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Abstract: Today’s data pose unprecedented challenges to statisticians.
It may be incomplete, corrupted or exposed to some unknown source of
contamination. We need new methods and theories to grapple with these
challenges. Robust estimation is one of the revived fields with potential to
accommodate such complexity and glean useful information from modern
datasets. Following our recent work on high dimensional robust covariance
matrix estimation, we establish a general decision theory for robust statis-
tics under Huber’s ε-contamination model. We propose a solution using
Scheffé estimate to a robust two-point testing problem that leads to the
construction of robust estimators adaptive to the proportion of contam-
ination. Applying the general theory, we construct robust estimators for
nonparametric density estimation, sparse linear regression and low-rank
trace regression. We show that these new estimators achieve the minimax
rate with optimal dependence on the contamination proportion. This test-
ing procedure, Scheffé estimate, also enjoys an optimal rate in the exponent
of the testing error, which may be of independent interest.
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1. Introduction

In Huber’s pathbreaking papers [10, 11] on robust estimation theory, he pro-
posed the ε-contamination model

(1− ε)Pθ + εQ. (1)
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Under this model, data are drawn from (1) with probability of ε to be con-
taminated by some arbitrary distribution Q. Given i.i.d. observations from (1),
the objective is to estimate θ robust to the contamination from Q. It has been
discussed in [4] that Huber’s ε-contamination model provides a favored frame-
work which allows a joint study of statistical efficiency and robustness. In other
words, the optimality of an estimator under Huber’s ε-contamination model
indicates that it achieves statistical efficiency and robustness simultaneously.
However, not much attention has been paid to this framework in nonparametric
and high-dimensional statistics. Inspired by Tukey’s work on data depth, we
proposed a new concept, matrix depth, for robust estimation of covariance ma-
trix in high dimension in our previous work [4]. We established the optimality of
the proposed estimator under Huber’s ε-contamination model for several covari-
ance matrix classes. This work leaves an important problem open: whether there
exists a general rule for minimax rate under Huber’s ε-contamination model?

To address this problem in this paper, we investigate the following quantity

inf
θ̂

sup
θ∈Θ,Q

E(ε,θ,Q)L(θ̂, θ), (2)

the robust minimax risk for a given parameter space Θ and a loss function
L(·, ·). The expectation E(ε,θ,Q) is determined by the probability (1), and the
supreme is taken over all θ ∈ Θ and Q in the class of all probability distributions.
When the loss function takes the form of squared total variation distance, we
can construct a general robust estimator θ̂, such that the robust minimax risk
(2) is upper bounded by some universal constant times

min
δ>0

{
logM(δ,Θ,TV(·, ·))

n
+ δ2

}
∨ ε2, (3)

where M(δ,Θ,TV(·, ·)) denotes the δ-covering number of Θ using the total vari-
ation distance. This rate (3) consists of two parts. The first part is a common
bias variance trade-off term in the classical decision theory without taking ac-
count of contamination. The second part is a term contributed by unknown
contamination of the data. Comparing the rate (3) to the general lower bound
for the ε-contamination model derived in our previous work [4], we immediately
find that (3) is the minimax rate for the risk in (2). This is the main contribution
of our paper.

The construction of rate-optimal robust estimators is enabled in this paper
by a novel analysis of the robust testing procedure called Scheffé estimate that
was first proposed in [6]. For the robust two-point testing problem, we propose a
solution using Scheffé estimate, the testing error of which has a desired exponent
leading to a rate-optimal estimation procedure. Our new testing theory has ad-
vantages over some classical ones. Under the contamination model, the classical
Neyman-Pearson approach lacks robust property. The statistical performance
of the likelihood ratio test can be compromised even when one contaminated
point is included in the data. The robust testing theory established by Le Cam
[14] and Birgé [1] is based on Hellinger distance, which gives a sub-optimal rate
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for Huber’s ε-contamination model. The existing optimal testing function for
the robust two-point testing problem was constructed by Huber himself [11].
However, his procedure depends on the knowledge of the contamination pro-
portion ε in (1). As shown in our previous work, it is impossible to estimate ε
when Q is not specified. In comparison, our proposed testing function overcomes
this and does not depend on ε. This feature, together with its robustness and
rate-optimal error exponent, makes our method superior to the previous ones.

