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Abstract
We introduce the notion of crossed n-fold extensions of an

algebra B by a bimodule M and prove that such extensions
represent classes in the Hochschild cohomology of B with co-
efficients in M . Moreover we consider this way characteristic
classes of chain (resp. cochain) algebras in Hochschild coho-
mology.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

Crossed modules over groups were introduced by J.H.C.Whitehead [12]. Mac
Lane–Whitehead [11] observed that a crossed module over a group G with kernel a
G-module M represents an element in the cohomology H3(G,M). This result was
generalized by Huebschmann [7] by showing that crossed n-fold extensions over G
by M represent elements in Hn+1(G, M).

In this paper we prove similar results for the Hochschild cohomology
HHn+1(B, M) of an algebra B with coefficients in a B-bimodule M . We show that
crossed modules over algebras as introduced in [2] can be used to define crossed
n-fold extensions of B by M which represent elements in HHn+1(B, M) for n > 2.

Our results are also available for graded algebras. In particular we show that
each chain (resp. cochain) algebra C yields canonically a crossed module over the
homology (resp. cohomology) algebra B = HC and this crossed module represents
a characteristic class 〈C〉 in the Hochschild cohomology of HC. The characteristic
class 〈C〉 determines all triple Massey products which are secondary operations on
HC determined by C. We can consider 〈C〉 as an analogue of the first k-invariant
of a connected space X (in the Postnikov decomposition) which is an element in
the cohomology of the fundamental group G = π1X. Berrick–Davydov [6] recently
studied the class 〈C〉 without using crossed modules over algebras. We compute also
the characteristic class 〈A⊗B〉 of the tensor product of chain algebras A and B.
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2. Hochschild cohomology

Let k be a field. Classical Hochschild cohomology is defined for algebras and also
for graded algebras over k. We consider here the graded and the non-graded case at
the same time. In this paper an algebra B will mean an associative (graded) algebra
with unit k → B. A B-bimodule is a (graded) k-vector space V which is a left and
a right B-module such that for a, b ∈ B and x ∈ V we have (ax)b = a(xb). For
example B can be considered as a B-bimodule via the multiplication in B. Given
two (graded) k-vector spaces V and W we denote the tensor product V ⊗k W simply
by V ⊗W .

Recall that the Hochschild cohomology of B with coefficients in a B-bimodule M
is the family of extension groups

HH∗(B, M) = Ext∗B−B(B, M) (2.1)

between the B-bimodules B and M .
One can associate to B the bar complex B∗(B), where Bn(B) = B⊗(n+2) with

differential d : Bn(B) → Bn−1(B) given by

d(x0 ⊗ . . .⊗ xn+1) =
n

∑

i=0

(−1)i(x0 ⊗ . . .⊗ xi−1 ⊗ xixi+1 ⊗ xi+2 ⊗ . . .⊗ xn+1)

The bar complex is acyclic for any B. This follows from the existence of a homotopy
h between the identity of B∗(B) and the zero map. The homotopy h : Bn(B) →
Bn+1(B) is defined by h(x) = 1⊗ x.

The differential of the bar complex is B-bilinear. Thus we get the standard reso-
lution of the B-bimodule B. Using this resolution one can identify the cohomology
groups HHn(B, M) with the cohomology of the complex

Fn(B,M) = HomB−B(B⊗(n+2),M) = Homk(B⊗n, M) (2.2)

with differential δ : Fn(B,M) → Fn+1(B, M) given by

(δf)(x1 ⊗ . . .⊗ xn+1) =x1f(x2 ⊗ . . .⊗ xn+1)

+
( n

∑

i=1

(−1)if(x1 ⊗ . . .⊗ xixi+1 ⊗ . . .⊗ xn+1)
)

+ (−1)n+1f(x1 ⊗ . . .⊗ xn)xn+1.

3. Crossed modules over algebras and HH3

We recall from [2] the following definition of crossed modules over algebras.

Definition 3.1. A Crossed module over a k-algebra is a triple (V,A, ∂) where A
is a (graded) k-algebra, V is a (graded) A-bimodule and ∂ : V → A is a map of
A-bimodules such that (∂v)w = v(∂w) for v, w ∈ V . A map (α, β) : (V, A, ∂) →
(V ′, A′, ∂′) between crossed modules consists of a map α : V → V ′ of k-vector spaces
and a map β : A → A′ of k-algebras such that ∂′α = β∂ and α(avb) = β(a)α(v)β(b)
for a, b ∈ A and v ∈ V .
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Given a crossed module ∂ : V → A, we consider B = coker(∂) and M = ker(∂)
in the category of (graded) k-vector spaces. The algebra structure of A induces an
algebra structure on B and the A-bimodule structure on V induces a B-bimodule
structure on M given by π(a)m = am and mπ(a) = ma where π : A → coker(∂) is
the projection. This multiplication is well defined since (a+∂(v))m = am+∂(v)m =
am + v∂(m) = am. Hence a crossed module yields an exact sequence

0 // M
i

// V
∂

/ / A
π

// B // 0

in which all the maps are maps of A-bimodules. Here the A-bimodule structure on
M and B is induced by the map π. We call ∂ : V → A a crossed module over
the k-algebra B with kernel M . Let Cross(B, M) be the category of such crossed
modules. Morphisms are maps between crossed modules which induce the identity
on M and B.

For a category C, let π0C be the class of connected components in C. An object
in π0C is also termed a connected class of objects in C. In fact, π0 Cross(B, M) is
a set, as implied by the following result, which extends the well-known facts that
HH1(B, M) is given by derivations and HH2(B, M) classifies the singular algebra
extensions of M by B (cf. [10]). The proof of this result can also be found in [9].

Theorem 3.2. There exists a bijection

ψ : π0 Cross(B, M) → HH3(B, M).

Proof. We define ψ : π0 Cross(B, M) → HH3(B,M) as follows. Given

E = ( 0 // M
i

// V
∂

// A
π

// B / / 0 )

choose k-linear sections s : B → A, πs = 1 and q : Im(∂) → V, ∂q = 1. For
x, y ∈ B, we have π(s(x)s(y)− s(xy)) = 0 and then s(x)s(y)− s(xy) ∈ Im(∂). Take
g(x, y) = q(s(x)s(y)− s(xy)) ∈ V and define

θE(x, y, z) = s(x)g(y, z)− g(xy, z) + g(x, yz)− g(x, y)s(z) (§)

Since ∂ is a map of A-bimodules it follows that ∂(θE(x, y, z)) = 0 and therefore
θE(x, y, z) ∈ M = ker(∂). Thus we have defined a k-linear map θE : B⊗3 → M
which is a cocycle with respect to the coboundary map δ in (2.2). In fact, one easily
checks that δ(θE) = 0. We define ψ : π0 Cross(B,M) → HH3(B, M) by taking ψ(E)
to be the class of θE in HH3(B, M).

