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Abstract: Shrinkage estimators that possess the ability to produce sparse
solutions have become increasingly important to the analysis of today’s
complex datasets. Examples include the LASSO, the Elastic-Net and their
adaptive counterparts. Estimation of penalty parameters still presents dif-
ficulties however. While variable selection consistent procedures have been
developed, their finite sample performance can often be less than satisfac-
tory. We develop a new strategy for variable selection using the adaptive
LASSO and adaptive Elastic-Net estimators with pn diverging. The basic
idea first involves using the trace paths of their LARS solutions to boot-
strap estimates of maximum frequency (MF) models conditioned on dimen-
sion. Conditioning on dimension effectively mitigates overfitting, however
to deal with underfitting, these MFs are then prediction-weighted, and it is
shown that not only can consistent model selection be achieved, but that
attractive convergence rates can as well, leading to excellent finite sample
performance. Detailed numerical studies are carried out on both simulated
and real datasets. Extensions to the class of generalized linear models are
also detailed.
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1. Introduction

Consider the standard linear regression model

y = Xβ + ε, (1.1)

where y = (y1, . . . , yn)
T is a vector of responses, X = (X1, . . . ,Xpn) is an n×pn

design matrix of predictors, β = (β1, . . . , βpn)
T is a vector of unknown regres-

sion parameters, ε = (ε1, . . . , εn)
T is a vector of independent and identically

distributed (i.i.d.) random errors. We allow pn to increase with n.
Because some elements of β might be 0, a family of penalized least squares

estimators were developed for variable selection and estimation,

β̂ = argmin
β

‖y −Xβ‖2 +
pn∑
j=1

ρ(|βj |,λ), (1.2)

where ‖ · ‖ is the L2-norm, λ ≥ 0 are regularization parameters, and ρ(|βj |,λ)
is positive valued for βj �= 0. [9] pointed out that through variable selection
one can focus on a small number of important predictors for enhanced scientific
discovery and potentially improve prediction performance by removing noise
variables.

Penalized Lq-regression is a special case of (1.2) with ρ(|βj |,λ) = λ|βj |q, q ≥
0, which includes the best subset selection for q = 0; the LASSO [22] for q = 1
and the ridge regression [16] for q = 2. Best subset selection is known to be
computationally infeasible for high dimensional data and inherently discrete
in variable selection [1]. Ridge regression does not possess a variable selection
property. The LASSO however, can do simultaneous estimation and variable
selection because its L1 penalty is singular at the origin and can shrink some
coefficients to exact 0 with a sufficiently large λ [8]. Other penalized least squares
estimators that can do simultaneous estimation and variable selection include
the SCAD [8] and adaptive LASSO [26] both enjoying the oracle properties [8];
the Elastic-Net [27] capable of detecting grouped effects; the adaptive Elastic-
Net [29] combining advantages of the adaptive LASSO and Elastic-Net; and
etc.

Selection of λ is essential in above penalized least squares estimation pro-
cedures. Although methods such as the SCAD, adaptive LASSO and adaptive
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Fig 1. The full adaptive LASSO solution path from the LARS (top panel), the estimated
maximum frequency at each dimension (middle panel) and the weighted maximum frequency
at each dimension (bottom panel). The red tick in x-axis indicates the true dimension 3.

Elastic-Net enjoy the oracle properties asymptotically, their optimal properties
rely on particular specifications of the λ, whose magnitude controls the com-
plexity of a selected model and trade-off between bias and variance in estima-
tors [11]. The multi-fold cross-validation (CV) and generalized cross-validation
(GCV) are frequently applied for the tuning parameters selection [22, 8, 26, 27].
But they overfit the model asymptotically [25]. For consistent variable selection,
[23] suggested to use the BIC in adaptive LASSO and a modified BIC when pn
is diverging [24]; [2] introduced an extended BIC (EBIC) for linear models and
then generalized it to generalized linear models [3]; [12] put forward a general-
ized information criterion (GIC) with pn diverging; [13] provided a consistent
cross-validation procedure (CCV) for the LASSO; [18] proposed the stability
selection (SS) for their randomized LASSO. Although variable selection con-
sistency was established for these procedures, their finite sample performance
can often be less than optimal (Section 6 ahead demonstrates this in simulation
studies).

We propose a new method for tuning parameters selection, focusing in par-
ticular on the adaptive LASSO and adaptive Elastic-Net estimators. A simple
example helps to illustrate the basic idea. Consider the adaptive LASSO in
following example.

Example 1. Data are drawn from model (1.1) with β = (3, 1.5, 0, 0, 2, 0, . . . )T10,
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row vectors of the design matrix xi
iid∼ N10(0,Σ) with Σ(i, j) = 0.3|i−j| and

εi
iid∼ N(0, 32) for i = 1, . . . , 100. So the true model size here is 3.
Figure 1 (top) shows the full adaptive LASSO solution path from the LARS

algorithm [7]. In the figure, each step indicates a dimension change in the es-
timator. These steps are called transition points in [28]. They showed that if
using information criteria such as the AIC or BIC to identify the optimal λ
in adaptive LASSO, it lies in one of the transition points. This result helps to
justify uses of the LARS algorithm and our subsequent focus on the transition
points. Then the question remains about how to choose from these transition
points.

Figure 1 (middle and bottom) gives a brief look at our proposed method.
The middle panel shows the estimated maximum frequency (MF) of a candi-
date model given the dimension. The MF estimation is done by a bootstrapping
algorithm using the transition points. The strategy of conditioning on dimen-
sion has two important consequences: i) for overfit dimensions, the MFs are
dramatically smaller than the true dimension MF (other than the full model
of course), and ii) underfit dimensions can also produce large MF values. Point
i) is important because for variable selection, overfitting is usually much more
difficult to deal with. So one must now deal with the underfitting issue. We do
this by introducing a prediction-based weight to the MFs (labeled as WMF).
The results are shown in bottom panel of Figure 1. As is evident, now the true
dimension, which maps to the true model, stands out beautifully from all others.

The rest of the paper is organized as follows. In Section 2, we briefly review
the adaptive LASSO and adaptive Elastic-Net estimators and introduce the
bootstrap algorithm for each. In Section 3, the MF procedure itself is described
and its underlying properties are carefully examined using a simple orthogonal
design. In Section 4, asymptotic properties of the MF procedure are established
in general settings. The WMF procedure and its variable selection consistency
are presented in Section 5. Comprehensive simulation studies are shown in Sec-
tion 6. Section 7 describes extensions of the MWF procedure to generalized
linear models (GLMs). Applications of the WMF procedure to ultra-high di-
mensional data are discussed in Section 8.

2. Bootstrapping the adaptive LASSO and adaptive Elastic-Net
estimators

Denote β0 the true value of β with model size p0, and β̃ = (β̃1, . . . , β̃pn)
T a

consistent estimate of β0. The adaptive LASSO [26] estimator is

β̂a = argmin
β

||y −Xβ||2 + 2λn

pn∑
j=1

ωj |βj |, (2.1)

where ωj = |β̃j |−γ , γ ≥ 0. It was suggested to use the ordinary least-squares

(OLS) estimator or the best ridge estimator (if collinearity exists) for β̃. Under
certain regularity conditions, β̂a was shown to enjoy the oracle properties.
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The Elastic-Net estimator [27] is

β̂e = (1 +
λn2

n
)

⎧⎨
⎩argmin

β
||y −Xβ||2 + λn2

pn∑
j=1

|βj |2 + λn1

pn∑
j=1

|βj |

⎫⎬
⎭ . (2.2)

It overcomes several limitations pertaining to the LASSO: 1) the added L2

penalty is strictly convex to allow grouping effects; 2) In a pn > n case, it can
potentially estimate all pn predictors, while the LASSO can only find at most
n predictors.

[29] proposed the adaptive Elastic-Net to combine strengths of the Elastic-
Net and adaptive LASSO. The adaptive Elastic-Net estimator is

β̂ae = (1 +
λn2

n
)

⎧⎨
⎩argmin

β
||y −Xβ||2 + λn2

pn∑
j=1

|βj |2 + λ+
n1

pn∑
j=1

ωj |βj |

⎫⎬
⎭ , (2.3)

where ωj = |β̂ej |−γ , γ ≥ 0 and β̂e = (β̂e1, . . . , β̂epn)
T is the Elastic-Net estima-

tor in (2.2). Note that λn2 takes the same value for the L2 penalty function in
(2.2) and (2.3), because the L2 penalty contributes to the same kind of group-
ing effects. On the other hand, λn1 and λ+

n1 are allowed to be different as they

control the sparsity in estimators. Under some regularity conditions, β̂ae was
shown to enjoy the oracle properties.

We now detail bootstrapping for these two estimators. There are typically
two ways of generating bootstrap observations for model (1.1) [21].

1. Bootstrapping pairs [6]. Let F̂ (X,y) be the empirical distribution putting
mass n−1 on each data pair (xi, yi), i = 1, . . . , n. Generate i.i.d. paired bootstrap
data {(x∗

i , y
∗
i ), i = 1, . . . , n} from F̂ (X,y). The bootstrap analog of β̂a, denoted

as β̂
∗
a, is to replace (X,y) with (X∗,y∗) in (2.1) where X∗ = (x∗

1, . . . ,x
∗
n)

T and

y∗ = (y∗1 , . . . , y
∗
n)

T . So is the bootstrap analog of β̂ae, denoted as β̂
∗
ae. Under

the weak condition that XTX → ∞, XTX(X∗TX∗)−1 → 1 almost surely [21].

2. Bootstrapping residuals [5]. Calculate the ith residual

ε̂0i = yi − xT
i β̂,

where β̂ is a ridge estimate of β0. Generate i.i.d. bootstrap residuals {ε∗i , i =
1, . . . , n} from the empirical distribution that puts mass n−1 on each centered
residual, ε̂i = ε̂0i − ε̄0, where ε̄0 is the average of ε̂0i, i = 1, . . . , n. Then the
i.i.d. residual bootstrap data is {(xi, y

∗
i ), i = 1, . . . , n} where y∗i = xT

i β̂ + ε∗i .

The bootstrap analog of β̂a, denoted as β̃
∗
a, is to substitute y with y∗ in (2.1).

