model is not normal. In Yanagihara (2013), the moments
of a specific random matrix and the distribution of the maximum eigenvalue
of the estimator of the covariance matrix were used for assessing consistency.
In CCA, it is important to note that x is a random vector, which is different in
the case of a multivariate linear regression model. Hence, the conditions for
consistency in this study are derived under the assumption that x is a random
vector.

This paper is organized as follows: In Section 2, we present the necessary
notations and assumptions, and then we obtain sufficient conditions to ensure
consistency under the HD asymptotic framework. In Section 3, we verify our
claim by conducting numerical experiments. In Section 4, we discuss our
conclusions. Technical details are provided in the Appendix.

2. Main result

In this section, we show the sufficient conditions for consistency of IC,, in
(5). First, we present the necessary notations and assumptions for assessing
the consistency of an information criterion for the model M; in (1). Let
Vise-orVns X1,-..,%, and &p,..., &, be n independent vectors from y, x and &,
respectively. Then, the ¥, X and & are the n X p, n X ¢ and n X p matrices
given by

Y= (In_']”)(yh"-vyn)/a
X=0U,—-J,))(x1,... ,x,,)/,
E=U,—J,)(e,... ,8,1)/,

where J, = 1,,(1,’,1,,)_11,’1 and 1, is an n-dimensional vector of ones. Suppose
that X; denotes the n x ¢; matrix consisting of the columns of X indexed by
the elements of j. By using these matrices, the matrix form of the true model
(7) is expressed as

_ 1/2
Y=X,2%,+6X). 8)
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Henceforth, for simplicity, X; and ¢; are represented as X, and ¢, re-
spectively. From the above expression, it can be seen that we can regard the
true model (8) as a multivariate linear model by considering the conditional
distribution of Y given X.

We now describe two classes of j that express subsets of X in the
candidate model. Let # be the set of K candidate models denoted by ¢ =
{j1,.-.,jx}. We then separate # into two sets: the overspecified models, in
which the set of variables contain all variables of the true model j, in (8),
that is, 7, ={je€ #|j. = j} and the underspecified models, which are the
models that are not overspecified model, that is, # = # N #. In particular,
we express the minimum overspecified model that includes je # as j.,
and so

J+ = JU Js ©)

By using IC,, in (5), the best subset of w, which is chosen by minimizing I1C,,,
1S written as

Jn = arg min IC,,(j).
jes

Let a p x p noncentrality matrix be denoted by

rr)=x,°x »x/(I,- P)X.Z,} 5z, (10)

yyje iy s Yy« ?

where I'; is a p x y; matrix with rank(7;) =y, and P,:X,(X;X,)_]X;. It
should be noted that I';I"; = {=0,, holds if and only if je # , where O, is
an n X p matrix of zeros. Moreover, for je ¢ , we define

A=, - P)X.2} %;,x,°

Yyije -

It is easy to see from the definition of the noncentrality matrix in (10) that
A ;A ;= I';I" ]’ By using a singular value decomposition, 4; can be rewritten as

4, = H,L;"G], (11)
where Hj:(hj_l,...,hjyy/_) and G; = (gjl,...,g”) are nxy; and 7y; xy
matrices, that satisfy H'Hj =1, and G G; =1I,, respectively, and L; =
diag(o; 1. .., y) is a diagonal mdtrlx of order 7; whose diagonal elements

oj are the squared singular values of A4;, which are assumed to be
W1 = Z Oy

Furthermore, let ||a|| denote the Euclidean norm of the vector @. Then,
in order to assess the consistency of IC,, the following assumption are
necessary:
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Al. The true model is included in the set of candidate models, that is, j, € 7.
A2. E[||e|"] exists and has the order O(p?) as p — oo.

A3, E[||x||"] exists.

A4 Ve g lim,., p X XL X =W exists and

yy-

(X%, 2 W) >0,
Al is the basic assumption for evaluating the consistency of an information
criterion, because the probability of selecting the true model becomes 0 if
it does not hold. A2 and A3 are assumptions about the moments of the
distribution of the true model, although ¢ and x are not assumed to represent
a specific distribution. It is easy to see that A2 holds if max,—;,  , E [82} is
bounded. A4 is used in assessing the noncentrality matrix. In the multi-
variate linear regression model, X; in I';I'} is not random. However in CCA,
X; in I''T” j’ is random. Hence, a different assumption from the multivariate
linear regression model is required in A4. If A2 is satisfied, the multivariate
kurtosis proposed by Mardia (1970) exists as

P
K‘(‘l) = E[HEH4] - p(p +2) = Zkaahb +p(p +2)’ (12)
a,b

where the notation )77~ means Y7 _ 3" ..., and xume is the fourth-

order multivariate cumulant of ¢, defined as
Kabed = Eleatpeced] — Oapded — OadObd — OadObe-

Here, o, is the Kronecker delta (i.e., d,, = 1, and d,, = 0 for a # b). It is well
known that Kil) =0 when & ~ N,(0,,1,). In general, the order of Kil) is
k) = 0(p")  as p— o, 5€[0,2), (13)

By using these notations and assumptions, we derived the following
theorem for the sufficiency conditions for the consistency of the penalty term
m(j) (the proof was given in the Appendix A2).

THEOREM 1. Suppose that assumptions A1-A4 hold. Variable selection
using IC,, is consistent when c,, — co if the following conditions are satisfied
simultaneously:

(C1) e ANih timg, o {m(j) —m(j)}/p > —cg ' (g — ¢.) log(1 — co).

(C2) Ve s, limg, o {m(j) —m(ji)}/(nlog p) > —1/2.

We can see from Theorem 1 that the conditions for consistency are similar
to those in the multivariate regression model derived by Yanagihara and



182 Keisuke Fukul

colleagues (Yanagihara et al., 2012; Yanagihara, 2013). This is because the
CCA can be regarded as an extension of the multivariate regression model.
Futhermore, the conditions for consistency in Theorem 1 is also similar to those
in Yanagihara et al (2014), which is derived for a CCA when a normal
distribution is assumed to the true model. This indicates that the conditions
for consistency are free of the influence of nonnormality in the distribution of
the true model.