One has to check that ψ is a well defined function from π0 Cross(B, M) to
HH3(B, M), i.e. the class of θE in HH3(B, M) does not depend on the sections s
and q. Moreover, if E → E ′ is a map in Cross(B,M), then θE = θE′ in HH3(B, M).

We show first that the class of θE does not depend on the section s. Suppose
s : B → A is another section of π and let θE be the map defined using s instead of
s. Since s and s are both sections of π there exists a linear map h : B → V with
s− s = ∂h. We have

(θE − θE)(x, y, z) =h(x)(s(y)s(z)− s(yz))− (s(x)s(y)− s(xy))h(z)

+ s(x)(g − g)(y, z)− (g − g)(xy, z)

+ (g − g)(x, yz)− (g − g)(x, y)s(z) (∗)
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where g(x, y) = q(s(x)s(y)− s(xy)) and g(x, y) = q(s(x)s(y)− s(xy)). We define a
map b : B⊗2 → V as follows.

b(x, y) = s(x)h(y)− h(xy) + h(x)s(y)− h(x)∂h(y)

Since ∂b = ∂(g−g) then (g−g−b) is a map from B⊗2 to M . Moreover we can replace
(g − g) by b without changing the equality (∗) in HH3(B,M) since the difference
is the coboundary δ(g − g − b). After replacing (g − g) by b, since ∂ : V → A is a
crossed module we obtain the following equality in HH3(B, M).

(∗) ≡∂h(x)s(y)h(z)− h(x)s(y)∂h(z)− ∂h(x)h(yz) + h(x)∂h(yz)

+ ∂h(x)h(y)s(z)− h(x)∂h(y)s(z) = 0

That proves that the class of θE does not depend on the section s.
Consider a map E → E ′ as follows.

0 // M
i

/ / V
∂

//

α
��

A
π

//

β
��

B // 0

0 // M
i′

// V ′ ∂′
// A′

π′
// B // 0

Let s : B → A and q : Im(∂) → V be sections of π and ∂ and let s′ : B → A′ and
q′ : Im(∂′) → V ′ be sections of π′ and ∂′. Then

(θE − θE′)(x, y, z) =α(s(x)q(s(y)s(z)− s(yz))− q(s(xy)s(z)− s(xyz))

+ q(s(x)s(yz)− s(xyz))− q(s(x)s(y)− s(xy))s(z))

− s′(x)q′(s′(y)s′(z)− s′(yz)) + q′(s′(xy)s′(z)− s′(xyz))

− q′(s′(x)s′(yz)− s′(xyz)) + q′(s′(x)s′(y)− s′(xy))s′(z) (∗)

Since π′βs = 1 then βs is another section for π′ and therefore we can now replace
s′ by βs and we obtain the following equality in HH3(B, M).

(∗) ≡βs(x)((αq − q′β)(s(y)s(z)− s(yz)))− (αq − q′β)(s(xy)s(z).s(xyz))

+ (αq − q′β)(s(x)s(yz)− s(xyz))− (αq − q′β)(s(x)s(y)− s(xy))βs(z)

Thus (θE − θE′)(x, y, z) = δφ(x, y, z) for some φ : B⊗2 → M . This proves that
θE = θE′ in HH3(B, M) and that the class of θE in HH3(B, M) does not depend
on the sections s and q. Therefore ψ is well defined.

The bijectivity of ψ follows from the following lemma.

Lemma 3.3. Given c ∈ HH3(B, M) there exists a crossed module Ec ∈ Cross(B,M)
such that θEc = c. Moreover if E ∈ Cross(B,M) and θE = c in HH3(B,M) there
exists a map of crossed modules Ec → E.

Before we proceed with the proof, we show a construction which will be useful
to prove the lemma.

Construction 3.4. Free crossed module. Given a (graded) k-algebra A, a (graded)
k-vector space V and a k-linear map d : V → A (of degree 0) we obtain the free
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crossed module with basis (V, d) as follows. Define

A⊗ V ⊗A⊗ V ⊗A
d2

// A⊗ V ⊗A
d1

// A

by

d2(a⊗ x⊗ b⊗ y ⊗ c) = (a(dx)b⊗ y ⊗ c)− (a⊗ x⊗ b(dy)c)

d1(a⊗ x⊗ b) = a(dx)b

for a, b, c ∈ A and x, y ∈ V . Since d1d2 = 0 then d1 induces

∂ : W = A⊗ V ⊗A/Im(d2) → A.

It is easy to see that (W,A, ∂) is a crossed module which has the universal property
of the free crossed module with basis (V, d).

Proof of Lemma 3.3. Let

T (B) =
⊕

n>0

B⊗n

be the tensor algebra generated by B as a k-vector space and let π : T (B) → B be
the map of algebras given by π(a1 ⊗ . . . ⊗ an) = a1 . . . an. Let V = B ⊗ B and let
d : V → T (B) be the linear map defined by

d(x⊗ y) = x⊗ y − xy

and consider (W,T (B), ∂) the free crossed module with basis (V, d). The cokernel
of this crossed module is the algebra B. Let N be the kernel of ∂.

Now consider the bar resolution (B⊗(n+2), d) and the following commutative
diagram of vector spaces

0 // N //

h
��

W
∂

//

h1

� �

T (B)

h0

� �

/ / B / / 0

0 / / B⊗5/Im(d4)
d3

// B⊗4
d2

/ / B⊗3
d1

/ / B⊗2
µ

// B / / 0

Here the map h0 : T (B) → B⊗3 is not a bimodule map but a derivation defined by
h0(b) = 1 ⊗ b ⊗ 1 for b ∈ B and h0(xy) = π(x)h0(y) + h0(x)π(y) for x, y ∈ T (B).
The map h1 : W → B⊗4 is the bimodule map defined by h1(x ⊗ a ⊗ b ⊗ y) =
π(x)⊗ a⊗ b⊗ π(y) for x, y ∈ T (B) and a, b ∈ B. It is easy to see that d2h1 = h0∂.
By restricting h1 to N we obtain the map of B-bimodules h : N → B⊗5/Im(d4).

