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ON ASYMPTOTICS OF ENTROPY OF A CLASS OF ANALYTIC
FUNCTIONS
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Abstract: Let (K, D) be a compact subset of an open set D on a Stein manifold Ω of dimension n,
H∞ (D) the Banach space of all bounded and analytic in D functions endowed with the uniform
norm, and AD

K be a compact subset in the space of continuous functions C (K) consisted of all
restrictions of functions from the unit ball BH∞(D). In 1950s Kolmogorov raised the problem of
a strict asymptotics ([K1, K2, KT]) of an entropy of this class of analytic functions: Hε

(
AD

K

) ∼
τ

(
ln 1

ε

)n+1
, ε → 0, with a constant τ . The main result of this paper, which generalizes and

strengthens the Levin’s and Tikhomirov’s result in [LT], shows that this asymptotics is equivalent
to the asymptotics for the widths (Kolmogorov diameters): ln dk

(
AD

K

) ∼ −σk1/n, k →∞, with

the constant σ =
(

2
τ(n+1)

)1/n
. This result makes it possible to get a positive solution of the

above entropy problem by applying recent results [Z2] on the asymptotics for the widths dk

(
AD

K

)
.

Keywords: Entropy and widths asymptotics, spaces of analytic functions, Kolmogorov problem,
Bedford Taylor capacity of a condenser.

1. Introduction

The ε-entropy of a set A in a metric space X = (X, ρ) is defined by the formula:
Hε (A) = Hε (A,X) := ln Nε (A,X), where Nε (A,X) is the smallest integer N
such that A can be covered by N sets of diameter not greater than 2ε (we assume
that Hε (A) = +∞ if there is no finite covering of that sort).

Let K be a compact subset of an open set D on a Stein manifold Ω of dimension
n, H∞ (D) the Banach space of all bounded and analytic in D functions endowed
with the uniform norm, and AD

K be a compact subset in the space of continu-
ous functions C (K) consisting of all restrictions of functions from the unit ball
BH∞(D). Hereafter, if it is not mentioned specially, we assume that the restriction
operator R : H∞ (D) → C (K) is injective, so one can set that AD

K = BH∞(D). For
the sake of brevity, any pair (K, D) satisfying the above conditions will be called
a condenser on a Stein manifold Ω.
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In 1950s Kolmogorov raised the problem of a strict asymptotics ([K1, K2, KT])

Hε

(
AD

K

) ∼ τ

(
ln

1
ε

)n+1

, ε → 0, (1)

with a constant τ (it was already known that the weak asymptotics Hε

(
AD

K

) ³(
ln 1

ε

)n+1
, ε → 0, holds for good enough condensers (K, D) [K2]).

For a set A in a Banach space X the Kolmogorov diameters ( or widths) of A
with respect to the unit ball BX of the space X are the numbers (see, e.g., [M, T]):

dk (A) = dk (A,BX ) := inf
L∈Lk

sup
x∈A

inf
y∈L

‖x− y‖X , k = 0, 1, . . . , (2)

where Lk is the set of all vector subspaces of X of dimension 6 k.
It is proved in [LT], which is an appendix to the posthumous paper of V. D.

Erokhin [E], that the asymptotics (1) for n = 1 follows from the asymptotics

ln dk

(
AD

K

) ∼ −k

τ
, k →∞. (3)

Our main goal is to prove here the following assertion, which generalizes and
strengthens this result.

Theorem 1. Let (K, D) be a condenser on a Stein manifold Ω of dimension n.
The asymptotics (1) holds if and only if the asymptotics

ln dk

(
AD

K

) ∼ −σk1/n, k →∞ (4)

takes place with the constant σ =
(

2
τ(n+1)

)1/n

.

This result will be drawn from a more general Theorem 5, which is proved in
Section 3. Its proof is based on 1) Mityagin’s result on an estimate of entropy from
below in Theorem 4 [M] (see Lemma 2 below) and 2) Theorem 4 in this paper on
an estimate of entropy from above. The latter is obtained by a modification of the
proof from [LT], which develops the proof of the estimate from above in Theorem 4,
[M] (see Lemmas 1 and 2 in [LT] and Lemma 3 below). Using Theorem 1 and
applying the results on the asymptotics (4), we discuss the original Kolmogorov
problem on the asymptotics (1) in Section 4.
Notation:

• The relation f (t) ≈ g (t) , t ↗∞, means that for every ε > 0 there is T > 0
such that f (t) 6 g

(
t1+ε

)
and g (t) 6 f

(
t1+ε

)
for t > T .

• Given a positive sequence a = (ak) its counting function is

ma (t) := ] {k : ak 6 t} , t > 0.

• Given a set A in a metric space X = (X, ρ) its α-extension is the set

[A]α = {x ∈ X : inf {ρ (x, y) : y ∈ A} 6 α} , α > 0.