Using Theorem 1, the conditions for consistency of specific criteria can be
clarified by the following corollary (the proof is given in the Appendix A3):

COROLLARY 1. Suppose that assumptions A1-A4 are satisfied. Then we
have
1. A model selection using the AIC is consistent when c,, — co if
co € (0,¢4] holds, where ¢,(=0.797) is a constant satisfying

log(1 — ¢,4) + 2¢, = 0. (14)

2. Model selections using the AIC. and HQC are consistent when
Cn,p — C0.

3. Model selections using the BIC and CAIC are consistent when c, , — ¢o
if ¢o€(0,cp/2] holds, where ¢, =min{l, minjes 1/{2(q. —q;)}} and
F_ is a set of candidate models given by

7. ={jeSlq.— ¢ >0} (15)

Corollary 1 shows that, when ¢, , — ¢, the AIC, and HQC are always
consistent in model selection, whereas the AIC, BIC, and CAIC are not always
consistent. The consistency of the BIC and CAIC is strongly dependent on
values of parameters in the true model, but this is not true for the AIC. This
sets the BIC and CAIC at a great disadvantage compared to the AIC, because
the real values of parameters in the true model is unknowable. Table 1 lists
the conditions required for consistency for each of the following criteria: AIC,
AIC,, BIC, CAIC, and HQC.

Table 1. Conditions for consistency

Criterion Consistency Conditions

AIC Conditionally holds | ¢ € [0,¢,)
AIC. & HQC Holds - - -

BIC & CAIC | Conditionally holds | ¢ € [0,¢p)

Note: ¢, and ¢, are given in COROLLARY 1.
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3. Numerical study

In this section, we conduct numerical studies to examine the validity of our
claim. The probabilities of selecting the true model by the AIC, AIC., BIC,
CAIC, and HQC were evaluated by Monte Carlo simulations with 10,000
iterations each.

Let n :(Vlyl,...,vl"p)lNNP(OP,IP), VQ:(Vz,l,...,v;q)l~Nq(0q,lq),
51,02 ~ x¢, O11,..., w2 ~iidy? and wy1,... 0, ~iid.y? be mutually
independent random vectors and variables. Then, ¢ = (¢,...,¢,)" and x =
(x1, ... ,xq)/ were generated from the following five distributions, as in
Yanagihara (2013):

* Distribution | (the multivariate normal distribution).

&=y, X =.

* Distribution 2 (a scale mixture of the multivariate normal distribution).

_ﬁ _ﬁ
& = 61117 X = 6vZ.

* Distribution 3 (a location-scale mixture of the multivariate normal

distribution).
_ 0 0
¢ =B, 1/2{1()(\/%_’7) 1, + \/gvl},

where n =15\/n/3/16, By =1,+100(1 —#*)1,1,, and By=1I,+
100(1 — 77)1,1;.
* Distribution 4 (the independent #-distribution).

- \/gvlﬁa - \/§V2A,a

ba \/56017[1’ Na \/56027[1.

* Distribution 5 (the independent log-normal distribution).

_log v, — /e _logvy,— /e

¢ ele—1) ' ‘o e(e—1)

It is easy to see that distributions 1, 2, and 4 are symmetric, and distributions 3
and 5 are skewed.
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The mean vectors p, and u; were generated from U(—4,4) and U(-3,3),
respectively, and j, = 3. Then, y was obtained from the true model (7). The
structure of X' was prepared for the following four cases (cases 1 and 2 are
the same settings as in Fujikoshi, 2014):

Case 1.

Is R .
=" ., R=(R,0s,,), R =diag(p,...,ps),
R I,

pL=2p, p=3p/2,  p3=p,

(4p/21)
= :07 = _

Case 2 (the structure of X' is the same as in Case 1).

p=p P=3p/4  p3=p/2,

o - [p (4p/21)
Pe=ps =0 D=0 T 2Dy

Case 3. X = @@’ where @ is a (p+5) x (p + 5) matrix whose elements
are distributed from U(0,1/p + 5).
Case 4. X = @@’ where @ is a (p + 8) x (p + 8) matrix whose elements
are distributed from U(0,1/p + 8).
In these settings, data are generated under the following combinations of n
and p:
* ¢ =0.05 (n,p)=(100,5),(200,10),(500,25), (1000, 50).
* ¢ =0.1: (n,p)=(100,10),(200,20), (500,50), (1000, 100).
n. p) = (100,20), (200, 40), (
) )

* ¢ =02: (n,p)=(100,20),(200,40),(500,100), (1000,200).

* ¢ =0.3: (n,p)=(100,30),(200,60),(500,150), (1000, 300).

Tables 2 through 6 show the selection probability (i.e., the probability of
selecting the true model) when ¢ and x are from Distributions 1, 2, 3, 4, and
5, respectively, when using the AIC, the AIC., the BIC, the CAIC, and the
HQC. From these tables, we can see that the selection probability of the AIC
tends to increase in most settings when p and n were large. The AIC. and
HQC had the same tendency as that of the AIC, that is, when n and p were
large, their selection probabilities tended to increase. On the other hand, the
selection probabilities of the BIC and CAIC decreased for larger values of n
and p. Moreover, it was worth noting that the selection probabilities of the
BIC and CAIC depended on the distribution settings, this may be because the
conditions for consistency of the BIC and CAIC have a strong dependence on
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Table 2. Selection probabilities of the true model (%) in the Case of Distribution 1
co = 0.05 Case 1 Case 2
n p AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 51 80.01 79.24 3131 1529 67.22| 6236 56.11 8.54 248 3742
200 | 10| 94.55 9503 17.95 488 76.07| 9347 9295 1251 298  68.61
500 [ 25| 99.58 99.88 1.18 0.06 83.03| 99.66 99.93 1286 124  97.99
1000 [ 50 | 99.99 100.00 0.00 0.00  85.92 | 100.00 100.00 625 0.13  99.99
co = 0.05 Case 3 Case 4
n p AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 51 83.12 9409 80.83 63.32 9494 | 8577 92.28 68.05 47.49  90.37
200 | 10| 96.08 98.70 96.04 84.35 99.82| 9567 98.70 86.36 64.22  99.62
500 | 25| 99.68 99.92 99.99 9841 100.00 | 99.61 99.88 99.12 89.53 100.00
1000 [ 50 | 100.00 100.00 100.00 100.00 100.00 | 99.97 100.00 100.00 99.59 100.00
co = 0.1 Case 1 Case 2
n p AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 10| 70.89 49.01 2.14 0.15 31.16 | 65.76 42.52 1.24  0.10 2492
200 | 20| 86.25 62.95 0.01 0.00 17.14| 93.81 78.96 022 0.01 32.36
500 50| 97.74 8143 0.00 0.00 2.19 | 100.00  99.43 0.00 0.00 36.62
1000 [ 100 | 99.76  92.53 0.00 0.00 0.03 | 100.00 100.00 0.00 0.00 30.78
co=0.1 Case 3 Case 4
n P AIC AIC, BIC CAIC HQC | AIC AIC., BIC CAIC HQC
100 | 10| 93.28 9523 41.77 13.54 8898 | 91.66 89.10 2465 528  79.32
200 | 20 98.98 99.88  40.28 735 98.35| 99.03 99.62 1778 1.30  94.04
500 [ 50 | 99.98 100.00 32.00 1.57 100.00 | 100.00 100.00 9.86  0.01  99.97
1000 | 100 | 100.00 100.00 27.28 0.14 100.00 | 100.00 100.00 4.61 0.00 100.00
co=0.2 Case 1 Case 2
n p AIC AIC., BIC CAIC HQC | AIC AIC., BIC CAIC HQC
100 | 20 | 43.70 2.00 0.00 0.00 294 | 5498 4.17 0.01  0.00 5.62
200 | 40 | 46.18 0.70 0.00 0.00 0.02 | 76.68 6.28 0.00  0.00 1.21
500 | 100 | 46.50 0.05 0.00 0.00 0.00 | 96.04 6.35 0.00  0.00 0.00
1000 | 200 | 45.68 0.00 0.00 0.00 0.00 | 99.69 4.13 0.00  0.00 0.00
co=0.2 Case 3 Case 4
n p AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 20| 94.18 49.12 0.85 0.00  53.71| 90.08 30.18 0.12  0.00 3598
200 | 40 [ 99.76  83.58 0.00 0.00 57.81| 99.52 67.62 0.00 0.00 37.10
500 | 100 | 100.00  99.96 0.00 0.00  78.03 | 100.00  99.49 0.00 0.00 52.33
1000 | 200 | 100.00 100.00 0.00 0.00  99.81 | 100.00 100.00 0.00 0.00 97.96
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Table 2 (Continued)
co=0.3 Case 1 Case 2