An element c ∈ HH3(B, M) can be seen as a map c : B⊗5/Im(d4) → M of B-
bimodules. Composing with h we obtain the map c̃ = ch : N → M of B-bimodules.
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Consider the pushout of T (B)-bimodules

N

Pushc̃
��

// W

r
��

∂

��

M //

0
+ +

W
∂

""

T (B)

.

We show that Ec = ( 0 // M / / W
∂

/ / T (B) // B // 0 ) is the de-
sired crossed module.

The free crossed module F = ( 0 // N // W
∂

// T (B) / / B / / 0 )
induces a cocycle θF : B⊗5/Im(d4) → N as a map of B-bimodules by the formula (§)
via the linear sections s : B → T (B) given by s(b) = b and q : Im(∂) = ker(π) → W
defined by q(x⊗ y − xy) = 1⊗ x⊗ y ⊗ 1 ∈ W . Now θEc can be computed from θF
since the map q = rq : Im(∂) = ker(π) → W is a section of ∂, that is

θEc = chθF : B⊗5/Im(d4) → M.

Since hθF = 1 : B⊗5/Im(d4) → B⊗5/Im(d4) it follows that θEc = c.
Suppose now we have a crossed module

E = ( 0 // M / / V
α

// A
p

// B / / 0 )

such that ψ(E) = c ∈ HH3(B,M). That implies that for certain choice of linear
sections s : B → A and q : Im(α) → V we have θE = c where θE is constructed by
the formula (§). This induces a map of crossed modules

0 / / N

ch
��

/ / W
∂

//

g

��

T (B) π
/ /

s
� �

B // 0

0 // M // V // A / / B // 0

where the map s : T (B) → A is the map of algebras induced by s and the map
g : W → V is induced by the linear map g : B⊗2 → V, g(x, y) = q(s(x)s(y)−s(xy)).
By the universal property of the pushout

N

Pushc̃
��

/ / W

r
� �

M // W

,

there is a map Ec → E in Cross(B,M).

Any differential graded k-algebra induces a crossed module as we can see in the
following construction.
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Construction 3.5. The characteristic class of a cochain algebra. Let C be a dif-
ferential graded k-algebra with differential of degree +1, that is C =

⊕

i>0 Ci with
CiCj ⊆ Ci+j and a differential d : C → C of degree +1 satisfying d(xy) = (dx)y +
(−1)|x|xd(y) and d2 = 0. Consider the graded k-vector spaces V = coker(d)[1] and
A = ker(d). Here we define for a graded vector space W the shifted graded vector
space W [1] by

(W [1])n+1 = Wn

The elements in (W [1])n+1 are denoted by s(w), where w ∈ Wn. Hence for the cok-
ernel of the differential W = coker(d) we obtain the shifted object V = coker(d)[1].
We denote by s(x) ∈ coker(d)[1] the element corresponding to x ∈ C via the pro-
jection C � coker(d). Then d induces a map of graded k-vector spaces

∂ : V = coker(d)[1] → A = ker(d)

carrying s(x) to dx. The multiplication in C induces a structure of k-algebra on A.
Moreover it induces a structure of A-bimodule on V by setting

a ∗ s(x) = (−1)|a|s(ax)

s(x) ∗ b = s(xb)

In fact, for y = dz and a ∈ A we have (−1)|a|ay = d(az) and therefore the multi-
plication is well defined. We now check that ∂ : V → A is a crossed module. Given
a ∈ A and s(x) ∈ V we have

∂(a ∗ s(x)) = (−1)|a|∂(s(ax)) = (−1)|a|d(ax) = ad(x) = a∂(s(x))

In the same way one can check that ∂(s(x)∗a) = ∂(s(x))a. Given now s(x), s(y) ∈ V
we have

∂(s(x)) ∗ s(y) = (dx) ∗ s(y) = (−1)|x|+1s((dx)y) = s(x(dy)) = s(x) ∗ (dy) =

s(x) ∗ ∂(s(y)).

Thus the DG-algebra C induces a crossed module (V, A, ∂), the cokernel of which is
the algebra H∗(C) and the kernel is the H∗(C)-bimodule whose underlying k-vector
space is H∗(C)[1] and where the left multiplication is twisted, i.e. x ∗ y = (−1)|x|xy
and the right multiplication is the ordinary one. We denote this H∗(C)-bimodule
by H∗(C)[1]. The crossed module ∂ : V → A represents by 3.2 an element 〈C〉 ∈
HH3(H∗(C), H∗(C)[1]) which is termed the characteristic class of the cochain al-
gebra C (compare with [6]).

Construction 3.6. The characteristic class of a chain algebra. For a chain algebra
C = {Ci, i > 0} concentrated in non-negative degrees with differential d : C → C
of degree −1 satisfying d(xy) = (dx)y + (−1)|x|xd(y) and d2 = 0 we proceed in
the same way as in 3.5. We consider the graded vector spaces V = coker(d)>1[−1]
and A = ker(d). Here coker(d)>1[−1] denotes the shifted graded vector space from
coker(d)>1 similarly as above. The differential d induces as before a crossed module

∂ : V = coker(d)>1[−1] → A = ker(d)
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the cokernel of which is the algebra H∗(C) and the kernel is the H∗(C)-bimodule
whose underlying vector space is H>1(C)[−1] and where the left multiplication
is twisted and the right multiplication is the ordinary one. We denote this bi-
module by H>1(C)[−1]. The crossed module represents by 3.2 an element 〈C〉 ∈
HH3(H∗(C), H>1(C)[−1]) which is termed the characteristic class of the chain al-
gebra C.

