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CHARACTERIZATION OF SPORADIC PERFECT
POLYNOMIALS OVER F2

Luis H. Gallardo, Olivier Rahavandrainy

Abstract: We complete, in this paper, the characterization of all known even perfect polynomials
over the prime field F2. In particular, we prove that the last two of the eleven known “sporadic”
perfect polynomials over F2 are the unique of them of the form xa(x + 1)bM2hσ(M2h), where
M is a Mersenne prime and a, b, h ∈ N∗.
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1. Introduction

Let A ∈ F2[x] be a nonzero polynomial. We say that A is even if it has
a linear factor and it is odd otherwise. We define a Mersenne polynomial over F2

as a polynomial of the form 1 + xa(x+ 1)b, for some positive integers a, b. If such
a polynomial is irreducible, we say that it is a Mersenne prime.

Let ω(A) denote the number of distinct irreducible (or prime) factors of A
over F2 and let σ(A) denote the sum of all divisors of A (σ is a multiplicative
function). If σ(A) = A, then we say that A is a perfect polynomial. The notion
of perfect polynomials is introduced ([3]) by E.F. Canaday in 1941 and extended
by J.T.B. Beard Jr. et al. in several directions ([1], [2]). We are interested in this
subject since a few years and have obtained some results ([4], [5], [6], [7], [8]).

If A ∈ F2[x] is nonconstant and perfect, then ω(A) > 2 (Lemma 2.1). Moreover
([3]), the only perfect polynomials A over F2 with ω(A) = 2 are those of the
form (x2 + x)2n−1, for some positive integer n. We call them “trivial” perfect.
Contrary to the integer case in which any even perfect number has exactly two
distinct prime factors, we do not know the value of ω(A) for a non-trivial even
perfect polynomial A ∈ F2[x]. We are unable to describe a general form of such
polynomials in terms of Mersenne primes. However, as discussed below, with only
two exceptions, all known non-trivial even perfect polynomials have factorizations
with Mersenne primes as odd divisors.
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In the rest of the paper:
(a) For S ∈ F2[x], we denote by S the polynomial obtained from S with x

replaced by x+ 1: S(x) = S(x+ 1).
(b) We denote by α a root of the irreducible polynomial x2 + x + 1 in a fixed

algebraic closure of F2. In other words: F4 := F2[α], where F4 is the finite
field with 4 elements.

Remark 1.1. In other words, for any S ∈ F2[x], one has

S(α) 6= 0 ⇐⇒ gcd(S(x), x2 + x+ 1) = 1.

As usual, N (resp. N∗) denotes the set of nonnegative integers (resp. of positive
integers).

We proved ([5], [6]) that any nonconstant and non-trivial perfect polynomial
A ∈ F2[x] with ω(A) 6 4 is even and takes one of the following forms:

T1 = x2(x+ 1)M1, T2 = T 1, T3 = x4(x+ 1)3M3, T4 = T 3,

C1 = x2(x+ 1)(x4 + x+ 1)M1
2, C2 = C1, C3 = x4(x+ 1)4M3M3 = C3,

C4 = x6(x+ 1)3M2M2, C5 = C4,

where Mj = 1 + x(x+ 1)j , j = 1, 2, 3.
Moreover, there are only two more known even perfect polynomials with five

prime factors: S1 = x4(x+ 1)6M2M2M3 and S2 = S1.
These eleven polynomials are the only known non-trivial perfect polynomials

over F2. We call them “sporadic” perfect.
We immediately remark that, except for C1 and C2, all of them are of the

form xa(x+ 1)bP1 · · ·Pr where a, b ∈ N∗ and each Pj is a Mersenne prime. These
two exceptions C1, C2 show that contrary to the case of integers, there exist even
perfect polynomials over F2 which are divisible by a non Mersenne prime. We
showed ([9], Theorem 1.1) that these nine known polynomials are the unique per-
fect polynomials that have factorizations involving Mersenne primes as odd prime
divisors raised to powers of the form 2n − 1. We want to better understand the
factorisation of the last two sporadic perfect polynomials C1 and C2. We obvi-
ously see that C1 = x2(x+ 1)M1

2σ(M1
2) and C2 = x(x+ 1)2M1

2σ(M1
2). So, it is

natural to think of perfect polynomials of the form xa(x+ 1)bM2hσ(M2h), where
M is a Mersenne prime and a, b, h ∈ N∗. Proposition 3.5 implies that, in this case,
M ∈ {M1,M3} and the polynomial σ(σ(M2h)) must be of the form xu(x+1)vMw,
for some u, v, w ∈ N∗. Theorem 1.3 shows that M 6= M3.

In this paper, we characterize in Theorem 1.4 (with the help of Theorems 1.2
and 1.3) the polynomials C1 and C2, as the unique perfect polynomials that are
of the form xa(x+ 1)bM2hσ(M2h), where M is a Mersenne prime.

Theorem 1.2. If M = 1 +x+x2 and if σ(σ(M2h)) = xu(x+ 1)vMw, then u = v
and w is odd. Moreover, if u = v = 1, then w = h = 1.

Theorem 1.3. If M = 1 + x+ · · ·+ x4, then for any a, b, h ∈ N∗, there exists no
perfect polynomial over F2 of the form xa(x+ 1)bM2hσ(M2h).



