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Abstract. Using an integral formula on a homogeneous Siegel domain, we give a

necessary and su‰cient condition for composition operators on the weighted Bergman

space of a minimal bounded homogeneous domain to be compact in terms of a

boundary behavior of the Bergman kernel.

1. Introduction

Composition operators have been studied on various function spaces of

a complex domain, for example, Hardy spaces, Bergman spaces and Bloch

spaces. In particular, the operators on Bergman spaces have been analysed by

making use of the Bergman kernel. Actually, estimates of the Bergman kernel

enable us to characterize the boundedness and compactness of composition

operators, as well as Toeplitz operators and Hankel operators, on the Bergman

space of the unit disk (for example, see [15]). In this paper, we consider

composition operators on weighted Bergman spaces of a bounded homogeneous

domain.

In 2007, Zhu [16] considered composition operators on the weighted

Bergman space of the unit ball. His results are extended to the case where

the domain is the Harish-Chandra realization of an irreducible bounded

symmetric domain by Lv and Hu [9]. In this paper, we generalize their

works further to weighted Bergman spaces of a minimal bounded homogeneous

domain (for minimal domains, see [8], [10]). Indeed, the unit ball, the polydisk

and a bounded symmetric domain in its Harish-Chandra realization are all

minimal domains.

Let U be a minimal bounded homogeneous domain in Cd , dV the

Lebesgue measure on Cd and OðUÞ the space of all holomorphic functions

on U. The Bergman kernel KU : U�U ! C is the reproducing kernel of the

Bergman space L2
aðU; dVÞ :¼ L2ðU; dVÞVOðUÞ. For b A R, let dVb denote
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the measure on U given by dVbðzÞ :¼ KUðz; zÞ�b
dVðzÞ. We consider the

weighted Bergman space Lp
a ðU; dVbÞ :¼ LpðU; dVbÞVOðUÞ for 0 < p < y.

It is known that there exists a constant emin such that Lp
a ðU; dVbÞ is non-

trivial for all p if b > emin. Throughout this paper, we always assume this

non-trivializing condition. Every holomorphic map j : U ! U defines a com-

position operator Cj on OðUÞ, in particular on Lp
a ðU; dVbÞ, by Cj f :¼ f � j.

Using Zhu’s technique (see [16]) together with an integral formula established

in Lemma 5.2, we obtain the following theorem, which is the main theorem of

this paper.

Theorem A (Theorem 6.1). Assume that Cj is bounded on Lq
a ðU; dVb0Þ for

some q > 0 and b0 > emin. Then Cj is compact on Lp
a ðU; dVbÞ for any p > 0

and b > b0 þ eU if and only if

lim
z!qU

KUðjðzÞ; jðzÞÞ
KUðz; zÞ

¼ 0:

Here, eU is the non-negative constant given by (5.1). Similarly to [9] and

[16], the assumption that Cj is a bounded operator on Lp
a ðU; dVb0Þ for some

b0 > emin is needed only for the ‘‘if ’’ part of Theorem A. The constant eU is

equal to 0 for the case of unit ball, and coincides with the constant
aðr�1Þ

N
that

appears in the paper [9] for the case of the Harish-Chandra realization of an

irreducible bounded symmetric domain (see section 7).

Zhu proved Theorem A for the case of the unit ball. His method is to

apply Schur’s theorem, in which a key is to find a positive function satisfying

a certain inequality. In our case, Lemma 5.2 will replace Forelli-Rudin in-

equality in order to get such a positive function. In fact, let F be a biholo-

morphic map from U onto a homogeneous Siegel domain D (see [12]), and

JðF; z 0Þ the complex Jacobi matrix of F at z 0 A U. Then, we show in Lemma

5.2 that the integralð
U

jKUðz; z 0Þj1þajdet JðF; z 0Þj1þ2b�a
dVbðz 0Þ

is evaluated, under a convergence condition, as KUðz; zÞa�bjdet JðF; zÞj1þ2b�a

up to a positive constant not depending on z.

Before proving Theorem A, we show that the boundedness of Cj on

Lp
a ðU; dVbÞ is described in terms of Carleson measures. It is easy to see that

Cj is a bounded operator on Lp
a ðU; dVbÞ if and only if the pull-back measure

dmj;b of dVb induced by j is a Carleson measure for Lp
a ðU; dVbÞ (see section

4.1). Thanks to properties of Carleson measures, we obtain the following

theorem.
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Theorem B (Theorems 4.3 and 4.5). If Cj is a bounded (resp. compact)

operator on Lq
a ðU; dVb0Þ for some q > 0 and b0 > emin, then Cj is a bounded

(resp. compact) operator on Lp
a ðU; dVbÞ for any p > 0 and bb b0.

By Theorem B, the assumption of Theorem A implies that Cj is bounded

on Lq
a ðU; dVb0Þ for any q > 0 and bb b0. Therefore, we may use the

boundedness of Cj on both L2
aðU; dVbÞ and L2

aðU; dVb0Þ in section 6.

Let us explain the organization of this paper. In section 2, we review

properties of the weighted Bergman space of a minimal bounded homogeneous

domain and composition operators on the space. The estimate of the Bergman

kernel given in Theorem 2.1 plays an important role in this section. In section

3, we get a characterization of Carleson measures and vanishing Carleson

measures for the weighted Bergman space of a minimal bounded homogeneous

domain (Theorems 3.2 and 3.3). By using these theorems, we prove properties

of the boundedness and compactness of Cj in section 4 (Theorems 4.3 and 4.5).