Defination and Remark 3.7. Massey triple products of crossed modules. Let

E = ( 0 // M
i

// V
∂

// A
π

// B / / 0 )

be a crossed module over B with kernel M . Given a, b, c ∈ B with ab = bc = 0, we
define the Massey triple product 〈a, b, c〉 ∈ M/(aM + Mc) as follows. Let s : B → A
be a k-linear section of π, i.e. πs = 1 and let q : Im(∂) → V be a k-linear section
of ∂. Since ab = 0 then s(a)s(b) ∈ ker(π) and we can take q(s(a)s(b)) ∈ V . In the
same way, since bc = 0, we consider q(s(b)s(c)) ∈ V . Now consider the element
{a, b, c} = s(a)q(s(b)s(c))− q(s(a)s(b))s(c) ∈ V . Since ∂({a, b, c}) = 0 this element
is in fact in M and we define

〈a, b, c〉 = {a, b, c} ∈ M/(aM + Mc),

where {a, b, c} denotes the class of {a, b, c} in the quotient. One can check that
〈a, b, c〉 does not depend on the choice of s and q. Moreover it depends only on the
class of E in π0 Cross(B,M) and the elements a, b and c. In fact 〈a, b, c〉 can be
computed from HH3(B, M) by taking

〈a, b, c〉 = θE(a, b, c)

where θE is any cocycle representing the class of ψ(E) ∈ HH3(B, M). Note that
for any DG-algebra C and any Massey triple x, y, z ∈ H∗(C) the Massey product
defined here in terms of ∂ in 3.5 coincides with the classical one.

Remark 3.8. Connection with Baues–Wirsching cohomology of categories. Given a
monoid C one can consider C as a category C with one object ∗. Let M : C ×Cop →
Vectk be a functor, where Vectk denotes the category of k-vector spaces. Then
the C-bimodule M induces a natural system on C also denoted by M (see [5])
and we have the Baues–Wirsching cohomology groups of C with coefficients in M
denoted by Hn(C,M). On the other hand one can consider the k-algebra k[C]
and the k[C]-bimodule iM induced by the C-bimodule M . It is easy to see that
HHn(k[C], iM) = Hn(C, M). For n = 3 this isomorphism induces a bijection

π0Track(C,M) = π0 Cross(k[C], iM).

Here Track(C,M) denotes the category of track extensions over C with kernel M
(cf. [3],[4]).

In the last section of this paper we define the �-product of crossed modules in
order to compute the characteristic class of a tensor product of differential algebras.
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4. crossed n-fold extensions and main result

We introduce in this section the groups Opextn(B,M) of crossed n-fold exten-
sions of a k-algebra B by a B-bimodule M , n > 2. These extensions are analogous
to crossed extensions of groups (cf. [7]). Our result 4.3 shows that the connected
classes of such extensions represent cohomology classes in HHn+1(B, M).

Definition 4.1. Let B be a k-algebra and M a B-bimodule. For n > 2, a crossed
n-fold extension of B by M is an exact sequence

0 // M
f
// Mn−1

∂n−1
// . . . ∂2

/ / M1
∂1

// A
π

// B / / 0

of k-vector spaces with the following properties.

1. (M1, A, ∂1) is a crossed module with cokernel B,

2. Mi is a B-bimodule for 1 < i 6 n− 1 and ∂i and f are maps of B-bimodules.

Note that the map ∂1 is a map of A-bimodules since (M1, A, ∂1) is a crossed module
and it makes sense to require ∂2 to be a map of B-bimodules since the kernel of ∂1

is naturally a B-bimodule.

Definition 4.2. Given a crossed n-fold extension of B by M

E = ( 0 // M
f
/ / Mn−1

∂n−1
// . . . ∂2

/ / M1
∂1

// A
π

// B // 0 )

and a crossed n-fold extension of B by M ′

E ′ = ( 0 // M ′ f ′
// M ′

n−1
∂′n−1

// . . . ∂′2
// M ′

1
∂′1

// A′
π′

/ / B // 0 )

a map from E to E ′ is a sequence (α, δn−1, . . . , δ1, β) such that α : M → M ′ and
δi : Mi → M ′

i are morphisms of B-bimodules for i > 2, (δ1, β) : (M1, A, ∂1) →
(M ′

1, A
′, ∂′1) is a map of crossed modules which induces the identity on B and the

whole diagram commutes.

Let En(B, M) be the following category. The objects are the crossed n-fold ex-
tensions of B by M and the morphisms are the maps between such extensions that
induce the identity on M . We denote Opextn(B, M) = π0En(B,M). Of course
Opext2(B, M) coincides with π0 Cross(B, M).

We will exhibit a natural structure of Abelian group on Opextn(B,M) and prove
the main result of this section.

Theorem 4.3. There exists an isomorphism of Abelian groups

Opextn(B, M) = HHn+1(B, M), n > 2.

Definition 4.4. For n > 3 we define the element 0 ∈ Opextn(B, M) as the class
of the extension

0 // M M / / 0 // . . . // 0 // B B / / 0 .
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Remark 4.5. If B is a projective algebra or M is injective as a B-bimodule, then
Opextn(B, M) = 0. In general, if

E = ( 0 // M
f
/ / Mn−1

∂n−1
// . . . ∂2

/ / M1
∂1

// A
π

// B // 0 )

and there is a map g : Mn−1 → M such that gf = 1M , then E = 0 in Opextn(B,M),
n > 3.

Proposition 4.6. Given E ∈ Opextn(B,M) and a map α : M → M ′ of B-
bimodules, there exists an extension αE ∈ Opextn(B, M ′) and a morphism of the
form (α, δn−1, . . . , β) from E to αE. Moreover, αE is unique in Opextn(B, M ′) with
this property.

Proof. Let E = ( 0 // M
f
// Mn−1

∂n−1
// . . . ∂2

// M1
∂1

// A
π

// B // 0 ). Consider the
following pushout of B-bimodules

M //

α

��

Push

Mn−1

i
� �

� �

M ′ //

0

,,

Mn−1

##

Mn−2

Take αE = ( 0 / / M ′ // Mn−1
// . . . . . . // M1

∂1
/ / A // B // 0 ) in

Opextn(B,M ′) and the morphism (α, i, 1, . . . , 1) : E → αE .
Given E ′ ∈ Opextn(B, M ′) and a morphism of the form (α, δn−1, . . . , β) : E →

E ′, by properties of the pushout we find a map (1, j, δn−2, . . . , β) : αE → E ′ and
therefore αE = E ′ ∈ Opextn(B,M ′).

Defination and Remark 4.7. By 4.6, a morphism of B-bimodules α : M → M ′

induces a well defined function

α∗ : Opextn(B, M) → Opextn(B, M ′)

by α∗(E) = αE .

Lemma 4.8. If E = (0 //M
f

/ /Mn−1 // . . .) ∈ Opextn(B,M), then fE =
0 ∈ Opextn(B, Mn−1).

