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Characterizing the unit ball
by its projective automorphism group

ANDREW M ZIMMER

In this paper we study the projective automorphism group of domains in real, complex,
and quaternionic projective space and present two new characterizations of the unit
ball in terms of the size of the automorphism group and the regularity of the boundary.

53C24; 22E40, 53A20

1 Introduction

Suppose K is either the real numbers R, the complex numbers C , or the quaternions H .
View KdC1 as a right K–module, and consider the action of GLdC1.K/ on the left.
Let P .KdC1/ be the space of K–lines in KdC1 (parametrized on the right). Then
PGLdC1.K/ acts on P .KdC1/ by diffeomorphisms.

Given an open set �� P .KdC1/, the projective automorphism group is defined to be

Aut.�/D f' 2 PGLdC1.K/ W '�D�g:

For instance, consider the set

B D
�
Œ1 W z1 W � � � W zd � 2 P .KdC1/ W

dX
iD1

jzi j
2 < 1

�
� P .KdC1/:

Then Aut.B/ coincides with the image of UK.1; d/ in PGLdC1.K/, and B is a bounded
symmetric domain in the following sense: B is bounded in an affine chart of P .KdC1/,
and Aut.B/ is a simple Lie group which acts transitively on B . Moreover, there is
a natural Aut.B/–invariant Riemannian metric g which makes .B; g/ isometric to
K–hyperbolic d –space; see, for instance, Mostow [21, Chapter 19].

The main goal of this paper is to provide new characterizations of this symmetric
domain. These characterizations will be in terms of the regularity of the boundary and
the size of the automorphism group. Notice that @B is real analytic, and Aut.B/ acts
transitively on B .
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We will measure the size of Aut.�/ using the limit set L.�/� @�, which is the set of
points x 2 @� such that there exists some p 2� and a sequence 'n 2 Aut.�/ with
'np! x . Since Aut.B/ acts transitively on B , clearly L.B/D @B .

We will also restrict our attention to a particular class of domains:

Definition 1.1 We call an open set �� P .KdC1/ a proper domain if � is connected
and bounded in some affine chart.

We will show that B is the only proper domain in complex or quaternionic projective
space whose boundary is C 1 and whose limit set contains a spanning set.

Theorem 1.2 (see Section 11) Suppose K is either C or H , and �� P .KdC1/ is
a proper domain with C 1 boundary. If there exist x1; : : : ; xdC1 2 L.�/ such that

x1C � � �C xdC1 DKdC1

(as K–lines), then � is projectively isomorphic to B .

Remark 1.3 Theorem 1.2 fails completely in real projective space. In particular,
there are many examples of proper domains �� P .RdC1/ which have C 1 boundary,
L.�/ D @�, and Aut.�/ is a discrete group which acts properly and cocompactly
on �. In some of these examples, Aut.�/ is isomorphic to a lattice in Isom.Hd

R/

(see Benoist [2, Section 1.3] for d > 2 and Goldman [11] for d D 2), while in other
examples, Aut.�/ is not quasi-isometric to any symmetric space (see Kapovich [16]).
More background on these examples of “divisible sets” in real projective space can be
found in the survey papers by Benoist [4], Goldman [12], Marquis [20], and Quint [22].

A subgroup H � Aut.�/ acts cocompactly on � if there exists a compact set K ��
such that H �K D�. When Aut.�/ acts cocompactly on � it is straightforward to
show that L.�/D @�; see Corollary 4.7 below. So Theorem 1.2 implies the following:

Corollary 1.4 Suppose K is either C or H , and � � P .KdC1/ is a proper do-
main with C 1 boundary. If Aut.�/ acts cocompactly on �, then � is projectively
isomorphic to B .

We will show the action of Aut.�/ is proper whenever � is a proper domain; see
Proposition 4.4 below. In particular, if Aut.�/ is noncompact, then L.�/¤ ∅. So
Theorem 1.2 also implies:
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Corollary 1.5 Suppose K is either C or H , and �� P .KdC1/ is a proper domain
with C 1 boundary. If Aut.�/ is noncompact and the group

G D fg 2 GLdC1.K/ W Œg� 2 Aut.�/g

acts irreducibly on KdC1 , then � is projectively isomorphic to B .

If �� P .KdC1/ is a proper domain, @� is a C 1 hypersurface, and for x 2 @� we
define TK

x @��P .KdC1/ to be the K–hyperplane tangent to @� at x . It is reasonable
to refer to the set TK

x @�\ @� as the closed K–face of x in @�. Our next result
shows that B is the only set in projective space with C 2 boundary and whose limit set
intersects two different closed K–faces.

Theorem 1.6 (see Section 9) Suppose K is either R, C , or H , and �� P .KdC1/
is a proper domain with C 2 boundary. If there exist x; y 2L.�/ with TK

x @�¤T
K
y @�,

then � is projectively isomorphic to B .

Remark 1.7 When d � 2, Theorem 1.6 fails for domains with C 1;1 boundary (see
Section 12) and in the holomorphic setting (see Example 2.10).

Using Proposition 6.1 below, Theorem 1.6 implies:

Corollary 1.8 Suppose K is either R, C , or H , and � � P .KdC1/ is a proper
domain with C 2 boundary. If there exists an element ' 2 GLdC1.K/ which has
eigenvalues of different absolute value, and Œ'� 2 Aut.�/, then � is projectively
isomorphic to B .

Acknowledgments This material is based upon work supported by the National Sci-
ence Foundation under Grant Number NSF 1400919.

2 Some prior results

There is a long history of rigidity results involving the structure of the boundary and the
size of Aut.�/. Many previous results make at least one of the following assumptions:

(1) Aut.�/ or a discrete subgroup acts cocompactly on �,

(2) @� is C 2 and satisfies some curvature condition (for instance, strong convexity
or strong pseudoconvexity), or

(3) � is convex.

In this brief section, we will survey some of these results in the real projective, the
complex projective, and the holomorphic settings.
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The real projective setting

As mentioned in Remark 1.3, there are many proper domains �� P .RdC1/ with C 1

boundary which admit a cocompact action by Aut.�/. However, rigidity appears if one
assumes higher regularity. For instance, Benoist proved the following characterization
of the unit ball in real projective space:

Theorem 2.1 [3, Theorem 1.3] Suppose that � � P .RdC1/ is a proper convex
domain, and that there exists a discrete group � � Aut.�/ which acts cocompactly on
�. If @� is C 1;˛ for all ˛ 2 Œ0; 1/, then � is projectively isomorphic to B .

Recall that an open bounded set ��Rd is called strongly convex if �D fx 2Rd W
r.x/ < 0g for some C 2 function r W Rd !R with rr ¤ 0 near @�, and if

Hessx.r/.v; v/ > 0

for all x2@� and v2Tx@�. A proper domain ��P .RdC1/ is called strongly convex
if it is a strongly convex set in some (hence any) affine chart which contains it as a
bounded set. With this terminology, Socié-Méthou proved the following rigidity result:

Theorem 2.2 [24] Suppose �� P .RdC1/ is a strongly convex open set. If Aut.�/
is noncompact, then � is projectively isomorphic to B .

Remark 2.3 Colbois and Verovic [7] gave an alternative proof with the additional
assumption that @� is C 3 . Later, Jo [15] and Yi [27] proved that it is enough to assume
that L.�/ contains a point x where @� is strongly convex in a neighborhood of x .

The complex projective setting

The complex projective setting is more rigid than the real projective setting, especially
when one assumes that there is a discrete group � � Aut.�/ which acts cocompactly
on �.

In P .C2/, there do exist nonsymmetric proper domains which admit a cocompact
action by a discrete group in Aut.�/. However, if @� has very weak regularity, then
a result of Bowen implies that � must be a symmetric domain:

Theorem 2.4 [5] Suppose �� P .C2/ is a proper domain and @� is a Jordan curve
with Hausdorff dimension one. If there exists a discrete group � � Aut.�/ which acts
cocompactly on �, then � is projectively isomorphic to B .
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In P .C3/, the cocompact case is even more rigid, and recent work of Cano and Seade
implies the following:

Theorem 2.5 [6] Suppose � � P .C3/ is a proper domain and � � Aut.�/ is a
discrete group which acts cocompactly on �. Then � is projectively isomorphic to B .

It is worth noting that Cano and Seade’s proof relies on Kobayashi and Ochiai’s [18]
classification of compact complex surfaces with a projective structure.