In section 5, we show a key equality (Lemma 5.2). This equality enables us to

pursue Zhu’s method developed in [16], and we characterize the compactness of

the composition operator (Theorem A) in section 6. In section 7, Theorem A

is applied to the cases where U is the unit ball, the Harish-Chandra realization

of an irreducible bounded symmetric domain, the polydisk and the represen-

tative domain of the tube domain over Vinberg cone. The last case is an

example of non-symmetric bounded homogeneous domain. These domains are

minimal domains with center 0, and we see that Theorem A actually covers the

previously known first two and the polydisk cases.

2. Preliminaries

2.1. Weighted Bergman spaces of a minimal bounded homogeneous domain.

Let D be a bounded domain in Cd . We say that D is a minimal domain with

center t A D if the following condition is satisfied: for every biholomorphism

c : D ! D 0 with det Jðc; tÞ ¼ 1, we have

VolðD 0ÞbVolðDÞ:

We know that D is a minimal domain with center t if and only if

KDðz; tÞ ¼
1

VolðDÞ

for any z A D (see [10, Theorem 3.1]). For example, the unit disk D and the

unit ball Bd are minimal domains with center 0.

We fix a minimal bounded homogeneous domain U with center t. We

denote by K
ðbÞ
U the reproducing kernel of L2

aðU; dVbÞ. It is known that
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K
ðbÞ
U ðz;wÞ ¼ CbKUðz;wÞ1þb for some positive constant Cb. For z A U, we

denote by k
ðbÞ
z the normalized reproducing kernel of L2

aðU; dVbÞ, that is,

kðbÞ
z ðwÞ :¼ K

ðbÞ
U ðw; zÞ

K
ðbÞ
U ðz; zÞ1=2

¼
ffiffiffiffiffiffi
Cb

p KUðw; zÞ
KUðz; zÞ1=2

 !1þb

: ð2:1Þ

For any Borel set E in U, we define

VolbðEÞ :¼
ð
E

dVbðwÞ:

Let dUð� ; �Þ be the Bergman distance on U. For any z A U and r > 0,

let

Bðz; rÞ :¼ fw A U j dUðz;wÞa rg

be the Bergman metric disk with center z and radius r.

In [8], we proved the following theorem.

Theorem 2.1 ([8, Theorem A]). For any r > 0, there exists Cr > 0 such

that

C�1
r a

KUðz; aÞ
KUða; aÞ

���� ����aCr

for all z; a A U with dUðz; aÞa r.

From Theorem 2.1, we see that KUð�;wÞ is a bounded function on U

for each w A U (see [8, Proposition 6.1]). Since the span of fK ðbÞ
U ð�;wÞ jw A Ug

is dense in L2
aðU; dVbÞ, so is the space HyðUÞ of all bounded holomorphic

functions on U.

Moreover, Theorem 2.1 gives useful estimates. Indeed, we first deduce

C�2
r a

KUðz; zÞ
KUða; aÞ

aC2
r ð2:2Þ

for all z; a A U with dUðz; aÞa r. On the other hand, we have

C�1KUða; aÞ�1
a

KUðz; aÞ
KUða; aÞ

���� ����2 VolðBða; rÞÞaCKUða; aÞ�1

by [13, Lemma 3.3], so that Theorem 2.1 yields

C�1KUða; aÞ�1
aVolðBða; rÞÞaCKUða; aÞ�1: ð2:3Þ
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Lemma 2.2. There exists a positive constant C such that

C�1KUða; aÞ�ð1þbÞ
aVolbðBða; rÞÞaCKUða; aÞ�ð1þbÞ ð2:4Þ

for all a A U.

Proof. Since

VolbðBða; rÞÞ ¼
ð
Bða;rÞ

KUðw;wÞ�b
dVðwÞ;

we have

C�1KUða; aÞ�b VolðBða; rÞÞaVolbðBða; rÞÞaCKUða; aÞ�b VolðBða; rÞÞ

by (2.2). This together with (2.3) yields (2.4). r

We now collect some estimates needed later. These are generalizations to

minimal bounded homogeneous domains of Lemmas 1, 2 and 5 respectively in

[14] stated for bounded symmetric domains. First, by (2.1), Lemma 2.2 and

Theorem 2.1, we have the following lemma.

Lemma 2.3. There exists a positive constant C such that

C�1
a jk ðbÞ

a ðzÞj2 VolbðBða; rÞÞaC

for all a A U and z A Bða; rÞ.

Lemma 2.2 and (2.3) yield the following;

Lemma 2.4. There exists a positive constant C such that

C�1 VolbðBða; rÞÞaVolbðBðz; rÞÞaC VolbðBða; rÞÞ

for all a A U and z A Bða; rÞ.

Lemma 2.5. There exists a positive constant C such that

j f ðzÞjp a C

VolbðBðz; rÞÞ

ð
Bðz;rÞ

j f ðwÞjpdVbðwÞ ð2:5Þ

for all f A OðUÞ, p > 0 and z A U.

Proof. By [13, Lemma 3.5], there exists a constant C > 0 such that

j f ðzÞjp a C

VolðBðz; rÞÞ

ð
Bðz;rÞ

j f ðwÞjpdVðwÞ

a
CKUðz; zÞb

VolðBðz; rÞÞ

ð
Bðz;rÞ

j f ðwÞjpdVbðwÞ;
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where the second inequality follows from (2.2). Since

KUðz; zÞb

VolðBðz; rÞÞ a
C

VolbðBðz; rÞÞ
;

we obtain (2.5). r

2.2. Composition operators. In this section, we summarize some properties of

the composition operator. Our reference is the book [15] and the paper [16].