Proof. Consider the morphism of extensions

0 // M
f

//

f
��

Mn−1
g

/ /

(1,g)
��

Mn−2 / /

Identity

. . .

0 // Mn−1
(1,0)

// Mn−1 ⊕Mn−2
p2

// Mn−2 / / . . .

By definition the row in the bottom corresponds to fE , therefore by 4.5 fE = 0.
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Definition 4.9. Given two crossed n-fold extensions of B

E = ( 0 // M
f
/ / Mn−1

∂n−1
// . . . ∂2

/ / M1
∂1

// A
π

// B // 0 )

and

E ′ = ( 0 // M ′ f ′
// M ′

n−1
∂′n−1

// . . . ∂′2
// M ′

1
∂′1

// A′
π′

/ / B // 0 )

the sum of E and E ′ over B is denoted by E ⊕B E ′ and corresponds to the following
crossed n-fold extension

0 // M ⊕M ′
// Mn−1 ⊕M ′

n−1
// . . . //

// M1 ⊕M ′
1

(∂1,∂′1)
// A×B A′

q
// B / / 0 .

Here the algebra A×B A′ is defined as follows. The elements of it are the pairs (a, a′)
with a ∈ A and a′ ∈ A′ such that πa = π′a′, addition and multiplication is defined
coordinatewise. The map q : A×B A′ → B is the map q(a, a′) = π(a) = π′(a′). The
action of A ×B A′ on M1 ⊕M ′

1 is also defined coordinatewise. It is easy to check
that this defines a crossed module (M1 ⊕M ′

1, A×B A′, (∂1, ∂′1)).

Definition 4.10. Given E , E ′ ∈ Opextn(B, M) with n > 3, we define the Baer Sum
E + E ′ ∈ Opextn(B,M) as follows.

E + E ′ = ∇M (E ⊕B E ′)

where ∇M : M ⊕M → M is the codiagonal.

Theorem 4.11. For n > 3 the set Opextn(B, M) equipped with the Baer sum is an
abelian group with the zero element defined as in 4.4. The inverse of an extension

E = ( 0 // M
f
// Mn−1

g
// . . . . . . // M1

∂1
/ / A // B // 0 )

is the extension

(−1M )E = ( 0 // M
−f

// Mn−1
g

// . . . . . . // M1
∂1

// A // B / / 0 )

Moreover, the maps α∗ : Opextn(B, M) → Opextn(B,M ′) are morphisms of groups.

Proof. Follows the classical one (cf. [10]). One has to check that

1. (α + β)E = αE + βE
2. α(E + E ′) = αE + αE ′

The Baer sum in Opext2(B, M) is defined in a slightly different way. Recall that
the elements in Opext2(B,M) are classes of crossed modules with cokernel B and
kernel M . The class of 0 ∈ Opext2(B, M) is the class of the extension

0 // M M
0

/ / B B // 0
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Now given

E = ( 0 // M
i

// V
∂

// A
π

// B / / 0 )

and

E ′ = ( 0 / / M
i′

// V ′ ∂′
// A′

π′
/ / B // 0 ),

the Baer sum E + E ′ is the class of the extension

E + E ′ = ( 0 // M
j

// V + V ′ ∂̃
// A×B A′

q
// B / / 0 )

where q : A ×B A′ → B is defined as in 4.9 and V + V ′ is the pushout of k-vector
spaces

M ⊕M

Push∇
��

i⊕i′
// V ⊕ V ′

r

��

(∂,∂′)

��

M
j

//

0
,,

V + V ′

∂̃

%%

A×B A′

.

The structure of (A×B A′)-bimodule on V +V ′ is induced by the structure on V ⊕V ′

(coordinatewise) via the quotient map r : V ⊕ V ′ → V + V ′ by (a, a′)r(v, v′) =
r(av, a′v′) and r(v, v′)(a, a′) = r(va, v′a′). Note that the multiplication is well de-
fined since (a, a′) ∈ A ×B A′ and therefore π(a) = π′(a′). It is easy to check that
∂̃ : V + V ′ → A×B A′ is a crossed module.

Remark 4.12. With this structure of abelian group in Opext2(B, M) the bijection

ψ : Opext2(B, M) → HH3(B,M)

of 3.2 is an isomorphism of groups.

Definition 4.13. Given a short exact sequence of B-bimodules

0 / / M
α

// M ′ β
// M ′′ / / 0

we define a connecting homomorphism (n > 2)

δ : Opextn(B,M ′′) → Opextn+1(B, M)

as follows. Given an extension E = ( 0 // M ′′ f
// Mn−1 // . . . ), take δ(E)

to be the class of the extension ( 0 // M
α

// M ′ fβ
// Mn−1 // . . . ).

Note that δ is a well defined homomorphism for all n > 2.

Theorem 4.14. A short exact sequence

0 // M
α

// M ′ β
// M ′′ / / 0
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of B-bimodules induces a long exact sequence of abelian groups (n > 2)

Opextn(B, M)
α∗

/ / Opextn(B,M ′)
β∗

// Opextn(B, M ′′) δ
//

Opextn+1(B,M) / / . . .

Proof. To prove exactness at Opextn(B, M ′) with n > 3 note first that β∗α∗ =
(βα)∗ = 0. Now let

E = ( 0 // M ′ f
// Mn−1

g
// Mn−2 // . . . // M1

∂
// A // B / / 0 ) ∈ Opextn(B, M ′)

and βE = 0. We suppose first that there is a map βE → 0, i.e.

βE = ( 0 / / M ′′ h
// Mn−1

g′
/ / Mn−2 // . . . // M1

∂
// A / / B // 0 )

and there is a map r : Mn−1 → M ′′ such that rh = 1. The following diagram shows
that E = αE .

0 // M
fα

//

α

��

ker rt
g

/ /

i
��

Mn−2 //

Id

. . .

0 // M ′ f
//

β

��

Mn−1

t
� �

g
/ / Mn−2 //

Id

. . .

0 // M ′′ h
// Mn−1

g′
// Mn−2 // . . .

Suppose now that there is a map 0 → βE . In this case it is easy to see that E = 0. The
general case follows combining these both cases. Suppose for example there exists an

extension Ẽ = ( 0 // M ′′ l
// M̃n−1

// M̃n−2
/ / . . . ) ∈ Opextn(B,M ′′)

and maps Ẽ → βE and Ẽ → 0. In this case we construct the extension E with αE = E
as follows. There exists a retraction r : M̃n−1 → M ′′ such that rl = 1. Consider the
pushout of B-bimodules

M̃n−1

Pushr

��

// Mn−1

r
� �

M ′′ / / M ′′

and take E = ( 0 // M
fα

// Ker rt
g

// Mn−2 // . . . ).