In higher dimensions, we proved the following weaker version of Corollary 1.4:

Theorem 2.6 [28] Suppose �� P .CdC1/ is a proper C–convex domain and there
exists a discrete group � � Aut.�/ which acts cocompactly on �. If @� is C 1 , then
� is projectively isomorphic to B .

Remark 2.7 An open set �� P .CdC1/ is called C–convex if its intersection with
any complex projective line is simply connected. Surprisingly, this weak form of
convexity has strong analytic implications. See [1; 13] for more details.

The holomorphic setting

There is also a long history of rigidity results involving bounded domains � � Cd

and their biholomorphic automorphism group Authol.�/. We will only mention a few
results and refer the reader to the survey articles [14] and [19] for more details.

The most classical is the well known characterization of the unit ball due to Rosay [23]
and Wong [26]. Recall that a bounded domain � � Cd is called strongly pseudo-
convex if � has C 2 boundary and the Levi-form at each point in the boundary is
positive definite.

Theorem 2.8 (Wong–Rosay ball theorem) Suppose ��Cd is a bounded strongly
pseudoconvex domain. If Authol.�/ is noncompact, then � is biholomorphic to the
unit ball.

In fact, it is enough to assume that the limit set contains a point x where @� is strongly
pseudoconvex in a neighborhood of x ; see [23]. Thus one obtains the following
characterization of the unit ball:

Corollary 2.9 Suppose ��Cd is a bounded domain with C 2 boundary. If Authol.�/

acts cocompactly on �, then � is biholomorphic to the unit ball.
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We should also observe the direct analogue of Theorem 1.6 fails in the holomorphic
setting in particular:

Example 2.10 Let �0 D f.z1; z2/ 2C2 W Im.z1/ > jz2j4g. Then for t 2R, Aut.�0/
contains the biholomorphic map

at � .z1; z2/! .e4tz1; e
tz2/:

Moreover, �0 is biholomorphic to �Df.z1; z2/2C2 W jz1j
2Cjz2j

4 <1g via the map

F W �0!�; F.z1; z2/D

�
z1� i

z1C i
;

z2

2.z1C i/1=2

�
:

Then bt D F ı at ıF�1 2 Aut.�/, and so .1; 0/; .�1; 0/ 2 L.�/. Finally, � is not
biholomorphic to the unit ball [25].

However, we recently proved this variant of Theorem 1.6 in the complex setting:

Theorem 2.11 [29] Suppose � � Cd is a bounded convex open set with C1

boundary. If there exist x; y 2 L.�/ with T C
x @�¤ T

C
y @�, then � is biholomorphic

to a domain of the form

f.z1; : : : ; zd / 2Cd
W jz1j

2
Cp.z2; : : : ; zd / < 1g;

where p is a polynomial.

Remark 2.12 In [29], we show that p is a “weighted homogeneous polynomial.”

Finally we should mention a remarkable theorem due to Frankel:

Theorem 2.13 [10] Suppose � � Cd is a bounded convex open set and there
exists a discrete group � � Authol.�/ which acts properly discontinuously, freely, and
cocompactly on �. Then � is a bounded symmetric domain.

3 Preliminaries

Notation

Given some object o we will let Œo� be the projective equivalence class of o: for instance,
if v 2KdC1 n f0g, let Œv� denote the image of v in P .KdC1/, and if � 2 GLdC1.K/,
let Œ�� denote the image of � in PGLdC1.K/.
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For v;w 2KdC1 , we define the standard inner product

hv;wi D t
xvw;

where txv is the conjugate transpose of v . We let kvk D
p
hv; vi be the norm induced

by this inner product, and for T 2 End.KdC1/ let kT k be the associated operator
norm. If K.dC1/� is the K–module of K–linear functions f W KdC1!K, then define

kf k D supfjf .z/j W z 2KdC1; kzk D 1g:

If X is a manifold, we say an open subset �� X has C k boundary if @� is a C k

embedded codimension-one submanifold in X .

Quaternions

In this paper, we identify Hd with the space of d � 1 matrices with entries in H , and
we let H act on Hd as follows:0B@z1:::

zd

1CA �˛ D
0B@z1˛:::
zd˛

1CA :
We then define GLd .H/ to be the invertible R–linear transformations of Hd which
commute with the above action of H . If Md .H/ is the space of d � d matrices with
entries in H , then we can identify

GLd .H/D GL2d .C/\Md .H/:

Since the quaternions are noncommutative, this identification requires that the scalar
multiplication acts on the right while Md .H/ acts on the left.

Now we can define the quaternionic projective space P .HdC1/ to be the quotient

P .HdC1/D
˚
z 2HdC1

n f0g
	
=�;

where z1 � z2 if and only if z1 D z2˛ for some nonzero ˛ 2H . Then GLdC1.H/
acts on P .HdC1/, and an element ' 2 GLdC1.H/ acts trivially if and only if

' D � Id
for some � 2R�. So the group

PGLdC1.H
dC1/ WD GLdC1.H/=R

� Id

acts faithfully on P .HdC1/.
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4 An intrinsic metric and applications

Let K.dC1/� denote the K–module of K–linear functions f W KdC1 ! K; that is,
f .vz/D f .v/z for all v 2KdC1 and z 2K. Then let P .K.dC1/�/ be the projective
space of lines in K.dC1/� (parametrized on the right). The dual set of �� P .KdC1/
is the set

�� D ff 2 P .K.dC1/�/ W kerf \�D∅g:

Given ' 2 PGLdC1.K/, let �' 2 PGL.K.dC1/�/ be the transformation �'.f /D f ı' .
We begin by making some observations:

Observation 4.1 (1) If � is open, then �� is compact.

(2) If � is bounded in an affine chart, then �� has nonempty interior.

(3) If ' 2 Aut.�/, then �' 2 Aut.��/.

Now, using the dual, we can define a metric which generalizes the classical Hilbert
metric in real projective geometry. For an open set �� P .KdC1/, define the function
C�W ���!R by

C�.p; q/D sup
f;g2��

1
2

log
ˇ̌̌̌
f .p/g.q/

f .q/g.p/

ˇ̌̌̌
:

Since .'�/� D �'�� , we see that

C�.p; q/D C'�.'p; 'q/

for all ' 2 PGLdC1.K/ and p; q 2�. Thus C� will be Aut.�/–invariant.

When KDR and �� P .RdC1/ is a convex subset, this function C� coincides with
the classical Hilbert metric; see, for instance, [17]. In the setting where KD C and
� � P .CdC1/ is a linearly convex set, this function was introduced by Dubois [9].
For such domains, Dubois proved that C� is a complete metric. Additional properties
of the metric C� for linearly convex sets were established in [28]. Finally, we recently
constructed an analogue of the metric C� for certain domains in real flag manifolds [30].

Next we will show that C� is a metric generating the standard topology whenever
the domain is proper. However, without convexity assumptions, C� may not be a
complete metric.

Proposition 4.2 Suppose ��P .KdC1/ is a proper domain. Then C� is an Aut.�/–
invariant metric on � which generates the standard topology.

It will be helpful to observe that C� on the unit ball is actually the symmetric metric:
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Lemma 4.3 If

B D
�
Œ1 W z1 W � � � W zd � 2 P .KdC1/ W

dX
iD1

jzi j
2 < 1

�
;

then .B; CB/ coincides with the model of K–hyperbolic d –space described in [21,
Chapter 19]. In particular, CB is a complete metric on B which generates the stan-
dard topology.

Proof Let dK be the distance on B described in [21, Chapter 19] and for t 2 .�1; 1/ let

xt D Œ1 W t W 0 W � � � W 0�:

Now for any p; q 2�, there exists ' 2 SUK.1; d/ so that 'p D x0 and 'q D xt for
some t 2 Œ0; 1/. Then since CB and dK are SUK.1; d/–invariant, it is enough to show

CB.x0; xt /D dK.x0; xt /

when t 2 Œ0; 1/. Moreover, when t 2 Œ0; 1/, we have

dK.x0; xt /D cosh�1
1

p
1� t2

D
1
2

log
1C t

1� t

by [21, Equation 19.4]. Using the standard inner product, we can identify K.dC1/�

with KdC1 and then view B� as a subset of P .KdC1/. Thus

B� D
�
Œ1 W f1 W � � � W fd � W

dX
iD1

jfi j
2
� 1

�
:

Then for t 2 Œ0; 1/, we have

CB.x0; xt /D sup
f;g2B�

1
2

log
1� tf1

1� tg1
:

This is clearly maximized when f D Œ1 W �1 W 0 W � � � W 0� and g D Œ1 W 1 W 0 W � � � W 0�. So

CB.x0; xt /D
1
2

log
1C t

1� t

when t 2 Œ0; 1/, and thus CB D dK .