Characterization of Sporadic perfect polynomials over F2 9

Theorem 1.4. Let A = xa(x+ 1)bM2hσ(M2h) be an even polynomial over F2,
where M is a Mersenne prime and h ∈ N∗. Then A is perfect if and only if
M = x2 + x+ 1, h = 1 and (a, b) ∈ {(1, 2), (2, 1)} so that {A,A} = {C1, C2}.

2. Preliminaries

Some of the following results are obvious or well known, so we omit their proofs.

Lemma 2.1 ([4, Lemma 2.3]). If A = Ph1
1 · · ·Phrr Qk1

1 · · ·Qkss is a nonconstant
perfect polynomial over F2 such that:{

P1, . . . , Pr, Q1, . . . , Qs are distinct and irreducible,
deg(P1) = · · · = deg(Pr) < deg(Q1) 6 · · · 6 deg(Qs),

then r is even.

Lemma 2.2. If A = A1A2 is perfect over F2 and if gcd(A1, A2) = 1, then A1 is
perfect if and only if A2 is perfect.

Lemma 2.3. If A is perfect over F2, then the polynomial A is also perfect over F2.

Lemma 2.4. If A is an odd perfect polynomial over F2, then A is a square.

Lemma 2.5 ([3, Theorem 8]). If any irreducible factor of 1 + x+ · · ·+ x2n is
of the form xa(x+ 1)b + 1, then n ∈ {1, 2, 3}.

Lemma 2.6. Let h be a positive integer and let M ∈ F2[x] be a Mersenne prime.
Then, σ(x2h) and σ(M2h) are both odd and squarefree.

Proof. The facts: σ(x2h) and σ(M2h) are odd and σ(x2h) is squarefree are im-
mediate. Put H = σ(M2h) = M2h + · · ·+M + 1. By differentiating H, one has:
H ′ = M ′ · (Mh−1 + · · ·+M + 1)2.

We show that gcd(H,H ′) = 1. Suppose that β is a common root of H and H ′
in a suitable field extension of F2. It is obvious that M ′(β) 6= 0 since M ′ has at
most two roots: 0, 1 and H(0) = H(1) = 1.

Hence, β satisfies: (M2h + · · · + M + 1)(β) = 0 = (Mh−1 + · · · + M + 1)(β).
Thus, 0 = H(β) = (M2h + (Mh + 1)(Mh−1 + · · ·+M + 1))(β) = M2h(β) + 0. So
M(β) = 0 and 0 = H(β) = 1, which is impossible. �

Corollary 2.7. Let M ∈ F2[x] be a Mersenne prime such that σ(σ(M2h)) =
xu(x + 1)vMw. Then, any irreducible divisor of σ(M2h) is of the form
1 + xai(x+ 1)bi or 1 + xci(x+ 1)diMei , for some positive integers ai, bi, ci, di, ei.

Proof. Since σ(M2h) is odd and squarefree, we get σ(M2h) = V1 · · ·Vr, where
r ∈ N∗ and each Vi is odd and irreducible. Hence, xu(x+ 1)vMw = σ(σ(M2h)) =
(1 + V1) · · · (1 + Vr). Therefore, for any i, 1 + Vi is of the form xai(x + 1)bi or
xci(x+ 1)diMei for some ai, bi, ci, di, ei ∈ N. The irreducibility of Vi and the fact
that it is odd imply that ai, bi, ci, di, ei must be positive. �
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Lemma 2.8. [[10], Theorem 7)] Let f ∈ F2[x] be a squarefree polynomial of
degree n. Then

i) f(1 + x+ x2) is also squarefree.
ii) ω(f(1 + x + x2)) is even if and only if (−1)nF (3, 4) ≡ 1 mod 8, where

F (x, y) is the homogeneous lift of f to Z[x].

Corollary 2.9. If M = x2 + x+ 1, then for any h ∈ N∗, the number ω(σ(M2h))
of irreducible divisors of σ(M2h) is odd.

Proof. Since the homogeneous lift of σ(x2h) to Z[x] equals

F (x, y) =
x2h+1 − y2h+1

x− y
,

and F (3, 4) ≡ 5 6≡ 1 (mod 8) the assertion follows from Lemma 2.8-ii). �

3. The proof of Theorem 1.4

We shall now show how our main result, Theorem 1.4, follows from Theorems 1.2
and 1.3. We start with a few technical lemmas.

3.1. Useful facts

Lemma 3.1. Let S ∈ F2[x] be irreducible such that S = S and S(α) 6= 0, then
S(α) = 1 and x2 + x+ 1 divides 1 + S.

Proof. Observe that from Remark 1.1 one has gcd(S(x), x2 + x + 1) = 1. Write
S(x) = Q(x)(x2 + x+ 1) +R(x) with Q(x), R(x) ∈ F2[x] and R(x) = a+ bx 6= 0.
Thus, a + bα = S(α) = S(α + 1) = a + b(α + 1). It follows that b = 0. Therefore
0 6= S(α) = a ∈ F2. Thus, a = 1, thereby proving the first assertion. Since
(1 + S)(α) = 0, 1 + S(x) is divisible by the minimal polynomial of α over F2. In
other words, x2+x+1 divides 1+S(x). This completes the proof of the lemma. �

Corollary 3.2. Let M = 1 + x+ x2, h ∈ N∗ and H = σ(M2h). Then there exists
an irreducible divisor P of H such that P = P and P (α) = 1.