For n = 2 exactness at Opext2(B, M ′) follows from 3.2.
To prove exactness at Opextn+1(B, M) for n > 2 note first that δ(E) has the

form

δ(E) = ( 0 // M
α

// M ′ fβ
// Mn−1 // . . . // M1

∂
/ / A // B // 0 )
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and therefore αδ(E) = 0 by 4.8. Now let

E = ( 0 // M
f
/ / Mn−1

g
/ / Mn−2 // . . . // M1

∂
// A / / B // 0 ) ∈ Opextn(B, M)

with αE = 0. Applying the same argument as above, we can suppose that there is
a map αE → 0, i.e.

αE = ( 0 // M ′ l
// Mn−1

g′
// Mn−2 // . . . // M1

∂
// A // B // 0 )

and there is a map t : Mn−1 → M ′ such that tl = 1.
Consider the following diagram

0 // M
f

// Mn−1
g

//

tr

��

Push

Mn−2

��

// Mn−3 //

Id

. . .

0 // M
α

// M ′
j

// Mn−2
/ / Mn−3 // . . .

The map j can be factored j = hβ for some h : M ′′ → Mn−2 and therefore
E = δ(E ′) with

E ′ = ( 0 // M ′′ h
// Mn−2

// Mn−3 / / . . . ).

To prove exactness at Opextn(B, M ′′) for n > 2 consider the following diagrams.
The first row of the first diagram corresponds to E ∈ Opextn(B,M ′) and the second
row corresponds to βE ∈ Opextn(B,M ′′).

0 // M ′

β

��

f
/ / Mn−1 //

��

Mn−2 / /

Id

. . .

0 // M ′′ h
// Mn−1

// Mn−2 / / . . .

0 / / M
(1M ,0)

// M ⊕M ′ 0+f
//

α+1M′

��

Mn−1 //

� �

Mn−2 / /

Id

. . .

0 // M
α

/ / M ′ hβ
// Mn−1

// Mn−2 / / . . .

Proof of 4.3. The result is true for n = 2 by 3.2. For n > 3 we use theorem 4.14.
Since the category of B-bimodules has enough injectives, we can find a short exact
sequence

0 // M
α

// M ′ β
// M ′′ / / 0

with M ′ injective. By 4.14 and 4.5 we have

Opextn+1(B,M) = Opextn(B, M ′′).
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On the other hand we have HHn+2(B, M) = HHn+1(B, M ′′) by the long exact
sequence of cohomology. Hence the result follows by induction from 3.2.

Remark 4.15. Theorem 4.3 is the analogue of a corresponding result for the co-
homology of groups. In fact, using crossed modules in the category of groups as
introduced by J.H.C.Whitehead [12] one can consider crossed extensions of groups
which represent elements in the cohomology of groups (cf. Huebschmann [7]).

5. The characteristic class of a tensor product of differential
algebras

In this section we define the �-product of crossed modules. The definition of
∂1 � ∂2 is used below for the computation of the characteristic class of a tensor
product of differential algebras (see 3.5 above).

Definition 5.1. Let ∂1 : V1 → A1 and ∂2 : V2 → A2 be crossed modules. Consider
the diagram of (graded) vector spaces

V1 ⊗ V2
d2

// (V1 ⊗A2)⊕ (A1 ⊗ V2)
d1

// (A1 ⊗A2) (*)

where d1 and d2 are defined as follows.

d2(v1 ⊗ v2) = ∂1v1 ⊗ v2 − v1 ⊗ ∂2v2

d1(v1 ⊗ a2) = ∂1v1 ⊗ a2

d1(a1 ⊗ v2) = a1 ⊗ ∂2v2

Since d1d2 = 0 we obtain a map ∂ induced by d1:

∂ : W =
(V1 ⊗A2)⊕ (A1 ⊗ V2)

Im(d2)
→ A1 ⊗A2

Note that the diagram (*) is in fact a diagram of (A1⊗A2)-bimodules. Here the
(A1 ⊗A2)-bimodule structure on V1 ⊗ V2 is given by

(a1 ⊗ a2)(v1 ⊗ v2) = (−1)|a2||v1|(a1v1 ⊗ a2v2)

(v1 ⊗ v2)(a1 ⊗ a2) = (−1)|v2||a1|(v1a1 ⊗ v2a2)

Thus the map ∂ : W → A1⊗A2 is a map of (A1⊗A2)-bimodules. We show now that
∂ is a crossed module. Given w, w′ ∈ W we have to check that ∂(w)w′ = w∂(w′).
For v1, v′1 ∈ V1, a2, a′2 ∈ A2 we have

∂(v1 ⊗ a2)(v′1 ⊗ a′2) = (∂1v1 ⊗ a2)(v′1 ⊗ a′2)

= (−1)|a2||v′1|((∂1v1)v′1 ⊗ a2a′2) = (v1 ⊗ a2)∂(v′1 ⊗ a′2)

We have similar equation for ∂(a1 ⊗ v2)(a′1 ⊗ v′2). Now for (v1 ⊗ a2) and (a1 ⊗ v2)
we have

∂(v1 ⊗ a2)(a1 ⊗ v2) = (∂1v1 ⊗ a2)(a1 ⊗ v2) = (−1)|a2||a1|(∂1(v1a1)⊗ a2v2)

= (−1)|a2||a1|(v1a1 ⊗ ∂2(a2v2)) = (v1 ⊗ a2)∂(a1 ⊗ v2)
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Thus ∂ : W → A1⊗A2 is a crossed module termed the �-product of ∂1 and ∂2 and
is denoted by ∂1 � ∂2.
Notation. Given a crossed module ∂ : V → A we denote the cokernel of ∂ by π0(∂)
and the kernel by π1(∂).

Proposition 5.2. The �-product of two crossed modules ∂1 and ∂2 satisfies

π0(∂1 � ∂2) = π0(∂1)⊗ π0(∂2) (1)

π1(∂1 � ∂2) = (π0(∂1)⊗ π1(∂2))⊕ (π1(∂1)⊗ π0(∂2)) (2)

Proof. To prove (1) consider the map

ψ : π0(∂1 � ∂2) → π0(∂1)⊗ π0(∂2)

defined by ψ(a1 ⊗ a2) = a1 ⊗ a2. It is easy to check that this map is well defined
and is and isomorphism.