So is the bootstrap analog of β̂ae, denoted as β̃
∗
ae.

In next section, we introduce the MF procedure which takes use of above
bootstrap estimators.
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3. The MF procedure

Denote a j-dimensional candidate model from the ith bootstrap data as M i
j .

Algorithm 1: The MF procedure for adaptive LASSO

1. Draw B (residual or paired) bootstrap data ;
2. Use the LARS algorithm to fit each bootstrap data, then get B
collections of candidate models, {M i

1, . . . ,M
i
pn
}, i = 1, . . . , B ;

3. At each dimension j, count the frequency of each unique model in
{M1

j , . . . ,M
B
j }, denoted as {cj1, . . . , cjt} where t is the number of unique

models. Let MFj = max{cj1, . . . , cjt} corresponding to model Mj ;
4. Select the dimension r∗ and model Mr∗ s.t.

r∗ = max{j : j = arg max
1≤i≤p−1

MFi}.

Remark 1. In the 4th step, the full model is excluded because it will destroy
the maximum frequency rule by having the highest frequency, B, all the time.
If there is a tie at the maximum of MFi, 1 ≤ i ≤ p − 1, we select the one at
the highest dimension. This strategy guarantees asymptotic variable selection
consistency of the MF procedure, which will be discussed in Section 4.

The MF procedure for adaptive Elastic-Net is in parallel. But in the 2nd step,
the LARS-EN algorithm [27] is used instead to fit each bootstrap data.

We discussed in introduction to this paper consequences of the MF procedure
by conditioning on dimension. Here we use a simple orthogonal design with i.i.d.
normal random errors to study underlying properties driving that performance.
In this case, we have XTX = I and the adaptive Elastic-Net reduces automat-
ically to the adaptive LASSO [29]. Denote Xj the jth column of X. Then the
adaptive LASSO estimator is

β̂j = {|XT
j y| −

λn

|β̃j |γ
}+sgn(XT

j y), j = 1, . . . , pn, (3.1)

where z+ equals to z if z > 0 otherwise 0. We can expand the XT
j y by

XT
j y = β0j +XT

j ε,

where XT
j ε ∼ N(0, σ2). The following Lemma gives an order relationship for

XT
j y’s.

Lemma 1. Suppose XTX = I, then we have

P
(
|XT

i y| > |XT
j y|

)
> 0.5 if |β0i| > |β0j |,

P
(
|XT

i y| > |XT
j y|

)
= 0.5 if |β0i| = |β0j |,

for i, j ∈ {1, . . . , pn}.
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In combine with the fact that λn

|β̃i|γ
> λn

|β̃j |γ
asymptotically for β0i < β0j , it

is easy to deduce from (3.1) that given a λn adaptive LASSO tends to select
those variables, corresponding to the first kλn largest |βj |’s, with the highest
probability.

Without loss of generality, suppose |β0| is decreasingly ordered. Denote Sr

a r-dimensional model containing the first r elements of |β0|, and denote Wr

any other r-dimensional models. Let Âr be an adaptive LASSO model estimate
given the model size is r, P (Âr = Sr | r) indicates the conditional probability
of Âr = Sr given the model size. Then preceding deductions from (3.1) can be
formularized as

(1). P (Âr = Sr | r) > P (Âr = Wr | r), 0 < r ≤ p0, (3.2)

(2). P (Âr = W1
r | r) = P (Âr = W2

r | r), p0 < r < pn, (3.3)

where W1
r and W2

r are two r-dimensional models s.t. Sp0 ⊂ W1
r ,W2

r .
Above properties of the adaptive LASSO coincides to some extent with the

results of Theorem 2 in [4]. By (3.3), zero predictors will be equally likely selected
at an overfit dimension. As a result P (Âr = Mr | r) (see Algorithm 1 for
definition of Mr), p0 < r < pn, drops down dramatically, which is why we
see a huge gap between the true dimension and overfit dimensions in Figure 1
(middle). On the other hand, P (Âr = Sr | r) at some underfit dimensions can
be as competitive as P (Âr = Sp0 | p0). We propose a WMF procedure to tackle
this underfitting issue in Section 5.

In next section, we show asymptotic variable selection properties for β̂
∗
a and

β̃
∗
ae in general settings, from which variable selection consistency of the MF

procedure can be deduced.

4. Asymptotic properties of the MF procedure

Let A = {j : β0j �= 0} be the true model. We assume following regularity
conditions for subsequent theoretical studies:

(A1) Denote ζmin(C) and ζmax(C) the minimum and maximum eigenvalues
of a positive definite matrix C. We assume

d ≤ ζmin(
1

n
XTX) ≤ ζmax(

1

n
XTX) ≤ D,

where d and D are two positive constants.
(A2) pn = n�, 0 ≤ 
 < 1 and γ > �

1−� . The last inequation is to ensure

(1− 
)(1 + γ) > 1 in (A3)–(A4). Moreover,

lim
n→∞

pn
n

1

minj∈A |β0j |2
→ 0.

(A3) In adaptive LASSO,

lim
n→∞

λn/
√
n → 0, lim

n→∞
λn√
n
n

(1−�)(1+γ)−1
2 → ∞,
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and

lim
n→∞

(
λn√
n

) 1
γ 1

minj∈A |β0j |
→ 0.

(A4) In adaptive Elastic-Net,

lim
n→∞

λn1/
√
n → 0, lim

n→∞
λn2/

√
n → 0,

and

lim
n→∞

λ+
n1/

√
n → 0, lim

n→∞
λ+
n1√
n
n

(1−�)(1+γ)−1
2 → ∞,

lim
n→∞

(
λ+
n1√
n

) 1
γ 1

minj∈A |β0j |
→ 0.

(A5) The errors {εi, i = 1, . . . , n} are i.i.d. with mean 0 and variance σ2 < ∞.

Denote A∗
n = {j : β̂∗

aj �= 0} an adaptive LASSO estimate of A using
paired bootstrap data. Let P ∗ = P (· | E) and E∗ = E(· | E) where E =
σ ((xi, yi), i = 1, . . . , n). Then P ∗(A∗

n = A | λn) indicates the conditional prob-
ability of A∗

n = A given E and λn.

Theorem 1. Suppose conditions (A1)–(A3) and (A5) hold, then

lim
n→∞

P ∗(A∗
n = A | λn) = 1.

Moreover, let λ′
n be another tuning parameter such that the adaptive LASSO

estimator under λ′
n is of dimension r, p0 < r < pn, then

lim
n→∞

P ∗(A∗
n = Mr | λ′

n) < 1,

where Mr is any r-dimensional model.

Proofs of Theorem 1 are included in Appendix A.
In adaptive LASSO, given a λn is equivalent to given a dimension, but the

converse is not true. One dimension can be mapped to numerous models, as a re-
sult to numerous tuning parameters. Fortunately however, the LARS algorithm
enables us to map a dimension to an optimal λn. Recall the adaptive LASSO
solution path from the LARS in top panel of Figure 1. Transition points (e.g.
steps) from 0 to 10 corresponds to a sequence of λn’s:

λn(0) > λn(1) > · · · > λn(10) = 0.

Note that β̂a(λn) = 0 for λn > λn(0) where β̂a(λn) is the adaptive LASSO
estimator under λn. By Theorem 5 in [28],

λn(m+ 1) = argmin
λn

‖y −Xβ̂a(λn)‖2 + and̂f(λn), λn(m+ 1) ≤ λn < λn(m),
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where d̂f(λn) is the number of non-zero elements in β̂a(λn) and an is a positive
sequence depending on n. It is worth mentioning that λn(m + 1) is optimum
in [λn(m+ 1), λn(m)) by producing the minimum sum of squared errors (SSE)
and the smallest model size concurrently.

Also note that the number of steps can exceed the full model size — different
steps may have a same model size. Denote mk the last step having a model size
k, and m′

k is another step having the same model size. The theorem also showed
that

‖y −Xβ̂a(λn(mk))‖2 < ‖y −Xβ̂a(λn(m
′
k))‖2.

Theorefore, λn(mk) is the overall optimum in {λn : d̂f(λn) = k, λn ∈ [0,∞]}. So
the LARS algorithm enables us to create a one-to-one map between a dimension
k and the optimum λn(mk),

k ⇐⇒ λn(mk).

It is easy to see that λn(mp0) will satisfy condition (A3). Hence, we have the
following corollary from Theorem 1.

Corollary 1. Suppose conditions (A1)–(A2) and (A5) hold, then

lim
n→∞

P ∗(A∗
n = A | p0) = 1,

lim
n→∞

P ∗(A∗
n = Mr | r) < 1, p0 < r < pn,

where Mr is any r-dimensional model.

This result can also be established for adaptive Elastic-Net. Denote T ∗
n =

{j : β̂∗
aej �= 0} an adaptive Elastic-Net estimate of A using paired bootstrap

data.

Corollary 2. Suppose conditions (A1)–(A2) and (A5) hold, then

lim
n→∞

P ∗(T ∗
n = A | p0) = 1,

lim
n→∞

P ∗(T ∗
n = Mr | r) < 1, p0 < r < pn,

where Mr is any r-dimensional model.

Proof. It can be proved by using the techniques for deriving Theorem 1, Corol-
lary 1 and Theorem 2. We bypass here.

We now study the estimation properties for using residual bootstrap data.
Denote T ∗

n = {j : β̃∗
aej �= 0} an adaptive Elastic-Net estimator of A using

residual bootstrap data.

Theorem 2. Suppose conditions (A1)–(A2) and (A4)–(A5) hold, then

lim
n→∞

P ∗(T ∗
n = A | λ+

n1) = 1.
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Moreover, let λ′
n1 be another tuning parameter such that the adaptive Elastic-Net

estimator under λ′
n1 is of dimension r, p0 < r < pn, then

lim
n→∞

P ∗(T ∗
n = Mr | λ′

n1) < 1,

where Mr is any r-dimensional model.

Proofs of Theorem 2 are included in Appendix A. The LARS-EN algorithm
for adaptive Elastic-Net estimations is an extension of the LARS algorithm,
which shares the same properties of the LARS for deriving Corollaries 1–2.
Hence we obtain the following corollary from Theorem 2.