• For a couple of linear topological spaces X ↪→ Y means a continuous linear
imbedding with dense image.
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2. Interestimates between entropy and widths

The following lemma is an easy adaptation of Mityagin’s result (contained in The-
orem 4 from [M]) to the case of complex Banach spaces. Notice that for special A
and X those estimates may be considerably better: see, for instance, [M], Theo-
rem 3 and its corollaries, where X = lp and A is an lp-ellipsoid.

Lemma 2 ([M, Theorem 4]). Let A be an absolutely convex set in a complex
Banach space X. Then

2
∫ 1

2ε

0

mc (t)
t

dt 6 Hε (A, X) 6 2ma

(
8
ε

)
ln

8 (d0 (A,BX) + ε)
ε

, (5)

where c = (cj) =
(

j
dj−1(A,BX)

)
j∈N

and a = (ak) = (1/dk−1 (A,BX)).

Below (Theorem 4) we show, modifying the technique from [LT], that the right
inequality (5) can be refined.

The next lemma is a slight modification of Lemmas 1 and 2 from [LT] (see p.
127 there); the proof below, basically the same as in [LT], develops the proof of
the right-hand inequality (5) from [M].

Lemma 3. Let A be a compact set in a complex Banach space X. Then for all
positive ε, δ and nonnegative α we have an inequality

Hε+α ([A]α , X) 6 Hε+α+δ

(
[A]ε+α , X

)
+ 2ma

(
2
ε

)
ln

(
8 (ε + α + δ)

ε

)
, (6)

where a =
(

1
dj−1(A,BX)

)
.

Proof. Given ε > 0 set m = ma

(
2
ε

)
. Then dm (A,BX) < ε/2, hence there exists

a complex subspace L of a dimension m = ma

(
2
ε

)
such that

sup
x∈A

inf
y∈L

{‖x− y‖} <
ε

2
.

Set F := ∪x∈A {z ∈ L : ‖x− z‖ 6 ε/2} and take a set {zl : l = 1, . . . ,M} ⊂ F with
the largest M such that ‖zl − zk‖ > ε/2, k 6= l. If S is a set such that F ⊂ [S]ε/2

then [A]α ⊂ [S]α+ε. Therefore, applying Lemma 6 from [M], we obtain

Nε+α ([A]α , X) 6 N ε
2

(F,X) 6 M. (7)

The balls zl + ε
8BX ∩L are pairwise disjoint and contained in [A]ε∩L ⊂ [A]ε+α∩L.

Hence,

M
(ε

8

)2m

V (BX ∩ L) 6 V (
[A]ε+α ∩ L

)
, (8)
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Here V (E) stays for the Euclidean volume of a set E in the m-dimensional complex
space L. On the other hand,

[A]ε+α ∩ L ⊂
N⋃

k=1

(wk + (ε + α + δ)BX ∩ L)

for some finite set {wk, k = 1, . . . , N} ⊂ [A]ε+α ∩ L with

N = Nε+α+δ

(
[A]ε+α ∩ L, X ∩ L

)
6 Nε+α+δ

(
[A]ε+α , X

)
.

Hence,

V (
[A]ε+α ∩ L

)
6 Nε+α+δ

(
[A]ε+α , X

)
(ε + α + δ)2m V (BX ∩ L) .

Combining this inequality with (7) and (8), we obtain an estimate

Nε+α ([A]α , X) 6 Nε+α+δ

(
[A]ε+α , X

)(
8 (ε + α + δ)

ε

)2m

and, after taking the logarithm, the inequality (6). ¥

Theorem 4. Let A be a compact absolutely convex set in a complex Banach space
X. Then there exists a constant M > 0 such that

Hε (A,X) . 2
∫ M

ε

0

ma (t)
t

dt, ε ↘ 0, (9)

where a = (ak) = (1/dk−1 (A,BX)).

Proof. Consider 0 < εs < εs−1 < . . . < ε1 < ε0 with ε0 > d0 (A,BX) = diam A
2

and apply repeatedly Lemma 3, taking first α = 0, ε = εs, δ = εs−1, then
α = εs, ε = εs−1, δ = εs−2, then α = εs + εs−1, ε = εs−2, δ = εs−3 and so on
finishing with α = εs + . . . + ε2, ε = ε1, δ = ε0. Since

Hεs+εs−1+...+ε1+ε0

(
[A]

εs+εs−1+...+ε1
, X

)
= ln 1 = 0,

finally we obtain an estimate

Hε (A,X) 6 2
s∑

j=1

ma

(
2
εj

)
ln

(
8 (εs + εs−1 + . . . + εj−1)