To prove (2) consider the map

φ : (π0(∂1)⊗ π1(∂2))⊕ (π1(∂1)⊗ π0(∂2)) → π1(∂1 � ∂2)

given by φ(a1 ⊗ v2) = a1 ⊗ v2 and φ(v1 ⊗ a2) = v1 ⊗ a2.
We show that φ is well defined. For a1 = ∂1v1 and v2 ∈ ker(∂2) we have

∂1v1 ⊗ v2 = v1 ⊗ ∂2v2 = 0

The same procedure for a2 = ∂2v2 and v1 ∈ ker(∂1). Moreover ∂(a1 ⊗ v2) = 0 if
v2 ∈ ker(∂2) and ∂(v1 ⊗ a2) = 0 for v1 ∈ ker(∂1).

To prove that φ is and isomorphism consider a k-linear section of ∂1, q1 :
Im(∂1) → V1. Suppose v1 ⊗ a2 ∈ W and ∂1v1 ⊗ a2 = 0. Then (q1∂1v1 ⊗ a2) = 0
and therefore v1 ⊗ a2 = (v1 − q1∂1v1) ⊗ a2 and v1 − q1∂1v1 ∈ ker(∂1). The same
procedure for a1 ⊗ v2. This implies that φ is an isomorphism.

Proposition 5.3. Let ∂1 and ∂2 be crossed modules with cokernel Bi and kernel
Mi, i = 1, 2. Then the class

〈∂1 � ∂2〉 ∈ π0 Cross(B1 ⊗B2, (B1 ⊗M2)⊕ (M1 ⊗B2)) =

HH3(B1 ⊗B2, (B1 ⊗M2)⊕ (M1 ⊗B2))

depends only on the classes 〈∂1〉 ∈ HH3(B1,M1) and 〈∂2〉 ∈ HH3(B2,M2). More-
over one obtains a group homomorphism

Γ : HH3(B1,M1)⊕HH3(B2,M2) → HH3(B1 ⊗B2, (B1 ⊗M2)⊕ (M1 ⊗B2))

defined by Γ(〈∂1〉, 〈∂2〉) = 〈∂1 � ∂2〉.

Proof. To check that 〈∂1 � ∂2〉 depends only on the class of ∂1 and ∂2 consider a
map α : ∂1 → ∂′1 in Cross(B1,M1)

M1 // V1
∂1

//

α1

��

A1

α0

��

// B1

M1 // V ′
1

∂′1
// A′1 // B1
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Then α induces a map

α� 1 : ∂1 � ∂2 → ∂′1 � ∂2

given by (α � 1)0 : A1 ⊗ A2 → A′1 ⊗ A2, (α � 1)0(a1 ⊗ a2) = α0(a1) ⊗ a2 and
(α� 1)1 : (V1 ⊗A2)⊕ (A1 ⊗ V2) → (V ′

1 ⊗A2)⊕ (A′1 ⊗ V2) defined by

(α� 1)1(v1 ⊗ a2) = α1(v1)⊗ a2

(α� 1)1(a1 ⊗ v2) = α0(a1)⊗ v2

It is easy to check that (α � 1) is a well defined map in Cross(B1 ⊗ B2, (B1 ⊗
M2)⊕(M1⊗B2)) from ∂1�∂2 to ∂′1�∂2. The same argument applies to β : ∂2 → ∂′2.
That proves the first part of the proposition.

To prove that Γ is a well defined homomorphism one has to check that

〈(∂1 + ∂′1)� 0〉 = 〈∂1 � 0〉+ 〈∂′1 � 0〉 (∗)

and the same for 〈0 � (∂2 + ∂′2)〉. The sum (∂1 + ∂′1) ∈ HH3(B1,M1) and the
element 0 ∈ HH3(B2,M2) are defined explicitly in section 4 below (Baer Sum in
Opext2(B, M)).

It is easy to check that (∗) holds. In fact the class 〈(∂1 + ∂′1)� 0〉 ∈ HH3(B1 ⊗
B2, (B1 ⊗M2)⊕ (M1 ⊗B2)) corresponds to the class of the crossed module

∂ : ((V1 + V ′
1)⊗B2)⊕ (B1 ⊗M2) → (A1 ×B1 A′1)⊗B2

with ∂((v1 + v′1)⊗ b2) = (∂1v1, ∂′1v
′
1)⊗ b2 and ∂(b1 ⊗m2) = 0. Here (V1 + V ′

1) and
(A1 ×B1 A′1) are defined as in section 4 below.

We can describe the �-product in terms of classical cohomology products

HHn(B1,M1)⊗HHm(B2,M2) → HHn+m(B1 ⊗B2,M1 ⊗M2)

(cf. [10],Chapter X). Given f ∈ HH3(B1,M1) we denote by f ⊗ 1B2 ∈ HH3(B1 ⊗
B2,M1 ⊗B2) the tensor product of f with 1B2 ∈ HH0(B2, B2) given by the map

HH3(B1, M1)⊗HH0(B2, B2) → HH3(B1 ⊗B2,M1 ⊗B2)

In similar way we define for an element g ∈ HH3(B2,M2) the element 1B1 ⊗ g ∈
HH3(B1 ⊗B2, B1 ⊗M2).

Proposition 5.4. Let ∂1 and ∂2 be crossed modules with cokernel Bi and kernel
Mi, i = 1, 2. There is an equivalence of crossed modules

∂1 � ∂2 = i1(1B1 ⊗ ∂2) + i2(∂1 ⊗ 1B2)

where

i1 : HH3(B1 ⊗B2, B1 ⊗M2) → HH3(B1 ⊗B2, (B1 ⊗M2)⊕ (M1 ⊗B2))

and

i2 : HH3(B1 ⊗B2,M1 ⊗B2) → HH3(B1 ⊗B2, (B1 ⊗M2)⊕ (M1 ⊗B2))

are induced by the inclusions i1 : B1 ⊗ M2 → (B1 ⊗ M2) ⊕ (M1 ⊗ B2) and i2 :
M1 ⊗B2 → (B1 ⊗M2)⊕ (M1 ⊗B2).
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Proof. The crossed module i1(1B1 ⊗ ∂2) corresponds by definition to the crossed
module

p1 : (B1 ⊗ V2)⊕ (M1 ⊗B2) → B1 ⊗A2

with p1(b1⊗ v2) = b1⊗ ∂2v2 and p1(m1⊗ b2) = 0. The crossed module i2(∂1⊗ 1B2)
corresponds to

p2 : (B1 ⊗M2)⊕ (V1 ⊗B2) → A1 ⊗B2

with p2(v1 ⊗ b2) = ∂1v1 ⊗ b2 and p2(b1 ⊗m2) = 0.
By definition of Baer Sum it is easy to check that i1(1B1 ⊗ ∂2) + i2(∂1 ⊗ 1B2) is

isomorphic to the crossed module ∂1 � ∂2.

