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ON SUMMANDS OF GENERAL PARTITIONS*
JEAN-LoUIS NIcOLAS & ANDRAS SARKOZY

Dedicated to our friend Jean-Marc Deshouillers
at the occasion of his sixtieth birthday

Abstract: It is proved that if A is a set of positive integers with 1 € A then almost all
partitions of n into the elements of A contain the summand 1.
Keywords: partitions, distribution of summands.

1. Introduction

The set of the positive integers will be denoted by N. If A = {aj,as,...} (with
a; < ag < ...) is a non-empty set of positive integers then let p(A,n) denote the
number of solutions of

Tiay + 2209 + ... FxRAE+ ... =N (1)

in non-negative integers x1,xs,... As usual, we set p(A,0) = 1. A solution of
(1) is said to be an A-partition of n, and the ai’s with zx > 0 (counted with
multiplicity xj ) are called the parts or summands of the partition. If a; = 1, then
let p1(A,n) = p(A,n—1) denote the number of A-partitions (1) of n with z; > 0,
i.e., containing 1 as a part, and let p;(A,n) denote the number of A-partitions
(1) with 1 =0, i.e.,

Pi(A,n) =p(A\ {1}, n) =p(A,n) —pi(A,n) =p(A,n) —p(A,n-1). (2)

In particular, we write p(N,n) = p(n), p1(N,n) = pi(n) and p;(N,n) =p,;(n). C
will denote the constant
2
c_W\/;_z.%s... 3)
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Then, by a classical theorem of Hardy and Ramanujan [6] we have

p(n) = ﬁecﬁ (1 +0 (n_1/2>) . (4)

In 1941, Erdds and Lehner [3] studied the distribution of the greatest part of par-
titions of n: they showed that for &k = C~'n'/2logn+xn'/?, the number of parti-
tions of n with greatest part not greater than k is (1+o(1)) exp (—2C e~ (¢/2)7)
p(n). Since that, many results have been proved on statistical properties of par-
titions by Bateman, Erdds, Szalay, Szekeres, Turan, Dixmier, Nicolas, Sarkozy,
Mosaki and others (cf. [1,5,12,2,4,7,8,9,10,11] and the references quoted in them).
In particular, Szalay and Turdn [12] studied the distribution of other large parts
of partitions of n. In [5] (p. 193), Erdds and Szalay showed that it follows from
(4) that the part 1 occurs in almost every partition of n, more precisely, we have

)=o)~ = 1) = (140 (=) ) = o (5)

(cf. (2)). (5) also follows from a result of Dixmier and Nicolas [2]: for m < n'/4,

they gave an asymptotic formula for the function r(n,m) which counts the number
of partitions of n into parts not smaller than m, and clearly we have p,(n) =
r(n,2). The behaviour of r(n,m) for larger m has been studied in [9, 7, 8].

In this paper, our goal is to extend the study of the distribution of parts of
partitions from the special case of the classical partitions of n to the general case
of A-partitions of n. The simplest and most natural question of this type is the
following: as we have seen (cf. (5)) almost all partitions of n contain the part 1; if
1 € A, then do the A-partitions also have this property? First we will show that
the answer to this question is affirmative:

Theorem 1. If A C N is a set containing 1 then we have

. ﬁl (Av ’I’L)

lim ———= =0. 6

n—0oo p(ﬂ,n) ( )
Moreover, for any integers k and j satisfying
n

kap < — 7

ar < - (7

and

respectively, we have

BELY ¢ (10002, 2). 0

p(A,n) ko7

Note that for “dense” A the first upper bound is sharp while, for “thin” A,

the second one is better but the inequality is not sharp. We will be able to improve
it only for infinitely many values of n:
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Theorem 2. If A C N is a set containing 1 then we have

pi(A C
tim inf 2L 172  © (10)
Rt ) 2
(where C' is the constant defined by (3) so that & = %) More precisely, there
exists an increasing sequence (ni)i>1 such that

p1(A,n;) < p(A,n;), 1=1,2,... (11)

C

2

Note that the upper bound (10) is the best possible in the sense that, as by
(5) the special case A = N shows, the constant on the right hand side cannot be
replaced by a smaller one. On the other hand, we do not know whether one can
make the upper bound (11) uniform in n, i.e., we have not been able to settle
Problem 1 (see § 4).