Proof of Proposition 4.2 Suppose that p; q; r 2�. Since �� is compact, there exist
f; g 2�� such that

C�.p; q/D
1
2

log
ˇ̌̌̌
f .p/g.q/

f .q/g.p/

ˇ̌̌̌
:
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Then for r 2�,

C�.p; q/D
1
2

log
ˇ̌̌̌
f .p/g.q/

f .q/g.p/

ˇ̌̌̌
D

1
2

log
ˇ̌̌̌
f .p/g.r/

f .r/g.p/

ˇ̌̌̌
C
1
2

log
ˇ̌̌̌
f .r/g.q/

f .q/g.r/

ˇ̌̌̌
� C�.p; r/CC�.r; q/:

So C� satisfies the triangle inequality.

Now fix an affine chart Kd which contains � as a bounded set. Then after rescaling �,
we may assume that

�� B WD fz 2Kd W kzk< 1g:

By the above lemma, CB is a complete metric which generates the standard topology
on B . Moreover, B� � �� , and so CB � C� on �. Then for p; q 2 � distinct,
we have

0 < CB.p; q/� C�.p; q/:

Thus C� is a metric.

Since �� is compact, the function C�W ���!R�0 is continuous. Thus to show
that C� generates the standard topology, it is enough to show: for any p 2 � and
U �� an open neighborhood of p , there exists � > 0 such that

fq 2� W C�.p; q/ < �g � U:

But since CB generates the standard topology on B , there exists � > 0 such that

fq 2 B W CB.p; q/ < �g � U:

But then
fq 2� W C�.p; q/ < �g � fq 2 BR W CB.p; q/ < �g � U

since CB � C� on �. So C� generates the standard topology.

The automorphism group

Proposition 4.4 Suppose � � P .KdC1/ is a proper domain. Then Aut.�/ �
PGLdC1.K/ is a closed subgroup and acts properly on �.

Proof We first show that Aut.�/ is a closed subgroup of PGLdC1.K/. Suppose that
'n 2Aut.�/ and 'n!' in PGLdC1.K/. Let dP be a distance on P .KdC1/ induced
by a Riemannian metric. Then since 'n! ' , there exists some M � 1 so that

1

M
dP .p; q/� dP .'np; 'nq/�MdP .p; q/

Geometry & Topology, Volume 20 (2016)
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for all p; q 2 P .KdC1/ and n 2N . Next define ı�W �!R>0 by

ı�.p/D inffdP .p; x/ W x 2 P .KdC1/ n�g:

Then
1

M
ı�.p/� ı�.'p/�Mı�.p/

for p 2 �. So '.�/ � �. Since '�1n ! '�1 , the same argument shows that
'�1.�/��. Thus '.�/D�, and so ' 2 Aut.�/.

We now show that Aut.�/ acts properly. This argument requires some care because
C� may not be a complete metric. Fix a compact set K ��; we claim that

f' 2 Aut.�/ W 'K \K ¤∅g

is compact. So suppose that 'nkn 2K for some sequence 'n 2 Aut.�/ and kn 2K .
By passing to a subsequence we can suppose that kn! k 2K . Now since C� is a
locally compact metric (it generates the standard topology) and K �� is compact,
there exists some ı > 0 such that the set

K1 D fq 2� W C�.K; q/� 2ıg

is compact. Next let
K2 D fq 2� W C�.k; q/� ıg:

Then for large n, we have 'n.K2/ � K1 . Since 'n preserves the metric C� and
.K1; C�jK1/ is a complete metric space, we can pass to a subsequence and assume
that 'njK2 converges uniformly to a function f W K2!K1 . Moreover,

C�.f .p1/; f .p2//D lim
n!1

C�.'np1; 'np2/D C�.p1; p2/

for all p1; p2 2 �. Since C� is a metric, f is injective. Next pick representatives
y'n 2GLdC1.K/ of 'n so that ky'nkD 1. By passing to a subsequence, we may assume
that y'n!ˆ in End.KdC1/. Moreover, if p 2K2 n kerˆ, then

f .p/D lim
n!1

'np Dˆ.p/:

Since K2 has nonempty interior and f is injective, this implies that ˆ induces an
injective map P .KdC1/! P .KdC1/. Hence ˆ 2 GLdC1.K/. Thus 'n ! Œˆ� in
PGLdC1.K/, and since Aut.�/ is closed, we see that Œˆ� 2 Aut.�/.

The asymptotic geometry of the intrinsic metric

Proposition 4.5 Suppose � � P .KdC1/ is a proper domain, pn; qn � � are se-
quences such that pn! x 2 @� and qn! y 2 @�, and

lim
n!1

C�.pn; qn/ <1:
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Then
y 2

T
fkerf W f 2��; f .x/D 0g:

Proof Suppose f 2�� and f .x/D 0. Since �� has nonempty interior, there exists
g 2�� so that g.x/¤ 0 and g.y/¤ 0. Then

C�.pn; qn/�
1
2

log
ˇ̌̌̌
f .qn/g.pn/

f .pn/g.qn/

ˇ̌̌̌
:

Let ypn; yqn; yx; yy 2 KdC1 and yf ; yg 2 K.dC1/� be representatives of pn; qn; x; y 2
P .KdC1/ and f; g 2 P .K.dC1/�/, respectively, normalized so that

k yf k D kygk D k ypnk D kyqnk D kyxk D kyyk D 1:

Then

C�.pn; qn/�
1
2

log
ˇ̌̌̌
yf .yqn/

yf . ypn/

ˇ̌̌̌
C
1
2

log
ˇ̌̌̌
yg. ypn/

yg.yqn/

ˇ̌̌̌
:

Since f .x/D 0, we see that yf . ypn/! 0. Since g.x/¤ 0 and g.y/¤ 0, we see that

log
ˇ̌̌̌
yg. ypn/

yg.yqn/

ˇ̌̌̌
is bounded from above and below. Thus yf .yqn/! 0, and so y 2 kerf .

Proposition 4.6 Suppose � � P .KdC1/ is a proper domain, and pn; qn � � are
sequences such that pn! x 2�. If

lim
n!1

C�.pn; qn/D 0;

then qn! x .

Proof Fix an affine chart Kd which contains � as a bounded set. Then after scaling,
we may assume that

�� B D fz 2Cd
W kzk< 1g:

By Lemma 4.3, CB is a complete metric which generates the standard topology on B .
Moreover, B� ��� , and so CB � C� on �. Then

lim
n!1

CB.pn; qn/D 0;

and so qn! x .

Corollary 4.7 Suppose �� P .KdC1/ is a proper domain, and Aut.�/ acts cocom-
pactly on �. Then L.�/D @�.

Geometry & Topology, Volume 20 (2016)



Characterizing the unit ball by its projective automorphism group 2409

Proof Fix x 2 @� and a sequence pn 2 � so that pn ! x . Now there exists a
compact set K �� and 'n 2Aut.�/ so that 'npn 2K . We can pass to a subsequence
so that 'npn! k 2K . Then

lim
n!1

C�.pn; '
�1
n k/D lim

n!1
C�.'npn; k/D 0;

and so '�1n k! x by the previous proposition. So x 2 L.�/.

5 Limits of automorphisms

We begin this section by introducing a natural quotient of End.KdC1/ n f0g. When K
is either R or C , define

PEnd.KdC1/ WD P .End.KdC1//:

That is, PEnd.KdC1/ is the standard projective space associated to the K–vector space
End.KdC1/. When KDH , let

PEnd.HdC1/ WD
�
End.HdC1/ n f0g

�
=�;

where T1 � T2 if and only if T1 D �T2 for some � 2R� . Then PGLdC1.K/ embeds
into PEnd.KdC1/, and PEnd.KdC1/ is compact.

Proposition 5.1 Suppose �� P .KdC1/ is a proper domain with C 1 boundary, and
'n 2 Aut.�/ with

'np! xC and '�1n p! x�;

where p 2� and xC; x� 2 @�. Then

(1) 'nq! xC and '�1n q! x� for all q 2�;

(2) there exists f ˙ 2�� such that kerf ˙ D TK
x˙@�;

(3) if ˆ2 PEnd.KdC1/ is the element with Im.ˆ/D xC and kerˆDTK
x�@�, then

'n!ˆ as elements of PEnd.KdC1/;

(4) if U is a neighborhood of �\ TK
x�@� and V is a neighborhood of xC , then

there exists N � 0 such that

'n.� nU/� V

for all n�N .
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Proof Notice that 'n ! 1 in PGLdC1.K/ since xC; x� 2 @� and Aut.�/ �
PGLdC1.K/ is closed.

