ON SUMMANDS OF GENERAL PARTITIONS*

Jean-Louis Nicolas \& András Sárközy

Dedicated to our friend Jean-Marc Deshouillers at the occasion of his sixtieth birthday

Abstract: It is proved that if \mathcal{A} is a set of positive integers with $1 \in \mathcal{A}$ then almost all partitions of n into the elements of \mathcal{A} contain the summand 1.
Keywords: partitions, distribution of summands.

1. Introduction

The set of the positive integers will be denoted by \mathbb{N}. If $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ (with $\left.a_{1}<a_{2}<\ldots\right)$ is a non-empty set of positive integers then let $p(\mathcal{A}, n)$ denote the number of solutions of

$$
\begin{equation*}
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{k} a_{k}+\ldots=n \tag{1}
\end{equation*}
$$

in non-negative integers x_{1}, x_{2}, \ldots As usual, we set $p(\mathcal{A}, 0)=1$. A solution of (1) is said to be an \mathcal{A}-partition of n, and the a_{k} 's with $x_{k}>0$ (counted with multiplicity x_{k}) are called the parts or summands of the partition. If $a_{1}=1$, then let $p_{1}(\mathcal{A}, n)=p(\mathcal{A}, n-1)$ denote the number of \mathcal{A}-partitions (1) of n with $x_{1}>0$, i.e., containing 1 as a part, and let $\bar{p}_{1}(\mathcal{A}, n)$ denote the number of \mathcal{A}-partitions (1) with $x_{1}=0$, i.e.,

$$
\begin{equation*}
\bar{p}_{1}(\mathcal{A}, n)=p(\mathcal{A} \backslash\{1\}, n)=p(\mathcal{A}, n)-p_{1}(\mathcal{A}, n)=p(\mathcal{A}, n)-p(\mathcal{A}, n-1) \tag{2}
\end{equation*}
$$

In particular, we write $p(\mathbb{N}, n)=p(n), p_{1}(\mathbb{N}, n)=p_{1}(n)$ and $\bar{p}_{1}(\mathbb{N}, n)=\bar{p}_{1}(n) . C$ will denote the constant

$$
\begin{equation*}
C=\pi \sqrt{\frac{2}{3}}=2.565 \ldots \tag{3}
\end{equation*}
$$

2000 Mathematics Subject Classification: 11P81.

* Research partially supported by the CNRS, Institut Camille Jordan, UMR 5208, by the Hungarian National Foundation for Scientific Research, Grants n ${ }^{0}$ T043623 and T049693, and by French-Hungarian EGIDE-OMKFHÁ exchange program Balaton F-2/03.

Then, by a classical theorem of Hardy and Ramanujan [6] we have

$$
\begin{equation*}
p(n)=\frac{1}{4 \sqrt{3} n} e^{C \sqrt{n}}\left(1+\mathcal{O}\left(n^{-1 / 2}\right)\right) \tag{4}
\end{equation*}
$$

In 1941, Erdős and Lehner [3] studied the distribution of the greatest part of partitions of n : they showed that for $k=C^{-1} n^{1 / 2} \log n+x n^{1 / 2}$, the number of partitions of n with greatest part not greater than k is $(1+o(1)) \exp \left(-2 C^{-1} e^{-(C / 2) x}\right)$ $p(n)$. Since that, many results have been proved on statistical properties of partitions by Bateman, Erdős, Szalay, Szekeres, Turán, Dixmier, Nicolas, Sárközy, Mosaki and others (cf. [1,5,12,2,4,7,8,9,10,11] and the references quoted in them). In particular, Szalay and Turán [12] studied the distribution of other large parts of partitions of n. In [5] (p. 193), Erdős and Szalay showed that it follows from (4) that the part 1 occurs in almost every partition of n, more precisely, we have

$$
\begin{equation*}
\bar{p}_{1}(n)=p(n)-p(n-1)=\left(1+\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)\right) \frac{\pi}{\sqrt{6 n}} p(n) \tag{5}
\end{equation*}
$$

(cf. (2)). (5) also follows from a result of Dixmier and Nicolas [2]: for $m \leqslant n^{1 / 4}$, they gave an asymptotic formula for the function $r(n, m)$ which counts the number of partitions of n into parts not smaller than m, and clearly we have $\bar{p}_{1}(n)=$ $r(n, 2)$. The behaviour of $r(n, m)$ for larger m has been studied in $[9,7,8]$.