Proof. First, H = H because M = M . By Lemma 2.6, H = P1P2 · · ·Pr, where
each Pj is irreducible. Since H = H, one has: P | H ⇒ P | H.

If for any j, Pj 6= Pj , then we may write without loss of generality:

H = P1P1P2P2 · · ·PsPs,

and ω(H) = 2s, which contradicts Corollary 2.9. Moreover, any irreducible divisor
P of σ(H) is distinct from M and thus satisfies: P (α) 6= 0. We get our corollary
from Lemma 3.1. �

Corollary 3.3. For any h ∈ N∗, M = 1 + x+ x2 divides σ(σ(M2h)) = σ(H).
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Proof. By Corollary 3.2, let P be irreducible such that P‖H and P = P . Then,
1 + P divides σ(H), and from Lemma 3.1, M divides 1 + P . �

Lemma 3.4. If M = x2 + x+ 1 and if T ∈ F2[x] are such that T = T . Then
i) there exists S ∈ F2[x] such that T = S(M).
ii) σ(T ) = σ(T ).
iii) If xu‖T and (x+ 1)v‖T , then u = v.

Proof. i): By induction on the degree of T , we can prove that there exists R ∈
F2[x] such that T = R(x(x+ 1)). It suffices then to take S(x) = R(x+ 1).

ii) is immediate.
iii): Put T = xu(x + 1)vU , where U is an odd polynomial. Since T = T , one

has: xv(x+ 1)uU = T = T = xu(x+ 1)vU. We are done. �

3.2. The proof

Assume, in this section, that the polynomial A = xa(x+1)bM2hσ(M2h) is perfect
over F2, withM a Mersenne prime, a, b, h ∈ N∗ and a 6 b. We setM1 = 1+x+x2

and M3 = 1 + x+ · · ·+ x4.
For r ∈ N, put U2h = σ(σ(M2h)) and

Sr,h = x2r+1

(x+ 1)2r+1

M2h−2r+1

, Tr,h = x2r (x+ 1)2rM2h−2r if M = M1,

Sr,h = x3·2r (x+ 1)2rM2h−2r , Tr,h = x2r (x+ 1)3·2rM2h−2r if M = M3.

Proposition 3.5.
i) M divides at least one of σ(xa) and σ((x+ 1)b).
ii) One has either M = M1 or M = M3.
iii) If M = M1, then for some r ∈ N, we have (a = b = 3 · 2r − 1, U2h = Sr,h)

or (a = 2 · 2r − 1, b = 3 · 2r − 1, U2h = Tr,h).
iv) If M = M3 then U2h ∈ {Sr,h, Tr,h}, for some r ∈ N.

Proof. i): Put A = xa(x + 1)bM2hσ(M2h), a + 1 = 2su and b + 1 = 2rv, with
s, r > 0, u, v odd. One has:

σ(xa) = 1 + x+ · · ·+ xa = (1 + x)2s−1(1 + x+ · · ·+ xu−1)2s ,

σ((x+ 1)b) = x2r−1(1 + (x+ 1) + · · ·+ (x+ 1)v−1)2r .

We remark that the four polynomials x, x+1,M and σ(M2h) are pairwise coprime.
Hence, σ(A) = σ(xa) σ((x+ 1)b) σ(M2h) σ(σ(M2h)).

Since A is perfect, we get

xa(x+ 1)bM2hσ(M2h) = σ(xa)σ((x+ 1)b) σ(M2h) σ(σ(M2h)),

so that xa(x+ 1)bM2h = σ(xa) σ((x+ 1)b) σ(σ(M2h)).
If M - σ(xa) and M - σ((x+ 1)b), then M2h divides σ(σ(M2h)). Thus,

M2h = σ(σ(M2h)), M2h σ(M2h) is odd and perfect,

which is impossible by Lemmas 2.4 and 2.6.
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ii): If M | σ(xa), then M = 1 + x + · · · + xu−1. Hence, by Lemma 2.5, u = 3
or u = 5.

If M | σ((x+ 1)b), then as above: M ∈ {M1,M3}.
iii): From i), M = M1 must divide at least one of σ(xa) and σ((x+ 1)b).
• If M | σ(xa) and M | σ((x+ 1)b), then M = 1 + x+ · · ·+ xu−1 = 1 + (x+

1) + · · ·+ (x+ 1)v−1. Hence, u = v = 3. Thus, s 6 r, 2r − 1 6 a = 3 · 2s − 1
and 2s − 1 6 b = 3 · 2r − 1. It follows that s 6 r 6 s+ 1. We get U2h = Sr,h
if s = r. If r = s+ 1, then

a = 3 · 2s − 1, b = 6 · 2s − 1, σ(σ(M2h)) = x2s · (x+ 1)5·2s ·M2h−3·2s ,

which is impossible by Lemma 3.4.
• If M | σ(xa) but M - σ((x + 1)b), then u = 3, v = 1. Thus, 2r − 1 6 a =

3 · 2s − 1 6 b = 2r − 1 and 2s − 1 6 b = 2r − 1. So r 6 s + 1 < r, which is
impossible.