Note moreover that Theorem 2 provides a partial answer to a conjecture of
Bateman and Erdés [1], p. 12.

On the other hand, no non-trivial uniform lower bound can be given for

ﬁl (‘Aa 77,) :

Example 1. Let d € N,d > 1 and A = {1,d,2d,...,kd,...}. For this set A we
have py(A,n) =0 for all dtn.

We can avoid this type of counterexamples by assuming that A satisfies the
regularity condition of Bateman and Erdés (cf. [1])

V(ailvaiza"'aaik)e"q'ka ng(‘A\{aimaiza"'aaik}):1 (12)

which implies that the k-th difference A*p(A,n) = Z?ZO(—l)j (?)p(.ﬁl, n—j) is po-
sitive for n large enough. Then, for k > 2, it follows from (12) that p(A,n) > nk.

2. Proof of Theorem 1

We will use a sharper version of the argument given by Bateman and Erdos in the
proof of Theorem 4 in [1]. We start with a classical lemma:

Lemma 1. Let r,aq,as9,...,a, be positive integers, a1 < as < ... < a,, and
S=aj;+as+...+ a,.. The number N(n) of integer solutions of the inequality

a1r1 + aexo + ...+ arx, <N

satisfies

(n)r<nT<N(n)<(n+S)r.

= |
Ty rlajas...a, rlajas...a,

Proof. For a proof, see for instance [13], I11.5.2. ]
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The proof of Theorem 1 will be based on the following proposition:

Proposition 1. Let A ={a; =1<az <...<a; <...}. For any positive integer
¢ and for n > 2 we have

1 4
5 — _ )< — = n*. 1
Pi(A,n) =p(A,n)—p(A,n—1) 1 p(A,n) + 3" (13)

Proof. We split the partitions counted by p,(A,n) into two classes: let ¢, (A,n)
(resp. g} (A,n)) denote the number of A-partitions of n into at most ¢ (resp.
more than ¢) distinct ay’s greater than 1 so that

Consider a partition counted in ¢, (A, n) into parts a;,,a,, ..., a;, occurring with

(positive) multiplicity yi,ya,...,y:, respectively, so that 1 < az < a;; < a4, <
...<a;, <n and

@i, Y1+ Yo + ..+ a, Y =n, t <UL (15)
In (15), each of a;,, @iy, ..., ai,,Y1,Y2,- ..,y can be chosen in at most n ways and

thus for fixed t the number of these partitions is not greater than n?. It follows
that, for n > 2,

1 1 4
- < 2 20 1 R -7
qz(ﬂ,n)\téln <n <1+4+16+ ) 3" (16)

Next we will show that

A,n)
=+ .A < p( 9 . 17
4, (A,n) < 1 (17)
Consider an A-partition of n counted on the left hand side of (17) into parts
Uiy y Ay - - - 5 4, OCCurring with (positive) multiplicities y1,ya, ..., ys:

i Y1+ QYo+ ...t a,yr =n (18)
where now

t>0+1.

For each of r = 1,2,...,t, replace one part a;. by a;, parts equal to a; =1 in

equation (18); we get the partition of n:
a1a;, + a;, Y1 + A, Y2 + ...+ aiT(yr - 1) + ...+ ai, Y = N. (19)

The partition in (19) determines the partition in (18) uniquely, since we obtain
the latter from the first one by replacing the parts equal to 1 by their sum a;, .
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Thus, the partitions (19) are all distinct; their number is at least (¢ + 1)g; (A, n)
and at most p(A,n), which proves (17).

(13) follows from (14), (16) and (17) and the proof of Proposition 1 is com-
pleted. [ |

Proof of Theorem 1. If A = {a; =1 < as < ... < ap} is finite, by studying
the partial fraction decomposition of the generating function []/",(1—X%)~!, it
is easy to show that (cf. [1], Lemma 1)

p(A,n) = (m—1Dlajas...an +0(n™)
and o
— n nm=2) — O(n™—2).
PAN L)) = g 00" ) = O™ )
Therefore, ( ( )
ﬁl‘Aﬂl)_p‘A\ 1t,n) l
o = =0 (3) 20)

which proves (6).