In this paper, our goal is to extend the study of the distribution of parts of partitions from the special case of the classical partitions of n to the general case of \mathcal{A}-partitions of n. The simplest and most natural question of this type is the following: as we have seen (cf. (5)) almost all partitions of n contain the part 1 ; if $1 \in \mathcal{A}$, then do the \mathcal{A}-partitions also have this property? First we will show that the answer to this question is affirmative:

Theorem 1. If $\mathcal{A} \subset \mathbb{N}$ is a set containing 1 then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)}=0 \tag{6}
\end{equation*}
$$

Moreover, for any integers k and j satisfying

$$
\begin{equation*}
k a_{k} \leqslant \frac{n}{e} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
j a_{j} \leqslant \sqrt{n} \tag{8}
\end{equation*}
$$

respectively, we have

$$
\begin{equation*}
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant \min \left(\frac{10 \log n}{k}, \frac{9}{j}\right) . \tag{9}
\end{equation*}
$$

Note that for "dense" \mathcal{A} the first upper bound is sharp while, for "thin" \mathcal{A}, the second one is better but the inequality is not sharp. We will be able to improve it only for infinitely many values of n :

Theorem 2. If $\mathcal{A} \subset \mathbb{N}$ is a set containing 1 then we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} n^{1 / 2} \leqslant \frac{C}{2} \tag{10}
\end{equation*}
$$

(where C is the constant defined by (3) so that $\frac{C}{2}=\frac{\pi}{\sqrt{6}}$). More precisely, there exists an increasing sequence $\left(n_{i}\right)_{i \geqslant 1}$ such that

$$
\begin{equation*}
\bar{p}_{1}\left(\mathcal{A}, n_{i}\right) \leqslant \frac{C}{2 \sqrt{n_{i}}} p\left(\mathcal{A}, n_{i}\right), \quad i=1,2, \ldots \tag{11}
\end{equation*}
$$

Note that the upper bound (10) is the best possible in the sense that, as by (5) the special case $\mathcal{A}=\mathbb{N}$ shows, the constant on the right hand side cannot be replaced by a smaller one. On the other hand, we do not know whether one can make the upper bound (11) uniform in n, i.e., we have not been able to settle Problem 1 (see § 4).

Note moreover that Theorem 2 provides a partial answer to a conjecture of Bateman and Erdős [1], p. 12.

On the other hand, no non-trivial uniform lower bound can be given for $\bar{p}_{1}(\mathcal{A}, n)$:
Example 1. Let $d \in \mathbb{N}, d>1$ and $\mathcal{A}=\{1, d, 2 d, \ldots, k d, \ldots\}$. For this set \mathcal{A} we have $\bar{p}_{1}(\mathcal{A}, n)=0$ for all $d \nmid n$.

We can avoid this type of counterexamples by assuming that \mathcal{A} satisfies the regularity condition of Bateman and Erdős (cf. [1])

$$
\begin{equation*}
\forall\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right) \in \mathcal{A}^{k}, \quad \operatorname{gcd}\left(\mathcal{A} \backslash\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}\right)=1 \tag{12}
\end{equation*}
$$

which implies that the k-th difference $\Delta^{k} p(\mathcal{A}, n)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} p(\mathcal{A}, n-j)$ is positive for n large enough. Then, for $k \geqslant 2$, it follows from (12) that $p(\mathcal{A}, n) \gg n^{k}$.

2. Proof of Theorem 1

We will use a sharper version of the argument given by Bateman and Erdős in the proof of Theorem 4 in [1]. We start with a classical lemma:

Lemma 1. Let $r, a_{1}, a_{2}, \ldots, a_{r}$ be positive integers, $a_{1}<a_{2}<\ldots<a_{r}$, and $S=a_{1}+a_{2}+\ldots+a_{r}$. The number $N(n)$ of integer solutions of the inequality

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{r} x_{r} \leqslant n
$$

satisfies

$$
\left(\frac{n}{r a_{r}}\right)^{r} \leqslant \frac{n^{r}}{r!a_{1} a_{2} \ldots a_{r}} \leqslant N(n) \leqslant \frac{(n+S)^{r}}{r!a_{1} a_{2} \ldots a_{r}}
$$

Proof. For a proof, see for instance [13], III.5.2.