• If M - σ(xa) but M | σ((x + 1)b), then u = 1, v = 3. Thus, 2r − 1 6 a =
2s− 1 6 b = 3 · 2r − 1 and 2s− 1 6 b = 3 · 2r − 1. So r 6 s 6 r+ 1. If s = r,
then

a = 2r − 1, b = 3 · 2r − 1 and σ(σ(M2h)) = (x+ 1)2r+1

·M2h−2r ,

which is impossible by Lemma 3.4. We get U2h = Tr,h if s = r + 1.
iv): Now, we suppose that M = M3.
• If M | σ(xa) and M | σ((x+ 1)b), then M = 1 + x+ · · ·+ xu−1 = 1 + (x+

1) + · · ·+ (x+ 1)v−1, which is impossible.
• If M | σ(xa) but M - σ((x + 1)b), then u = 5, v = 1. Thus, 2r − 1 6 a =

5 · 2s − 1 and 2s − 1 6 b = 2r − 1. So s 6 r 6 s+ 2.
– If r = s, then

xa(x+ 1)bM2h = σ(xa)σ((x+ 1)b)U2h = (x+ 1)2s−1M2sx2s−1U2h,

so that U2h = x4·2sM2h−2s . Hence, any irreducible divisor of σ(M2h)
is of the form 1 + xcMd, which is impossible by Corollary 2.7.

– If r = s+ 1, then

a = 5 · 2s − 1, b = 2 · 2s − 1, U2h = x3·2s(x+ 1)2sM2h−2s = Ss,h.

– If r = s+ 2, then

a = 5 · 2s − 1, b = 4 · 2s − 1, U2h = x2s(x+ 1)3·2sM2h−2s = Ts,h.

• If M - σ(xa) but M | σ((x + 1)b), then u = 1, v = 5. As above, we get
r 6 s 6 r + 2 and U2h ∈ {Ss,h, Ts,h}. �

We can now finish the proof of Theorem 1.4. If A is perfect, then the case
M = M3 is excluded by Theorem 1.3. From Theorem 1.2, we get: σ(σ(M2h)) =
xu(x+ 1)uMw, for some u,w ∈ N∗, with w odd.
Proposition 3.5-iii) gives: σ(σ(M2h)) = Tr,h = x2r · (x+ 1)2r ·M2h−2r ,
with r = 0 and a = 2 · 2r − 1 = 1, b = 3 · 2r − 1 = 2. Again, Theorem 1.2 implies
that h = 1 and we get our theorem.
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4. Proof of Theorem 1.2

In this section, we take M = 1 + x + x2. Primo, we see that u = v since
σ(σ(M2h)) = σ(σ(M2h)). Secundo, Lemma 4.1 below states that w = h = 1
if u = v = 1. It remains then to show that w is odd.

Lemma 4.1. If σ(σ(M2h)) = x(x+ 1)M2h−1, then h = 1.

Proof. We may write, by Corollary 2.7: σ(M2h) = V1 · · ·Vr, where each Vi is odd
and irreducible of the form 1+xai(x+1)bi or 1+xci(x+1)diMei , for some positive
integers r, ai, bi, ci, di, ei. If r > 2, then x2 divides σ(σ(M2h)), which is impossible.
So, r = 1 and σ(M2h) = V1 = 1 + x(x + 1)M2h−1. Hence, M2h + · · · + M =
σ(M2h) + 1 = x(x+ 1)M2h−1 and 2h− 1 = 1. �

Notation 4.2. For a polynomial S ∈ F2[x] of degree s, we denote by αk(S) the
coefficient of xs−k in S, 1 6 k 6 s.

Lemma 4.3. Let S ∈ F2[x] such that gcd(S, x(x + 1)(x2 + x + 1)) = 1, then
α1(σ(S)) = α1(S) and α2(σ(S)) = α2(S).

Proof. In this case, σ(S) = S+T , where deg(T ) 6 deg(S)− 3. We are done. �

Lemma 4.4. If u, v, w ∈ N∗, then one has modulo 2:

α2(Mw) =
w(w + 1)

2
, α2(σ(Mw)) = 1 + α2(Mw),

α2(xu(x+ 1)vMw) =
v(v − 1)

2
+
w(w + 1)

2
+ vw.

Proof. Mw = ((x2 + x) + 1)w = (x2 + x)w + w(x2 + x)w−1 + · · · . So

Mw = x2w + wx2w−1 +

(
w

2

)
x2w−2 + · · ·+ w(x2 + x)w−1 + · · ·

and

α2(Mw) =

(
w

2

)
+ w =

(
w + 1

2

)
,

α2(σ(Mw)) = α2(Mw +Mw−1 + · · · ) = α2(Mw) + 1.

We have α2(xu(x+ 1)vMw) = α2((x+ 1)vMw) and

(x+1)vMw = (xv+vxv−1 +

(
v

2

)
xv−2 + · · · )(x2w+wx2w−1 +

(
w + 1

2

)
x2w−2 + · · · )

Hence

α2((x+ 1)vMw) =
v(v − 1)

2
+
w(w + 1)

2
+ vw. �
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We can now finish the proof of Theorem 1.2. We suppose that σ(σ(M2h)) =
xu(x + 1)uMw where w = 2` is even. By comparing degrees, we get: u = 2d is
even and h = ` + d. We apply Lemmas 4.3 and 4.4 to S = σ(M2h) and to M2h.
We get modulo 2: α2(σ(σ(M2h))) = α2(σ(M2h)) = 1 + α2(M2h) = 1 + h.