Let j be a holomorphic map from U to U. We define a linear operator Cj on

OðUÞ by Cj f :¼ f � j ð f A OðUÞÞ. It is known that Cj is always bounded on

Lp
a ðU; dVbÞ if U is the unit disk D. However, it is not necessarily bounded for

general domains (see for example [16]).

Let mj;b be the pull-back measure of dVb induced by j, that is,

mj;bðEÞ :¼ Volbðj�1ðEÞÞ

for any Borel set E in U. Then, Cj is a bounded operator on Lp
a ðU; dVbÞ if

and only if there exists a constant C > 0 such that the estimateð
U

j f ðwÞjpdmj;bðwÞaC

ð
U

j f ðwÞjpdVbðwÞ ð2:6Þ

holds for any f A Lp
a ðU; dVbÞ.

Assume that Cj is a bounded operator on L2
aðU; dVbÞ. Then, we

have

C �
j f ðwÞ ¼ hC �

j f ;K
ðbÞ
w iL2ðdVbÞ ¼ h f ;CjK

ðbÞ
w iL2ðdVbÞ ð2:7Þ

for any f A L2
aðU; dVbÞ. Therefore, we have

CjC
�
j f ðwÞ ¼ h f ;CjK

ðbÞ
jðwÞiL2ðdVbÞ

¼
ð
U

K
ðbÞ
U ðjðwÞ; jðuÞÞ f ðuÞdVbðuÞ: ð2:8Þ

We use (2.8) to characterize the compactness of Cj in Theorem 6.1 below.

Moreover, we have

C �
jCj f ðwÞ ¼ hCj f ;CjK

ðbÞ
w iL2ðdVbÞ

¼
ð
U

f ðjðuÞÞK ðbÞ
U ðw; jðuÞÞdVbðuÞ

¼
ð
U

K
ðbÞ
U ðw; uÞ f ðuÞdmj;bðuÞ
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by (2.7). The last integral represents the Toeplitz operator Tmj; b with symbol

mj;b, so that we obtain C �
jCj ¼ Tmj; b . The boundedness of Toeplitz operators

are discussed in [13], [15, section 7] and [16].

3. Carleson measures and vanishing Carleson measures

3.1. The Berezin symbol and the averaging function. For a Borel measure m

on U, we define a function ~mm on U by

~mmðzÞ :¼
ð
U

jk ðbÞ
z ðwÞj2dmðwÞ:

The function ~mm is called the Berezin symbol of the measure m. Fixing r > 0

once and for all, we set

m̂mðzÞ :¼ mðBðz; rÞÞ
VolbðBðz; rÞÞ

ðz A UÞ:

We call m̂m the averaging function of the Borel measure m. The dependence of m̂m

on r will not be considered in this paper.

Lemma 3.1. There exists a positive constant C such thatð
U

j f ðzÞjpdmðzÞaC

ð
U

m̂mðzÞj f ðzÞjpdVbðzÞ

for any p > 0 and f A OðUÞ.

Proof. By Lemma 2.5, we haveð
U

j f ðzÞjpdmðzÞa
ð
U

C

VolbðBðz; rÞÞ

ð
Bðz;rÞ

j f ðwÞjpdVbðwÞ
 !

dmðzÞ ð3:1Þ

for any p > 0 and f A OðUÞ. The right hand side of (3.1) is equal to

C

ð
U

ð
U

wBðz;rÞðwÞ
VolbðBðz; rÞÞ

j f ðwÞjpdVbðwÞdmðzÞ: ð3:2Þ

Here, we interchange the order of the integrations in (3.2) by using Fubini’s

theorem. Then Lemma 2.4 shows that (3.2) is less than or equal to

C

ð
U

mðBðw; rÞÞ
VolbðBðw; rÞÞ

j f ðwÞjpdVbðwÞ:

Now the proof of Lemma 3.1 is complete. r
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3.2. Carleson measures. Let m be a positive Borel measure on U. We say

that m is a Carleson measure for Lp
a ðU; dVbÞ if there exists a constant M > 0

such that ð
U

j f ðzÞjpdmðzÞaM

ð
U

j f ðzÞjpdVbðzÞ

for all f A Lp
a ðU; dVbÞ. It is easy to see that m is a Carleson measure for

Lp
a ðU; dVbÞ if and only if Lp

a ðU; dVbÞHLp
a ðU; dmÞ and the inclusion map

ip : L
p
a ðU; dVbÞ ! Lp

a ðU; dmÞ

is bounded. The following theorem is a generalization of [14, Theorem 7] to

minimal bounded homogeneous domains.

Theorem 3.2. Let m be a positive Borel measure on U. Then, the

following conditions are all equivalent.

( i ) m is a Carleson measure for Lp
a ðU; dVbÞ.

( ii ) The Berezin symbol ~mm of m is a bounded function on U.

(iii) The averaging function m̂m of m is a bounded function on U.