The proof of Theorem 1 will be based on the following proposition:
Proposition 1. Let $\mathcal{A}=\left\{a_{1}=1<a_{2}<\ldots<a_{i}<\ldots\right\}$. For any positive integer ℓ and for $n \geqslant 2$ we have

$$
\begin{equation*}
\bar{p}_{1}(\mathcal{A}, n)=p(\mathcal{A}, n)-p(\mathcal{A}, n-1) \leqslant \frac{1}{\ell+1} p(\mathcal{A}, n)+\frac{4}{3} n^{2 \ell} \tag{13}
\end{equation*}
$$

Proof. We split the partitions counted by $\bar{p}_{1}(\mathcal{A}, n)$ into two classes: let $q_{\ell}^{-}(\mathcal{A}, n)$ (resp. $\left.q_{\ell}^{+}(\mathcal{A}, n)\right)$ denote the number of \mathcal{A}-partitions of n into at most ℓ (resp. more than ℓ) distinct a_{k} 's greater than 1 so that

$$
\begin{equation*}
\bar{p}_{1}(\mathcal{A}, n)=q_{\ell}^{-}(\mathcal{A}, n)+q_{\ell}^{+}(\mathcal{A}, n) \tag{14}
\end{equation*}
$$

Consider a partition counted in $q_{\ell}^{-}(\mathcal{A}, n)$ into parts $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}$ occurring with (positive) multiplicity $y_{1}, y_{2}, \ldots, y_{t}$, respectively, so that $1<a_{2} \leqslant a_{i_{1}}<a_{i_{2}}<$ $\ldots<a_{i_{t}} \leqslant n$ and

$$
\begin{equation*}
a_{i_{1}} y_{1}+a_{i_{2}} y_{2}+\ldots+a_{i_{t}} y_{t}=n, \quad t \leqslant \ell \tag{15}
\end{equation*}
$$

In (15), each of $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}, y_{1}, y_{2}, \ldots, y_{t}$ can be chosen in at most n ways and thus for fixed t the number of these partitions is not greater than $n^{2 t}$. It follows that, for $n \geqslant 2$,

$$
\begin{equation*}
q_{\ell}^{-}(\mathcal{A}, n) \leqslant \sum_{t=1}^{\ell} n^{2 t} \leqslant n^{2 \ell}\left(1+\frac{1}{4}+\frac{1}{16}+\ldots\right)=\frac{4}{3} n^{2 \ell} \tag{16}
\end{equation*}
$$

Next we will show that

$$
\begin{equation*}
q_{\ell}^{+}(\mathcal{A}, n) \leqslant \frac{p(\mathcal{A}, n)}{\ell+1} \tag{17}
\end{equation*}
$$

Consider an \mathcal{A}-partition of n counted on the left hand side of (17) into parts $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}$ occurring with (positive) multiplicities $y_{1}, y_{2}, \ldots, y_{t}$:

$$
\begin{equation*}
a_{i_{1}} y_{1}+a_{i_{2}} y_{2}+\ldots+a_{i_{t}} y_{t}=n \tag{18}
\end{equation*}
$$

where now

$$
t \geqslant \ell+1
$$

For each of $r=1,2, \ldots, t$, replace one part $a_{i_{r}}$ by $a_{i_{r}}$ parts equal to $a_{1}=1$ in equation (18); we get the partition of n :

$$
\begin{equation*}
a_{1} a_{i_{r}}+a_{i_{1}} y_{1}+a_{i_{2}} y_{2}+\ldots+a_{i_{r}}\left(y_{r}-1\right)+\ldots+a_{i_{t}} y_{t}=n \tag{19}
\end{equation*}
$$

The partition in (19) determines the partition in (18) uniquely, since we obtain the latter from the first one by replacing the parts equal to 1 by their sum $a_{i_{r}}$.