On the other hand, still by Lemma 4.4, we obtain:

α2(xu(x+ 1)uM2d) ≡ `+ d mod 2.

So, we get the contradiction:

1 + h ≡ α2(σ(σ(M2h))) = α2(xu(x+ 1)uM2d) ≡ `+ d = h mod 2.

5. Proof of Theorem 1.3

In this section, we set M = 1 + x+ x2 + x3 + x4 and for h ∈ N∗ and r ∈ N:

U2h = σ(σ(M2h)), Sr,h = x3·2r (x+ 1)2rM2h−2r , Tr,h = x2r (x+ 1)3·2rM2h−2r.

The main idea of the proof is similar (but technically more complicated) as
that of Theorem 1.2: Proposition 3.5-iv) implies that U2h ∈ {Sr,h, Tr,h}, for some
r ∈ N. If r ∈ {0, 1}, we shall show directly that this is not possible. For r > 2,
we shall see that this is also impossible by proving that αk(U2h) 6= αk(Sr,h),
αl(U2h) 6= αl(Tr,h) for some 1 6 k, l 6 5 (see Notation 4.2 and Corollaries 5.12,
5.14, 5.16 and 5.18). The rough (trivial) idea is that two polynomials are equal if
and only if they have the same coefficients.

5.1. Case r ∈ {0, 1}

We prove, directly, that if r ∈ {0, 1}, then U2h 6= Sr,h, Tr,h, for any h ∈ N∗.

Case r = 0

• If U2h = S0,h = x3(x + 1)M2h−1, then σ(M2h) = 1 + x3(x + 1)M2h−1 is
irreducible. Hence M2h + · · · + M = x3(x + 1)M2h−1, so that 2h − 1 = 1
and M = 1 + x3(x+ 1). It is impossible.

• If U2h = T0,h = x(x + 1)3M2h−1, then σ(M2h) is irreducible and equals
1+x(x+1)3M2h−1. Hence, as above, h = 1 and σ(M2h) = (x2 +x+1)(x6 +
x5 + x4 + x2 + 1), which is not irreducible.

Case r = 1

Lemma 5.1. For any h ∈ N∗, U2h 6= x6(x+ 1)2M2h−2 = S1,h.

Proof. If U2h = x6(x + 1)2M2h−2, then by Corollary 2.7, σ(M2h) =
(1 + xu(x + 1)Mw)((1 + x6−u(x + 1)M2h−2−w), where u,w ∈ N, 1 6 u 6 5.
Hence

M2h+ · · ·+M + 1 = 1 +xu(x+ 1)Mw +x6−u(x+ 1)M2h−2−w +x6(x+ 1)2M2h−2.
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• If w 6= 2h−2−w, then min(w, 2h−2−w) = 1 andM must divide 1+xc(x+1),
with c ∈ {u, 6− u}. This contradicts Lemma 5.3 below.

• If w = 2h−2−w and u = 3, thenM2h+ · · ·+M+1 = 1+x6(x+1)2M2h−2.
Hence 2h− 2 = 1. It is impossible.

• If w = 2h− 2− w and u 6= 3, then w = h− 1,

M2h + · · ·+M = (x+ 1)Mh−1(xu + x6−u) + x6(x+ 1)2M2h−2.

So, h− 1 = 1, h = 2 and

U4 = σ(σ(M4)) = x2(x+1)2(x2 +x+1)(x10 +x9 +x8 +x6 +x4 +x3 +1) 6= S1,2. �

Lemma 5.2. For any h ∈ N∗, U2h 6= x2(x+ 1)6M2h−2 = T1,h.

Proof. If U2h = x2(x+1)6M2h−2, then as above, σ(M2h) = (1+x(x+1)uMw)((1+
x(x+ 1)6−uM2h−2−w), where u,w ∈ N, 1 6 u 6 5. Hence

M2h + · · ·+M = x(x+ 1)uMw + x(x+ 1)6−uM2h−2−w + x2(x+ 1)6M2h−2.

• If w 6= 2h − 2 − w, then δ := min(w, 2h − 2 − w) = 1 and M must divide
1 + x(x+ 1)c, with c ∈ {u, 6− u} ⊂ {1, . . . , 5}. Thus, c = 3 = u = 6− u and

M2h−1 + · · ·+M + 1 = x(x+ 1)3[Mw−1 +M2h−3−w] + x2(x+ 1)6M2h−3.

Remark that Mw−1 +M2h−3−w = 1+M2h−4 if (w = δ) or (2h−2−w = δ).
It follows that M2h−1 + · · ·+M2 = x(x+ 1)3M2h−4 +x2(x+ 1)6M2h−3. So,
2h− 4 = 2, h = 3 and

U6 = x5(x+ 1)7(1 + x+ x2 + x3 + x4)2(x4 + x3 + 1) 6= x2(x+ 1)6M4 = T1,3.