We begin by proving part (3). Since PEnd.KdC1/ is compact, it is enough to show that
any convergent subsequence of .'n/n2N converges to ˆ. By passing to a subsequence,
we can assume that 'n converges. Then let y'n 2GLdC1.K/ be a representative of 'n
such that k'nk D 1 and y'n!ˆC in End.KdC1/. We can write

y'n D kn;1

0B@an;1 : : :

an;dC1

1CA kn;2
for some kn;1; kn;2 2 UK.d C 1/ and 1 D an;1 � � � � � an;dC1 . By passing to a
subsequence, we can suppose that kn;1 ! k1 and kn;2 ! k2 in UK.d C 1/, and
the limits

�Ci WD lim
n!1

an;i and ��i WD lim
n!1

an;dC1

an;i

exist for 1� i � d C 1. Then

ˆC D lim
n!1

y'n D k1

0B@�
C
1
: : :

�C
dC1

1CA k2:
Now y'n;� WDan;dC1 y'�1n is a representative of '�1n which converges in End.KdC1/ to

ˆ� WD k
�1
2

0B@�
�
1
: : :

��
dC1

1CA k�11 :

Next, identify K.dC1/� with KdC1 using the standard inner product, and using this
identification, view �� as a subset of P .KdC1/. Then with this identification,

f
t
x' W ' 2 Aut.�/g � Aut.��/;

where tx' 2 PGLdC1.K/ is the standard conjugate transpose of ' 2 PGLdC1.K/.

Now y n;C WDan;dC1.txy'�1n / is a representative of tx'�1n that converges in End.KdC1/ to

‰C WD k1

0B@�
�
1
: : :

��
dC1

1CA k2;
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and y n;� WD txy'n is a representative of tx'n which converges in End.KdC1/ to

‰� WD k
�1
2

0B@�
C
1
: : :

�C
dC1

1CA k�11 :

Next let m D maxfj W �Cj ¤ 0g and M D minfj W ��j ¤ 0g. Then m <M because
'n!1 in PGLdC1.K/.

Next let e1; : : : ; edC1 be the standard basis of KdC1 . Then ˆC maps any open set of
P .KdC1/ n kerˆC onto an open set of k1 Spanfe1; : : : ; emg. Moreover,

ˆC.z/D lim
n!1

'n.z/

for any z 2 P .KdC1/nkerˆC . Since Aut.�/ acts properly on �, if q 2�, then any
limit point of 'nq is in @�. Thus, since � is open, we see that @� contains an open
subset of k1 Spanfe1; : : : ; emg. The same argument applied to ‰C implies that ��

contains an open subset of k SpanfeM ; : : : ; edC1g. Now if

z1 2 @�\ k1 Spanfe1; : : : ; emg and z2 2�
�
\ k1 SpanfeM ; : : : ; edC1g;

then hz1; z2i D 0. So if H � P .KdC1/ is the K–hyperplane defined by H WD

kerh � ; z2i, then z1 2 H , and since z2 2 �� , we see that H \� D ∅. Thus H is
tangent to @� at z1 , and so H D TK

z1
@�. Thus dimK k1 SpanfeM ; : : : ; edC1g D 1,

and so M D d C 1. Applying this argument to ˆ� and ‰� , we see that mD 1.

Now, since m D 1 and M D d C 1, we have Imˆ˙ D y˙ , Im‰˙ D f ˙ , and
hy˙; f ˙i D 0 for some y˙; f ˙ 2 P .KdC1/. By the arguments above, y˙ 2 @� and
f ˙ 2�� . So TK

y˙@�D kerh � ; f ˙i. On the other hand, by construction, kerˆ˙ D
kerh � ; f �i. So kerˆ˙\�D∅, and for all q 2�, we have

y˙ Dˆ˙.q/D lim
n!1

'˙1n q:

So y˙D x˙ , T C
x˙@�D kerh � ; f ˙i, and kerˆCD T C

x�@�. This proves part (3) and
also parts (1) and (2).

Finally, part (4) follows directly from part (3).

6 The structure of biproximal automorphisms

Suppose ' 2 PGLdC1.K/, and y' 2 GLdC1.K/ is a representative of ' . Let

�1.y'/� �2.y'/� � � � � �dC1.y'/
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be the absolute values of the eigenvalues (counted with multiplicity) of y' . Then let

�i .'/ WD
�i .y'/�QdC1

jD1 �j .y'/
�1=.dC1/ :

Since we are considering absolute values, these numbers only depend on ' .

An element ' 2 PGLdC1.K/ is called proximal if �d .'/ < �dC1.'/, and it is called
biproximal if ' and '�1 are proximal. When ' is biproximal, let xC' and x�' be the
eigenlines in P .KdC1/ corresponding to �dC1.'/ and �1.'/.

Proposition 6.1 Suppose � � P .KdC1/ is a proper domain with C 1 boundary,
' 2 Aut.�/, and �dC1.'/ > �1.'/. Then ' is biproximal. Moreover,

(1) xC' ; x
�
' 2 @�,

(2) T
K
xC'
@�\ @�D fxC' g,

(3) TK
x�'
@�\ @�D fx�' g, and

(4) if UC � � is a neighborhood of xC' and U� � � is a neighborhood of x�' ,
then there exists N > 0 such that, for all m>N, we have

'm.@� nU�/� UC and '�m.@� nUC/� U�:

Proof Since �dC1.'/ > �1.'/, we have 'n !1 in PGLdC1.K/. So by fixing
p 2�, we can find nk!1 such that

'nkp! xC and '�nkp! x�

for some xC; x� 2 @�. By Proposition 5.1, 'nk converges in PEnd.KdC1/ to an
element ˆ where Im.ˆ/D xC and kerˆD TK

x�@�. Moreover, there exists f ˙ 2��

with kerf ˙ D TK
x˙@�.

By considering the Jordan block decomposition of ' , we see that xC is an eigenline
of ' with corresponding eigenvalue having absolute value �dC1.'/, and f � is an
eigenline of �' with corresponding eigenvalue having absolute value �1.'/. Applying
this argument to '�1 shows that x� is an eigenline of ' with corresponding eigen-
value having absolute value �1.'/, and f C is an eigenline of �' with corresponding
eigenvalue having absolute value �dC1.'/.

Now since �1.'/¤�dC1.'/, we see that f C¤f � . Then f C.x�/¤0, for otherwise,

kerf � D TK
xC@�D kerf C;

which is impossible. Similarly, f �.xC/¤ 0.
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So ' preserves the subspaces xC , x� , and kerf C\kerf � . If v1; : : : ; vdC1 is a basis
of KdC1 with Kv1D xC , Kv2D x� , and kerf C\kerf �D SpanK.v3; : : : ; vdC1/,
then with respect to this basis, ' is represented by a matrix of the form0@�C ��

A

1A 2 GLdC1.K/:

Since Im.ˆ/D xC , we see that kAk< j�Cj, and applying this argument to '�1 shows
that kA�1k< j��j�1 . Thus ' is biproximal, and x˙ D x˙' .

Next we claim that @�\TK
xC@�D fx

Cg. Suppose that z 2 @�\TK
xC@�; then either

z D xC or z D Œz1 W 0 W z2 W � � � W zd � with zj ¤ 0 for some 2 � j � d . In the latter
case, there exist mi ! 1 such that '�mi z ! w and w D Œ0 W 0 W w2 W � � � W wd �.
But then w 2 @�\ TK

xC@�\ T
K
x�@�, which is impossible since @� is C 1 . So we

have a contradiction, and so z D xC . Applying this argument to '�1 shows that
@�\TK

x�@�D fx
�g.

Finally, part (4) follows part (4) of Proposition 5.1.

7 Finding biproximal elements

Theorem 7.1 Suppose that �� P .KdC1/ is a proper domain with C 1 boundary. If
there exist x; y 2 L.�/ such that TK

x @�¤ T
K
y @�, then Aut.�/ contains a biproxi-

mal element.

We begin the proof of Theorem 7.1 with two lemmas.