Thus, the partitions (19) are all distinct; their number is at least $(\ell+1) q_{\ell}^{+}(\mathcal{A}, n)$ and at most $p(\mathcal{A}, n)$, which proves (17).
(13) follows from (14), (16) and (17) and the proof of Proposition 1 is completed.
Proof of Theorem 1. If $\mathcal{A}=\left\{a_{1}=1<a_{2}<\ldots<a_{m}\right\}$ is finite, by studying the partial fraction decomposition of the generating function $\prod_{i=1}^{m}\left(1-X^{a_{i}}\right)^{-1}$, it is easy to show that (cf. [1], Lemma 1)

$$
p(\mathcal{A}, n)=\frac{n^{m-1}}{(m-1)!a_{1} a_{2} \ldots a_{m}}+\mathcal{O}\left(n^{m-2}\right)
$$

and

$$
p(\mathcal{A} \backslash\{1\}, n)=\frac{n^{m-2}}{(m-2)!a_{2} a_{3} \ldots a_{m}}+\mathcal{O}\left(n^{m-2}\right)=\mathcal{O}\left(n^{m-2}\right)
$$

Therefore,

$$
\begin{equation*}
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)}=\frac{p(\mathcal{A} \backslash\{1\}, n)}{p(\mathcal{A}, n)}=\mathcal{O}\left(\frac{1}{n}\right) \tag{20}
\end{equation*}
$$

which proves (6).
When \mathcal{A} is infinite, (6) will follow from (9), since, from (8), j tends to infinity with n; so it remains to prove (9). Clearly we have for any $r \geqslant 1$ and $n \geqslant 1$:

$$
\begin{equation*}
p(\mathcal{A}, n) \geqslant p\left(\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}, n\right) \geqslant \frac{1}{n+1} N(n) \geqslant \frac{1}{2 n} N(n) . \tag{21}
\end{equation*}
$$

Thus by Lemma 1, (7) and (8) we have

$$
p(\mathcal{A}, n) \geqslant\left\{\begin{array}{l}
\frac{1}{2 n}\left(\frac{n}{k a_{k}}\right)^{k} \geqslant \frac{e^{k}}{2 n} \tag{22}\\
\frac{1}{2 n}\left(\frac{n}{j a_{j}}\right)^{j} \geqslant \frac{1}{2} n^{\frac{j}{2}-1}
\end{array}\right.
$$

Case 1. Assume that (7) holds. From Proposition 1 and (22), we get

$$
\begin{equation*}
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant \frac{1}{\ell+1}+\frac{8 n^{2 \ell+1}}{3 e^{k}} \quad \text { for any } \ell \geqslant 1 \tag{23}
\end{equation*}
$$

If $k \geqslant 6 \log n$, we choose $\ell=\left\lfloor\frac{k}{2 \log n}\right\rfloor-1 \geqslant 2$. Since for $a \in \mathbb{N}$ and $x \geqslant a$, $\lfloor x\rfloor \geqslant \frac{a}{a+1} x$, we have

$$
\begin{equation*}
\ell+1=\left\lfloor\frac{k}{2 \log n}\right\rfloor \geqslant \frac{3 k}{8 \log n} \tag{24}
\end{equation*}
$$

Further, (7) implies $n \geqslant e>2$ and

$$
\ell+1 \leqslant \frac{k}{2 \log n} \leqslant \frac{k}{2 \log 2} \leqslant k \leqslant e k a_{k} \leqslant n
$$

so that

$$
\frac{8 n^{2 \ell+1}}{3 e^{k}} \leqslant \frac{8 n^{\frac{2 k}{2 \log n}}}{3 e^{k} n}=\frac{8}{3 n} \leqslant \frac{8}{3(\ell+1)}
$$

and (23) and (24) yield

$$
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant \frac{11}{3(\ell+1)} \leqslant \frac{88}{9} \frac{\log n}{k} \leqslant 10 \frac{\log n}{k} .
$$

If $k<6 \log n$, the trivial upper bound

$$
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant 1 \leqslant 6 \frac{\log n}{k}
$$

completes the proof of the first case.
Case 2. Assume now that inequality (8) holds. Similarly, Proposition 1 and (22) imply

$$
\begin{equation*}
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant \frac{1}{\ell+1}+\frac{8 n^{2 \ell+1}}{3 n^{j / 2}} \tag{25}
\end{equation*}
$$

Here we choose $\ell=\left\lfloor\frac{j}{4}\right\rfloor-1 \geqslant 1$ if $j \geqslant 8$, so that $\ell+1=\left\lfloor\frac{j}{4}\right\rfloor \geqslant \frac{j}{6}$ and $\ell+1 \leqslant \frac{j}{4} \leqslant \frac{j a_{j}}{4} \leqslant \frac{\sqrt{n}}{4}$.