Corollary 3. Suppose conditions (A1)–(A2) and (A5) hold, then

lim
n→∞

P ∗(T ∗
n = A | p0) = 1,

lim
n→∞

P ∗(T ∗
n = Mr | r) < 1, p0 < r < pn,

where Mr is any r-dimensional model.

This result can also be established for adaptive LASSO. Denote A∗
n = {j :

β̃∗
aj �= 0} an adaptive LASSO estimate of A using residual bootstrap data.

Corollary 4. Suppose conditions (A1)–(A2) and (A5) hold, then

lim
n→∞

P ∗(A∗
n = A | p0) = 1,

lim
n→∞

P ∗(A∗
n = Mr | r) < 1, p0 < r < pn,

where Mr is any r-dimensional model.

Proof. Note that the adaptive LASSO estimator is a special case of the adaptive
Elastic-Net estimator with λn2 = 0. Theorem 2 holds automatically for A∗

n, from
which Corollary 4 can be deduced.

Variable selection consistency of the MF procedure can then be deduced from
Corollaries 1–4.

Corollary 5. Suppose conditions (A1)–(A2) and (A5) hold. Then the MF pro-
cedure is variable selection consistent, e.g.

lim
n→∞

P (Mr∗ = A) = 1,

where Mr∗ is the model selected from the MF procedure.

Proof. By definition, A∗
n is an adaptive LASSO estimate of A using paired or

residual bootstrap data. It is easy to see that

E∗
(
MFj

B

)
= P ∗(A∗

n = Mj | j), lim
B→∞

MFj

B
= P ∗(A∗

n = Mj | j).
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Combining with Corollaries 1 or 4,

lim
n→∞

P (MFp0 > MFr) = 1, p0 < r < pn.

Thus the MF procedure for adaptive LASSO can consistently identify the true
dimension and true model via selecting the maximum of MFj , j ∈ {1, . . . , p−1},
with the highest dimension (if there is a tie). Similarly, Corollary 2 and 3 imply
variable selection consistency of the MF procedure for adaptive Elastic-Net.

However, the MF procedure has potential issues in application. In Figure 1
(middle) excluding the full model case, the maximum occurs at dimension 1
instead of 3 although their MFs are both close to 1. In next section, we propose
a WMF procedure to tackle this underfitting issue in application.

5. The WMF procedure

5.1. Method and asymptotic properties

The underfitting issue in MF procedure can be deduced from Corollaries 1–
4. Take A∗

n for an example. Although it was shown that limn→∞ P ∗(A∗
n =

A | p0) = 1, the conditional probability at some underfit dimensions can also
reach one, e.g. limn→∞ P ∗(A∗

n = Mr | r) = 1, 0 < r < p0. Note that the
tuning parameter leading to an underfit r-dimensional estimator, denoted as
λ′
n, fulfills λ′

n > λn. Hence, the convergence rate of P ∗(A∗
n = Mr | r) at some

underfit dimensions can exceed the one at the true dimension. Therefore, the
MF procedure would select an underfit model even with a sufficiently large n.

In order to fix things, we introduce a weight to the MF procedure. An effective
weight should be able to down-weight the underfitting MFs asymptotically, i.e.
the weight is able to identify underfit dimensions and its effects does not vanish
as n → ∞, without significantly up-weighting the overfitting MFs.

[20] showed that the overall unconditional (on y) expected squared prediction
error for the OLS estimator of β0 under model α is

Tα,n = σ2 + n−1pασ
2 +Δα,n, (5.1)

where pα indicates the size of α, Δα,n = βT
0 X

T (I−Pα)Xβ0/n,
Pα = Xα(X

T
αXα)

−1XT
α , Xα is a sub-matrix of X whose columns are indexed

by the components of α and I is an identity matrix.
When α is a true or overfit model, it has Xβ0 = Xαβα and thus

Δα,n = 0. (5.2)

However, if α is an underfit model, then Δα,n > 0 for any fixed n. He further
assumed that

lim inf
n→∞

Δα,n > 0, (5.3)
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which is argued in the paper to be a minimal type of asymptotic model identi-
fiability condition. Under assumption (5.3) and by (5.1)–(5.2),

lim
n→∞

Tν,n

Tκ,n
> 1, (5.4)

where ν is an underfit model and κ is a true or overfit model. By (5.4) a formula
inversely proportional to Tα,n will be an ideal choice for the weight.

[19] proposed such a formula for estimating the posterior probability of the
model size given the data

P̂ (j | y) = exp[−T̂n(j)/cσ
2]∑p

j=1 exp[−T̂n(j)/cσ2]
, (5.5)

where T̂n(j) is an estimate of Tα,n using a j-dimensional model and c, 1 ≤ c ≤ 2,

is a constant. We use the multi-fold CV for T̂n(j) and define

WMFj = P̂ (j | y)×MFj . (5.6)

Figure 1 (bottom) shows the effect of weights in Example 1, which heavily punish
underfitting MFs and have little effect on true and overfitting MFs. The WMF
procedure then selects the dimension r∗ and model Mr∗ s.t.

r∗ = arg max
1≤j≤p−1

WMFj .

Recall that MFj/B is a bootstrap version estimate of the posterior probability
of model Mj given the data and dimension, i.e. P (Mj | y, j), along with (5.6)
it has

WMFj = P̂ (j | y)× P̂ (Mj | y, j) = P̂ (Mj | y).

Note that BIC is a Laplace approximation to P (Mj | y) under a flat prior
assumption and is variable selection consistent for adaptive LASSO [23, 24], but
no convergence rate has been studied. Simulation studies in Section 6 show that
BIC has a much slower empirical convergence rate than the WMF procedure.

Next we show properties of the multi-fold CV using adaptive LASSO or adap-
tive Elastic-Net estimators. Then variable selection consistency of the WMF
procedure can be established. Let K be a fixed integer and suppose n = Kt. In
multi-fold CV, one randomly divides a sample of n observations intoK mutually
exclusive subgroups s1, . . . , sK with each subgroup containing t observations,
and selects the model by minimizing the following sum of squared errors

MCVM =
1

n

K∑
i=1

‖ysi −Xsi,Mβ̂sci ,M‖2,

where β̂sci ,M is an adaptive LASSO or adaptive Elastic-Net estimator under

model M using samples not in si. Let α and α′ be the true or overfit models
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and ν be an underfit model. We assume following condition for asymptotic
studies of the multi-fold CV procedure.

(A6) supt→∞ supsi ‖t−1XT
si,MXsi,M −VM‖ = o(1), where VM is a positive

definite matrix.

Theorem 3. Suppose conditions (A1)–(A2) and (A5)–(A6) hold, then
1. the multi-fold CV for adaptive LASSO or adaptive Elastic-Net satisfies

lim
n→∞

|MCVα −MCVα′ | = lim
n→∞

∣∣∣Op

(pα − pα′

n

)∣∣∣ = 0,

lim
n→∞

MCVν −MCVα ≥ d‖β0νc‖2
2

+Op

(
‖β0νc‖

√
pn
n

)
−Op

(pα
n

)
> 0,

2. model Mr∗ selected from the WMF procedure fulfills

lim
n→∞

P (Mr∗ = A) = 1.

Proofs of Theorem 3 are included in Appendix A. Denote r′ an underfit di-

mension. The ratio of
WMFp0

WMFr′
is exponentially proportional to the bias term,

d
2cσ2 ‖β0Mc

r′
‖2, which is larger than 0 and does not fade as n → ∞. This guar-

antees a good finite sample performance of the WMF procedure and a fast
vanishing rate of its underfitting issues, which will be confirmed in simulation
studies in Section 6.

5.2. Computation

In adaptive Elastic-Net, λn2 takes the same value in Elastic-Net for calculat-
ing the weights ωj ’s, where the tuning parameters are chosen by minimizing
the two-dimensional BIC [27]. Then computational efforts remain the same for
adaptive LASSO and adaptive Elastic-Net, which are to compute a full solu-
tion path against λn’s or λ

+
n1’s. Computational complexity of creating an entire

adaptive LASSO solution path is of order O(np2n) [26]. It is of order O(np2n+p3n)
for adaptive Elastic-Net[27]. Since the optimal value often occurs at an early
stage, we could stop the algorithms after m,m < pn, steps. In this case, the
computational cost reduces to O(nm2) for adaptive LASSO and O(m3 + nm2)
for adaptive Elastic-net.

Computational cost of a WMF procedure is then B times the cost of com-
puting an adaptive LASSO or adaptive Elastic-Net solution path.

6. Empirical studies

We now investigate empirical performances of the WMF procedure and show it
outperforms the BIC, EBIC, GIC, SS, Cp, and 1se-CV (which is often recom-
mended for variable selection) in a wide range of situations for both adaptive
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Fig 2. Results of scenario 1: (a) proportion of correctly specified models; (b) average number
of false non-zeros; (c) average number of false zeros; (d) average value of estimated model
sizes.

LASSO and adaptive Elastic-Net. The Cp did very poor in all scenarios, thus
is excluded in the presentation.

In all simulations, data were generated from

yi = xT
i β + σεi, i = 1, . . . , n, (6.1)

where xi
iid∼ Npn(0,Σ) and εi

iid∼ N(0, 1). Let pn = O(nκ) for some constant
κ, 0 ≤ κ < 1, n = 100, 300, 500. Results were averaged over 100 times of
replications.

6.1. Simulations of the adaptive LASSO WMF procedure

Three scenarios were designed for the adaptive LASSO WMF procedure. In each
scenario, Σ(i, j) = 0.3|i−j| and σ = 3.

Scenario 1: Fixed low dimension and moderate proportion of true covariates.
More specifically, set pn = 10 and β = (3, 1.5, 0, 0, 2, 0, . . . )T10. Then the propor-
tion of true covariates is 0.3, and the signal to noise ratios (SNR) are respectively
2.03, 2 and 1.98 for various n.

Scenario 2: Low dimension, moderate proportion of true covariates and weak
signals for some true covariates. Specifically, set pn = O(

√
n), then pn equals to

10, 17, 22 accordingly. Let p0 grow with n as follows. Initially p0 = 3 and β =
(3, 1.5, 0, 0, 2, 0, . . . )T . Afterwards, p0 increases by 1 for every 40-unit increment
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Fig 3. Results of scenario 2: (a) proportion of correctly specified models; (b) average number
of false non-zeros; (c) average number of false zeros; (d) average value of estimated model
sizes.

in n and the new element equals to 1. As a result, the proportions of true
covariates are respectively 0.3, 0.47, and 0.59, and the SNRs are 2, 2.85 and
3.69.