Proof. First, we prove (i) ) (ii). It is known that the Bergman kernel

of a bounded homogeneous domain is zero-free (see [6] or [7, Proposition

3.1]). Therefore, we can define the single-valued holomorphic function func-

tion K ðbÞð�; zÞ2=p on the simply connected domain U. Since k
ðbÞ
z ð�Þ2=p A

Lp
a ðU; dVbÞ for any z A U and since m is a Carleson measure for Lp

a ðU; dVbÞ,
we have ð

U

jk ðbÞ
z ðwÞj2dmðwÞaM

ð
U

jkðbÞ
z ðwÞj2dVbðwÞ ¼ M:

Therefore, ~mm is bounded. Next, we prove (ii) ) (iii). Take any w A U. By

Lemma 2.3, there exists a positive constant C such that

C�1
a jk ðbÞ

z ðwÞj2 VolbðBðz; rÞÞ ð3:3Þ

holds for any w A Bðz; rÞ. Integration of (3.3) on Bðz; rÞ by dm gives

mðBðz; rÞÞ
VolbðBðz; rÞÞ

aC

ð
Bðz;rÞ

jk ðbÞ
z ðwÞj2dmðwÞ: ð3:4Þ

Therefore, we obtain

m̂mðzÞaC ~mmðzÞ; ð3:5Þ

whence (ii) ) (iii) follows. The implication (iii) ) (i) holds by Lemma 3.1.

r
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Similarly to [13, Theorem 4.1], we can prove that these conditions

are equivalent to the following condition: (iv) The Toeplitz operator Tm is

bounded on L2
aðU; dVbÞ.

3.3. Vanishing Carleson measures. Suppose that m is a Carleson measure for

Lp
a ðU; dVbÞ. We say that m is a vanishing Carleson measure for Lp

a ðU; dVbÞ if

we have

lim
k!y

ð
U

j fkðwÞjpdmðwÞ ¼ 0

whenever f fkg is a bounded sequence in Lp
a ðU; dVbÞ that converges to 0

uniformly on each compact subset of U.

The following theorem generalizes [14, Theorem 11] to minimal bounded

homogeneous domains.

Theorem 3.3. Let m be a finite positive Borel measure on U. Then, the

following conditions are all equivalent.

( i ) m is a vanishing Carleson measure for Lp
a ðU; dVbÞ.

( ii ) ~mmðzÞ ! 0 as z ! qU.

(iii) m̂mðzÞ ! 0 as z ! qU.

Proof. First, we prove (i) ) (ii). Proceeding in the same way as in

[4, Lemma 1] and [4, Lemma 5], we see that fkðbÞ
z g converges to 0 uniformly

on compact subsets of U as z ! qU. Therefore, fkðbÞ
z ð�Þ2=pg is a bounded

sequence in Lp
a ðU; dVbÞ that converges to 0 uniformly on each compact

subset of U. Hence, (ii) holds. The implication (ii) ) (iii) follows from

(3.5). Finally, we prove (iii) ) (i). Take any bounded sequence f fng in

Lp
a ðU; dVbÞ that converges to 0 uniformly on each compact subset of U.

Take any e > 0. Then, there exists a constant d > 0 such that

sup
distðz;qUÞ<d

jm̂mðzÞj < e

by (iii). Let Ud :¼ fz A U j distðz; qUÞ < dg. Since UnUd is a compact set,

there exists an integer N such that

sup
z AUnUd

j fnðzÞjp < e

for any nbN. Now, Lemma 3.1 yieldsð
U

j fnðzÞjpdmðzÞaC

ð
U

m̂mðzÞj fnðzÞjpdVbðzÞ

¼ C

ð
UnUd

m̂mðzÞj fnðzÞjpdVbðzÞ þ
ð
Ud

m̂mðzÞj fnðzÞjpdVbðzÞ
 !

: ð3:6Þ
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Since the function m̂m is continuous on the compact set UnUd, there exists a

constant Md > 0 such that

sup
z AUnUd

m̂mðzÞaMd:

Therefore, the first term of (3.6) is bounded by CMde if nbN. On the other

hand, since f fng is a bounded sequence in Lp
a ðU; dVbÞ, there exists a constant

M > 0 such that ð
U

j fnðzÞjpdVbðzÞaM

for all n A N. Therefore, the second term of (3.6) is less than or equal to

CMe. Hence, we obtainð
U

j fnðzÞjpdmðzÞaCðM þMdÞe

for any nbN. Clearly, this shows that m is a vanishing Carleson measure for

Lp
a ðU; dVbÞ. r

We can show that these conditions are also equivalent to the following

condition (cf. [13, Theorem 5.1]): (iv) The Toeplitz operator Tm is compact on

L2
aðU; dVbÞ.

4. Relation between Carleson measures and composition operators

4.1. Criterion of boundedness. From (2.6), we see that Cj is a bounded

operator on Lp
a ðU; dVbÞ if and only if the pull-back measure mj;b is a Carleson

measure for Lp
a ðU; dVbÞ. By Theorem 3.2, the property of being a Carleson

measure is independent of p. Hence, the boundedness of Cj on Lp
a ðU; dVbÞ

is also independent of p. We gather here boundedness conditions of Cj on

Lp
a ðU; dVbÞ as follows.

Lemma 4.1. Let b > emin. Then, the following conditions are all equiv-

alent.

( i ) Cj is a bounded operator on Lp
a ðU; dVbÞ.

( ii ) The pull-back measure mj;b is a Carleson measure for Lp
a ðU; dVbÞ.

(iii) gmj;bmj;b is a bounded function on U.

(iv) dmj;bmj;b is a bounded function on U.

( v ) The function

Fr;bðzÞ :¼
ð
Bðz;rÞ

jk ðbÞ
z ðwÞj2dmj;bðwÞ

is bounded on U.
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Proof. For (v), we just note: (iii) ) (v) is trivial and (v) ) (iv) follows

from (3.4). r

If Cj is bounded, we have the following estimate.

Lemma 4.2. Assume that Cj is bounded on Lp
a ðU; dVbÞ for some p > 0 and

b > b0. Then there exists a positive constant C such that

KUðjðzÞ; jðzÞÞaCKUðz; zÞ
for any z A U.