Lemma 7.2 Suppose that �� P .KdC1/ is a proper domain with C 1 boundary, and
let 'n 2 Aut.�/ with

'np! xC and '�1n p! x�;

where p 2 � and xC; x� 2 @�. If TK
xC@� ¤ T

K
x�@�, then 'n is biproximal for n

large enough. Moreover, xC'n ! xC and x�'n ! x� .

Given distinct x; y 2 P .KdC1/, let L.x; y/ be the projective line containing x and y .

Proof We first claim that, for n large enough, 'n has fixed points xCn ; x
�
n 2�. Fix

compact neighborhoods U˙ of x˙ with the following properties:
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(1) U˙\TK
x�@�D∅,

(2) U˙\� is topologically a closed ball,

(3) there exists a compact set K �� such that, if yC 2 UC and y� 2 U� , then
L.yC; y�/\K ¤∅.

Since x˙ … T C
x�@�, part (1) holds for small enough neighborhoods. Since @� is a

C 1 hypersurface, it is always possible to shrink a neighborhood so that part (2) holds.
Finally, since

TK
xC@�¤ T

K
x�@�;

the projective line L.xC; x�/ is transverse to @� at xC and x� , so part (3) holds for
small enough neighborhoods.

Now by part (4) of Proposition 5.1, there exists N � 0 such that

'n.U
˙
\�/� U˙\�

for all n�N . So by the Brouwer fixed point theorem, for n large enough, 'n has a
fixed point x˙n 2 U

˙\�.

Now fix points kn 2K \L.xCn ; x
�
n /. Since K �� is compact, and '˙1n q! x˙ for

all q 2�, we see that

'nkn! xC and '�1n kn! x�:

So for large n, the ratios of the absolute values of the eigenvalues of 'n corresponding
to the lines xCn and x�n must be different. So for large n, �dC1.'n/ > �1.'n/. Thus
'n is biproximal by Proposition 6.1. Then by part (4) of Proposition 6.1, we see that
x˙n D x

˙
'n

.

Finally, we can choose UC and U� to be arbitrary small neighborhoods of xC and x� ,
which implies that xC'n ! xC and x�'n ! x� .

Lemma 7.3 Suppose that �� P .KdC1/ is a proper domain with C 1 boundary, and
'n; �m 2 Aut.�/ with

'np! xC; '�1n p! x�; �mp! yC; and ��1m p! y�;

where p 2� and xC; x�; yC; y� 2 @�. If

fTK
xC@�; T

K
x�@�g\ fT

K
yC@�; T

K
y�@�g D∅;

then 
k WD 'k��1k is biproximal for k large enough. Moreover,


kp! xC and 
�1k p! yC:
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Proof Fix compact neighborhoods U˙ of x˙ and V ˙ of y˙ so that

.UC[U�/\ .TK
yC@�[T

K
y�@�/D∅

and
.V C[V �/\ .TK

xC@�[T
K
x�@�/D∅:

By Proposition 5.1, there exists N � 0 such that '�1n p 2U� and 'n.V C[V �/�UC

for all n�N , and there exists M � 0 such that ��1m p 2V � and �m.UC[U�/�V C

for all m �M . Then if k � maxfM;N g and 
k WD 'k��1k , we see that 
kp 2 UC

and 
�1
k
p 2 V C .

Since UC and V C can be chosen to be arbitrary small neighborhoods of xC and yC,
respectively, we see that


kp! xC and 
�1k p! yC:

Finally, since
TK
xC@�¤ T

K
yC@�;

Lemma 7.2 implies that 
k is biproximal for large k .

Proof of Theorem 7.1 Fix sequences 'n; �m 2 Aut.�/ so that

'np! x and �mp! y

for some p 2�. By passing to a subsequence, we may suppose that

'�1n p! x� and ��1m p! y�

for some x�; y� 2 @�.

Now by Lemma 7.2, if TK
x @�¤ T

K
x�@�, then 'n is biproximal for large n, and if

TK
y @�¤ T

K
y�@�, then �m is biproximal for large m.

So suppose that TK
x @�D T

K
x�@� and TK

y @�D T
K
y�@�. Then

fTK
x @�; T

K
x�@�g\ fT

K
y @�; T

K
y�@�g D∅;

and so 'k��1k is biproximal for large k by Lemma 7.3.

8 Rescaling with biproximal elements

Definition 8.1 If K is one of R, C , or H , let KP be the purely imaginary numbers
in K: that is, RP D f0g, CP D iR, and HP D iRC jRC kR.
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Suppose that � is a proper domain with C 1 boundary. If ' 2 Aut.�/ is biproximal,
then we have the following standard form. First let H˙ be the K–tangent hyperplane
at x˙' . Then make a change of coordinates so that

(1) xC' D Œ1 W 0 W � � � W 0�,

(2) x�' D Œ0 W 1 W 0 W � � � W 0�,

(3) HC\H� D fŒ0 W 0 W z2 W � � � W zd � W z2; : : : ; zd 2Kg.

With respect to these coordinates, ' is represented by a matrix of the form0@� �

A

1A 2 GLdC1.K/;

where A is a .d�1/� .d�1/ matrix. Since

H� D fŒ0 W z1 W � � � W zd � W z1; : : : ; zd 2Kg;

and �\H� D∅, we see that � is contained in the affine chart

Kd D fŒ1 W z1 W � � � W zd � W z1; : : : ; zd 2Kg:

In this affine chart, xC' corresponds to 0, and TK
0 @� D f0g � Kd�1 . Then by a

projective transformation, we may assume that

(4) T0@�DKP �Kd�1 .

Since @� is C 1 , there exist open neighborhoods V � KP of 0, W � R of 0,
U �Kd�1 of 0, and a C 1 function F W V �U !W such that

(5) @�\OD f.z1; : : : ; zd / 2O W Re.z1/D F.Im.z1/; z2; : : : ; zd /g,

where OD .V CW /�U . By another projective transformation, we can assume

(6) �\OD f.z1; : : : ; zd / 2O W Re.z1/ > F.Im.z1/; z2; : : : ; zd /g.

Next, if K is either C or H , let G � GL2.K/ be the closed group generated by��
1 w

0 1

�
W Re.w/D 0

�
and

��
1 0

w 1

�
W Re.w/D 0

�
:

Then by Proposition A.2, the image of G in PGL2.K/ coincides with

Aut0.fŒ1 W z� 2 P .K2/ W Re.z/ > 0g/:
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Theorem 8.2 Choosing coordinates as indicated above, the function F extends to
KP �Kd�1 , and

�D f.z1; : : : ; zd / 2Kd W Re.z1/ > F.0; z2; : : : ; zd /g:

Moreover, if K is either C or H , then for hD
�
a
c
b
d

�
2G , the projective transformation

defined by
 h � Œz1; : : : ; zd �D Œaz1C bz2 W cz1C dz2 W z3 W � � � W zdC1�

is in Aut0.�/.

Remark 8.3 A special case of the above theorem, namely when KDC and � is a
C–convex set, was established in [28, Theorem 6.1].

Proof We can assume O is bounded. Then by Proposition 5.1, we can replace ' with
a power of ' so that '.O/�O .

We first claim that F.x; z/D F.0; z/ for .x; z/ 2 V �U . Notice that, with our choice
of coordinates, ' acts by

' � .z1; z/D .�z1�
�1; Az��1/;

where �, �, and A are as above. Since ' is biproximal,

�nz1�
�n
! 0 and Anz��n! 0

as n!1 for any z1 2K and z 2Kd�1 .

Since ' preserves T0@�DKP �Kd�1 , we see that �KP��1 DKP . We claim that
���1 2R. When KDR, there is nothing to prove. When KDC , since

iRD �.iR/��1 D .���1/iR;

this is obvious. So assume KDH . Then since ��1Dx�=j�j2 , we see that �HP
x�DHP .

So if z 2HP , then

0D 2Re.�zx�/D �zx�C�xz x�D �zx���zx�;

which implies that
��1�z D z��1�:

Now suppose that ��1�D aC bi C cj C dk . If we plug in z D i , we see that

�b D Re.��1�i/D Re.i��1�/D b;

so b D 0. Plugging in z D j and z D k shows that c D d D 0. Thus ��1� 2R. So
��1 2R ���1 , and so ���1 2R.
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Now for x 2 V and z 2 U, we have

' � .xCF.x; z/; z/D .�x��1C�F.x; z/��1; Az��1/:

Since '.O/�O , �x��1 2KP , and �F.x; z/��1 D ���1F.x; z/ 2R, we see that

F.�x��1; Az��1/D ���1F.x; z/:

Differentiating F in the x direction yields

.rxF /.x; z/D .rxF /.�x�
�1; Az��1/;

and repeated applications of the above formula show

.rx/F.x; z/D .rxF /.�
nx��n; Anz��n/

for all n > 0. Taking the limit as n goes to infinity proves that .rxF /.x; z/ D
.rxF /.0; 0/. Since .rxF /.0; 0/ D 0 we then see that F.x; z/ D F.0; z/ for all
.x; z/ 2 V �U .