The rest of the paper is organized as follows. We first introduce the robust
testing problem in Section 2 and propose a solution using Scheffé estimate with
a sharp testing error bound. In Section 3, we use this robust testing procedure
to construct a general estimator that achieves the optimal rate for (3). Then in
Section 4, we construct robust estimators for density estimation, sparse linear
regression and low-rank trace regression as applications of the general theory.
We show that for all these problems, our estimators achieve minimax optimal
rates. Finally, we investigate a scenario when the loss function is not equivalent
to total variation distance in the discussion section, Section 5. We show that
the minimax rate for non-intrinsic loss functions may depend on ε in different
ways. All technical proofs are gathered in Section 6.

We close this section by introducing the notation used in the paper. For
a, b ∈ R, let a ∨ b = max(a, b) and a ∧ b = min(a, b). For an integer m, [m]
denotes the set {1, 2, ...,m}. Given a set S, |S| denotes its cardinality, and
IS is the associated indicator function. For two positive sequences {an} and
{bn}, the relation an � bn means that an ≤ Cbn for some constant C > 0,
and an � bn if both an � bn and bn � an hold. For a vector v ∈ R

p, ‖v‖
denotes the �2 norm and supp(v) = {j ∈ [p] : vj �= 0} is its support. For a
matrix A ∈ R

p1×p2 , rank(A) denotes its rank, vec(A) is its vectorization and
‖A‖F = ‖vec(A)‖ is the matrix Frobenius norm. When A is an squared matrix,
Tr(A) denotes its trace. For two probability distributions P1 and P2, their total
variation distance is TV(P1, P2) = supB |P1(B) − P2(B)|, and their Hellinger

distance is H(P1, P2) =
[∫ (√

dP1 −
√
dP2

)2]1/2
.

2. Robust testing

Given i.i.d. observations X1, ..., Xn ∼ P , we consider the following robust two-
point testing problem originally set up by Huber in [11]:

H0 : P ∈ {(1− ε)P0 + εQ : Q} ,
H1 : P ∈ {(1− ε)P1 + εQ : Q} .

In particular, P0 and P1 are two fixed distributions and Q is in the class of
all probability distributions. When ε = 0, it reduces to the classical two-point
testing problem studied by Neyman and Pearson [15]. They showed that the

likelihood ratio test I

{∏n
i=1

dP1

dP0
(Xi) > t

}
achieves the optimal testing error,

which laid the foundation for modern hypothesis testing. However, the likelihood
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ratio test is not robust to cases when ε > 0. For example, when P0 = N(θ0, Ip)
and P1 = N(θ1, Ip), Neyman-Pearson testing statistic involves the calculation
of sample mean, which can be arbitrarily away from the true mean due to the
existence of contamination from Q.

Huber showed in his seminal work [11, 12] that the exact optimal solution to
the robust two-point testing problem is the following testing function:

φHuber = I

{
n∏

i=1

[(
dP1

dP0
(Xi) ∨ c

)
∧ C

]
> t

}
,

for some 0 < c < C < ∞. It can be seen as a clipped likelihood ratio test.
By clipping the likelihood ratio functions that have enormous or infinitesimal
values, the influence from outliers can be diminished. When ε = 0, the clipping
cut-offs become c = 0, C = ∞, and φHuber naturally reduces to the likelihood
ratio test. Though φHuber exactly minimizes the testing error, the clipping cut-
offs c and C depend on the knowledge of ε, a quantity that characterizes the
contamination proportion. Since it is impossible to estimate ε when Q is not
specified [4], Huber’s approach is not adaptive to the contamination proportion
ε and thus not applicable.

Another work related to the robust testing problem is by Le Cam [14] and
Birgé [1]. Instead of testing between two ε-contamination neighborhoods, they
considered two Hellinger balls:

H0 : P ∈ {P : H(P, P0) ≤ τ} ,
H1 : P ∈ {P : H(P, P1) ≤ τ} .