Now let A and B be DG-algebras with differentials dA and dB of degree -1.
Consider the tensor product A⊗B which is a DG-algebra with differential defined
as follows.

dA⊗B(xi ⊗ yj) = dAxi ⊗ yj + (−1)ixi ⊗ dByj

for xi ∈ Ai and yj ∈ Bj .

Theorem 5.5. The characteristic class 〈A⊗B〉 ∈ HH3(H∗(A⊗B),H∗(A⊗B)[−1])
can be computed as

〈A⊗B〉 = (φ1)∗(1⊗ 〈B〉) + (φ2)∗(〈A〉 ⊗ 1)

where

φ1 : H∗(A)⊗H∗(B)[−1] → H∗(A⊗B)[−1]

φ2 : H∗(A)[−1]⊗H∗(B) → H∗(A⊗B)[−1]

are defined by φ1(a⊗ s−1(b)) = (−1)|a|s−1(a⊗ b) and φ2(s−1(a)⊗ b) = s−1(a⊗ b).

Proof. Let ∂A, ∂B and ∂A⊗B be the crossed modules induced by A,B and A ⊗ B.
There exists a morphism of crossed modules Υ : ∂A�∂B → ∂A⊗B defined as follows.

(coker(dA)[−1]⊗ ker(dB))⊕ (ker(dA)⊗ coker(dB)[−1])
Im(d2)

Υ1

� �

∂
// ker(dA)⊗ ker(dB)

Υ0

��

coker(dA⊗B)[−1]
∂A⊗B

// ker(dA⊗B)

The top row in the diagram corresponds to the �-product ∂A�∂B and the bottom
row corresponds to the crossed module ∂A⊗B . The map Υ0 : ker(dA) ⊗ ker(dB) →
ker(dA⊗B) is defined by

Υ0(xi ⊗ yj) = xi ⊗ yj xi ∈ (ker(dA))i, yj ∈ (ker(dB))j

The map Υ1 is defined as follows. For s−1(xi) ∈ (coker(dA)[−1])i and yj ∈
(ker(dB))j we define Υ1(s−1(xi)⊗ yj) to be the element

s−1(xi ⊗ yj) ∈ (coker(dA⊗B)[−1])i+j .
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For xi ∈ (ker(dA))i and s−1(yj) ∈ (coker(dB ][−1])j we define

Υ1(xi ⊗ s−1(yj)) = (−1)is−1(xi ⊗ yj) ∈ (coker(dA⊗B)[−1])i+j .

We check that the map Υ1 is well defined. Suppose xi = 0 ∈ (coker(dA))i i.e.
xi = dAai+1 for some ai+1 ∈ Ai+1. Then

Υ1(s−1(xi)⊗ yj) = s−1(dAai+1 ⊗ yj) = s−1(dA⊗B(ai+1 ⊗ yj)) = 0

The same argument for yj = 0 ∈ (coker(dB))j . For z = (dAxi ⊗ yj − xi ⊗ dByj) ∈
Im(d2) we have Υ1(z) = dA⊗B((−1)ixi ⊗ yj). Thus Υ1 is well defined.

It is easy to check that the diagram above is a morphism of crossed modules.
Moreover Υ : ∂A � ∂B → ∂A⊗B induces an isomorphism

Υ∗ : π0(∂A � ∂B) = π0(∂A)⊗ π0(∂B) = H∗(A)⊗H∗(B) → π0(∂A⊗B) = H∗(A⊗B)

and an epimorphism

Υ∗ : π1(∂A � ∂B) = (H∗(A)[−1]⊗H∗(B))⊕ (H∗(A)⊗H∗(B)[−1]) → π1(∂A⊗B) =

H∗(A⊗B)[−1]

The crossed module ∂A � ∂B induces an element 〈A〉 � 〈B〉 = 〈∂A � ∂B〉 ∈
HH3(H∗(A ⊗ B), π1(∂A � ∂B)) which is mapped by Υ to the characteristic class
〈A⊗B〉 ∈ HH3(H∗(A⊗B),H∗(A⊗B)[−1]) of the chain algebra A⊗B, i.e.

〈A⊗B〉 = Υ∗(〈A〉 � 〈B〉)

where the homomorphism

Υ∗ : HH3(H∗(A⊗B), π1(∂A � ∂B)) → HH3(H∗(A⊗B), H∗(A⊗B)[−1])

is the homomorphism induced by the map Υ∗ : π1(∂A � ∂B) → π1(∂A⊗B).
By 5.4 we have 〈A〉 � 〈B〉 = i1(1⊗ 〈B〉) + i2(〈A〉 ⊗ 1) and therefore

〈A⊗B〉 = (φ1)∗(1⊗ 〈B〉) + (φ2)∗(〈A〉 ⊗ 1)

with (φ1)∗ = (Υi1)∗ and (φ2)∗ = (Υi2)∗.

For cochain algebras one can prove the following analogous result.

Theorem 5.6. Let A and B be DG-algebras with differentials of degree 1. Then
the characteristic class 〈A ⊗ B〉 ∈ HH3(H∗(A ⊗ B), H∗(A⊗B)[1]) of the tensor
algebra A⊗B can be computed from 〈A〉 and 〈B〉 as

〈A⊗B〉 = (φ1)∗(1⊗ 〈B〉) + (φ2)∗(〈A〉 ⊗ 1)

where

φ1 : H∗(A)⊗H∗(B)[1] → H∗(A⊗B)[1] φ2 : H∗(A)[1]⊗H∗(B) → H∗(A⊗B)[1]

are the maps defined by φ1(a⊗ s(b)) = (−1)|a|s(a⊗ b) and φ2(s(a)⊗ b) = s(a⊗ b).
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