Now for .x; z/ 2KP �Kd�1 , there exists N > 0 such that 'N � .x; z/ 2 V �U . Then
we define

F.x; z/ WD �N��NF.�Nx��N ; AN z��N /:

Notice that this definition does not depend on the choice of N ; that is, if 'M � .x; z/ 2
V �U then

�M��MF.�Mx��M ; AM z��M /D �N��NF.�Nx��N ; AN z��N /:

So we see that F extends to a function defined on KP �Kd�1 . Moreover, this function
is clearly C 1 . With this extension,[

n2N

'�n.O\�/D f.z1; : : : ; zd / 2Kd W Re.z1/ > F.0; z2; : : : ; zd /g;

and thus
S
n2N '

�n.O \�/ D � by Proposition 6.1. This proves the first part of
the theorem.

Now assume that K is either C or H . Then for w 2KP , define the projective map uw
by uw � .z1; : : : ; zd / D .z1 Cw; z2; : : : ; zd /. Since F.x; z/ D F.0; z/, we see that
uw 2 Aut0.�/ for all w 2KP . Also, uw corresponds to the matrix�

1 0

w 1

�
in the action of GL2.K/ defined in the statement of the theorem.
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The same argument starting with '�1 instead of ' (that is, viewing � as a subset
of the affine chart fŒz1 W 1 W z2 W � � � W zd �g) shows that Aut0.�/ contains the group of
automorphisms corresponding to the matrices��

1 w

0 1

�
W w 2KP

�
in the action of GL2.K/ defined in the statement of the theorem.

We end the section with three corollaries of Theorem 8.2. If t 2 R and we consider
the matrix

hD

�
et 0

0 e�t

�
2G

in the statement of Theorem 8.2, then we have the following:

Corollary 8.4 Suppose K is either C or H and � is a proper domain with C 1

boundary. If ' 2 Aut.�/ is biproximal, then there exists a one-parameter subgroup
 t 2 SLdC1.K/ of biproximal elements such that Œ t � 2 Aut0.�/, and

(1) . t /jxC'
D et Id j

x
C
'

,

(2) . t /jx�' D e
�t Id jx�' ,

(3) . t /jHC\H� D Id jHC\H� , where H˙ D TK
x˙'
@�.

Proposition A.2 and Theorem 8.2 also imply the following:

Corollary 8.5 Suppose K is either C or H , � is a proper domain with C 1 boundary,
' 2 Aut.�/ is biproximal, and L is the projective line containing xC' and x�' . Then
for all x; y 2 L\ @�, there exists 'xy 2 Aut0.�/ such that 'xy.x/D y .

Finally, Theorem 8.2 also implies the following:

Corollary 8.6 Suppose K is either C or H , � is a proper domain with C 1 boundary,
and Aut.�/ contains a biproximal element. If x1; : : : ; xn 2 @�, then there exists a
biproximal element 
 2 Aut0.�/ so that

fx1; : : : ; xng\ fx
C

 ; x

�

 g D∅:

Proof Suppose ' 2 Aut0.�/ is biproximal, and L is the projective line containing
xC' and x�' . Fix distinct x; y 2 L\ @� so that

fx1; : : : ; xng\ fx; yg D∅:
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By Theorem 8.2 and Proposition A.2, there exists g1 2Aut0.�/ such that g1x�' D x
�
'

and g1xC' D x . For the same reason, there exists g2 2 Aut0.�/ such that g2x D x
and g2x�' D y .

Then 
 WD .g2g1/'.g2g1/�1 is biproximal, xC
 D x , and x�
 D y .

9 Proof of Theorem 1.6

For this section, suppose that �� P .KdC1/ is a proper domain, @� is C 2 , and there
exist x; y 2 L.�/ such that

TK
x @�¤ T

K
y @�:

First, by Theorem 7.1, we see there exists a biproximal element ' 2 Aut.�/. Let
H˙ D T

K
x˙'
@�. Pick coordinates so that

(1) xC' D Œ1 W 0 W � � � W 0�,

(2) x�' D Œ0 W 1 W 0 W � � � W 0�,

(3) HC\H� D fŒ0 W 0 W z2 W � � � W zd � W z2; : : : ; zd 2Kg.

For the rest of the proof, identify Kd with the affine chart

fŒ1 W z1 W z2 W � � � W zd � W z1; : : : ; zd 2Kg:

Then by Theorem 8.2, there exists a C 2 function F W Kd�1!� such that

�D f.z1; z2; : : : ; zd / W Re.z1/ > F.z2; : : : ; zd /g:

Notice that F.0/D 0. Moreover, by Proposition 6.1,

T
K
xC'
@�\ @�D fxC' g;

and so F.z/ > 0 for all z 2Kd�1 n f0g.

The real case

Suppose that KDR. With respect to these coordinates, ' is represented by a matrix
of the form 0@� 1=�

A

1A 2 GLdC1.R/

with � > 1. And so
�2nF

�
1

�n
Anx

�
D F.x/
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for all x 2Rd�1 and n 2N .

We first claim that, up to a change of coordinates, A 2O.d �1/. Since F is C 2 , there
exists C > 0 such that F.x/ � Ckxk2 for all x sufficiently close to 0. Thus for n
large enough,

F.x/� �2n




An�n x





2 D kAnxk2:
Since F is positive on Rd�1 n f0g, this implies that

inf
n2N

inf
kxkD1

kAnxk> 0:

Since
kA�nk D

1

infkxkD1 kAnxk
;

we see that kA�nk is uniformly bounded. Applying the same argument to '�1 shows
that kAnk is uniformly bounded. Thus fAn W n 2Zg �GLd�1.R/ is a bounded group.
Hence, up to a change of coordinates, A 2O.d � 1/.

Now we can fix nk!1 so that Ank ! Idd�1 . Then for x 2Rd�1 ,

F.x/D lim
k!1

�2nkF
� 1

�nk
Ankx

�
D

1
2

Hess.F /0.x; x/

since F is C 2 . Since F.x/ > 0 for all nonzero x , we then see that Hess.F /0 is
positive definite, and hence up to a change of coordinates, we see that

F.x2; : : : ; xd /D
1

2

dX
iD2

x2i ;

and so

�D

�
.x1; : : : ; xd / 2Rd W Re.x1/ >

dX
iD2

x2i

�
:

The complex and quaternionic case

Now suppose that K is either C or H . In this case, we can assume that Aut0.�/
contains the transformation

Œz1; : : : ; zd �! Œaz1C bz2 W cz1C dz2 W z3 W � � � W zdC1�

when hD
�
a
c
b
d

�
2G . We claim that

(1) F.z/D
1

jwj2
F.zw/
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for w 2K n f0g. First, if t 2R, then the transformation

at � Œz1; : : : ; zd �D Œe
�tz1 W e

tz2 W z3 W � � � W zdC1�

is in Aut.�/ and acts on the affine chart Kd by

at � .z1; : : : ; zd /D .e
2tz1; e

tz2; : : : ; e
tzd /;

so

F.z/D
1

e2t
F.etz/:(2)

Next, if w 2KP , then the transformation

uw � Œz1; : : : ; zd �D Œz1Cwz2 W z2 W z3 W � � � W zdC1�

is in Aut.�/ and acts on the affine chart Kd by

uw � .z1; z2; : : : ; zd /D .z1.1Cwz1/
�1; z2.1Cwz1/

�1; : : : ; zd .1Cwz1/
�1/:

Notice that

Re.z1.1Cwz1/�1/D
1

j1Cwz1j2
Re.z1.1�xz1w//D

Re.z1/
j1Cwz1j2

;

so if we apply uw=F .z/ to the point .F.z/; z/ 2 @�, we see that

F.z/D j1Cwj2F.z.1Cw/�1/(3)

for all w 2KP . Combining equations (2) and (3), we see that (1) holds for all w 2K
with Re.w/ > 0. On the other hand, any w 2 K n f0g can be written as z D w1w2
where Re.w1/;Re.w2/ > 0. So (1) holds for all w 2K n f0g.