Proof. By Lemma 4.1, it is enough to consider p ¼ 2. By (2.7), we have

C �
jk

ðbÞ
z ðwÞ ¼ hk ðbÞ

z ;CjK
ðbÞ
w iL2ðdVbÞ ¼ K

ðbÞ
U ðz; zÞ�1=2hCjK

ðbÞ
w ;K

ðbÞ
z iL2ðdVbÞ

¼ K
ðbÞ
U ðz; zÞ�1=2

CjK
ðbÞ
w ðzÞ ¼ K

ðbÞ
U ðw; jðzÞÞ

K
ðbÞ
U ðz; zÞ1=2

:

Therefore, we get

kC �
jk

ðbÞ
z k2L2ðdVbÞ ¼

K
ðbÞ
U ðjðzÞ; jðzÞÞ
K

ðbÞ
U ðz; zÞ

¼ KUðjðzÞ; jðzÞÞ
KUðz; zÞ

� �1þb

: ð4:1Þ

Since Cj is a bounded operator on L2
aðU; dVbÞ and kk ðbÞ

z kL2ðdVbÞ ¼ 1, the left

hand side of (4.1) is bounded by a positive constant C. r

Theorem 4.3. If Cj is a bounded operator on Lq
a ðU; dVb0Þ for some q > 0

and b0 > emin, then Cj is a bounded operator on Lp
a ðU; dVbÞ for any p > 0 and

bb b0.

Proof. The boundedness of Cj on Lq
a ðU; dVb0Þ (resp. Lp

a ðU; dVbÞ) is

equivalent to the boundedness of gmj;b0mj;b0 (resp. Fr;b) by Lemma 4.1. Therefore,

it is su‰cient to prove gmj;b0mj;b0ðzÞbCFr;bðzÞ: ð4:2Þ

Since KUðjðwÞ; jðwÞÞaCKUðw;wÞ by Lemma 4.2, we have

dVb0ðwÞ ¼ KUðw;wÞb�b0dVbðwÞbCKUðjðwÞ; jðwÞÞb�b0dVbðwÞ:

Hence, we obtain

gmj;b0mj;b0ðzÞ

¼ KUðz; zÞ�ð1þb0Þ
ð
U

jKUðz; jðwÞÞj2ð1þb0ÞdVb0ðwÞ

bCKUðz; zÞ�ð1þb0Þ
ð
U

jKUðz; jðwÞÞj2ð1þb0ÞKUðjðwÞ; jðwÞÞb�b0dVbðwÞ: ð4:3Þ
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By the definition of the pull-back measure, the last term of (4.3) is rewritten

and estimated as

CKUðz; zÞ�ð1þbÞ
ð
U

jKUðz;wÞj2ð1þbÞ KUðw;wÞKUðz; zÞ
jKUðz;wÞj2

 !b�b0

dmj;bðwÞ

bCKUðz; zÞ�ð1þbÞ
ð
Bðz;rÞ

jKUðz;wÞj2ð1þbÞ

� KUðw;wÞKUðz; zÞ
jKUðz;wÞj2

 !b�b0

dmj;bðwÞ: ð4:4Þ

Since w A Bðz; rÞ, Theorem 2.1 gives

KUðw;wÞKUðz; zÞ
jKUðz;wÞj2

¼ KUðw;wÞ
KUðz;wÞ

KUðz; zÞ
KUðz;wÞ

���� ����bC�2
r ;

which makes the right hand side of (4.4) greater than or equal to

CKUðz; zÞ�ð1þbÞ
ð
Bðz;rÞ

jKUðz;wÞj2ð1þbÞ
dmj;bðwÞ ¼ CFr;bðzÞ:

Hence, (4.2) holds. r

4.2. Criterion of compactness. We say that Cj is compact on Lp
a ðU; dVbÞ if

the image under Cj of any bounded subset of Lp
a ðU; dVbÞ is a relatively com-

pact subset. We can show that Cj is compact on Lp
a ðU; dVbÞ if and only if

lim
k!y

ð
U

jCj fkðwÞjpdVbðwÞ ¼ 0 ð4:5Þ

holds whenever f fkg is a bounded sequence in Lp
a ðU; dVbÞ that converges to 0

uniformly on each compact subset of U (for the case U ¼ D, see [3, Proposition

3.1]). Since (4.5) is equivalent to

lim
k!y

ð
U

j fkðwÞjpdmj;bðwÞ ¼ 0;

Cj is a compact operator on Lp
a ðU; dVbÞ if and only if mj;b is a vanishing

Carleson measure for Lp
a ðU; dVbÞ. This observation together with Theorem

3.3 gives the following compactness conditions of Cj on Lp
a ðU; dVbÞ.

Lemma 4.4. Let b > emin. Then, the following conditions are all equiv-

alent.

( i ) Cj is a compact operator on Lp
a ðU; dVbÞ.

( ii ) mj;b is a vanishing Carleson measure for Lp
a ðU; dVbÞ.
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(iii) lim
z!qU

gmj;bmj;bðzÞ ¼ 0.

(iv) lim
z!qU

dmj;bmj;bðzÞ ¼ 0.

( v ) lim
z!qU

Fr;bðzÞ ¼ 0.

Theorem 4.5. If Cj is a compact operator on Lq
a ðU; dVb0Þ for some q > 0

and b0 > emin, then Cj is a compact operator on Lp
a ðU; dVbÞ for any p > 0 and

bb b0.