When A is infinite, (6) will follow from (9), since, from (8), j tends to
infinity with n; so it remains to prove (9). Clearly we have for any r > 1 and
n>1:

p(A,n) 2p({a1’a2""aar}vn) 2 N(n) = 7N(n) (21)

Thus by Lemma 1, (7) and (8) we have

R (22)
(i) = .
Case 1. Assume that (7) holds. From Proposition 1 and (22), we get
5 (A 1 20+1
(A, n) < sn for any £ > 1. (23)

p(A,n) " L4+1 + 3ek

If £ > 6logn, we choose £ = {ﬁJ — 1> 2. Since for a € N and z > a,

z| > % x, we have
a+1 "7

(24)

k 3k
{4+ 1= > .
2logn 8logn

Further, (7) implies n > e > 2 and

k
< k <k<ekar<n

{4+1< < <
+ 2logn ~ 2log2
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so that

2k
8n2ttl  8pTloen 8 8

3¢k T 3ebn  3n S 3(0+1)
and (23) and (24) yield

p1(A,n) o 11 o 88 logn
p(A,n) T 3(0+1) T 9 Kk k

If kK < 6logn, the trivial upper bound

le(‘Aﬂl)
———=<1<6——
p(A,n)

completes the proof of the first case.

Case 2. Assume now that inequality (8) holds. Similarly, Proposition 1 and (22)

imply
p(An) _ 1 82

p(A,n)  L+1 TS

(25)

Here we choose ¢ = |Z] —1 > 1if j > 8, so that £+ 1 = [Z] >  and

(1< <,

If n =1, (8) implies j =1 and M:ogﬁ

oA ’n) 7 trivially holds.

For n > 2, we have

8n2tt+l 8 2 2 1

—— < — < < S
3n3/2 " 3n T 3ym(+1) T 3vR(0+1) 2(0+1)

and (25) yields

PAn) _ 3 _18 9
pAn) S2+1) T2

If 57 < 7, we trivially have %A’:)) <1< %, and the proof of Theorem 1 is

completed.

3. Proof of Theorem 2

If A is finite, Theorem 2 follows from (20). If A is infinite, we will prove Theorem 2
by contradiction: assume that there is ng € N so that

Di(A,n) > p(A,n) for n > ng. (26)

el
2/n
By 1 € A we have

p(A,n) =1 for alln € N (27)
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(every n can be represented as 1+14...4+1 =n). Thus it follows from (26) that

T?l(‘A7n) > c
p(A,n) ~ 2yn
By (2) and (27) we have

for n > ng. (28)

p(Ak—1) —1_ pi(A k)

0< for all £ € N. 29
DA PR 29
It follows from (28) and (29) that for n > n
1 - p 1 u ﬁl (‘Av k)
1
p(.A,n) p(A,ng —1) kllo p(A, ng — 1) kgo ( p(A, k)

< Ao —1) .ATLQ—I kI_£0<1 )

But,

( C / dm) _exp (Cy/mo)

2 )., V5) = v
whence
p(A,n) > % exp (Cv/n) . (30)

On the other hand, by (4) we have

exp (Cn1/2)

p(A,n) <p(N,n) < -

for n > n,. (31)
However, for n large enough, (31) contradicts (30) and this completes the proof

of Theorem 2.

4. Problems

Problem 1. Is the statement of Theorem 2 still true if we replace the liminf in
(10) by limsup? Or, at least, can one show that pl((A M pl/2 = 9(1) 7 (see also
Bateman and Erdés [1], p. 12.)

Problem 2. A problem closely related to problem 1: Under what conditions can
one control the rate of growth of the difference p(A,n) — p(A,n—1)7?
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Problem 3. (i) Show: if A C N is infinite (one may also assume 1 € A), then
there are infinitely many n so that, for almost all A-partitions of n, the greatest
summand is > nz ¢ (perhaps, even > n'/2).

(ii) Show: Under (possibly general) regularity condition, the conclusion of (i)
holds for all n — oo.

(iii) What condition is needed to ensure that, for almost all A-partitions
of n, the greatest part A\ satisfies ﬁ — oo (like for the classical partitions).

Problem 4. What about the number of parts for a random A-partition? What
about the number of distinct parts for a random A -partition?

Problem 5. If the density of A is oscillating, then how and where is “an accu-
mulation point” of A reflected in the behaviour of p(A,n)?

Added in proofs. Actually, Problem 1 under its weak form %ﬂ’:))nl/z =0(1),

has been proved by T.P. Bell, ” A proof of a Partition Conjecture of Bateman and
Erds”, J. Number Theory, 87 (2001), 144-153.
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