Scenario 3: High dimension, sparse proportion of true covariates and relatively
large signals for all true covariates. In detail, set pn = O(n3/4), then pn equals
to 32, 72, 106 accordingly. Let p0 grow in the same manner as in scenario 2, but
the new elements equal to 2. Accordingly, the proportions of true covariates are
0.09, 0.11 and 0.12, and the SNRs are 2, 5.07, and 8.5.

Paired bootstrapping was used in the adaptive LASSO WMF procedure. Sim-
ulation results are summarized in Figures 2–4. In all scenarios, the proposed
method has the highest degree of accuracy in identifying the true model and
also enjoys a much faster convergence rate than other compared methods. The
WMF procedure has an underfitting issue which vanishes quickly as n increases.
Other methods (except for the SS) however suffer from an overfitting issue. The
sparser the model is, the more serious the issue tends to be. Performance of the
SS relies on particular specifications of several unknown parameters. Although
we have followed instructions in [18] for setting those parameters throughout
the simulations, its performance remains erratic and unsatisfactory.

Simulations for using residual bootstrapping in the adaptive LASSO WMF
procedure were also conducted. The results are presented in Appendix B, which
are similar to those in above paired bootstrapping simulations.
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Fig 4. Results of scenario 3: (a) proportion of correctly specified models; (b) average number
of false non-zeros; (c) average number of false zeros; (d) average value of estimated model
sizes.

Fig 5. Results of scenario 4: (a) proportion of correctly specified models; (b) average number
of false non-zeros; (c) average number of false zeros; (d) average value of estimated model
sizes.
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Fig 6. Results of scenario 5: (a) proportion of correctly specified models; (b) average number
of false non-zeros; (c) average number of false zeros; (d) average value of estimated model
sizes.

6.2. Simulations of the adaptive Elastic-Net WMF procedure

We also designed three scenarios for the adaptive Elastic-Net WMF procedure,
each of which mimics a typical structure in applications. Since the adaptive
Elastic-Net fits data with grouping effects, in following simulations true covari-
ates will be added in blocks with size 3. The SS is excluded due to its poor
performance.

Scenario 4: Low dimension, moderate proportion of true covariates, weak
signals for some true covariates and moderate correlations between covariates.
More specifically, let Σ(i, j) = 0.5|i−j|, σ = 3, and pn = O(

√
n). Initially we

have one block of true covariates, then p0 = 3. Elements of β in the block equal
to 2, the rest are 0. Afterwards, we add 1 block of true covariates for every
200-unit increment in n and the new elements equal to 1. Respectively, the pro-
portions of true covariates are 0.3, 0.35 and 0.41, and the SNRs are 2.45, 3.72
and 3.67.

Scenario 5: High dimension, sparse proportion of true covariates, relatively
large signals for all true covariates and moderate correlations between covari-
ates. In detail, let Σ(i, j) = 0.5|i−j|, σ = 5, and pn = O(n3/4). Initially set
p0 = 6. Then true covariates follow the same adding scheme as in scenario 4.
All non-zero elements in β equal to 2. Respectively, the proportions of true co-
variates are 0.19, 0.13 and 0.11, and the SNRs are 1.79, 3.09 and 3.51.
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Fig 7. Results of scenario 6: (a) proportion of correctly specified models; (b) average number
of false non-zeros; (c) average number of false zeros; (d) average value of estimated model
sizes.

Scenario 6: High dimension, sparse proportion of true covariates, relatively
large signals for all true covariates and high correlations between grouped co-
variates. Specifically, let σ = 5 and pn = O(n3/4). True covariates follow the
same adding scheme as in Scenario 5, all non-zero elements in β equal to 2.
Moreover, true covariates within each block have correlations almost 1, while
true covariates between the blocks have correlation 0. All noise covariates are
i.i.d from N(0, 1). Respectively, the proportions of true covariates are 0.19, 0.13
and 0.11, and the SNRs are 2.84, 4.35 and 5.75.

Residual bootstrapping was used in the adaptive Elastic-Net WMF proce-
dure. Simulation results are summarized in Figures 5–7. In scenarios 4 and 5,
the proposed method has the best performance over other compared methods:
on average the highest degree of accuracy in indentifying the true model; a
faster convergence rate; the underfitting issue vanishes quickly. On the other
hand, other methods suffer from an overfitting issue. The sparser the model is,
the more serious the issue tends to be. In scenario 6, all methods do equally
well because the adaptive Elastic-Net well fit the data with highly grouped
effects.

Simulation results for using paired bootstrapping in the adaptive Elastic-Net
WMF procedure are presented in Appendix B, which are similar to those in
above residual bootstrapping simulations.
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Table 1

The leukaemia classification using adaptive LASSO

Criteria Ten-fold CV error Test error Number of genes
WMF 0/38 5/34 5
CV 0/38 4/34 13
Cp 0/38 4/34 18
BIC 0/38 4/34 18
EBIC 1/38 6/34 5
GIC 1/18 6/34 5

Table 2

The leukaemia classification using adaptive Elastic-Net

Criteria Ten-fold CV error Test error Number of genes
WMF 0/38 4/34 10
CV 1/38 6/34 42
Cp 1/38 6/34 36
BIC 1/38 7/34 34
EBIC 1/38 7/34 34
GIC 1/38 7/34 21

6.3. Classification analysis of the leukaemia data

We now demonstrate the WMF procedure in a real data application. The
leukaemia data [15] contains pn = 7129 genes and n = 72 samples. We have
38 out of the 72 samples from the training dataset with 27 ALL’s (acute lym-
phoblastic leukaemia) and 11 AML’s (acute myeloid leukaemia). The remaining
34 samples are from the test dataset with 20 ALL’s and 14 AML’s. The goal of
this analysis is to identify a subset of genes that can accurately predict the type
of leukaemia for future data. Similar to [27], we coded the type of leukaemia as
a binary response variable, denoted as y, and defined the classification function
as I(ŷ > 0.5), where I(·) is the indicator function.

To improve computational efficiency, we selected 1000 candidate genes as
the predictors using the sure independence screening (SIS) procedure [10]. The
adaptive LASSO and adaptive Elastic-Net were then applied to explore the data.
The screening and variable selection were carried out on the training dataset,
while classification errors were examined on the test dataset. Both the LARS
and LARS-EN algorithms were stopped after 200 steps of estimation to further
reduce the computational costs. Note that since the optimal steps selected by
various types of methods are much smaller than the stopping step, this strategy
will not affect the variable selection.

Classification results are summarized in Tables 1–2. For adaptive LASSO,
although the Cp, CV and BIC have obtained the minimal classification errors
for both training and test datasets, the WMF has classification errors close to
the minimum using the least number of genes. For adaptive Elastic-Net, the
WMF has the minimal classification errors for both training and test datasets
using the least number of genes. Thus we conclude that the WMF procedure is
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able to find the set of “important” genes that can largely improve the prediction
accuracy.

7. Extensions

Here we investigate extensions of the WMF procedure to GLMs, which has the
following generic density fuction [17]

f(y | x,β) = h(y) exp(yxTβ − φ(xTβ)).

[26] had extended the adaptive LASSO to GLMs. Its estimator, β̂a, is obtained
by maximizing the penalized log-likelihood,

β̂a = argmin
β

n∑
i=1

(−yix
T
i β + φ(xT

i β)) + λn

p∑
j=1

ŵj |βj |,

where ŵj = 1/|β̃j |γ , γ > 0 and β̃ = (β̃1, . . . , β̃p)
T is the maximum likelihood

estimator. Under certain regularity conditions, β̂a was shown to enjoy the oracle
properties .

The generalization of Multi-fold CV to GLMs is straightforward [20]. Define,

MCVα =
1

n

k∑
i=1

Q(ysi , ŷsci ,α
),

where Q(·, ·) is a loss function, ŷsci ,α
is the prediction of ysi under model α using

samples not in si.
Then we can extend the WMF procedure to GLMs for adaptive LASSO. In

this case, we draw B paired bootstrap samples in step 1 of Algorithm 1. Note
that the LARS algorithm does not fit for GLMs, but we can use the coordinate
descent algorithm [14] instead, which generates a solution path similar to the
LARS. Hence in step 2, we use the coordinate descent algorithm to fit each
bootstrap data. The rest remain the same. Asymptotic properties of the adaptive
LASSOWMF procedure for GLMs can also be established by using some similar
techniques for showing Theorem 1 in this paper and Theorem 4 in [26].

We demonstrate this extension through one simple example, where binary
responses were generated from the logistic regression model

P (yi | xi) =
1

1 + exp(−xT
i β)

, i = 1, . . . , n,

where xi
iid∼ N10(0,Σ), Σ(i, j) = 0.3|i−j|, and β = (3, 1.5, 0, 0, 2, 0, . . . )T10. Sim-

ulation results were averaged over 100 times of replications and summarized in
Figure 8. It shows that the WMF procedure is much more accurate in vari-
able selection and also enjoys a faster convergence rate than other compared
methods.



660 H. Liu and J. S. Rao

Fig 8. Results of the GLM example: (a) correctly specified models; (b) average number of
false non-zeros; (c) average number of false zeros; (d) average value of estimated model sizes.

Extension of the adaptive Elastic-Net WMF procedure to GLMs is similar.
Define the adaptive Elastic-Net estimator for GLMs as

β̂ae = (1 +
λn2

n
)

{
argmin

β

n∑
i=1

(−yix
T
i β + φ(xT

i β))

+ λn2

pn∑
j=1

|βj |2 + λ+
n1

pn∑
j=1

wj |βj |
}
, (7.1)

where wj = |β̂ej |−γ , γ > 0 and β̂e = (β̂e1, . . . , β̂epn)
T is defined in (7.1) with

ŵj = 1 for all j’s. The rest follow the same procedures for extension of the
adaptive LASSO WMF procedure.