Proof. By Lemma 4.4, it is enough to prove

lim
z!qU

gmj;b0mj;b0ðzÞ ¼ 0 ) lim
z!qU

Fr;bðzÞ ¼ 0:

This follows from (4.2). r

5. Some equalities

5.1. Equality for a homogeneous Siegel domain. In order to give a compact-

ness condition of the composition operators on Lp
a ðU; dVbÞ in terms of j and

KU, we use an integral formula on a homogeneous Siegel domain. First, we

recall notation and properties of homogeneous Siegel domains following [1] and

[6]. Let WHRn be an open convex cone not containing any straight lines

and F : Cm � Cm ! Cn a Hermitian map such that F ðu; uÞ A ClðWÞnf0g, where
ClðWÞ stands for the closure of W. Then, the Siegel domain D is defined by

D ¼ ðx; hÞ A Cn � Cm

���� x� x

2i
� F ðh; hÞ A W

� �
:

It is known that every bounded homogeneous domain is holomorphically

equivalent to a homogeneous Siegel domain [12].

Let l be the rank of W. For 1a ja l, let nj b 0; qj b 0 and dj a 0 be real

numbers defined in [6] (These notations are also used in [1]. Note that dj in [8]

is �dj in the present notation). We write n for the vector of R l whose

components are nj. The symbols q and d are used similarly. We see from [1,

Proposition II.1] that the Bergman kernel of D is given by

KDðz; z 0Þ ¼ C
x� x 0

2i
� Fðh; h 0Þ

 !2d�q

ðz ¼ ðx; hÞ; z 0 ¼ ðx 0; h 0ÞÞ;

where ð�Þ2d�q is the compound power function defined in [6, (2.3)]. We put

eU :¼ max
nj

2ð�2dj þ qjÞ

���� 1a ja l

� �
: ð5:1Þ

Békollé and Kagou showed the following integral formula.
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Lemma 5.1 ([1, Corollary II.4]). For b > emin and a > b þ eU, one hasð
D

jKDðz; z 0Þj1þa
KDðz 0; z 0Þ�b

dVðz 0Þ ¼ CDða; bÞKDðz; zÞa�b;

where CDða; bÞ does not depend on z.

5.2. Equality for a minimal bounded homogeneous domain. Let D be a Siegel

domain biholomorphic to U and F a biholomorphic map from U onto D. To

get a formula for U analogous to Lemma 5.1, we consider the weighted

Bergman space

Lp
a ðD;KDðz; zÞ�b

dVðzÞÞ :¼ LpðD;KDðz; zÞ�b
dVðzÞÞVOðDÞ:

Actually, we only need the space for p ¼ 2. Then we have an isometry

L2
aðD;KDðz; zÞ�b

dVðzÞÞ C f 7! det JðF; �Þ1þb
f �F A L2

aðU; dVbÞ: ð5:2Þ

We note that the function det JðF; �Þ does not vanish on the simply connected

domain U, so that we have a single-valued function det JðF; �Þ1þb. The

following lemma plays a key role to prove our main theorem.

Lemma 5.2. Let b > emin and a > b þ eU. Then, one hasð
U

jKUðz; z 0Þj1þajdet JðF; z 0Þj1þ2b�a
dVbðz 0Þ

¼ CDða; bÞKUðz; zÞa�bjdet JðF; zÞj1þ2b�a

for any z A U.

Proof. Let z 0 ¼ Fðz 0Þ. Since

dVbðz 0Þ ¼ KUðF�1ðz 0Þ;F�1ðz 0ÞÞ�bjdet JðF�1; z 0Þj2dVðz 0Þ

¼ jdet JðF;F�1ðz 0ÞÞj�2ð1þbÞ
KDðz 0; z 0Þ�b

dVðz 0Þ;

we haveð
U

jKUðz; z 0Þj1þajdet JðF; z 0Þj1þ2b�a
dVbðz 0Þ

¼
ð
D

jKUðz;F�1ðz 0ÞÞj1þajdet JðF;F�1ðz 0ÞÞj�ð1þaÞ
KDðz 0; z 0Þ�b

dVðz 0Þ: ð5:3Þ

By the transformation formula of the Bergman kernel, we have

KUðz;F�1ðz 0ÞÞ ¼ KDðFðzÞ; z 0Þ det JðF; zÞ det JðF;F�1ðz 0ÞÞ:

120 Satoshi Yamaji



Therefore, the right hand side of (5.3) is equal toð
D

jKDðFðzÞ; z 0Þj1þajdet JðF; zÞj1þa
KDðz 0; z 0Þ�b

dVðz 0Þ: ð5:4Þ

By Lemma 5.1, we rewrite (5.4) as

CDða; bÞjdet JðF; zÞj1þ2b�a
KUðz; zÞa�b:

This completes the proof. r

Corollary 5.3. Let b > emin and a > b þ eU. For any z A U, the func-

tion gz defined by

gzðwÞ :¼ KUðw; zÞð1þaÞ=2 det JðF;wÞð1þ2b�aÞ=2 ðw A UÞ

is in L2
aðU; dVbÞ. The norm is given by

kgzk2L2ðdVbÞ ¼ CDða; bÞKUðz; zÞa�bjdet JðF; zÞj1þ2b�a:

Proof. Note that gz is the product of single-valued functions

KUð�; zÞð1þaÞ=2 and det JðF; �Þð1þ2b�aÞ=2. We have

kgzk2L2ðdVbÞ ¼
ð
U

jKUðz;wÞj1þajdet JðF;wÞj1þ2b�a
KUðw;wÞ�b

dVðwÞ:

By Lemma 5.2, this is equal to CDða; bÞKUðz; zÞa�bjdet JðF; zÞj1þ2b�a. r

Corollary 5.3 enables us to find a positive function that satisfies the

condition of Schur’s theorem (see [15, Theorem 3.6]) in section 6.