• If w = 2h−2−w and u = 3, thenM2h+ · · ·+M = x2(x+1)6M2h−2. Hence
2h− 2 = 1. It is impossible.

• If w = 2h− 2− w and u 6= 3, then w = h− 1,

M2h + · · ·+M = xMh−1[(x+ 1)u + (x+ 1)6−u] + x2(x+ 1)6M2h−2.

So, h− 1 = 1, h = 2 and

U4 = σ(σ(M4)) = x2(x+1)2(x2+x+1)(x10+x9+x8+x6+x4+x3+1) 6= T1,2.
�

Lemma 5.3. For any c ∈ N, M does not divide 1 + xc(x+ 1).

Proof. Let α be a root of M . Then, one has α5 = 1 so that αc ∈ {1, α, . . . , α4}.
Thus, αc(α+ 1) 6= 1 for any c ∈ N. We are done. �
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5.2. Case r > 2

Some precisions about divisors of σ(M2h)

The polynomial U defined below and its divisors will be useful:

U := (x2 + x+ 1)(x3 + x+ 1)(x3 + x2 + 1) = x8 + x6 + x5 + x4 + x3 + x2 + 1.

Moreover, it follows from Lemma 5.4 below, that we have to distinguish the fol-
lowing four cases:

i) gcd(σ(M2h), U) = 1,
ii) σ(M2h) = (x2 + x+ 1)B, with gcd(B,U) = 1,
iii) σ(M2h) = (x3 + x+ 1)(x3 + x2 + 1)B, with gcd(B,U) = 1,
iv) σ(M2h) = UB, with gcd(B,U) = 1.

Lemma 5.4.

i) The polynomial x3 +x+ 1 divides σ(M2h) if and only if x3 +x2 + 1 divides
σ(M2h).

ii) If x4 + x3 + 1 divides σ(M2h) then x4 + x + 1 must divide σ(M2h). The
converse is false.

iii) No irreducible polynomial of degree 4 divides σ(M2h).
iv) No irreducible polynomial of degree 5 divides σ(M2h).

Proof. i): Suppose that x3+x+1 divides σ(M2h) and let µ be a root of x3+x+1.
Then, one hasM(µ)

2h+1
= 1. But,M(µ) = µ4+µ2 = µ2(µ+1)2 = µ2µ6 = µ8 = µ

because µ ∈ F8. So, µ2h+1 = 1 and 7 divides 2h+ 1.
Now, let β be a root of x3 +x2 +1. Then,M(β) = β4 +β = β3 6∈ {0, 1} because

β is of order 7. HenceM(β)7 = 1 so thatM(β)
2h+1

= 1 and (x3+x2+1) | σ(M2h).
We similarly see that (x3 + x+ 1) | σ(M2h) if (x3 + x2 + 1) | σ(M2h).
ii): Suppose that x4 +x3 + 1 divides σ(M2h) and let γ be a root of x4 +x3 + 1.

Then, one has M(γ)
2h+1

= 1. But, M(γ) = γ(γ + 1) =
γ

γ3
. So, (γ−2)

2h+1
= 1,

γ2h+1 = 1. Since γ15 = 1, γ belonging to F16 \ {0, 1}, γ3 6= 1 and γ5 6= 1, we see
that γ is of order 15. Thus, 15 divides 2h+ 1.

Now, let ζ be a root of x4 +x+1. Then, M(ζ) = ζ3 + ζ2 = ζ2ζ4 = ζ6 6∈ {0, 1}.
Hence M(ζ)

15
= 1 so that M(ζ)

2h+1
= 1 and (x4 + x + 1) | σ(M2h). By taking

h = 2, we see that σ(M2h) = (x4 +x+1)(x12 +x9 +x8 +x7 +x6 +x4 +x2 +x+1),
so that the converse is not true.

iii) follows from ii) and from the fact that any irreducible divisor of σ(M2h)
must be of the form 1 + xai(x + 1)biM ci (Corollary 2.7), x4 + x + 1 being not of
this form.

iv) follows by an analogous proof, since any element of F32 \ {0, 1} is of order
31 (a prime number), we see that if an irreducible polynomial of degree 5 divides
σ(M2h), then all irreducible polynomials of degree 5 divide it. But, 1 + x+ x2 +
x4 +x5 = 1 +x(x+ 1)2(x2 +x+ 1) is irreducible of degree 5 and is not of the form
1 + xai(x+ 1)biM ci . This contradicts Corollary 2.7. �
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αl(M
w), αl(σ(M

2h)) and αl(U2h), for l, w, h ∈ N∗, l 6 5

In order to compute αl(Mw), αl(σ(M2h)) and αl(U2h), for l, w, h ∈ N∗, we some-
times apply the following binomial coefficient properties obtained from the well-
known Lucas’Theorem (see [11]), without explicit mention. Some of our results
are obtained by direct computations, so we omit their proofs.

Lemma 5.5. Let n, k be two positive integers. Then, one has modulo 2:

i)
(
n

k

)
≡ 0 if n is even and k odd.

ii)
(
n

k

)
≡
(

[n2 ]

[k2 ]

)
, otherwise.

iii)
(

2n

n

)
≡ 0.