n p AIC  AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC

100 | 30| 27.92 0.00 0.00 0.00 0.10 | 43.50 0.00 0.00 0.00 0.97
200 | 60 | 21.75 0.00 0.00 0.00 0.00 | 54.80 0.00 0.00  0.00 0.02
500 | 150 | 11.36 0.00 0.00 0.00 0.00 | 68.94 0.00 0.00  0.00 0.00
1000 | 300 4.13 0.00 0.00 0.00 0.00 | 80.42 0.00 0.00 0.00 0.00

co=0.3 Case 3 Case 4

n p AIC  AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC

100 | 30| 89.60 0.29 0.00 0.00 17.18 | 85.65 0.07 0.00 0.00 9.41
200 | 60| 99.34 1.09 0.00 0.00 8.98 | 98.66 0.13 0.00  0.00 3.17
500 | 150 | 100.00  11.88 0.00 0.00 5.06 | 100.00 3.14 0.00  0.00 0.74
1000 | 300 | 100.00 97.41 0.00 0.00  50.09 | 100.00 93.84 0.00 0.00 3320

the values of parameters in the true model. We repeated the simulations for
several models and obtained similar results, and these validated our claim.

4. Conclusion and discussion

In this paper, we derived the conditions that the LLBIC in (6) is consistent
in selecting the best model for a CCA, when the normality assumption to the
true model is violated. The information criteria considered in this paper are
defined by adding a positive penalty term to the negative twofold maximum
log-likelihood, hence, the family of information criteria that we considered
includes as special cases the AIC, AIC., BIC, CAIC, and HQC. If we define
consistency by meaning that the probability of selecting the true model
approaches 1, then, in general, under the LS asymptotic framework, neither
the AIC nor the AIC. are consistent, but the BIC, CAIC, and HQC are. In
this paper, we derived the conditions for consistency under the HD asymptotic
framework. Understanding the asymptotic behavior of the difference between
the two negative twofold maximum log-likelihoods are important because the
dimension of the maximum log-likelihood increases with an increase in the
dimension. If a normal distribution is assumed to the true model, it is pos-
sible to use a method that uses the properties of Wishart distribution (see
Yanagihara er al, 2012; Fujikoshi et al., 2014). However, we cannot use
this method in this paper, because we considered a case in which the normality
assumption is violated for the true model. Hence, to evaluate the asymptotic
behavior, we considered the convergence in probability for a linear combination



Consistency property of LLBIC in high-dimensional CCA

187

Table 3. Selection probabilities of the true model (%) in the Case of Distribution 2
co = 0.05 Case 1 Case 2
n P AIC AIC, BIC CAIC HQC | AIC AIC., BIC CAIC HQC
100 51 70.88 7046 41.68 3097 6229 | 59.53 5540 23.14 15.84 4397
200 10 | 83.11 81.24 36.61 27.35 6422 | 81.02 7856 33.51 2430 60.22
500 25 | 90.40 87.54 29.00 21.80 62.23 | 9425 9227 39.50 30.74 72.06
1000 50 | 92.04 89.24 2362 17.80 59.04 | 96.50 9529 40.56 32.51 75.13
co = 0.05 Case 3 Case 4
n D AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 5| 82.10 85.17 6630 5692 81.89 | 7886 81.42 60.29 49.99 77.19
200 10 | 93.23 9436 7194 63.35 88.57 | 92.09 9288 6570 5536  85.87
500 25 | 98.62 98.46 75.12 67.20 9292 | 98.03 97.71 68.73 60.07 89.75
1000 50 | 99.49 99.30 76.25 68.69 9438 | 99.34 99.04 71.52 6430 93.01
co = 0.1 Case 1 Case 2
n P AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 10 | 6480 51.08 17.11 10.27 40.08 | 61.25 47.16 15.50 9.31 36.22
200 20 | 72.02 58.14 12.12 6.83 3635 | 7747 64.79 1647 10.28  42.66
500 50 | 75.68 61.46 7.04 419 2985 | 86.82 76.86 1527 10.13  46.72
1000 | 100 | 76.70 63.06 5.69 349 26.86 | 89.08 80.67 13.46 8.82 46.74
co=0.1 Case 3 Case 4
n P AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 10 | 83.68 79.58 47.70 35.06 72.52 | 8040 73.00 39.56 27.40 65.88
200 20 | 93.50 89.31 46.82 3492 76.79 | 91.20 8529 40.31 29.12 71.40
500 50 | 97.27 94.75 4691 36.65 8037 | 96.54 9327 41.18 31.03  76.67
1000 | 100 | 98.00 96.28 47.83 38.02 8341 | 98.04 95.66 41.87 32.54 80.15
co=0.2 Case 1 Case 2
n p AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 20 | 47.43 14.72 3.47 145 16.31 | 55.08 20.38 5.48 242 2246
200 40 | 50.05 17.70 1.64 0.77 1228 | 64.78 2986 4.12 1.81  21.77
500 | 100 | 49.43 18.32 0.80 0.42 7.86 | 69.83 35.59 2.71 1.34  18.57
1000 | 200 | 49.49 18.56 0.42 0.22 6.33 | 71.86 38.38 1.71 0.83 1691
co = 0.2 Case 3 Case 4
n D AIC AIC. BIC CAIC HQC | AIC AIC., BIC CAIC HQC
100 20 | 7991 50.57 20.96 10.53 5244 | 75.03 42.11 15.57 722 4463
200 40 | 87.60 62.47 17.41 876 5242 | 8493 56.40 13.64 6.58  46.10
500 | 100 | 93.24 7542 15.87 848 56.02 | 91.56 70.49 12.39 6.55  50.00
1000 | 200 | 96.31 83.78 17.75 10.84 6324 | 9563 81.52 15.48 892 60.03
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Table 3 (Continued)
co=0.3 Case 1 Case 2