εj

)
(10)

which is analogous to the inequality (20) in [LT]. Consider any integer-valued
function s = s (t) ↗ ∞ such that s (t) = o (ln t) and set εj := εj/s, tj := 1/εj =
tj/s, j = 1, . . . , s + 1; ε0 = 1/t0 > d0 (A,BX). Taking into account that

γ (t) := ln
εj−1

εj
= ln tj − ln tj−1 =

ln t

s (t)
→∞ as t →∞,
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we have, due to s (t) = o (ln t), that εs + εs−1 + . . . + εj−1 6 εj−1

1−ε1/s 6 2εj−1 for
sufficiently small ε. Hence the estimate (10) can be rewritten in a form:

H 1
t
(A, X) . 2

(
1 +

16
γ (t)

) s∑

j=1

ma (2tj) (ln tj − ln tj−1)

. 2
s∑

j=1

ma (2tj) (ln tj+1 − ln tj) 6 2
∫ ts+1

0

ma (2τ) d ln τ

with t −→ ∞. The last inequality is true, because, due to monotonicity of the
integrand, the sum in the left term of the inequality is a lower integral sum for the
Stieltjes integral

∫ ts+1

t1
ma (2τ) d ln τ . Let I (t) :=

∫ t

0
ma (τ) d ln τ =

∫ t

0
ma(τ)

τ dτ

(remember that the function ma vanishes on the interval (0, 1/d0)). Then

H 1
t
(A,X) . 2I (2ts+1) = 2I (2t exp (γ (t))) , t →∞. (11)

Since the function γ (t) in the above considerations can be taken arbitrarily slow,
there exists a constant M > 0 such that

H 1
t
(A,X) . 2I (Mt) as t →∞. (12)

Indeed, suppose the contrary that there is a sequence tk ↑ ∞ and q > 1 such that
H 1

tk

(A, X) > q2I
(
2k+1 tk

)
, k ∈ N. This assumption leads to a contradiction,

since the relation (11) fails for the continuous function γ (t) which equals k ln 2
at the point tk, k ∈ N and is linear on each interval (tk−1, tk) (hence for any
integer-valued function which is slower than γ (t)). Thus (12) is true with some
constant M , so (9) is proved. ¥

3. Equivalence of the entropy and widths asymptotics

Notice that for non-decreasing sequences a = (ak) , b = (bk) the asymptotic
formula ln ak ∼ ln bk, k →∞ is equivalent to the relation mb (t) ≈ ma (t) , t →∞.

Theorem 5. Let X1 ↪→ X0 be a couple of complex Banach spaces with linear
compact dense imbedding and 0 < α < ∞. Then the asymptotics

Hε (BX1 , X0) ∼ τ

(
ln

1
ε

)α+1

, ε → 0 (13)

is equivalent to the asymptotics

− ln dk−1 (BX1 ,BX0) ∼ σ k1/α, k →∞ (14)

with σ =
(

2
(α+1)τ

)1/α

.
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Proof. Let a = {ak} :=
{

1
dk−1

}
. Let us suppose that the asymptotics (14)

holds. Then ma (t) ≈ (
ln t
σ

)α
or, what is the same in our case, ma (t) ∼ (

ln t
σ

)α
.

On the other hand, ln ck = ln k + ln ak ∼ ln ak, hence mc (t) ≈ ma (t) ∼ (
ln t
σ

)α
.

Putting this asymptotics into (5) and (9), we obtain, by integrating the asymptotic
inequalities, the asymptotics (13).

Let us suppose that (13) takes place. Then, setting ε = 1/s, from Lemma 2
and Theorem 5 we obtain asymptotic estimates

2
∫ s

0

mc (t)
t

dt . τ (ln s)α+1 . 2
∫ s

0

ma (t)
t

dt, s →∞. (15)

It is easy to see that mc

(
s
2

)
6 2

∫ s
s
2

mc(t)
t dt . τ (ln s)α+1

, hence we have

mc (s) . τ (ln 2s)α+1 . τ (ln s)α+1, which implies an asymptotic inequality
ln ck &

(
k
τ

)1/(α+1)
as k →∞. Therefore ln k = o (ln ck) and

ln ck = ln k + ln ak ∼ ln ak. (16)

By change of variables u = ln t, v = ln s in (15) we obtain

2
∫ v

0

mc (eu) du . τvα+1 . 2
∫ v

0

ma (eu) du, v →∞. (17)

It follows from (16) that for each ε > 0 there is u0 > 0 such that

ma (eu) 6 mc

(
eu(1+ε)

)
, u > u0.

Therefore, setting C (ε) = 2
∫ u0

0
ma (eu) du, by (17), we have

2
∫ v

0

ma (eu) du 6 C (ε) + 2
∫ v

0

mc

(
eu(1+ε)

)
du 6 C (ε) + 2

∫ v(1+ε)

0

mc (eu)
1 + ε

du

. C (ε) + τ (1 + ε)α
vα+1 . τ (1 + ε)α

vα+1, v →∞.