Lemma 5.6. If w ∈ N∗, then one has modulo 2:

α1(Mw) = w, α2(Mw) = w +

(
w

2

)
, α3(Mw) = w +

(
w

3

)
α4(Mw) =

(
w

4

)
+ w

(
w − 1

2

)
+ w +

(
w

2

)
,

α5(Mw) =

(
w

5

)
+ w

(
w − 1

3

)
+ w

(
w − 1

2

)
+ (w − 2)

(
w

2

)
.

In particular, for any l ∈ N∗,

α1(M2l) = α3(M2l) = 0, α2(M2l) = l, α4(M2l) =

(
l

2

)
+ l, α5(M2l) = 0.

Proof. Write

Mw =

2∑
l=0

(
w

l

)
(x4 + x3)w−l(x2 + x+ 1)l + T, where deg(T1) 6 4w − 6,

and consider all the coefficients of monomials of degree greater than 4w − 6 in
(x4 + x3)w, w(x4 + x3)w−1(x2 + x+ 1) and in

(
w
l

)
(x4 + x3)w−2(x2 + x+ 1)2. �

Lemma 5.7. Let u, v, w ∈ N∗ and Rv,w = (x+1)vMw. Then αk(xu(x+1)vMw) =
αk(Rv,w) and

α1(Rv,w) = v + α1(Mw) = v + w, α2(Rv,w) =

(
v

2

)
+ vα1(Mw) + α2(Mw),

α3(Rv,w) =

(
v

3

)
+

(
v

2

)
α1(Mw) + vα2(Mw) + α3(Mw),

α4(Rv,w) =

(
v

4

)
+

(
v

3

)
α1(Mw) +

(
v

2

)
α2(Mw) + vα3(Mw) + α4(Mw),

α5(Rv,w) =

(
v

5

)
+

(
v

4

)
w +

(
v

3

)
α2(Mw) +

(
v

2

)
α3(Mw) + vα4(Mw) + α5(Mw).
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Proof. We easily see that αk(xu(x + 1)vMw) = αk((x + 1)vMw). We write
Mw = x4w +

∑5
l=1 αl(M

w)x4w−l + T2 and (x+ 1)v =
∑5
l=0

(
v
l

)
xv−l + T3, where

deg(T2) 6 4w − 6 and deg(T3) 6 v − 6. As above, it suffices to consider the
coefficients of all monomials of degree greater than 4w − 6 in(

x4w +

5∑
l=1

αl(M
w)x4w−l

)(
5∑
l=0

(
v

l

)
xv−l

)
. �

From Lemma 5.7 and from the fact that Sr,h and Tr,h are squares, we get

Corollary 5.8. If r, h ∈ N∗, with r > 2, then one has modulo 2:

αl(Sr,h) = αl(Tr,h) = 0 if l is odd,

α2(Sr,h) = α2(Tr,h) = h, α4(Sr,h) = α4(Tr,h) = 2r−2 +

(
h− 2r−1

2

)
+ h.

Lemma 5.9. For h ∈ N∗, one has modulo 2: α1(σ(M2h)) = α3(σ(M2h)) = 0,
α2(σ(M2h)) = h, α4(σ(M2h)) =

(
h−1

2

)
and α5(σ(M2h)) = 1.

Proof. Since σ(M2h) = M2h+M2h−1 +T , with deg(T ) 6 4(2h−2) = 8h−8, one
has αl(σ(M2h)) = αl(M

2h) if 1 6 l 6 3, and αl(σ(M2h)) = αl(M
2h + M2h−1) =

αl(x(x+ 1)3M2h−1) = αl(R3,2h−1) if 4 6 l 6 5.
From Lemmas 5.7 and 5.6, one has modulo 2:

α4(R3,2h−1) = α1(M2h−1) + α2(M2h−1) + α3(M2h−1) + α4(M2h−1)

=

(
2h− 1

3

)
+

(
2h− 1

4

)
+

(
2h− 1

2

)
=

(
h− 1

1

)
+

(
h− 1

2

)
+

(
h− 1

1

)
.

α5(R3,2h−1) = α2(M2h−1) + α3(M2h−1) + α4(M2h−1) + α5(M2h−1)

= 1 + α4(R3,2h−1) +

(
2h− 1

5

)
+

(
2h− 2

3

)
+

(
2h− 2

2

)
= 1 +

(
h− 1

2

)
+

(
h− 1

2

)
+

(
h− 1

1

)
+

(
h− 1

1

)
.

So, α4(σ(M2h)) =
(
h−1

2

)
and α5(σ(M2h)) = 1. �

Lemma 5.10. Let S ∈ F2[x] be such that no irreducible polynomial of degree at
most 5 divides S. Then αl(σ(S)) = αl(S), for any 1 6 l 6 5.

Proof. One has: σ(S) = S + T , where deg(T ) 6 deg(S)− 6. We are done. �

Corollary 5.11. Let h ∈ N∗ be such that gcd(σ(M2h), U) = 1. Then

α1(U2h) = 0, α2(U2h) = h, α3(U2h) = 0, α4(U2h) =

(
h− 1

2

)
.
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Proof. Apply Lemma 5.10 to S = σ(M2h) by taking account of Corollary 2.7 and
of Lemma 5.9. �

Corollary 5.12. If r, h ∈ N∗ with gcd(σ(M2h), U) = 1 and r > 2, then

α4(U2h) 6= α4(Sr,h), α4(U2h) 6= α4(Tr,h).