n p AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC

100 30 | 3747 205 085 024 7.48 | 48.51 4.57 1.96  0.61 13.55
200 60 | 36.78  2.81 043  0.17 476 | 5414  6.72 .17 037 10.51
500 | 150 | 3422 275 013  0.05 243 | 57.06 862 052  0.17 7.66
1000 | 300 | 34.70 299  0.04 0.02 1.80 | 56.92  9.41 0.17  0.06 5.96

co =0.3 Case 3 Case 4

n p AIC AIC., BIC CAIC HQC | AIC AIC. BIC CAIC HQC

100 30 | 73.63  16.62 794 232 3567 | 70.68 1342  6.12 1.74  31.38
200 60 | 82.74 27.83 6.00 217 36.05 | 78.83 23.01 4.81 1.73  30.72
500 [ 150 | 89.72 41.14 498 2.02 3836 | 88.05 3843 4.29 1.76 ~ 35.95
1000 | 300 | 95.06 59.40 7.02 3.09 5027 | 9451 57.81 591 2.89 4835

of elements in a symmetric idempotent random matrix and the distribution of
the maximum eigenvalues of the estimators of the covariance matrix. A basic
idea for evaluating consistency is the same as in Yanagihara (2013). However,
in Yanagihara (2013), x was not a random vector. Hence, we extended
Yanagihara’s method to the case that x is a random vector.

The results of our analysis and simulations confirmed that the AIC and
AIC, are consistent, and in some cases, the BIC is not consistent. These results
are similar to those obtained for a multivariate regression model proposed by
Yanagihara and colleagues (Yanagihara et al, 2012; Yanagihara 2013).

Appendix
Al. Lemmas for proving theorems and corollaries

In this section, we prepare some lemmas that we will use to derive the
conditions for consistency of the penalty term m(j) in 1C,, in (5). We first
present Lemma 1, which addresses the expectation of a moment (the proof was
given in Yanagihara, 2013).

LemMa 1. For any n x n symmetric matrix A,
n
E[tr{(6'46)°}] = 1" Y {(4)}” + p(p + 1) tr(4?) + p tr(4)*,
a=1

where Kil) is given by (12), and (A),, is the (a,b)th element of A.
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Table 4. Selection probabilities of the true model (%) in the Case of Distribution 3
co = 0.05 Case 1 Case 2
n p | AIC AIC, BIC CAIC HQC | AIC AIC., BIC CAIC HQC
100 51 8885 9465 94.12 90.68 96.36| 87.31 9230 8531 79.04 92.31
200 | 10| 95.66 97.94 9429 91.23 98.37| 95.57 97.81 9327 89.64 97.97
500 [ 251 99.50  99.67 9322  90.07 98.52| 99.60 99.80 96.22 94.04 99.22
1000 | 50| 99.86 99.87 91.82 8826 9846 | 9991 99.92 96.38 94.76  99.50
co = 0.05 Case 3 Case 4
n p | AIC AIC, BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 51 8898 9567 99.80 99.78 98.83 | 87.48 96.53 99.85 99.76  98.61
200 | 10| 95.95 98.56 100.00 100.00 99.93 | 95.66 98.51 100.00 99.99 99.94
500 [ 25| 99.68 99.96 100.00 100.00 100.00 | 99.63 99.88 100.00 99.99 100.00
1000 [ 50| 99.98 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
co = 0.1 Case 1 Case 2
n p | AIC AIC. BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 10| 92.07 9545 82.79 7359 9332 | 91.70 94.84 80.12 70.24  92.08
200 | 20| 97.86 97.44 7898 69.86 93.67 | 98.16 98.38 8430 76.80 95.65
500 | 50| 99.28 98.71 73.05 64.11 9357 | 99.70 99.37 8548 78.68 97.58
1000 | 100 | 99.50 98.79 67.48 57.84 92.03| 99.88 99.69 83.60 77.61 97.11
co = 0.1 Case 3 Case 4
n p | AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 10| 94.17 99.37 99.96 99.82 99.79 | 94.12 99.53 99.95 99.89 99.84
200 | 20| 98.79 99.96 99.99 99.99 100.00 | 98.87 99.89 99.99  99.99 100.00
500 [ 50| 99.99 100.00 100.00 100.00 100.00 [ 100.00 100.00 100.00  99.99 100.00
1000 | 100 | 100.00 100.00 100.00 100.00 100.00 | 100.00 100.00 100.00 100.00 100.00
co=0.2 Case 1 Case 2
n p | AIC AIC, BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 | 20| 92.60 79.33 5246 3637 80.81 | 9440 8437 61.07 44.56 85.66
200 | 40| 96.22 8423 4323 2885 78.19| 98.19 91.50 59.73 4481 87.59
500 [ 100 | 97.15 87.72 31.62 1998 7435 | 99.02 9505 5237 38.88 88.36
1000 [ 200 | 97.43 87.97 2328 14.81 70.63| 99.24 9581 4488 3247 86.65
co=0.2 Case 3 Case 4
n p | AIC AIC; BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 20| 97.54 100.00 99.92 99.63 99.98 | 97.36 99.97 99.90 99.66  99.97
200 | 40| 99.78 100.00 100.00 99.93 100.00 [ 99.81 100.00 99.96 99.88 100.00
500 | 100 | 100.00 100.00 100.00  99.98 100.00 | 100.00 100.00 100.00 100.00 100.00
1000 | 200 | 100.00 100.00 100.00  99.99 100.00 | 100.00 100.00 100.00  99.99 100.00
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Table 4 (Continued)
co=0.3 Case 1 Case 2