Now, since F is C 2 and F.z/D e2tF.e�tz/, we see that

F.z/D 1
2

Hess.F /0.z; z/

for all z 2Kd�1. Since TK
0 @�\ @�D f0g, we have F.z/ > 0 for all z 2Kd�1, and

so the Hessian of F is positive definite.

Now let r D dimR K, and identify Kd�1 with Rr.d�1/ in the obvious way. For
w 2K, let M.w/ 2 GLr.d�1/.R/ denote the action by scalar multiplication by w (on
the right); that is,

M.w/z D zw:

Notice that tM.w/DM. xw/. Now, under this identification, there exists a symmetric
r.d�1/� r.d�1/ real matrix A such that

Hess.F /0.z1; z2/D tz1Az2:
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Since F.z/> 0 when z¤ 0, we see that A2GLr.d�1/.R/. Since F.zw/Djwj2F.z/
for w 2K, we see that

M. xw/AM.w/D jwj2A:

So
AM.w/D jwj2M. xw/�1A:

But jwj2M. xw/�1 D M.w/. Thus A is K–linear. Hence A can be viewed as a
matrix in GLd�1.K/. Now, since tAD A as a matrix in GLr.d�1/.R/, we see that
t xAD A as a matrix in GLd�1.K/. Moreover, A is positive definite. Thus there exists
g 2 GLd�1.K/ so that

t
xgAg D Idd�1 :

Thus, up to a change of coordinates,

F.z2; : : : ; zd /D

dX
iD2

jzi j
2 and �D

�
.z1; : : : ; zd / 2Kd W Re.z1/ >

dX
iD2

jzi j
2

�
:

This completes the proof of Theorem 1.6.

10 The structure of the limit set

Proposition 10.1 Suppose K is either C or H , and ��P .KdC1/ is a proper domain
with C 1 boundary. If there exist x; y 2 L.�/ such that TK

x @� ¤ T
K
y @�, then the

limit set L.�/� P .KdC1/ is a closed C1 submanifold of P .KdC1/, and Aut0.�/
acts transitively on L.�/.

The fact that L.�/ is a C1 submanifold of P .KdC1/ will follow from a general fact
about the orbits of Lie groups:

Lemma 10.2 Suppose G is a connected Lie group acting smoothly on a smooth
manifold M . Then an orbit G �m is an embedded smooth submanifold of M if and
only if G �m is locally closed in M .

Here, smooth means C1 , and for a proof, see [8, Theorem 15.3.7].

Lemma 10.3 Suppose K is either C or H , and � � P .KdC1/ is a proper domain
with C 1 boundary. If xC; x� 2 @�, TK

xC@� ¤ T
K
x�@�, and there exist biproximal

elements 'n 2 Aut.�/ such that

xC'n ! xC and x�'n ! x�;

then there exists ' 2 Aut.�/ biproximal such that xC D xC' and x� D x�' .
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Proof First let H˙n D T
K
x˙'n
@� and H˙ D TK

x˙@�. Since HC ¤H� , we then have
HCn \H

�
n !HC\H� in the space of .d�1/–planes in KdC1 . By Corollary 8.4,

we can assume that 'n 2 GLdC1.K/, and

(1) .'n/jxC'n
D 2 Id j

x
C
'n

,

(2) .'n/jx�'n D
1
2

Id jx�'n ,

(3) .'n/jHCn \H�n
D Id j

H
C
n \H

�
n

.

Since HCn \H
�
n !HC\H� , we see that 'n converges to ' 2 GLdC1.K/, where

(1) .'/jxC D 2 Id jxC ,

(2) .'/jx� D
1
2

Id jx� ,

(3) .'/jHC\H� D Id jHC\H� .

Then, since Aut.�/ is closed, Œ'� 2 Aut.�/.

Lemma 10.4 Suppose K is either C or H , �� P .KdC1/ is a proper domain with
C 1 boundary, and there exist x; y 2 L.�/ such that TK

x @�¤ T
K
y @�. Then for any

z 2 L.�/,
TK
z @�\ @�D fzg:

Proof By definition, there exists �m 2 Aut.�/ and p 2 � so that �mp ! z . By
passing to a subsequence, we can assume that ��1m p! z� for some z� 2 @�. Now
by Theorem 7.1 and Corollary 8.6, there exists 
 2 Aut.�/ biproximal such that
fz; z�g\ fxC
 ; x

�

 g D∅. Proposition 6.1 implies that

T
K
x˙

@�\ @�D fx˙
 g;

and so
fTK
z @�; T

K
z�@�g\ fT

K
xC

@�; TK

x�

@�g D∅:

Then by Lemma 7.3, there exist biproximal elements 
k 2 Aut.�/ such that

xC
k ! z and x�
k ! xC
 :

So by the previous lemma, there exists a biproximal element ' 2 Aut.�/ such that
xC' D z . But then, by Proposition 6.1,

TK
z @�\ @�D fzg:
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Lemma 10.5 Suppose K is either C or H , �� P .KdC1/ is a proper domain with
C 1 boundary, and there exist x; y 2 L.�/ such that TK

x @� ¤ TK
y @�. Then for

all xC; yC 2 L.�/ distinct, there exists a biproximal element ' 2 Aut.�/ such that
xC D xC' and yC D x�' .

Proof By definition, there exist �m; 'n 2Aut.�/ and p; q 2� such that �mp! xC

and 'nq! yC . Then 'np! yC by Proposition 5.1. By passing to a subsequence,
we may suppose that ��1m p! x� and '�1n p! y� for some x�; y� 2 @�.

If fxC; x�g\ fyC; y�g D∅, then Lemma 10.4 implies that

fTK
xC@�; T

K
x�@�g\ fT

K
yC@�; T

K
y�@�g D∅:

Then the lemma follows from Lemma 7.3 and Lemma 10.3.

Next consider the case in which x� D yC . Since yC ¤ xC , Lemma 10.4 implies that
TK
xC@�¤ T

K
yC@�. Then Lemma 7.2 implies that �m is biproximal for large m. The

lemma then follows from Lemma 10.3.

When y� D xC , the same argument can be used to show that 'n is biproximal for
large n. Then the lemma follows from Lemma 10.3.

It remains to consider the case when x�D y� . Now by Theorem 7.1 and Corollary 8.6,
there exists a biproximal element 
 2 Aut.�/ such that

fxC; x�; yC; y�g\ fxC
 ; x
�

 g D∅:

Then since T C
x˙

@�\ @�D fx˙
 g, this implies that

fTK
xC@�; T

K
x�@�g\ fT

K
xC

@�; TK

x�

@�g D∅:

So by Lemma 7.3 and Lemma 10.3, there exists a biproximal element � such that
xC� D x

C and x�� D x
C

 . Now,

�np! xC; ��np! x�
 ; 'mp! yC; and '�1m p! y�:

Also, fxC; x�
 g\ fy
C; y�g D∅. So

fTK
xC@�; T

K
x�

@�g\ fTK

yC@�; T
K
y�@�g D∅;

and the lemma follows from Lemma 7.3 and Lemma 10.3.

Proof of Proposition 10.1 We first observe that L.�/ is closed. Suppose xn 2 L.�/
and xn! x . Then there exist 'n;m 2 Aut.�/ and pn 2� such that

lim
m!1

'n;mpn D xn:
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Now fix p 2�; then by Proposition 5.1,

lim
m!1

'n;mp D xn:

Then there exists mn!1 such that

lim
n!1

'n;mnp D x:

So L.�/ is closed.

Now if x; y 2 L.�/ are distinct, then there exists a biproximal element ' 2 Aut.�/
such that x D xC' and y D x�' . Then by Corollary 8.5, y 2 Aut0.�/ � x . Since
x; y 2 L.�/ were arbitrary, we see that Aut0.�/ acts transitively on L.�/.

Now Aut0.�/ � PGLdC1.C/, being a closed subgroup (see Proposition 4.4), is a
Lie subgroup, and it acts smoothly on P .KdC1/. Since L.�/D Aut0.�/ � x for any
x 2L.�/, we see from Lemma 10.2 that L.�/ is a C1 submanifold of P .KdC1/.