If $n=1$, (8) implies $j=1$ and $\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)}=0 \leqslant \frac{9}{j}$ trivially holds.
For $n \geqslant 2$, we have

$$
\frac{8 n^{2 \ell+1}}{3 n^{j / 2}} \leqslant \frac{8}{3 n} \leqslant \frac{2}{3 \sqrt{n}(\ell+1)} \leqslant \frac{2}{3 \sqrt{2}(\ell+1)} \leqslant \frac{1}{2(\ell+1)}
$$

and (25) yields

$$
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant \frac{3}{2(\ell+1)} \leqslant \frac{18}{2 j}=\frac{9}{j} .
$$

If $j \leqslant 7$, we trivially have $\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} \leqslant 1 \leqslant \frac{7}{j}$, and the proof of Theorem 1 is completed.

3. Proof of Theorem 2

If \mathcal{A} is finite, Theorem 2 follows from (20). If \mathcal{A} is infinite, we will prove Theorem 2 by contradiction: assume that there is $n_{0} \in \mathbb{N}$ so that

$$
\begin{equation*}
\bar{p}_{1}(\mathcal{A}, n)>\frac{C}{2 \sqrt{n}} p(\mathcal{A}, n) \quad \text { for } n \geqslant n_{0} \tag{26}
\end{equation*}
$$

By $1 \in \mathcal{A}$ we have

$$
\begin{equation*}
p(\mathcal{A}, n) \geqslant 1 \quad \text { for all } n \in \mathbb{N} \tag{27}
\end{equation*}
$$

(every n can be represented as $1+1+\ldots+1=n$). Thus it follows from (26) that

$$
\begin{equation*}
\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)}>\frac{C}{2 \sqrt{n}} \quad \text { for } n \geqslant n_{0} . \tag{28}
\end{equation*}
$$

By (2) and (27) we have

$$
\begin{equation*}
0<\frac{p(\mathcal{A}, k-1)}{p(\mathcal{A}, k)}=1-\frac{\bar{p}_{1}(\mathcal{A}, k)}{p(\mathcal{A}, k)} \quad \text { for all } k \in \mathbb{N} . \tag{29}
\end{equation*}
$$

It follows from (28) and (29) that for $n \geqslant n_{0}$

$$
\begin{aligned}
\frac{1}{p(\mathcal{A}, n)} & =\frac{1}{p\left(\mathcal{A}, n_{0}-1\right)} \prod_{k=n_{0}}^{n} \frac{p(\mathcal{A}, k-1)}{p(\mathcal{A}, k)}=\frac{1}{p\left(\mathcal{A}, n_{0}-1\right)} \prod_{k=n_{0}}^{n}\left(1-\frac{\bar{p}_{1}(\mathcal{A}, k)}{p(\mathcal{A}, k)}\right) \\
& <\frac{1}{p\left(\mathcal{A}, n_{0}-1\right)} \prod_{k=n_{0}}^{n}\left(1-\frac{C}{2 \sqrt{k}}\right) .
\end{aligned}
$$

But,

$$
\begin{aligned}
\prod_{k=n_{0}}^{n}\left(1-\frac{C}{2 \sqrt{k}}\right) & =\exp \left(\sum_{k=n_{0}}^{n} \log \left(1-\frac{C}{2 \sqrt{k}}\right)\right) \leqslant \exp \left(-\frac{C}{2} \sum_{k=n_{0}}^{n} \frac{1}{\sqrt{k}}\right) \\
& \leqslant \exp \left(-\frac{C}{2} \int_{n_{0}}^{n} \frac{d x}{\sqrt{x}}\right)=\frac{\exp \left(C \sqrt{n_{0}}\right)}{\exp (C \sqrt{n})}
\end{aligned}
$$

whence

$$
\begin{equation*}
p(\mathcal{A}, n)>\frac{p\left(\mathcal{A}, n_{0}-1\right)}{\exp \left(C \sqrt{n_{0}}\right)} \exp (C \sqrt{n}) . \tag{30}
\end{equation*}
$$

On the other hand, by (4) we have

$$
\begin{equation*}
p(\mathcal{A}, n) \leqslant p(\mathbb{N}, n)<\frac{\exp \left(C n^{1 / 2}\right)}{n} \quad \text { for } n \geqslant n_{1} . \tag{31}
\end{equation*}
$$

However, for n large enough, (31) contradicts (30) and this completes the proof of Theorem 2.