8. Ultra-high dimensional data

In this section, we discuss applications of the WMF procedure to ultra-high
dimensional data in which pn > n. [10] proposed the sure independence screening
(SIS) method for ultra-high dimensional data to reduce their dimensionality to
a moderate scale, dn, s.t. dn < n. Afterwards a lower dimensional estimation
method such as the SCAD can be applied to the reduced data. This process is
called SIS+SCAD. Under some regularity conditions, they showed that the SIS
has an exponentially small probability to omit true features and the SIS+SCAD
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retains the oracle properties if dn = op(n
1/3). By replacing the SCAD with

adaptive Elastic-Net, the new procedure is refered to as SIS+AEnet [29], which
holds the oracle properties if dn = Op(n

�), 0 ≤ 
 < 1. Here we recommend to
combine SIS with the WMF procedure when pn > n. We first use the SIS to
reduce the dimensionality to dn, dn < n, and then apply the WMF procedure
to the reduced data. We call this procedure SIS+WMF.

Corollary 6. Suppose conditions for Theorem 1 in [10] and Theorem 3 in this
paper hold. Let dn = n�, 0 ≤ 
 < 1. Then the SIS+WMF procedure is variable
selection consistent.

Note that Corollary 6 is a direct conclusion of Theorem 1 in [10] and Theorem
3 in this paper.

9. Discussion

We proposed a prediction-weighted maximal frequency procedure to estimate
the amount of regularization for adaptive LASSO and adaptive Elastic-Net.
Asymptotic properties were studied with a diverging pn.

Central idea of the WMF procedure is the importance of conditioning on di-
mension, which mitigates overfitting. Underfitting can then be handled by using
prediction-based weights estimated by multi-fold cross-validation. This simple
recipe can also be applied to other regularization methods, say the SCAD and
fused LASSO, making the WMF procedure a unified model selection criterion in
regularization problems. However, asymptotic properties have yet to be studied,
which will be a future topic.

Appendix A: Proofs

Proof of Lemma 1. Assume | βi |>| βj | and | βi | − | βj |= mσ, m > 0. We
have 4 cases for βi, βj

βi =

{
βj +mσ or − βj −mσ, βj ≥ 0,

−βj +mσ or βj −mσ, βj < 0.

Let Zi = βi + xT
i ε ∼ N(βi, σ

2) and Zj = βj + xT
j ε ∼ N(βj , σ

2). We have

P (| Zi |≤ z) = Φ(
z − βi

σ
) + Φ(

z + βi

σ
)− 1, z ≥ 0,

P (| Zj |≤ z) = Φ(
z − βj

σ
) + Φ(

z + βj

σ
)− 1, z ≥ 0.

Consider case 1: βj ≥ 0 and βi = βj +mσ, m > 0.
Let k be a positive constant. The point βj + kσ separates the domain of

Zi and Zj into two parts: (−∞, βj + kσ] and (βj + kσ, ∞]. The cumulative
probabilities of Zi and Zj in first part of the domain are respectively
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P (| Zi |≤ βj + kσ) = Φ(k −m) + Φ(m+ k +
2βj

σ
)− 1,

P (| Zj |≤ βj + kσ) = Φ(k) + Φ(k +
2βj

σ
)− 1.

The probability P (| Zi |>| Zj |) can then be calculated from

P (| Zi |>| Zj |) = 1/2P (| Zi |≤ βj + kσ, | Zj |≤ βj + kσ)

+ 1/2P (| Zi |> βj + kσ, | Zj |> βj + kσ)

+ P (| Zi |> βj + kσ, | Zj |≤ βj + kσ).

After some simple deductions, we get,

P (| Zi |>| Zj |)

=
1

2

{
Φ(k +

2βj

σ
) + Φ(k)− Φ(k −m)− Φ(k +m+

2βj

σ
)

}
+

1

2
. (A.1)

If m = 0 i.e. | βi |=| βj |, from (A.1) we have

P (| Zi |>| Zj |) =
1

2
.

However if m > 0 i.e. | βi |>| βj |,

P (| Zi |>| Zj |)

=
1

2

{∫ k

k−m

1√
(2π)

e−x2/2 dx−
∫ k+2βj/σ+m

k+2βj/σ

1√
(2π)

e−x2/2 dx

}
+

1

2
. (A.2)

Since m, k, βj , σ > 0, we have

max {| k −m |, | k |} < max {| k + (2βj)/σ |, | k + (2βj)/σ +m |} .

Note that two integrals in (A.2) have equal length of the integral intervals.
Moreover the integral function is an monotonically decreasing function of x for
x ≥ 0, and monotonically increasing for x < 0. Hence

∫ k

k−m

1√
(2π)

e−x2/2 dx−
∫ k+2βj/σ+m

k+2βj/σ

1√
(2π)

e−x2/2 dx > 0. (A.3)

Combining (A.2) with (A.3), we get

P (| Zi |>| Zj |) >
1

2
.
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Other three cases can be proved in the same way. We avoid the repetitions
here.

Proof of Theorem 1. By [29], β̂a enjoys the oracle properties under certain regu-

larity conditions. And β̂
∗
a is a paired bootstrap analog of β̂a by replacing (X,y)

with (X∗,y∗) in estimation. To simplify notations in the proof, we drop the

subscript ‘a’ in β̂a and β̂
∗
a.

By the KKT regularity conditions, β̂
∗
is the unique solution of adaptive

LASSO given (X∗,y∗) if

{
X∗T

j (y∗ −X∗β̂
∗
) = λnωjsgn(β̂

∗
j ), β̂∗

j �= 0

|X∗T
j (y∗ −X∗β̂

∗
)| < λnωj , β̂∗

j = 0
(A.4)

where X∗
j is the jth column of X∗ and

sgn(x) =

⎧⎪⎨
⎪⎩
1, x > 0,

0, x = 0,

−1, x < 0.

Let s̃A = (ωjsgn(β̂j), j ∈ A)T and β̂
∗
A = (X∗T

A X∗
A)

−1(X∗T
A y∗ − λns̃A). We

show that (β̂
∗
A,0) satisfies (A.4) with probability tending to 1, which is equiv-

alent to prove

{
sgn(β̂j)(β̂j − β̂∗

j ) < |β̂j |, j ∈ A,

|X∗T
j (y∗ −X∗

Aβ̂
∗
A)| < λnωj , j /∈ A,

(A.5)

where the first inequation implies sgn(β̂
∗
A) = sgn(β̂A).

Note that ωj = |β̃j |−γ , where β̃ = (β̃1, . . . , β̃pn)
T is an OLS or best ridge

estimate of β0,

β̃(λn2) = argmin
β

‖y −Xβ‖2 + λn2

pn∑
j=1

|βj |2.

By Theorem 3.1 in [29],

E‖β̃(λn2)− β0‖2 ≤ 2
λ2
n2‖β0‖2 + npnDσ2

(nd+ λn2)2
= Op

(pn
n

)
(A.6)

under assumption that limn→∞
λn2√

n
= 0. It is satisfied automatically for the

OLS estimate.

Denote x∗
iA the ith row of X∗

A, and ⊗ the element-wise product. We have
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β̂
∗
A − β̂A = (X∗T

A X∗
A)

−1(X∗T
A y∗ −X∗T

A X∗
Aβ̂A − λns̃A)

= (XT
AXA)

−1

[
n∑

i=1

x∗
iA(y

∗
i − x∗T

iA β̂A)− λnωA ⊗ sgn(β̂A)

]
(1 + op(1)).

Hence under conditions (A1) and (A5),

E∗‖β̂∗
A − β̂A‖2 ≤

E∗
∥∥∥∑n

i=1

[
x∗
iA(y

∗
i − x∗T

iA β̂A)− λnωA
n ⊗ sgn(β̂A)

]∥∥∥2
ζ2min(X

T
AXA)

=

∑n
i=1 E

∗
∥∥∥x∗

iA(y
∗
i − x∗T

iA β̂A)− λnωA
n ⊗ sgn(β̂A)

∥∥∥2
ζ2min(X

T
AXA)

=

∑n
i=1

∥∥∥xiA(yi − xT
iAβ̂A)− λnωA

n ⊗ sgn(β̂A)
∥∥∥2

ζ2min(X
T
AXA)

≤ 1

(nd)2

[
n∑

i=1

2xT
iAxiA(yi − xT

iAβ̂A)
2 +

2λ2
n‖ωA‖2
n

]

≤ 2p0Dσ2

nd2
+

2λ2
n‖ωA‖2
n3d2

.

Let ψ = minj∈A |β0j |, ψ̃ = minj∈A |β̃j | and ψ̂ = minj∈A |β̂j |. Under condi-
tions (A1)–(A3) and (A5), the first inequation in (A.5) can be proved by

P ∗
{
∃j ∈ A, sgn(β̂j)(β̂j − β̂∗

j ) ≥ |β̂j |
}

≤
∑
j∈A

P ∗
{
sgn(β̂j)(β̂j − β̂∗

j ) ≥ |β̂j |, ψ̃ > ψ/2, ψ̂ > ψ/2
}

+ P (ψ̃ ≤ ψ/2) + P (ψ̂ ≤ ψ/2) + P (ψ̃ ≤ ψ/2, ψ̂ ≤ ψ/2)

≤
4E∗(‖β̂∗

A − β̂A‖2I(ψ̃ > ψ/2)
)

ψ2
+ c1 + c2 +min{c1, c2}

≤ 8

ψ2

(
p0Dσ2

nd2
+

λ2
np0(ψ/2)

−2γ

n3d2

)
+ c1 + c2 +min{c1, c2}

=Op

(
p0
nψ2

)
+ op

(( λn√
nψγ

)2 p0
nψ2

)
+ c1 + c2 +min{c1, c2}

→0,

where

c1 ≤ P (‖β̃ − β0‖ ≥ ψ/2) ≤ 4E‖β̃ − β0‖2
ψ2

.

By (A.6), it has

c1 ≤ 8
λ2
n2‖β0‖2 + npnDσ2

ψ2(nd+ λn2)2
= Op

(
pn
nψ2

)
→ 0
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Similarly,

c2 ≤ P (‖β̂A − β0A‖ ≥ ψ/2) ≤ 4E‖β̂A − β0A‖2I(ψ̃ > ψ/2)

ψ2
+ c1.