n p | AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC

100 | 30| 89.84 4440 29.49 1431 6731 | 93.39 5759 43.18 24.00 78.32
200 | 60| 93.25 51.09 19.56 9.03 60.82 | 97.12 69.56 3549 20.54 77.67
500 [ 150 | 94.29 55.46 9.90 447 5273 ] 98.08 76.25 2336 13.05 74.07
1000 | 300 | 94.62  55.92 5.34 2,13 4642 | 98.34 7747 1654 823  69.95

co =0.3 Case 3 Case 4

n p | AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC

100 | 30| 97.85 99.93 99.77 98.69 100.00 | 97.81 99.90 99.72 98.79  99.98
200 | 60| 99.90 100.00 99.92 99.49 100.00 | 99.89 99.99 99.92 99.47  99.99
500 | 150 | 100.00 100.00 99.98  99.83 100.00 | 100.00 100.00 99.97  99.83 100.00
1000 | 300 | 100.00 100.00  99.99  99.93 100.00 | 100.00 100.00 99.99  99.96 100.00

Next, we present Lemma 2, which is the key lemma for deriving the
conditions for consistency. In this study, we derived the conditions necessary
for achieving Lemma 2 (the proof was given in Yanagihara, 2013).

LeEMMA 2. Let b;, be some positive constant that depends on the models,
j,l € ¢. Then, we have

; 1 . 2 .
e f\{]}v E{Icni(/) - ICm(])} =T/ = Tj.o > 0= P(]m =j)— 1
)it

Lemmas 3, 4, and 5 were used for evaluating the asymptotic behavior
of each term (the proofs are given in Appendices A4, A5 and A6).

Lemma 3. Let W be an nxn random matrix, defined by W =
E(&'E)'E". Then, for any ¢ € ¢, we obtain

1
mX} WX/ i) C()E//.

LEMMA 4. Let Amax(A) denote the maximum eigenvalue of A, and let V;
be a p x p matrix defined by

1
Vi=-&"(I,— P — H;H))&,
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Table 5. Selection probabilities of the true model (%) in the Case of Distribution 4
co = 0.05 Case 1 Case 2
n P AIC AIC. BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 51 7820 77.81 32.68 1690 6621 | 6222 5545 993 310 38.18
200 | 10| 92.82 9313 20.00 6.68 7406 | 9195 9139 1513 456  68.45
500 [ 25| 99.54 99.71 264 028 80.76 | 99.55 99.87 1748 3.16  96.38
1000 [ 50 [ 99.99  99.98 0.10 0.03  84.23| 99.98 100.00 10.39 0.93  99.72
cog = 0.05 Case 3 Case 4
n p AIC AIC. BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 5| 87.88 93.62 79.14 62.57 9441 | 86.54 9239 68.39 48.09  90.36
200 | 10| 9549 98.14 9470 82.68  99.87 | 95.16 9845 8514 64.50  99.45
500 [ 25| 99.63 99.90 99.89 98.06 100.00 | 99.68 99.94 98.36 87.81 100.00
1000 | 50 | 100.00 100.00 100.00 99.99 100.00 | 100.00 100.00 100.00 99.20  100.00
co = 0.1 Case 1 Case 2
n P AIC AIC., BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 10| 69.39 48.63 3.18  0.34 3222 6519 4349 212 024 2732
200 | 20| 84.31 62.58 0.12  0.02 1998 | 91.63 7731 0.62 0.04 3425
500 [ 50| 96.47 79.43 0.02  0.00 3.66 | 99.85 98.55 0.06 0.02  38.67
1000 [ 100 | 99.44  90.44 0.00  0.00 0.16 | 100.00  99.96 0.00 0.00 3397
co =0.1 Case 3 Case 4
n p AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 10| 9295 9450 43.66 16.67 8852 | 9142 88.14 2899 7.68  79.38
200 | 20| 98.68 99.81 41.77 10.51 97.82 | 98.82 99.54 20.37 226  93.68
500 [ 50 | 99.98 100.00 34.09 3.09 100.00 | 99.98 100.00 12.52 0.23  99.94
1000 | 100 | 100.00 100.00  30.53 0.78 100.00 | 100.00 100.00 7.42  0.15 100.00
co=0.2 Case 1 Case 2
n P AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 20 | 44.40 2.83 0.01  0.00 3.79 | 55.29 6.02 0.03  0.00 7.41
200 | 40 [ 46.23 1.21 0.00  0.00 0.17 | 74.94 9.11 0.00  0.00 2.40
500 [ 100 | 46.74 0.21 0.00  0.00 0.00 | 93.21 8.66 0.00  0.00 0.09
1000 | 200 | 46.50 0.03 0.00 0.00 0.00 | 98.87 6.62 0.00  0.00 0.01
co=0.2 Case 3 Case 4
n p AIC AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 20| 93.63 50.57 1.16  0.01 54.88 | 89.19 3212 0.34  0.00 3831
200 | 40 | 99.61 82.54 0.01 0.00 57.02| 99.44 66.86 0.01 0.00 3829
500 | 100 | 100.00  99.93 0.00 0.00  77.16 | 100.00  99.37 0.00 0.00 5297
1000 | 200 | 100.00 100.00 0.00 0.00  99.42 | 100.00 100.00 0.00 0.00 96.68
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Table 5 (Continued)
co=0.3 Case 1 Case 2

n p AIC  AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC

100 | 30| 28.13 0.01 0.00 0.00 0.24 | 44.62 0.02 0.00 0.00 1.77
200 | 60 | 23.04 0.00 0.00  0.00 0.00 | 54.96 0.00 0.00  0.00 0.08
500 | 150 | 13.48 0.00 0.00  0.00 0.00 | 67.55 0.01 0.00  0.00 0.01
1000 | 300 5.65 0.00 0.00  0.00 0.00 | 78.08 0.01 0.00 0.00 0.00

co=0.3 Case 3 Case 4

n p AIC  AIC, BIC CAIC HQC | AIC AIC, BIC CAIC HQC

100 | 30| 88.89 0.41 0.01  0.00 19.33 | 84.12 0.08 0.00 98.79  99.98
200 | 60 | 99.23 1.56 0.00  0.00 11.25| 98.24 0.50 0.00 99.47  99.99
500 | 150 | 100.00  13.89 0.00  0.00 6.66 | 100.00 4.92 0.00 99.83  100.00
1000 | 300 | 100.00  96.20 0.00 0.00 51.00 | 100.00 91.87 0.00 99.96 100.00

where P; and H; are given by (10) and (11), respectively. If assumption A2
holds, Jumax(V;) = O,(p'/?) is satisfied.