6. The Main theorem

We are now able to prove our main theorem.

Theorem 6.1. If Cj is bounded on Lq
a ðU; dVb0Þ for some q > 0 and

b0 > emin, then the following conditions are equivalent for any p > 0 and

b > b0 þ eU.

( i ) Cj is a compact operator on Lp
a ðU; dVbÞ.

(ii) lim
z!qU

KUðjðzÞ; jðzÞÞ
KUðz; zÞ

¼ 0.

Proof. By Theorem 4.5, we may assume that p ¼ q ¼ 2. First, we

prove that (i) implies (ii). Assume that Cj is a compact operator on

L2
aðU; dVbÞ. Then, C �

j is also compact. Since fk ðbÞ
z g converges to 0 uni-

formly on compact subsets of U as z ! qU, we have kC �
jk

ðbÞ
z kL2ðdVbÞ ! 0 as

z ! qU. From (4.1), we obtain (ii).
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Next, we prove that (ii) implies (i). Let S be the operator on L2
aðU; dVbÞ

defined by

Sf ðzÞ :¼
ð
U

K
ðbÞ
U ðjðzÞ; jðwÞÞ f ðwÞdVbðwÞ ð f A L2

aðU; dVbÞÞ:

Since Cj is a bounded operator on L2
aðU; dVbÞ, we have CjC

�
j ¼ S by

(2.8). Therefore the compactness of Cj is equivalent to the compactness of

S. Hence, it is su‰cient to prove that Sþ is a compact operator on

L2ðU; dVbÞ, where

Sþf ðzÞ :¼
ð
U

jK ðbÞ
U ðjðzÞ; jðwÞÞj f ðwÞdVbðwÞ

for f A L2ðU; dVbÞ. For r > 0, let Ur :¼ fz A U j distðz; qUÞ < rg. We de-

fine

Kþ
1; rðz;wÞ :¼ wUnUr

ðzÞjK ðbÞ
U ðjðzÞ; jðwÞÞj;

Kþ
2; rðz;wÞ :¼ wUr

ðzÞwUnUr
ðwÞjK ðbÞ

U ðjðzÞ; jðwÞÞj;

Kþ
3; rðz;wÞ :¼ wUr

ðzÞwUr
ðwÞjK ðbÞ

U ðjðzÞ; jðwÞÞj:

We denote by Sþ
j; r the integral operator on L2ðU; dVbÞ with kernel Kþ

j; r

( j ¼ 1; 2; 3). Then, we have

Sþ � Sþ
3; r ¼ Sþ

1; r þ Sþ
2; r: ð6:1Þ

We will prove that Sþ
1; r and Sþ

2; r are compact operators on L2ðU; dVbÞ for any

r > 0 and that kSþ
3; rk ! 0 as r ! 0 through the subsequent three lemmas.

Then letting r ! 0 in (6.1), we see that Sþ is a compact operator on

L2ðU; dVbÞ. r

Lemma 6.2. The operators Sþ
1; r and Sþ

2; r are compact on L2ðU; dVbÞ.

Proof. It is enough to prove Kþ
1; r and Kþ

2; r are in L2ðU�U; dVb � dVbÞ
(for example, see [15, Theorem 3.5]). For w A U, let

K
ðbÞ
jðzÞðwÞ :¼ K

ðbÞ
U ðw; jðzÞÞ:

Then, K
ðbÞ
jðzÞ A L2

aðU; dVbÞ and we have

kKþ
1; rk

2
L2ðU�UÞ ¼

ð
UnUr

ð
U

jK ðbÞ
U ðjðzÞ; jðwÞÞj2dVbðwÞ

� �
dVbðzÞ

¼
ð
UnUr

kCjK
ðbÞ
jðzÞk

2
L2ðdVbÞdVbðzÞ: ð6:2Þ
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Since Cj is a bounded operator on Lp
a ðU; dVb0Þ, Cj is bounded on L2

aðU; dVbÞ
by Theorem 4:3. Hence, we have

kCjK
ðbÞ
jðzÞk

2
L2ðdVbÞ aCkK ðbÞ

jðzÞk
2
L2ðdVbÞ

¼ CK
ðbÞ
U ðjðzÞ; jðzÞÞaCKUðz; zÞ1þb; ð6:3Þ

where the last inequality follows from Lemma 4:2. Substituting (6.3) to (6.2),

we obtain

kKþ
1; rk

2
L2ðU�UÞ aC

ð
UnUr

KUðz; zÞ1þb
dVbðzÞ

¼ C

ð
UnUr

KUðz; zÞdVðzÞ

< y:

Similarly, we have kKþ
2; rkL2ðU�UÞ < y. r

Lemma 6.3. For z A U, let

hðzÞ :¼ KUðz; zÞb�b0 jdet JðF; jðzÞÞj1þ2b0�b:

Then, one hasð
U

Kþ
3; rðz;wÞhðwÞdVbðwÞaCwUr

ðzÞ KUðjðzÞ; jðzÞÞ
KUðz; zÞ

� �b�b0

hðzÞ: ð6:4Þ

Proof. For z A U, we haveð
U

Kþ
3; rðz;wÞhðwÞdVbðwÞ

¼
ð
U

wUr
ðzÞwUr

ðwÞjKUðjðzÞ; jðwÞÞj1þbjdet JðF; jðwÞÞj1þ2b0�b
dVb0ðwÞ: ð6:5Þ

Let us define a holomorphic function gz by

gzðwÞ :¼ fKUðw; jðzÞÞ1þb det JðF;wÞ1þ2b0�bg1=2:

Then, the right hand side of (6.5) is equal to

wUr
ðzÞ
ð
Ur

jgzðjðwÞÞj2dVb0ðwÞa wUr
ðzÞ
ð
U

jCjgzðwÞj2dVb0ðwÞ:

Since b0 > emin and b > b0 þ eU, the function gz is in L2
aðU; dVb0Þ by Corollary

5.3. Moreover, since Cj is a bounded operator on Lp
a ðU; dVb0Þ by assumption,
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Cj is bounded on L2
aðU; dVb0Þ by Theorem 4:3. Therefore, we haveð

U

Kþ
3; rðz;wÞhðwÞdVbðwÞa wUr

ðzÞkCjgzk2L2ðdVb0
Þ

aCwUr
ðzÞkgzk2L2ðdVb0

Þ: ð6:6Þ

On the other hand, we have

kgzk2L2ðdVb0
Þ ¼ KUðjðzÞ; jðzÞÞb�b0 det JðF; jðzÞÞ1þ2b0�b ð6:7Þ

by Corollary 5.3. Substituting (6.7) to (6.6), we obtain (6.4). r

Finally, the following lemma completes the proof of Theorem 6.1.

Lemma 6.4. One has kSþ
3; rk ! 0 as r ! 0.

Proof. Put

MðrÞ :¼ sup
z AUr

KUðjðzÞ; jðzÞÞ
KUðz; zÞ

� �b�b0

:

By Lemma 6.3, we haveð
U

Kþ
3; rðz;wÞhðwÞdVbðwÞaCMðrÞhðzÞ:

Thanks to Schur’s theorem, Sþ
3; r is a bounded operator on L2ðU; dVbÞ with

norm not exceeding CMðrÞ. Since we are assuming (ii) of Theorem 6.1, we

obtain MðrÞ ! 0 as r ! 0. Hence we have kSþ
3; rk ! 0 as r ! 0. r

7. Examples

7.1. The Harish-Chandra realization of irreducible bounded symmetric domain.

Let W be an irreducible bounded symmetric domain in its Harish-Chandra

realization, r the rank of W and a, b nonnegative integers defined in [5]. In

this case, we have emin ¼ � 1
N
and eW ¼ aðr�1Þ

2N , where N :¼ aðr� 1Þ þ bþ 2 is the

genus of W.

Corollary 7.1 ([9, Theorem]). Suppose b0 > � 1
N
. If the composition

operator Cj is bounded on Lq
a ðW; dVb0Þ for some q > 0 and b0 þ

aðr�1Þ
2N < b, then

Cj is compact on Lp
a ðW; dVbÞ if and only if

lim
z!qW

KWðjðzÞ; jðzÞÞ
KWðz; zÞ

¼ 0: ð7:1Þ
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In particular, for the case W ¼ Bd , we have emin ¼ � 1
dþ1 , eBd ¼ 0 and

KB d ðz;wÞ ¼ d!

pd

1

ð1� hz;wiÞdþ1
:

Therefore, (7.1) is equivalent to

lim
jzj!1

1� jzj2

1� jjðzÞj2
¼ 0;

so we obtain [16, Theorem 4.1].

7.2. A non-symmetric minimal homogeneous domain. Finally, we show an

example of a non-symmetric minimal bounded homogeneous domain. For

x A R5 with x1 0 0, let

Q1ðxÞ :¼ x1; Q2ðxÞ :¼ x2 �
x2
4

x1
; Q3ðxÞ :¼ x3 �

x2
5

x1

and W :¼ fx A R5 jQjðxÞ > 0 for 1a ja 3g, which is called the Vinberg cone

([11], [2]). We consider the tube domain TW :¼ R5 þ iW and its representative

domain U. Then U is a non-symmetric minimal bounded homogeneous

domain with center 0 by [7, Proposition 3.8]. In this case, we have l ¼ 3

and n ¼ ð2; 0; 0Þ, d ¼ �2;� 3
2 ;� 3

2

� �
, q ¼ ð0; 0; 0Þ. Hence the constants emin and

eU are given by emin ¼ � 1
3 , eU ¼ 1

4 .

For z :¼ ðz1; z2; z3; z4; z5Þ A TW, let

z½1� :¼
z1 z4

z4 z2

� �
; z½2� :¼

z1 z5

z5 z3

� �
A Symð2;CÞ:

Then, the Bergman kernel of TW satisfies

KTW
ðz; z 0Þ ¼ C

z1 � z 01
2i

 !2Y2
j¼1

det
z½ j� � z 0½ j�

2i

 !�3

:

Let s be the Bergman mapping from TW to U at p0 :¼ ði; i; i; 0; 0Þ (see [7,

(2.4)]). It follows from [8, Theorem 5.3] that

KUðsðzÞ; sðz 0ÞÞ ¼
1

VolðUÞ ð1� C1ðz1ÞC1ðz 01ÞÞ
2
Y2
j¼1

fdetðI2 � C2ðz½ j�ÞC2ðz 0½ j�ÞÞg
�3;

where Cm ðm ¼ 1; 2Þ denotes the Cayley transform

CmðZÞ :¼ ðZ � iImÞðZ þ iImÞ�1 ðZ A Matðm;CÞÞ:
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Assume that the composition operator Cj is bounded on Lq
a ðU; dVb0Þ for some

q > 0 and b0 > � 1
3 . Applying Theorem A, we have the following; For p > 0

and b > b0 þ 1
4 , Cj is compact on Lp

a ðU; dVbÞ if and only if

lim
z!qU

KUðjðzÞ; jðzÞÞ
KUðz; zÞ

¼ 0:
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