By Theorem 3.1 in [29],

c2 ≤ 16
npnDσ2 + λ2

np0(ψ/2)
−2γ

ψ2n2d2
+ c1

= Op

(
pn
nψ2

)
+Op

(( λn√
nψγ

)2 p0
nψ2

)
→ 0. (A.7)

For proof of the second inequation in (A.5), it suffices to show

P ∗
{
∃j /∈ A, |X∗T

j (y∗ −X∗
Aβ̂

∗
A)| ≥ λnωj

}
→ 0.

Since

|X∗T
j (y∗ −X∗

Aβ̂
∗
A)| ≤ |X∗T

j (y∗ −X∗
Aβ̂A)|+ |X∗T

j X∗
A(β̂A − β̂

∗
A)|,

it follows that

P ∗
{
∃j /∈ A, |X∗T

j (y∗ −X∗
Aβ̂

∗
A)| ≥ λnωj

}
≤
∑
j /∈A

P ∗
{
|X∗T

j (y∗ −X∗
Aβ̂A)| ≥ (1− κ)λnωj

}

+
∑
j /∈A

P ∗
{
|X∗T

j X∗
A(β̂A − β̂

∗
A)| ≥ κλnωj

}

=B1 +B2,

where κ, 0 < κ < 1, is a constant.
For B1,

∑
j /∈A

E∗|X∗T
j (y∗ −X∗

Aβ̂A)|2 =
∑
j /∈A

E∗

∣∣∣∣∣
n∑

i=1

x∗
ij(y

∗
i − x∗T

iA β̂A)

∣∣∣∣∣
2

=
∑
j /∈A

E∗

⎡
⎣ n∑

i=1

x∗2
ij (y

∗
i − x∗T

iA β̂A)
2 +

∑
i 	=k

x∗
ij(y

∗
i − x∗T

iA β̂A)x
∗
kj(y

∗
k − x∗T

kAβ̂A)

⎤
⎦

=
∑
j /∈A

⎧⎨
⎩

n∑
i=1

x2
ij(yi − xT

iAβ̂A)
2 + n(n− 1)

[
1

n

n∑
i=1

xij(yi − xT
iAβ̂A)

]2⎫⎬
⎭

=npAcσ2 +
n− 1

n
‖XT

Ac(y −XAβ̂A)‖2

≤npAcσ2 + (n− 1)pAcDσ2,
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where pAc indicates the size of Ac. By (A.6), ∀j ∈ Ac, E|β̃j |2 ≤ E‖β̃ − β0‖2 =

Op

(
pn

n

)
, which indicates |β̃j | ≤ Op

(
pn

n

)1/2
. Then under condition (A3), B1

fulfills

B1 ≤
∑
j /∈A

E∗|X∗T
j (y∗ −X∗

Aβ̂A)|2

(1− κ)2λ2
nω

2
j

≤ npAcσ2 + (n− 1)pAcDσ2

(1− κ)2λ2
nOp

(
pn

n

)−γ

= Op

(
n

λ2
nn

(1−�)(1+γ)−1

)
→ 0.

Also since ∑
j /∈A

E∗(|X∗T
j X∗

A(β̂A − β̂
∗
A)|2I(ψ̃ > ψ/2)

)
=E∗(‖X∗T

AcX∗
A(β̂A − β̂

∗
A)‖2I(ψ̃ > ψ/2)

)
≤(nD)2E∗(‖β̂A − β̂

∗
A‖2I(ψ̃ > ψ/2)

)
(1 + op(1))

≤
(
2np0D

3σ2

d2
+

2λ2
np0(ψ/2)

−2γD2

nd2

)
(1 + op(1)),

we have for B2,

B2 ≤
∑
j /∈A

E∗(|X∗T
j X∗

A(β̂A − β̂
∗
A)|2I(ψ̃ > ψ/2)

)
κ2λ2

nω
2
j

+ c1

≤
(

2np0D
3σ2

λ2
nOp

(
pn

n

)−γ
κ2d2

+
2λ2

np0(ψ/2)
−2γD2

nλ2
nOp

(
pn

n

)−γ
κ2d2

)
(1 + op(1)) +Op

(
pn
nψ2

)

≤ Op

(
n

λ2
nn

(1−�)(1+γ)−1

)
+Op

(
p0
n

( pn
nψ2

)γ)
+Op

(
pn
nψ2

)
→ 0.

Hence (A.5) is proved. We have shown that β̂
∗
= (β̂

∗
A,0) and sgn(β̂

∗
A) =

sgn(β̂A) with probability tending to 1, where β̂
∗
is the adaptive LASSO esti-

mate using paired bootstrap data. Also it can be deduced from (A.7) that

P (minj∈A |β̂j | > 0) → 1. To sum up, we get limn→∞ P ∗(A∗
n = A | λn) = 1.

We now prove limn→∞ P ∗(A∗
n = Mr | λ′

n) < 1, where Mr is any r-
dimensional model, p0 < r < pn, and λ′

n is a tuning parameter such that the
adaptive LASSO estimator under λ′

n is of dimension r. Then λ′
n < λn, hence

λ′
n/

√
n → 0. If it also satisfies limn→∞

λ′2
n n(1−�)(1+γ)−1

n → ∞, we would have
P ∗(A∗

n = A | λ′
n) = 1 based on previous proof, which contradicts with the
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definition of λ′
n. Therefore,

lim
n→∞

λ′2
n n

(1−�)(1+γ)−1

n
< ∞.

To prove limn→∞ P ∗(A∗
n = Mr | λ′

n) < 1, by the KKT regularity conditions
it suffices to show

P ∗
{
∀j /∈ Mr, |X∗T

j (y∗ −X∗β̂
∗
)| < λ′

nωj

}
< 1,

or equivalently

P ∗
{
∃j /∈ Mr, |X∗T

j (y∗ −X∗β̂
∗
)| ≥ λ′

nωj

}
> 0. (A.8)

Following previous proof, we get

P ∗
{
∃j /∈ Mr, |X∗T

j (y∗ −X∗β̂
∗
)| ≥ λ′

nωj

}
≤

∑
j /∈Mr

P ∗
{
|X∗T

j (y∗ −X∗β̂)| ≥ (1− κ)λ′
nωj

}

+
∑

j /∈Mr

P ∗
{
|X∗T

j X∗(β̂ − β̂
∗
)| ≥ κλ′

nωj

}

=B1 +B2.

However,

B1 ≤
npMc

r
σ2 + (n− 1)pMc

r
Dσ2

(1− κ)2λ′2
nOp

(
pn

n

)−γ = Op

(
n

λ′2
n n

(1−�)(1+γ)−1

)
�→ 0,

as n → ∞. Similarly, limn→∞ B2 �→ 0. Then (A.8) holds.

Lemma 2. Suppose conditions (A1) and (A5) hold and limn→∞ λn2/
√
n = 0

in ridge estimates. Then,

E∗[XT ε∗] = 0, lim
n→∞

Var∗[XT ε∗] = XTXσ2 with probability 1.

Proof. Assume β̂ is a ridge estimate of β0,

β̂ = argmin
β

‖y −Xβ‖2 + λn2‖β‖2.

By (A.6), E‖β̂ − β0‖2 ≤ Op

(
pn

n

)
. Calculate centered residuals ε̂,

ε̂0 = y −Xβ̂, ε̂ = ε̂0 − ε̄0,

where each entry of ε̄0, marked as ε̄0, is the mean of ε̂0. Denote ε∗ = (ε∗1, . . . , ε
∗
n)

T

an i.i.d bootstrap sample from the empirical distribution that puts mass n−1 on
each entry of ε̂.
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By definition, we have

E∗[XTε∗] = XTE∗(ε∗) = 0,

Var∗[XT ε∗] = XTXVar∗(ε∗1) = XTXE∗(ε∗21 ),

and

E∗(ε∗21 ) =
1

n

n∑
i=1

(ε̂0i − ε̄0)
2.

In above equation,

ε̄0 =
1

n

n∑
i=1

ε̂0i =
1

n

n∑
i=1

(yi − xT
i β̂) =

1

n

n∑
i=1

xT
i (β0 − β̂) +

1

n

n∑
i=1

εi.

Moreover, by the sum of squares inequality,∣∣∣∣∣ 1n
n∑

i=1

xT
i (β0 − β̂)

∣∣∣∣∣ ≤
{
1

n

n∑
i=1

[
xT
i (β0 − β̂)

]2}1/2

=

{
1

n
‖X(β0 − β̂)‖2

}1/2

≤
{
ζmax(X

TX)

n
‖β0 − β̂‖2

}1/2

= Op

(√pn
n

)
.

Hence,

ε̄0 =
1

n

n∑
i=1

εi +Op

(√pn
n

)
.

Let

s2n =
1

n

n∑
i=1

(ε̂0i − ε̄0)
2 and σ2

n =
1

n

n∑
i=1

(εi − ε̄)2,

where ε̄ = 1
n

∑n
i=1 εi. We now prove sn → σn asymptotically.

Note that

lim
n→∞

σ2
n = lim

n→∞
1

n

n∑
i=1

ε2i −
( 1
n

n∑
i=1

εi

)2
= E(ε2i )− (E(εi))

2
= σ2

with probability 1.
And by the sum of squares inequality,

(sn − σn)
2 =

⎧⎨
⎩
[
1

n

n∑
i=1

(ε̂0i − ε̄0)
2

]1/2
−
[
1

n

n∑
i=1

(εi − ε̄)2

]1/2⎫⎬
⎭

2
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=
1

n

n∑
i=1

(ε̂0i − ε̄0)
2 +

1

n

n∑
i=1

(εi − ε̄)2 − 2

[
1

n

n∑
i=1

(ε̂0i − ε̄0)
2

] 1
2
[
1

n

n∑
i=1

(εi − ε̄)2

] 1
2

≤ 1

n

n∑
i=1

(ε̂0i − ε̄0)
2 +

1

n

n∑
i=1

(εi − ε̄)2 − 2

n

n∑
i=1

(ε̂0i − ε̄0)(εi − ε̄)

=
1

n

n∑
i=1

[(ε̂0i − ε̄0)− (εi − ε̄)]
2

=
1

n

n∑
i=1

[
ε̂0i − εi −Op

(√pn
n

)]2

≤ 1

n
‖X(β0 − β̂)‖2 +Op

(√pn
n

) 1√
n
‖X(β0 − β̂)‖+Op

(pn
n

)

≤ ζmax(X
TX)

n
‖β0 − β̂‖2 +Op

(√pn
n

)√ζmax(XTX)

n
‖β0 − β̂‖+Op(

pn
n
)

= Op

(pn
n

)
.