LemMma 5. If assumptions A2 and A4 hold, o; = O,(np) is satisfied, and
liminf o 1/(np) > 0, where o; 1 is the maximum diagonal element of L; given

Cn,p—€0

by (11).

A2. Proof of Theorem 1

Let D(j,/) (j,/ € #) be the difference between two negative twofold
maximum log-likelihoods divided by (rn — 1), such that

. S,
Djyt) = logH.
-t

Note that

From Lemma 2, we see that to obtain the conditions on mi(j) such that I1C,,(/)
is consistent, we only have to show the convergence in probability of D(j, j.)
or a lower bound on D(j,j.) divided by some constant.

First, we show the convergence in probability of D(j,j.) when je #, .
Note that P;Y = P;& holds for all j, since X, is centralized. From the
property of the determinant (see, e.g., Harville, 1997, chap. 18, cor. 18.1.2), the
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Table 6. Selection probabilities of the true model (%) in the Case of Distribution 5

co = 0.05 Case 1 Case 2
n p AIC AIC., BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 51 6855 6694 37.54 26.26 58.66 | 68.77 6746 3644 2573 58.13
200 10 | 82.13 81.29 30.08 18.65 65.52 | 81.80 81.24 29.76 18.67 64.76
500 | 25| 9476 9471 1485 7.22 69.75 | 94.34  94.61 1547 738 69.62
1000 | 50 [ 98.55 98.62 512 194 70.50 | 98.48  98.41 5.21 1.88  70.23
co = 0.05 Case 3 Case 4
n p AIC AIC., BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 51 83.07 8790 7446 62.14 87.55 | 79.29 85.69 66.74 52.36 83.95
200 10 | 90.71 9444 88.08 7594 97.71 | 89.81 94.00 79.21 63.46 96.66
500 | 25| 97.14 98.33 98.15 91.54 99.89 [ 97.03  98.38 93.55 78.81 99.82
1000 | 50 [ 99.31 99.61 99.87 98.01 99.97 | 99.07  99.52 99.20 93.10  99.95
co =0.1 Case 1 Case 2
n p AIC AIC., BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 10 | 59.32 47.56 1274 6.17 36.77 | 59.04 47.53 1247 591 36.65
200 | 20 | 70.33 56.89 4.31 1.67 29.71 | 70.95  56.51 4.21 1.69 29.34
500 | 50| 8563 68.94 0.56 0.20 16.92 | 84.84 67.64 0.55 0.19 16.28
1000 | 100 | 93.21  77.33 0.08 0.02 746 | 93.14 7698 0.06 0.03 7.27
co =0.1 Case 3 Case 4
n D AIC AIC. BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 10 | 85.68 87.01 49.37 28.97 81.53 | 83.01 8224 38.34 19.34 7553
200 [ 20 [ 94.55 97.36 47.50 23.41 92.70 | 94.19 96.21 32.56 12.82 87.38
500 | 50 | 9898 99.67 41.80 15.27 99.54 [ 99.00 99.73 26.01 6.66 98.53
1000 | 100 | 99.79  99.88 39.29 10.02 100.00 | 99.84 99.93 21.94 3.76 99.98
co=0.2 Case 1 Case 2
n D AIC AIC. BIC CAIC HQC | AIC AIC, BIC CAIC HQC
100 | 20 | 42.87 11.39 135 041 12.64 | 4295 11.00 136 037 12.15
200 | 40 | 46.97 9.62 0.18 0.04 4.73 | 47.13 9.12 0.1 0.04 4.43
500 | 100 | 48.63 515  0.00 0.00 0.69 | 47.48 517 0.00 0.00 0.64
1000 | 200 | 48.18 2.37 0.00 0.00 0.11 | 48.73 2.19 0.00 0.00 0.11
co=0.2 Case 3 Case 4
n )4 AIC AIC, BIC CAIC HQC | AIC AIC. BIC CAIC HQC
100 | 20 | 84.44 5391 9.39 1.37 56.51 | 80.68 41.22 5.14 0.69 4579
200 | 40 | 96.33 7628 195 0.23 58.61 | 9487 6524 0.77 0.10 44.32
500 | 100 | 99.73 97.82 0.15 0.01 68.54 [ 99.69 9499 0.04 0.00 53.72
1000 | 200 [ 99.93 100.00 0.01 0.00 93.01 [ 99.95 100.00 0.07 0.00 85.80
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Table 6 (Continued)
co=0.3 Case 1 Case 2

n p AIC AIC, BIC CAIC HQC | AIC AIC; BIC CAIC HQC

100 | 30 | 32.52 091 026 0.02 4.55 | 44.24 230 070 0.19 9.44
200 | 60 | 31.53 032 0.01 0.01 0.80 | 53.04 1.71  0.06  0.00 3.75
500 | 150 | 24.33 0.11  0.00  0.00 0.09 | 60.55 0.82  0.00 0.00 0.57
1000 | 300 | 17.70 0.05 0.00 0.00 0.00 | 66.13 0.30 0.00 0.00 0.10

co=0.3 Case 3 Case 4

n p AIC AIC, BIC CAIC HQC | AIC AIC; BIC CAIC HQC

100 | 30 | 79.72 554 072 0.05 30.74 | 77.07 348 043  0.02 24.33
200 | 60 | 9530 10.57 0.04  0.00 23.13 | 93.24 570 0.01 0.00 1491
500 | 150 | 99.86  27.58 0.01  0.00 1993 1 99.79 1697 0.00 0.00 11.77
1000 | 300 [ 100.00 84.93  0.00 0.00 50.09 | 99.98  80.00 0.00 0.00 44.04

following equation are satisfied for all je # \{j.} under the given assump-
tions:

.. |Y/(In - Pj) Y| |@@,(In _ P])é"|
D(j,j.) =1 =1
(]a] ) Og‘Y’(In_P/X)Y‘ Og|é‘ﬂ(1n_Pj*)éo‘

|In - (515)715,P7g|
I, — (&'6)'&'P,.&|

XX, — X;WX;| X X,|
XX, X WXXX,|

=1lo

Hence, by using Lemma 3 and (n — 1)_1X}X/ L 5, forall /e JZ, we obtain
D(j, j.) = (4 = ¢;-) log(1 = co). (A1)