Lemma 5.13. Let h ∈ N∗ be such that σ(M2h) = (x2 + x + 1)B, where
gcd(B,U) = 1. Then α1(U2h) = 0 and α2(U2h) = h+ 1.

Proof. By Corollary 2.7, since B divides σ(M2h), we may apply Lemma 5.10 to
S = B. One has, for any 1 6 l 6 5, αl(σ(B)) = αl(B).

We may write: B = xb + α1(B)xb−1 + α2(B)xb−2 + · · · and σ(M2h) =
(x2 + x+ 1)B = xb+2 + (α1(B) + 1)xb+1 + (α2(B) + 1)xb + · · · So, α1(σ(M2h)) =
α1(B) + 1, α2(σ(M2h)) = α2(B) + α1(B) + 1.

On the other hand,

U2h = (x2 +x)σ(B) = xb+2 +(α1(σ(B))+1)xb+1 +(α2(σ(B))+α1(σ(B)))xb+ · · ·

Thus, α1(U2h) = α1(σ(B)) + 1 = α1(B) + 1 = α1(σ(M2h)) and

α2(U2h) = α2(σ(B)) + α1(σ(B)) = α2(B) + α1(B) = α2(σ(M2h)) + 1.

We get then our results from Lemma 5.9. �

Corollary 5.14. If r, h ∈ N∗ are such that σ(M2h) = (x2 + x + 1)B, where
gcd(B,U) = 1 and r > 2, then α2(U2h) = h+ 1 6= h = α2(Sr,h) = α2(Tr,h).

Lemma 5.15. Let h ∈ N∗ be such that σ(M2h) = (x3 + x + 1)(x3 + x2 + 1)B,
where gcd(B,U) = 1. Then

α1(U2h) = 0, α2(U2h) = h, α3(U2h) = 0,

α4(U2h) = 1 +

(
h− 1

2

)
, α5(U2h) = 1.

Proof. We proceed as in the proof of Lemma 5.13. We give relations between the
αl(σ(M2h))’s and the αl(U2h)’s and apply Lemma 5.9.
By writing:

σ(M2h) = (x6 + · · ·+ x+ 1)B, with B = xb +

5∑
k=1

αk(B)xb−k + · · · ,

we get:

α1(σ(M2h)) = α1(B) + 1, α2(σ(M2h)) = α2(B) + α1(B) + 1,

α3(σ(M2h)) = α3(B) + α2(B) + α1(B) + 1 = α3(B) + α2(σ(M2h)),

α4(σ(M2h)) = α4(B) + α3(σ(M2h)),

α5(σ(M2h)) =

5∑
k=1

αk(B) + 1 =

5∑
k=2

αk(B) + α1(σ(M2h)).
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Since U2h = (x3 + x)(x3 + x2)σ(B) = (x6 + x5 + x4 + x3)σ(B), we obtain

α1(U2h) = α1(σ(B)) + 1 = α1(B) + 1 = α1(σ(M2h)),

α2(U2h) = α2(σ(B)) + α1(σ(B)) + 1 = α2(σ(M2h)),

α3(U2h) = α3(σ(B)) + α2(σ(B)) + α1(σ(B)) + 1 = α3(σ(M2h)),

α4(U2h) =

4∑
k=1

αk(σ(B)) = α4(σ(M2h)) + 1,

α5(U2h) =
5∑
k=2

αk(σ(B)) =

5∑
k=2

αk(B) = α5(σ(M2h)) + α1(σ(M2h)). �

Corollary 5.16. If r, h ∈ N∗ are such that σ(M2h) = (x3 +x+ 1)(x3 +x2 + 1)B,
where gcd(B,U) = 1 and r > 2, then α5(U2h) = 1 6= 0 = α5(Sr,h) = α5(Tr,h).

Lemma 5.17. Let h ∈ N∗ be such that σ(M2h) = U · B, where gcd(B,U) = 1.
Then α1(U2h) = 0, α2(U2h) = h+ 1 and α3(U2h) = 1.

Proof. As above, we write:

σ(M2h) = UB = (x8 + x6 + · · ·+ x2 + 1)B

with B = xb +

3∑
k=1

αk(B)xb−k + · · ·

We get: α1(σ(M2h)) = α1(B), α2(σ(M2h)) = α2(B) + 1 and
α3(σ(M2h)) = α3(B) + α1(B) + 1.
Here, U2h = (x2 + x)(x3 + x)(x3 + x2)σ(B) = (x8 + x4)σ(B). So, one has:

α1(U2h) = α1(σ(B)) = α1(B) = α1(σ(M2h)),

α2(U2h) = α2(σ(B)) = α2(B) = α2(σ(M2h)) + 1,

α3(U2h) = α3(σ(B)) = α3(B) = α3(σ(M2h)) + α1(σ(M2h)) + 1. �

Corollary 5.18. If r, h ∈ N∗ are such that σ(M2h) = U ·B, where gcd(B,U) = 1
and r > 2, then α3(U2h) = 1 6= 0 = α3(Sr,h) = α3(Tr,h).
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