11 Proof of Theorem 1.2

For this section, suppose that ��P .KdC1/ is a proper domain, @� is a C 1 hypersur-
face, and the limit set spans KdC1. Since the limit set spans, there exist x; y 2 L.�/
such that x … TK

y @�. Then TK
x @�¤ T

K
y @�, and so Aut.�/ contains a biproximal

element by Theorem 7.1.

Now fix a biproximal element ' 2 Aut0.�/, and let H˙ D TK
x˙'
@�. Pick coordinates

so that

(1) xC' D Œ1 W 0 W � � � W 0�,

(2) x�' D Œ0 W 1 W 0 W � � � W 0�,

(3) HC\H� D fŒ0 W 0 W z2 W � � � W zd � W z2; : : : ; zd 2Kg.

For the rest of the proof, identify Kd with the affine chart

fŒ1 W z1 W z2 W � � � W zd � W z1; : : : ; zd 2Kg:

Then by Theorem 8.2, there exists a C 1 function F W Kd�1!� such that

�D f.z1; z2; : : : ; zd / W Re.z1/ > F.z2; : : : ; zd /g:

By Corollary 8.4, for t 2R,

 t WD

0@et e�t
Idd�1

1A 2 Aut0.�/:
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Now there exist x1; : : : ; xd�1 2 L.�/ such that (as K–lines)

xC' C x
�
' C x1C � � �C xd�1 DKdC1:

By Proposition 6.1,
H�\ @�D T

K
xC'
@�\ @�D fx�' g;

and so x1; : : : ; xd�1 are contained in our fixed affine chart.

Now we claim that
T0L.�/DKP �Kd�1 D T0@�:

Notice that the second equality is true by definition.

For 1� i � d � 1, let Li be the K–line in Kd which contains 0 and xi .

Now fix some i . By Lemma 10.5 and Theorem 8.2, Li \@� is projectively equivalent
to a half space, and thus in the affine chart, Kd is either a half space or a open ball
in Li ; see Observation A.1. Since F.z2; : : : ; zd / > 0 for all nonzero .z2; : : : ; zd /, we
see that Li \ @� must be an open ball in the affine chart. Moreover, by Theorem 8.2,
Li \ @�� L.�/. Now since Li \ @� is a sphere, we can pick a1; : : : ; ar 2Li \ @�
so that r D dimR K and, as elements of this affine chart,

SpanRfa1; : : : ; arg D Li :

Let P W Kd !Kd be the projection

P.z1; : : : ; zd /D .0; z2; : : : ; zd /:

Now if z 2 L.�/, then

 t .z/D .e
�2tz1; e

�tz2; : : : ; e
�tzd / 2 L.�/;

and
lim
t!1

1

e�t
 t .z/D .0; z2; : : : ; zd /D P.z/:

Since L.�/ is a submanifold, this implies that P.z/ 2 T0L.�/. Thus we see that
P.a1/; : : : ; P.ar/� T0L.�/. Hence P.Li /� T0L.�/.

Since i was arbitrary, we then see that

P.L1C � � �CLd�1/� T0L.�/:
But since

xC' C x
�
' C x1C � � �C xd�1 DKdC1

as K–lines, we have

f0g �Kd�1 D P.L1C � � �CLd�1/� T0L.�/:
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Using Theorem 8.2, we see that KP � f0g � L.�/, and so

T0L.�/DKP �Kd�1 D T0@�:

Thus L.�/� @� is an open and closed submanifold of @�. Since @� is connected,
this implies that L.�/D @�.

Then since L.�/ is a C1 submanifold of P .KdC1/, we see that @� is C1 , and so
the theorem follows from Theorem 1.6.

12 An example

In this section, for d � 2, we construct a nonsymmetric proper domain �� P .KdC1/
with C 1;1 boundary so that there exist x; y 2 L.�/ with TK

x @�¤ T
K
y @�.

Let S D fz 2 Kd�1 W kzk D 1g be the unit sphere, and let yF W S ! R>0 be a C 1;1

function (which is not C 2 ). Then define the function F W Kd�1!R�0 by

F.z/D

�
yF .z=kzk/ if z ¤ 0;
0 otherwise.

Notice that F is C 1;1 on Kd�1 n f0g.

Then consider the domain

�D fŒ1 W z1 W � � � W zd � 2 P .KdC1/ W Im.z1/ > .jz2j2C � � �C jzd j
2/F.z2; : : : ; zd /g:

Clearly @� is C 1;1 away from Œ1 W 0 W � � � W 0� and Œ0 W 1 W 0 W � � � W 0�. Since F is bounded,
@� is C 1;1 at Œ1 W 0 W � � � W 0�. Moreover, if we consider the projective map

T .Œz0 W z1 W z2 W � � � W zd �/D Œz1 W �z0 W z2 W � � � W zd �;

then

T .�/D fŒ1 W w1 W � � � W wd � 2 P .KdC1/ W

Im.w1/ > .jw2j2C � � �C jwd j
2/F.�w2=w1; : : : ;�wd=w1/g:

Thus, since F is bounded, T .�/ is C 1;1 at Œ1 W 0 W 0 W � � � W 0�. Hence � is C 1;1 at
Œ0 W 1 W 0 W � � � W 0�.

Notice that Aut.�/ contains the transformation

Œz0 W z1 W z2 W � � � W zd �! Œetz0 W e
�tz1 W z2 W � � � W zd �

for any t 2 R. Thus Œ1 W 0 W � � � W 0�; Œ0 W 1 W 0 W � � � W 0� 2 L.�/. Finally, � is not
projectively isomorphic to B because @� is not C 2 .
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Appendix: Möbius transformations

In this section, we review the basic properties of Möbius transformations when K is
either C or H . All these facts are well known when KDC .

We can identify P .K2/ with xKDK[f1g via the map

Œz1 W z2�!

�
z1.z2/

�1 if z2 ¤ 0;
1 otherwise.

With this identification, PGL2.K/ acts on xK by�
a b

c d

�
� z D .azC b/.czC d/�1:

As in the complex case, Möbius transformations map spheres and hyperplanes to
spheres and hyperplanes.

Observation A.1 With the above action, PGL2.K/ maps spheres and hyperplanes to
spheres and hyperplanes.

Proof Every sphere and half plane can be described as a set of the form

fz 2K W jz� aj DRjz� bjg

for some a; b 2 K and R > 0. Moreover, every set of this form is a sphere or half
plane. A calculation shows that Möbius transformations map a set of this form to a set
of this form.

Let
HC D fz 2K W Re.z/ > 0g:

Now HC is projectively equivalent to the unit ball by the Möbius transformation

z! .z� 1/.zC 1/�1:

In particular, Aut.HC/ is isomorphic with

Aut.fjzj< 1g/D PUK.1; 1/D f' 2 PGL.K2/ WQ ı' DQg;

where Q.z/D jz1j2� jz2j2 . The next proposition follows from the basic geometry of
rank one symmetric spaces of noncompact type, but we provide an elementary proof.

Proposition A.2 (1) If x 2 @HC � xK, then the group

Px D f' 2 Aut0.HC/ W 'x D xg

acts transitively on HC .
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(2) Aut0.HC/ acts transitively on @HC .

(3) Aut0.HC/ is generated by the two subgroups

U D

��
1 w

0 1

�
W Re.w/D 0

�
and V D

��
1 0

w 1

�
W Re.w/D 0

�
:

Proof A direct calculation shows that

P1 D

��
� w

0 x��1

�
W �;w 2K; �¤ 0; Re.w/D 0

�
:

Then P1 clearly acts on transitively on HC and @HC n f1g. Since

P0 D

�
0 1

1 0

��1
P1

�
0 1

1 0

�
;

we see that P0 acts transitively on @HC n f0g. Since Aut0.HC/ contains P0 and P1 ,
this implies part (2). Then since Aut0.HC/ acts transitively on the boundary, we see
that every group Px is conjugate to P1 . Then since P1 acts transitively on HC , we
have part (1).

It remains to prove part (3). Let G be the closed group generated by U and V . If
Re.u/D Re.w/D 0, then��

0 w

0 0

�
;

�
0 0

u 0

��
D

�
wu 0

0 �uw

�
D

�
wu 0

0 wu

�
:

So the Lie algebra of G contains��
� w

u �x�

�
W �;w; u 2K; Re.w/D Re.u/D 0

�
:

In particular, G contains P1 and P0 . This implies that G acts transitively on the
boundary. Now suppose ' 2 Aut0.HC/. Since G acts transitively on @HC , there
exists 
 2G such that .
'/.0/D 0. Then 
' 2P0�G , which implies that ' 2G .
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