Next, we show the convergence in probability of a lower bound on
D(j,j.)/log p when je ¢ . It follows that for all je ¢,

(L}*G) + H[&) (L}*G] + H\&) +nV]

D(j. . -1
1 Z;/zl Vjil(\/ “j.ugLa + édlhj,u)(\/ O‘j,agjﬁa + ép,hj,a)/
= log|I, + P
vV
+10 |I’l ]|

g—
6" (I, — Pj. )&
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> log

I, + "

Vi (Vg + 6"l ) (V31950 + éﬂ'hjzl)”

InV;|

1 . Jr
e, — P8

n

InV;|
&' (1, — P;,)é]

> log{i (V) + (V%1911 + &) (V%191 +‘g/hj=1)}
= max\ ¥ j

+ log

n
Vil
log———————— —log Anax(V;
Hloeig, —p g o8 i)
= i) + Dal)) + D), (A2

where

Di(j) = IOg{imax(Vj) + Pfj},

InV|
&' (I, — P;.)&

D3(j) = —log )vmaX(Vj)7

Dy(j) = log

and & = (V@191 +E'l1) (VT 1951+ E'hia)/ (np).
First, we evaluate the asymptotic behavior of D;(j) in (A2). From the
equation A/ b =1, it is easy to see that

Elb\88h;.1] = p.

Moreover, it follows from Lemma 1 that

n

E[(h 881 — p)*) = &S {(h1k])) 0} + 2p

a=1
= O(max{p, p°}),

where K‘(‘l) is given by (12), and s is a positive constant given by (13). Hence,
we have

h 88"k = p+ Op(max{p'? p*?}) = 0,(p). (A3)
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Moreover, note that gjﬂlg;l is an idempotent matrix,

(\/ij,1.‘1_/,160’”/}1)2 = O‘jvlhj{,lggj,lgj{lg/hjnl

< Oﬁj_]lhjélg(gﬂhj_l

= 0,(m?).
This implies that
V31916 1 = 0,(n'p). (A4)
From Lemma 5, (A3), and (A4), we have
&= 0,(1). (AS)
By using (A5) and Lemma 4, we obtain
1
—Di(j) = 1 max\ ¥ j i
fog 7 ' V) =g 5 loglmax(V)) + PG}
_ 1 1/1 Vi)+¢&p+1
_lng og ) max\ ¥ j ¥i
L. (A6)

Next, we evaluate the asymptotic behavior of D,(j) in (A2). From
Lemma 3 and the result (I, — P, — H;H;)(I, — P;) = I, — P; — H;H}, we can
see that
|61, — P))&|

n Jx

XX - XWX XX
TR XX, XWX XX

L (k; — k;,) log(1 — ¢o),

where W is given in Lemma 3. It follows that (I, — P

J+
I, — P; , where j, is given by (9). Thus, we also have

), — P;— H;H)) =

. s, —P;)&
e
n J

~log IXE Xy — XL WX XX
XX — XIWX.| X, X |

)4

— (kj, —k;,) log(1 — co).
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The above upper and lower bounds on D;(j) imply that

1 p
D>(j) — 0. A
o Da() £ 0 (A7)

Finally, we evaluate the asymptotic behavior of Ds(j) in (A2). Since
—log x < —x+1 for any x >0, we have

. 1 ;Lrnax(V)
D3(j) == log p —log /
3(J) > V4 P
1 /lmax(V‘) .
> -1 V1 =D .
> 5 log p { /b } 3,1(7)
It follows from Lemma 4 that
1 p 1
D ) — —. A
Tog » 3.10) = 3 (A8)
Consequently, combining (A2), (A6), (A7), and (A8) yields,
1 1
— log D(j, j.) = ——{Dy(j) + D2(j) + D3(j
Tog p 18 (Js J+) 1ng{ 1(J) + Da(j) + D3(j)}
> Di(j D>(j D j
_W%p{ﬂﬁ+z@+ 31()}
1
p

As a result, from Lemma 2, (A1), and (A9), we can obtain the conditions given
in Theorem 1.

A3. Proof of Corollary 1

First, we consider the AIC and AIC.. According to an expansion of
m(j) —m(j,.) in the AIC,, the differences between the penalty terms of the
AIC.s are

m(j) —m(j.)

_ 4 ‘(f*)(i“;;vf’)p (1 p L 2) (1 - %)2 L o). (AL0)

Moreover, the differences between the penalty terms of the AICs are

n lolg p{m(]) - m(]*)} = 2c”7P
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Hence, the convergence of the differences between the penalty terms of the
AICs and those of the AIC.s is

(:};IBCO nlog p {m(j) =m(j)} =0.
This indicates that the condition C2 holds for both the AIC and the AIC..
Furthermore, it follows from equation (A10) that

lim L m(j) - m(j)) = 2(g) —a1.) (AIC)
nr= P ’ (@ —g) {0 —c) " +(1-c) ™’} (AIC)
Since ¢! log(1 —¢)+ (1 —¢) ' + (1 —¢)™? is a monotonically increasing func-
tion when 0 <c¢ <1, it follows that ¢;! log(l —co) + (1 — o) "+ (1—cp)?
> 0 holds. That is, the penalty terms in the AIC. always satisfy the condi-
tion Cl when je #\{j.}, and those in the AIC satisfy the condition C1 if
¢ €10, ¢,), where ¢, is given by (14).

Next, we consider the BIC and the CAIC. When je # \{/.}, the
difference between the penalty term of the BIC and that of the CAIC is

c'n.llzlllco P log n {m(]) Wl(] )} A

Thus, the condition C1 holds. Moreover, it is easy to obtain

—log ¢,
| cnp(qj — 41.) (Tp"’ - 1) (BIC)
nlOgP{Wl(j) m U} = 1 —-logc '
cnp(qj = 41.) (10ng + l) (CAIC)

Since lim, .o ¢ log ¢ = 0 holds, we obtain

Jim e ) = m(72)} = ol )
When je S N, condition C2 is satisfied because cy(qj —¢.) =0 holds,
where S_ is given by (15). When je S_, then for all jeS_, condition C2
is satisfied if ¢o < 1/{2(q« —¢;)} holds.