Then limn→∞ s2n = σ2 with probability 1.

Proof of Theorem 2. Let (X,y∗) be a residual bootstrap sample, where y∗ =
Xβ̂ + ε∗ and β̂ is the ridge estimator. Define

β̃
∗
= (1 +

λn2

n
)

⎧⎨
⎩argmin

β
‖y∗ −Xβ‖2 + λn2

pn∑
j=1

|βj |2 + λ+
n1

pn∑
j=1

ωj |βj |

⎫⎬
⎭ ,

(A.9)

where we dropped the subscript ‘ae’ in β̃
∗
ae for simplicity.

Let

β̃
∗
A = argmin

β
‖y∗ −XAβ‖+ λn2

∑
j∈A

|βj |2 + λ+
n1

∑
j∈A

ωj |βj |,

we prove ((1 + λn2

n )β̃
∗
A,0) is the solution to (A.9) with probability tending to

1. By the KKT regularity conditions, this suffices to show

P ∗
{
∀j /∈ A, |XT

j (y
∗ −XAβ̃

∗
A)| < λ+

n1ωj

}
→ 1,

or equivalently

P ∗
{
∃j /∈ A, |XT

j (y
∗ −XAβ̃

∗
A)| ≥ λ+

n1ωj

}
→ 0. (A.10)

Note that ωj = |β̂ej |−γ where β̂e = (β̂e1, . . . , β̂epn)
T is the Elastic-Net esti-

mator defined in (2.2). By Theorem 3.1 in [29],
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E‖β̂e − β0‖2 ≤ 4
λ2
n2‖β0‖2 + npnDσ2 + λ2

n1pn
(nd+ λn2)2

= Op

(pn
n

)
(A.11)

under condition (A4).

Let ψ = minj∈A |β0j | and ψ̃ = minj∈A |β̂ej |. Then

P ∗
{
∃j /∈ A, |XT

j (y
∗ −XAβ̃

∗
A)| ≥ λ+

n1ωj

}
≤P ∗

{
∃j /∈ A, |XT

j (y
∗ −XAβ̃

∗
A)| ≥ λ+

n1ωj , ψ̃ > ψ/2
}
+ P{ψ̃ ≤ ψ/2}

≤
∑
j /∈A

P ∗
{
|XT

j (y
∗ −XAβ̃

∗
A)| ≥ λ+

n1ωj , ψ̃ > ψ/2
}
+ P{ψ̃ ≤ ψ/2}

=B1 +B2.

By (A.11) under condition (A4),

B2 = P{ψ̃ ≤ ψ/2} ≤ P{‖β̂e − β0‖ ≥ ψ/2}

≤ 4E‖β̂e − β0‖2
ψ2

≤ Op(
pn
nψ2

) → 0.

Also by (A.11) ∀j ∈ Ac, E|β̂ej |2 ≤ E‖β̂e − β0‖2 = Op

(
pn

n

)
, which indicates

|β̂ej | ≤ Op

(
pn

n

)1/2
. Hence

B1 ≤
Op

(
pn

n

)γ
λ+2
n1

E∗
{∑

j /∈A
|XT

j (y
∗ −XAβ̃

∗
A)|2I(ψ̃ > ψ/2)

}
.

Note that

E∗
{∑

j /∈A
|XT

j (y
∗ −XAβ̃

∗
A)|2

}

=E∗
{∑

j /∈A
|XT

j (XAβ̂A +XAc β̂Ac + ε∗ −XAβ̃
∗
A)|2

}

≤3E∗‖XT
AcXA(β̂A − β̃

∗
A)‖2 + 3‖XT

AcXAc β̂Ac‖2 + 3E∗‖XT
Acε∗‖2

≤3(nD)2E∗‖β̂A − β̃
∗
A‖2 + 3(nD)2‖β̂Ac‖2 + 3E∗‖XT

Acε∗‖2.

By (A.6),

‖β̂Ac‖2 ≤ ‖β̂ − β0‖2 ≤ Op(
pn
n
). (A.12)

We now study E∗‖β̂A − β̃
∗
A‖2. Let

β̃
∗
A(λn2, 0) = argmin

β
‖y∗ −XAβ‖+ λn2

∑
j∈A

β2
j .
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By using the same arguments for deriving (6.3) in [29], we can easily show

‖β̃∗
A − β̃

∗
A(λn2, 0)‖ ≤ λ+

n1‖ωA‖
ζmin(XT

AXA) + λn2
. (A.13)

On the other hand,

β̃
∗
A(λn2, 0)− β̂A = (XT

AXA + λn2I)
−1(−λn2β̂A +XT

AXAc β̂Ac +XT
Aε

∗),

by Lemma 2,

E∗‖β̃∗
A(λn2, 0)− β̂A‖2 ≤ 3

λ2
n2‖β̂A‖2 + ‖XT

AXAcβ̂Ac‖2 + E∗‖XT
Aε

∗‖2(
ζmin(XT

AXA) + λn2

)2
≤ 3

λ2
n2‖β̂A‖2 + (nD)2‖β̂Ac‖2 + np0Dσ2

(nd+ λn2)2
. (A.14)

By assembling (A.12)–(A.14), we get

E∗‖β̂A − β̃
∗
A‖2 ≤ 2E∗‖β̃∗

A − β̃
∗
A(λn2, 0)‖2 + 2E∗‖β̃∗

A(λn2, 0)− β̂A‖2

≤ 6
λ+2
n1 ‖ωA‖2 + λ2

n2‖β̂A‖2 +Op(npnD
2) + np0Dσ2

(nd+ λn2)2
.

And

E∗

⎧⎨
⎩
∑
j /∈A

|XT
j (y

∗ −XAβ̃
∗
A)|2I(ψ̃ > ψ/2)

⎫⎬
⎭ ≤ 3Op(npnD

2) + 3npAcDσ2

+ 18n2D2λ
+2
n1 p0(ψ/2)

−2γ + λ2
n2‖β̂A‖2 +Op(npnD

2) + np0Dσ2

(nd+ λn2)2

= Op(npn) +Op(ψ
−2γλ+2

n1 p0).

Then under conditions (A1)–(A2) and (A4)–(A5),

B1 ≤
Op

(
pn

n

)γ
λ+2
n1

[Op(npn) +Op(ψ
−2γλ+2

n1 p0)]

≤ Op

(
n

λ+2
n1n

(1−�)(1+γ)−1

)
+Op

(
1

ψ2γn(1−�)(1+γ)−1

)
→ 0.

Hence (A.10) is proved. So far we have shown that β̃
∗
= ((1 + λn2

n )β̃
∗
A,0)

with probability tending to 1, where β̃
∗
is the adaptive Elastic-Net estimate

using residual bootstrap data. To prove limn→∞ P ∗(T ∗
n = A | λ+

n1) = 1, we still
need to show that P (minj∈A |β̃∗

j | > 0) → 1.
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Let ψ̂ = minj∈A |β̂j | and ψ̃∗ = minj∈A |β̃∗
j |. By (A.6),

P (ψ̂ ≤ ψ/2) ≤ P (‖β̂ − β0‖ ≥ ψ/2) ≤ Op

( pn
nψ2

)
→ 0.

Hence P (ψ̂ > ψ/2) → 1 as n → ∞ where ψ > 0. Under condition (A4),

P (ψ̃∗ ≤ ψ̂/2) ≤ P (ψ̃∗ ≤ ψ̂/2, ψ̃ > ψ/2) + P (ψ̃ ≤ ψ/2)

≤ P (‖β̂A − β̃
∗
A‖ ≥ ψ̂/2, ψ̃ > ψ/2) +B2

≤ 16

ψ2
E∗(‖β̂A − β̃

∗
A‖2I(ψ̃ > ψ/2)

)
+B2

≤ 96

ψ2

λ+2
n1 p0(ψ/2)

−2γ + λ2
n2‖β̂A‖2 +Op(npnD

2) + np0Dσ2

(nd+ λn2)2
+B2

= Op

(( λ+
n1√
nψγ

)2 p0
nψ2

)
+Op

( pn
nψ2

)
→ 0,

which indicates P (ψ̃∗ > ψ̂/2) → 1 as n → ∞. To sum up, limn→∞ P (ψ̃∗ >
ψ/4) = 1. Thus limn→∞ P ∗(T ∗

n = A | λ+
n1) = 1 is proved.

We now prove limn→∞ P ∗(T ∗
n = Mr | λ′

n1) < 1, where Mr is any r-
dimensional model, p0 < r < pn, and λ′

n1 is a tuning parameter such that the
adaptive Elastic-Net estimator under λ′

n1 is of dimension r. Then λ′
n1 < λ+

n1,

hence λ′
n1/

√
n → 0. If it also satisfies limn→∞

λ′2
n1n

(1−�)(1+γ)−1

n → ∞, we would
have P ∗(T ∗

n = A | λ′
n1) = 1 based on previous proof, which contradicts with

the definition of λ′
n1. Therefore,

lim
n→∞

λ′2
n1n

(1−�)(1+γ)−1

n
< ∞.

To prove limn→∞ P ∗(T ∗
n = Mr | λ′

n1) < 1, by the KKT regularity conditions
it suffices to show

P ∗
{
∀j /∈ Mr, |X∗T

j (y∗ −XMr β̂
∗
Mr

)| < λ′
n1ωj

}
< 1,

or equivalently

P ∗
{
∃j /∈ Mr, |X∗T

j (y∗ −XMr β̂
∗
Mr

)| ≥ λ′
n1ωj

}
> 0.

By following the same arguments for showing (A.10), we get

P ∗
{
∃j /∈ Mr, |X∗T

j (y∗ −XMr β̂
∗
Mr

)| ≥ λ′
n1ωj

}

≤
Op

(
pn

n

)γ
λ′2
n1

{
3Op(npnD

2) + 3npMc
r
Dσ2

+ 18n2D2λ
′2
n1‖ωMr‖2 + λ2

n2‖β̂Mr
‖2 +Op(npnD

2) + npMrDσ2

(nd+ λn2)2

}
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= Op

(
n

λ′2
n1n

(1−�)(1+γ)−1

)
+Op

(
‖ωMr‖2

(pn
n

)γ)
�→ 0.