4. Problems

Problem 1. Is the statement of Theorem 2 still true if we replace the lim inf in (10) by limsup? Or, at least, can one show that $\frac{\overline{\overline{1}}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} n^{1 / 2}=\mathcal{O}(1)$? (see also Bateman and Erdős [1], p. 12.)

Problem 2. A problem closely related to problem 1: Under what conditions can one control the rate of growth of the difference $p(\mathcal{A}, n)-p(\mathcal{A}, n-1)$?

Problem 3. (i) Show: if $\mathcal{A} \subset \mathbb{N}$ is infinite (one may also assume $1 \in \mathcal{A}$), then there are infinitely many n so that, for almost all \mathcal{A}-partitions of n, the greatest summand is $>n^{\frac{1}{2}-\varepsilon}$ (perhaps, even $>n^{1 / 2}$).
(ii) Show: Under (possibly general) regularity condition, the conclusion of (i) holds for all $n \rightarrow \infty$.
(iii) What condition is needed to ensure that, for almost all \mathcal{A}-partitions of n, the greatest part λ satisfies $\frac{\lambda}{\sqrt{n}} \rightarrow \infty$ (like for the classical partitions).
Problem 4. What about the number of parts for a random \mathcal{A}-partition? What about the number of distinct parts for a random \mathcal{A}-partition?

Problem 5. If the density of \mathcal{A} is oscillating, then how and where is "an accumulation point" of \mathcal{A} reflected in the behaviour of $p(\mathcal{A}, n)$?

Added in proofs. Actually, Problem 1 under its weak form $\frac{\bar{p}_{1}(\mathcal{A}, n)}{p(\mathcal{A}, n)} n^{1 / 2}=O(1)$, has been proved by T.P. Bell, "A proof of a Partition Conjecture of Bateman and Erds̈", J. Number Theory, 87 (2001), 144-153.

References

[1] P. Bateman and P. Erdős, Monotonicity of partition functions, Mathematika, 3 (1956), 1-14.
[2] J. Dixmier and J.-L. Nicolas, Partitions without small parts, Colloquia Mathematica Soc. János Bolyai 51, Number Theory, vol. I (Budapest, 1987), 9-33, North-Holland, 1990.
[3] P. Erdős and J. Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J., 8 (1941), 335-345.
[4] P. Erdős and J.-L. Nicolas, On practical partitions, Collectanea Mathematica, 46 (1995), 57-76.
[5] P. Erdős and M. Szalay, On some problems of J. Dénes and P. Turán, Studies in Pure Mathematics dedicated to the memory of Paul Turán, 187-212, Birkhäuser, 1983.
[6] G.H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 17 (2) (1918), 75-115 and Collected Papers of Ramanujan, §36, 276-309.
[7] E. Mosaki, J.-L. Nicolas and A. Sárközy, Partitions sans petites parts, J. de Théorie des Nombres de Bordeaux, 16 (2004), 607-638.
[8] E. Mosaki, Partitions sans petites parts, II, to be published.
[9] J.-L. Nicolas and A. Sárközy, On partitions without small parts, J. de Théorie des Nombres de Bordeaux, 12 (2000), 227-254.
[10] J.-L. Nicolas and A. Sárközy, On the Asymptotic Behaviour of General Partition Function, The Ramanujan J., 4 (2000), 29-30.
[11] J.-L. Nicolas and A. Sárközy, On the Asymptotic Behaviour of General Partition Function, II, The Ramanujan J., 7 (2003), 279-298.
[12] M. Szalay and P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group, III, Acta Mathematica Sci. Hungar. 32 (1978), 129-155.
[13] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, S.M.F., Paris, 1995; Introduction to analytic and probabilistic number theory, Cambridge studies in advanced mathematics, 46, Cambridge University Press, 1995.

Addresses: Jean-Louis Nicolas, Institut Camille Jordan, UMR 5208, Bâtiment Doyen Jean Braconnier, Université Claude Bernard (Lyon 1), 21 Avenue Claude Bernard, F-69622 Villeurbanne Cedex, France; http://math.univ-lyon1.fr/~nicolas/
András Sárközy, Department of Algebra and Number Theory, Eötvós Loránd University, H-1117 Budapest, Pázmány Péter sétány $1 / C$, Hungary
E-mail: jlnicola@in2p3.fr; sarkozy@cs.elte.hu
Received: 18 September 2006; revised: 5 February 2007