Finally, the HQC is considered. When je # \{j.}, the difference be-
tween the penalty terms of the HQCs is

6}311160 > log log {m(j) —m(j.)} = 2 loglog(g; — g;.)-
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Thus, the condition C1 holds. Moreover, it is easy to see that

1 . N loglog p  log(1 — log ¢u/log p) |
o (1)~ M) =200 ) { B EL  EL DR

From this equation, we obtain

cn,l,:r_r}co nlog p {m(j) =m(j.)} =0.

Hence, condition C2 holds. From the above results and Theorem 1, Corollary
1 is proved.

A4. Proof of Lemma 3

For any /€ 7, let X, = (x1,...,x,,), let x; = (X1k - - > X)), and let wy
be the (a,b)th element of W. Then, x,Wx;, which is the (s,#)th element of
X,WX,, is expressed as

!/
xWx, = E xas-’%t“’aa"‘E XasXbtWab- (A11)
a#b
Moreover, we can calculate

n
x Wx, E xwxa,waa + E XasXbsXctXdtWabWed
a#b#c#d

2.2
+ E {XasXbsXarXpr (WaaWpp + w b)) + xmxb,wab
a#b

2 2
+ z(xasxatxbt + xa‘\'xb‘x‘xm)wuawab}

n

2
+ E {2XusXpsXarXer + (XgeXpiXer
a#b#c

2
+ 2xasxbsxatx(?r + xbsxcsxat)waIJWat?}7 (Alz)

where the notation >, , means >/ >0, _, .... Notice that
X1, =0, and so

n n n n

li
E xasxbt:E xaszg Xa =0, E XasXpt = —X X,
a,b a=1 a=1

a#b

E XasXbsXarXp = (X1%)* E xZx2, E X2 X7, = xlxx)x, — E xZx2,

a#b a#b
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2 2
E XysXatXbt = § XasXbs Xy = — § xag at7

a#b a#b
n n n
2 2
§ XasXbsXatXct = § XasXbtXet = § XbsXesX gy
a#b#c a#b#c a#b#c
= E xas a, + E XarXbtXasXbs- (A13)
a#b

Note that x/x, is the (s,7)th element of X,X,, and (n— 1)71X/’X/ 2y,
Here, since W is a symmetric idempotent matrix and W1, =0, holds, we
obtain the following equations:

0 < wuy < | Wap| < VWaaWpp <1 (a=1,....,mb=1,...,m;a#b), (Al4)

and
n
W)= Z Waa = D, Z w2+ Z w2 = p,
a=1 a#b
Z waa + Z WaaWhp = p s
a#b
1 W, = Zwaa—&—Zwab =0,
a#b
1 W2 Z waa + Z 2WaaWah + w ) + Z WapWae = 0, (A15)
a#b a#b#c

te(W)1, W1, = Z waa + Z (CWaaWab + WaaWep) + Z WaaWpe = 0,
=1 a#b a#b#c

(1'w1,) Z wlm + Z WaaWap + 2wab + dWagWap)

a=1 a#b
+2 Z (WaaWbe + 2WapWae) + Z WapWea = 0.
a#b#c a#b#c#d
Since w,, (a=1,...,n) are identically distributed, and w, (a=1,...,n;

b=a+1,...,n) are also identically distributed, from the equations in (A15),
and for a # b # ¢ # d, we obtain
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p = nEwa,

p = nEwg,] +n(n —1)E[w),

p* = nEWwZ,] +n(n— 1) EWwawp).

0 = nEwaa] +n(n — 1) E[wa],

0 = nEWw>] 4+ n(n — 1) 2EWaaWa) + E[wa2))
+n(n—=1)(n = 2)EWapWae), (A16)

0 = nE[wz,] +n(n — 1) 2EWawas] + E[Waaws))
+n(n—1)(n — 2)E[WaaWpe),

0 = nEfwy,] +n(n— 1)(EWawe] + 2E[Wap] + 4E[WaaWab))
+2n(n — 1)(n — 2)(E[Waawse] + 2E[WapWac])
+n(n—1)(n—2)(n — 3)E[WapWed.

It follows from equation (A14) that E[w2] < 1. Combining this result and
equation (A16) yields

E[Waa] = Cn,p, E[Wab] = 0(}’171),
Elw;,] = 0(1), E[Wwaqwes] = c‘,f_,,, +0(n),
E[ng] = 0(’171)’ E[Waawab] = O(f’lil), (A17)

EWaaWpe] = O(nfl), E[WapWa) = O(nfz),
EWapwed) = O(n_z),

as ¢, , — ¢o, where a, b, ¢, d are arbitrary positive integers not larger than n,
and a #b # ¢ #d.

Let gy be the (s, #)th element of 2/,. Then, by using (All), (A12), (A13),
and (Al7) we have

E[x\Wx,| — ¢y, E[(x] Wx,)z] — clal.

n—1 (n—1)°

The above equations directly imply that (n — 1)~ Var[x'Wx,] — 0 as ¢, , — 0.
Hence, the (s,7)th element of X, WX, converges, as follows:

/ i
xWx, — cyoy.

n—1

Therefore, Lemma 3 is proved.
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AS5. Proof of Lemma 4
It follows from elementary linear algebra that
1 1

Amax(V7) < Amax (n«%”) <\.2 t{(6'6)%}.
From Lemma 1, we can see that

1 ) L gy 1

E[p tr{(&'6) }} =Ky +op(p+1)+p=O0(p)
The above equation and Jensen’s inequality lead us to the equation
1

< \/E {; tr{(é"’é")z}] = 0(p'?).

This directly implies that n~'[tr{(&'&)*}]"* = 0,(p'/?). Hence, Lemma 4 is
proved.

E % w{(8'8)7)

A6. Proof of Lemma 5

It follows from elementary linear algebra that

1 1 1
Eaj’l = @lmdx(l‘/) < E tr(LJ)
1
=— tr(I;T}
np I'( J _/)

1 _
= np tr{ X (L, — P))X. 2, Jizf*yz}} /*E//*yzj*/

1
< = tr{X. X. 2, lzj*yz}yj i, ]]}

P _
(¥ X))

From the above equations and assumptions A2 and A4, we have

o1 = Op(np).
Moreover, it also follows from elementary linear algebra that
1 1 1
—aj | = —Amax(Lj) = — tr(L;
npaj’l npﬂmaX( i) = 2D r(L;)

1 / —l
:y]TPtr{X( - P)X.Z} 5, X X 2y

Low{Z 5 20
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Hence, with assumption A4, this implies that

N
liminf —a; 1 > 0.
Cn,p—C0 np

Consequently, Lemma 5 is proved.
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