Lemma 3. Suppose conditions (A1), (A5) and (A6) hold. Denote α an overfit
model including the true model, the adaptive Elastic-Net estimate β̂sci ,α

from
the multi-fold CV then satisfies

E‖β̂sci ,α
− β0α‖2 ≤ 4

λ2
n2‖β0α‖2 + (n− t)pαDσ2(1 + op(1)) + λ

′2
n1E‖ωα‖2

[(n− t)d(1 + op(1)) + λn2]2

= Op(
pα
n
),

where the adaptive LASSO estimate is a special case with λn2 = 0.

Proof. Here we provide a proof for the adaptive LASSO estimator. The adaptive
Elastic-Net estimator can be proved by using the same arguments for deriving
Theorem 3.1 in [29] and the strategies in below.

The adaptive LASSO estimator from the multi-fold CV is

β̂sci ,α
= argmin

β
‖Ysci

−Xsci ,α
β‖2 + 2λ′

n1

∑
j∈α

ωj |βj |,

which satisfies

β̂sci ,α
− β0α = (XT

sci ,α
Xsci ,α

)−1
(
XT

sci ,α
εsci − λ′

n1ωα ⊗ sgn(β̂sci ,α
)
)
.

Hence,

E‖β̂sci ,α
− β0α‖2 ≤

2E‖XT
sci ,α

εsci ‖
2 + 2λ

′2
n1E‖ωα‖2

ζ2min(X
T
sci ,α

Xsci ,α
)

≤
2ζmax(X

T
sci ,α

Xsci ,α
)pασ

2 + 2λ
′2
n1E‖ωα‖2

ζ2min(X
T
sci ,α

Xsci ,α
)

≤ 2(n− t)pαDσ2(1 + op(1)) + 2λ
′2
n1E‖ωα‖2

(n− t)2d2(1 + op(1))

= Op

(pα
n

)
.

The last equation holds because λ′
n1 continuously decreases from λ+

n1 to 0 as α
changes from the true model to full model.

Proof of Theorem 3. We integrate the proof for adaptive Elastic-Net and adap-
tive LASSO. Denote α an overfit model including the true model. The MCVα

is

MCVα =
1

n

K∑
i=1

‖Xsi,αβ0α + εsi −Xsi,αβ̂sci ,α
‖2
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=
1

n
εT ε+

1

n

K∑
i=1

‖Xsi,α(β0α − β̂sci ,α
)‖2

+
2

n

K∑
i=1

(β0α − β̂sci ,α
)TXT

si,αεsi . (A.15)

By Lemma 3, the second term in (A.15) satisfies

E‖Xsi,α(β0α − β̂sci ,α
)‖2 ≤ ζmax(X

T
si,αXsi,α)E‖β0α − β̂sci ,α

‖2

≤ tDOp

(pα
n

)
= Op

(
tpα
n

)
,

Var‖Xsi,α(β0α − β̂sci ,α
)‖2 ≤ E‖Xsi,α(β0α − β̂sci ,α

)‖4

≤ Op

(
tpα
n

)2

.

Hence,

‖Xsi,α(β0α − β̂sci ,α
)‖2 ≤ Op

(
tpα
n

)
,

1

n

K∑
i=1

‖Xsi,α(β0α − β̂sci ,α
)‖2 ≤ K

n
Op

(
tpα
n

)
= Op

(pα
n

)
. (A.16)

The third term in (A.15) fulfills

E[(β0α − β̂sci ,α
)TXT

si,αεsi ] = 0,

E|(β0α − β̂sci ,α
)TXT

si,αεsi |
2 ≤ E‖β0α − β̂sci ,α

‖2E‖XT
si,αεsi‖

2

≤ Op

(pα
n

)
tpαDσ2

= Op

(
tp2α
n

)
.

Hence,

(β0α − β̂sci ,α
)TXT

si,αεsi ≤ Op

(√
tp2α
n

)
,

2

n

K∑
i=1

(β0α − β̂sci ,α
)TXT

si,αεsi ≤
2K

n
Op

(√
tp2α
n

)
= Op

(pα
n

)
. (A.17)

By substituting (A.16)–(A.17) to (A.15), we obtain

MCVα =
1

n
εT ε+Op

(pα
n

)
.

Let α and α′ be two overfit models including the true model, then

lim
n→∞

|MCVα −MCVα′ | = lim
n→∞

∣∣∣Op

(pα − pα′

n

)∣∣∣ = 0.
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We now consider an underfit model ν. The MCVν is

MCVν =
1

n

K∑
i=1

‖Xsiβ0 + εsi −Xsi,νβ̂sci ,ν
‖2

=
1

n
εT ε+

1

n

K∑
i=1

‖Xsiβ0 −Xsi,νβ̂sci ,ν
‖2

+
2

n

K∑
i=1

(Xsiβ0 −Xsi,νβ̂sci ,ν
)T εsi . (A.18)

Let β̂ν be an adaptive LASSO or adaptive Elastic-Net estimator under ν.
The second term in (A.18) satisfies

1

n

k∑
i=1

‖Xsiβ0 −Xsi,νβ̂sci ,ν
‖2

≥ 1

2n

k∑
i=1

‖Xsi [β0 −
(

β̂ν
0νc

)
]‖2 − 1

n

k∑
i=1

‖Xsi,ν(β̂sci ,ν
− β̂ν)‖2

≥ 1

2n

k∑
i=1

ζmin(X
T
siXsi)‖β0 −

(
β̂ν
0νc

)
‖2 − 1

n

k∑
i=1

ζmax(X
T
si,νXsi,ν)‖β̂sci ,ν

− β̂ν‖2

≥d‖β0νc‖2
2

− op(1). (A.19)

For the third term in (A.18),

E[(Xsiβ0 −Xsi,νβ̂sci ,ν
)Tεsi ] = 0,

E|(Xsiβ0 −Xsi,νβ̂sci ,ν
)Tεsi |2

≤2E|[β0 −
(

β̂ν
0νc

)
]TXT

siεsi |
2 + 2E|(β̂ν − β̂sci ,ν

)TXT
si,νεsi |

2

≤2
(
‖β0νc‖2 + op(1)

)
E‖XT

siεsi‖
2 + 2op(1)E‖XT

si,νεsi‖
2

≤2
(
‖β0νc‖2 + op(1)

)
tpnDσ2 + 2tpνDσ2op(1)

=Op

(
‖β0νc‖2tpn

)
.

Hence,

(Xsiβ0 −Xsi,νβ̂sci ,ν
)T εsi ≤ Op

(
‖β0νc‖

√
tpn

)
,

2

n

K∑
i=1

(Xsiβ0 −Xsi,νβ̂sci ,ν
)T εsi ≤

2K

n
Op

(
‖β0νc‖

√
tpn

)

= Op

(
‖β0νc‖

√
pn
n

)
. (A.20)
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By substituting (A.19)–(A.20) to (A.18), we get

MCVν ≥ 1

n
εT ε+

d‖β0νc‖2
2

+Op

(
‖β0νc‖

√
pn
n

)
.

If α is an overfit model and ν is an underfit model, we have

lim
n→∞

MCVν −MCVα

≥d‖β0νc‖2
2

+Op

(
‖β0νc‖

√
pn
n

)
−Op

(pα
n

)
> 0. (A.21)

So the first part is proved. We then combine it with Corollaries 1–4. For any
r, p0 < r < pn,

lim
n→∞

WMFp0

WMFr
= lim

n→∞
P ∗(A∗

n = A | p0) exp[−MCVA/cσ
2]

P ∗(A∗
n = Mr | r) exp[−MCVMr/cσ

2]

= lim
n→∞

P ∗(A∗
n = A | p0)

P ∗(A∗
n = Mr | r) exp

[MCVMr −MCVA
cσ2

]

= lim
n→∞

P ∗(A∗
n = A | p0)

P ∗(A∗
n = Mr | r) exp

[
Op

(r − p0
n

)]
>1. (A.22)

And for any r′, 0 < r′ < p0,

lim
n→∞

WMFp0

WMFr′
= lim

n→∞
P ∗(A∗

n = A | p0) exp[−MCVA/cσ
2]

P ∗(A∗
n = Mr′ | r′) exp[−MCVMr′ /cσ

2]

= lim
n→∞

P ∗(A∗
n = A | p0)

P ∗(A∗
n = Mr′ | r′)

exp
[MCVMr′ −MCVA

cσ2

]

≥ lim
n→∞

P ∗(A∗
n = A | p0)

P ∗(A∗
n = Mr′ | r′)

exp
[ d

2‖β0Mc
r′
‖2 +Op

(
‖β0Mc

r′
‖
√

pn

n

)
−Op

(
p0

n

)
cσ2

]
>1. (A.23)

Then model selection consistency of the WMF procedure can be deduced from
(A.22)–(A.23).

Appendix B: Additional simulation results
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Fig 9. Results of scenario 1 using residual bootstrap data: (a) proportion of correctly specified
models; (b) average number of false non-zeros; (c) average number of false zeros; (d) average
value of estimated model sizes.

Fig 10. Results of scenario 2 using residual bootstrap data: (a) proportion of correctly specified
models; (b) average number of false non-zeros; (c) average number of false zeros; (d) average
value of estimated model sizes.
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Fig 11. Results of scenario 3 using residual bootstrap data: (a) proportion of correctly specified
models; (b) average number of false non-zeros; (c) average number of false zeros; (d) average
value of estimated model sizes.

Fig 12. Results of scenario 4 using paired bootstrap data: (a) proportion of correctly specified
models; (b) average number of false non-zeros; (c) average number of false zeros; (d) average
value of estimated model sizes.
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Fig 13. Results of scenario 5 using paired bootstrap data: (a) proportion of correctly specified
models; (b) average number of false non-zeros; (c) average number of false zeros; (d) average
value of estimated model sizes.

Fig 14. Results of scenario 6 using paired bootstrap data: (a) proportion of correctly specified
models; (b) average number of false non-zeros; (c) average number of false zeros; (d) average
value of estimated model sizes.
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