Since ε > 0 is arbitrary, we have 2
∫ v

0
ma (eu) du . τvα+1, v → ∞. Combining

this with (17), we obtain 2
∫ v

0
ma (eu) du ∼ τvα+1, v → ∞. Since the inte-

grand satisfies the Tauberian condition of non-decreasing, one can differentiate
this asymptotics (see, e.g., [dB]), so that

2ma (ev) ∼ τ (α + 1) vα, v →∞
Going back to the variable s = ev, we obtain

ma (s) ∼ τ (α + 1)
2

(ln s)α
, s →∞,

which implies that − ln dk−1 ∼ σ k1/α, k →∞, with σ =
(

2
(α+1)τ

)1/α

. ¥
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4. Entropy asymptotics for some class of analytic functions (Kolmogorov
problem)

Here we discuss the problem of the asymptotics (1) in the light of Theorem 1 and
the results on the asymptotics (4) in [Z2], to where we send the reader for the
history of the problem (see also a survey [Z3]).

First we need to introduce some definitions.

Definition 6. The Green pluripotential of a condenser (K, D) on a Stein manifold
Ω is the function

ω (z) = ω (D, K; z) := lim sup
ζ→z

sup {u (ζ) : u ∈ P (K,D)} , (18)

where P (K,D) is the class of all functions u plurisubharmonic in D and such that
u|K 6 0 and u (ζ) 6 1 in D.

Definition 7. A condenser (K,D) on a Stein manifold Ω is called pluriregular if
(i) its Green pluripotential ω vanishes on K and ω (zj) → 1 for each sequence

{zj} ⊂ D without limit points in D, shortly, lim
z−→∂D

ω (z) = 0;

(ii) K = K̂D and D has no component disjoint with K.

It is known that for a pluriregular condenser (K, D) the function (18) is con-
tinuous in D [Z1]. Bedford and Taylor [BT2] (see also, Sadullaev [S]) introduced
a capacity which, for a pluriregular condenser (K, D), has the form

C (K,D) :=
∫

K

(ddcω (z))n
, (19)

here the complex Monge-Ampére operator u −→ (ddcu)n associates to any func-
tion u ∈ Psh (D) ∩ L∞loc (D) some non-negative Borel measure; in particular, the
measure (ddcω (z))n is supported by K (for details see [BT1, BT2]). It is conve-
nient to introduce also the pluricapacity τ (K, D) = 1

(2π)n C (K,D), which differs
from the capacity (19) by a natural factor so that it coincides with the Green
capacity in the case n = 1.

Definition 8. A couple of Banach spaces (X0, X1) , such that

X1 ↪→ A (D) ↪→ A (K) ↪→ X0, (20)

is called admissible for a condenser (K, D) if for each couple of Banach spaces
(Y0, Y1) such that

X1 ↪→ Y0 ↪→ A (D) ↪→ A (K) ↪→ Y1 ↪→ X0

we have ln dk (BX1 ,BX0) ∼ ln dk (BY1 ,BY0) as k →∞.

An admissible couple of Banach spaces (hence, Hilbert spaces) exists for any
pluriregular condenser (K, D) (see, e.g., [Z2]).
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Theorem 9. Let (K, D) be a pluriregular condenser on a Stein manifold Ω,
dimΩ = n. Then the following statements are equivalent:

(a) the couple (H∞ (D) , AC (K)) is admissible for the condenser (K,D) ;

(b) the asymptotics (4) holds with the constant σ =
(

n!
τ(K,D)

)1/n

;

(c) the asymptotics (1) holds with the constant τ = 2τ(K,D)
(n+1)! .

The equivalence of (a) and (b) has been proved in [Z2], Theorem 1.5 and
Corollary 1.7 (notice that one of important steps in their proofs is the recent
result on approximation of the pluripotential ω (z)−1 by multipolar pluricomplex
Green functions [N1, N2, P]; for more details see [Z2]). The equivalence of (b) and
(c) follows from Theorem 5. So any concrete result on the asymptotics (4) one can
translate to a result on the asymptotics (1) and vice versa. In particular, applying
[Z2], Corollary 9.1, we obtain

Theorem 10. Let us suppose that (K,D) is a pluriregular condenser on a Stein
manifold Ω, dimΩ = n, such that D is strictly pluriregular, i.e. there is a con-
tinuous plurisubharmonic function u (z) in some open set G c D such that D =
{z ∈ G : u (z) < 0}. Then the asymptotics (1) takes place with the constant τ =
2τ(K,D)
(n+1)! .

The translation of other width asymptotics assertions from [Z2] into the results
on the entropy asymptotics are left to readers.
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