They constructed a testing function and established the following testing error

sup
P∈{P :H(P,P0)≤τ}

Pφ+ sup
P∈{P :H(P,P1)≤τ}

P (1− φ)

≤ 2 exp
(
−n

2
(H(P0, P1)− 2τ)

2
)
, (4)

for any τ < 1
2H(P0, P1). However, their procedure cannot give optimal rate un-

der Huber’s setting. To put an ε-contamination neighborhood into a τ -Hellinger
ball, the smallest τ would be

√
2ε. That is,

{(1− ε)P0 + εQ : Q} ⊂
{
P : H(P, P0) ≤

√
2ε
}
.

When it comes to estimation, it will result in a sub-optimal ε term instead of
the optimal ε2 in (3).

In this paper, we propose a solution to the robust two-point testing problem
as follows:

φ = I {|Pn(A)− P0(A)| > |Pn(A)− P1(A)|} , (5)

where Pn(·) denotes the empirical distribution such that

Pn(A) =
1

n

n∑
i=1

I{Xi ∈ A},



3756 M. Chen et al.

and A is chosen as a measurable set that maximally distinguishes P0 and P1.
That is,

A = argmax
A

|P0(A)− P1(A)| = {p0 > p1}, (6)

where pj is the density function defined as pj =
dPj

d(P0+P1)
for j = 0, 1. The

corresponding estimator of the testing function φ is called Scheffé estimate by
Devroye and Lugosi in their book [6] under the framework of density estimation.
This is built on an L1-based estimator proposed by Yatracos in [25]. The intu-
ition is that with the set A possessing maximal distinguishing power, we check
whether the empirical probability of A is closer to P0(A) or P1(A). Since we use
summation of indicator functions to collect the information offered by each data
point separately, compared to the product form taking by the likelihood ratio
test, it is robust to outliers. Moreover, the proposed testing procedure does not
depend on the contamination proportion ε. The testing error of the proposed
procedure is characterized by the following theorem.

Theorem 2.1. Assume TV(P0, P1) > 2ε. Then we have

sup
P∈{(1−ε)P0+εQ:Q}

Pφ+ sup
P∈{(1−ε)P1+εQ:Q}

P (1− φ)

≤ 4 exp

(
−1

2
n (TV(P0, P1)− 2ε)

2

)
.

We emphasize that Theorem 2.1 says the exponent of the testing error is pro-
portional to n (TV(P0, P1)− 2ε)

2
. Although Scheffé estimate was first proposed

in [6] for density estimation problems, this important property on exponent of
the testing error was not explicitly explored and thus is new. Compared with
Le Cam and Birgé’s testing error (4), the exponent of ours is characterized by
the total variation distance instead of the Hellinger distance. As we will show
in Section 3, this exponent leads to minimax optimal estimation for Huber’s
ε-contamination model.

3. Construction of upper bounds

In this section, we present a general principle for the construction of a robust es-
timator given i.i.d. observations X1, ..., Xn ∼ (1−ε)Pθ+εQ with θ ∈ Θ for some
parameter space Θ. We assume that the parameter space Θ is totally bounded.
Define m = M(δ,Θ,TV(·, ·)) to be the smallest number such that there exists
{θ1, ..., θm} ⊂ Θ satisfying that for any θ ∈ Θ, there is a j ∈ [m] such that
TV(Pθj , Pθ) ≤ δ. We call {θ1, ..., θm} ⊂ Θ a δ-covering set and M(δ,Θ,TV(·, ·))
is the corresponding covering number. The estimator of θ is constructed by per-
forming robust testing (5) for each pair in the δ-covering set and then selecting
the most favorable one. To be specific, given i.i.d. observations, for any j �= k,
define the testing function

φjk = I

{∣∣∣∣∣ 1n
n∑

i=1

I{pθj (Xi) > pθk(Xi)} − Pθj (pθj (X) > pθk(X))

∣∣∣∣∣
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>

∣∣∣∣∣ 1n
n∑

i=1

I{pθj (Xi) > pθk(Xi)} − Pθk(pθj (X) > pθk(X))

∣∣∣∣∣
}
,

where pθ = dPθ

dμ is the density function for some common dominating measure
μ. When φjk = 1, θk is favored over θj . When φjk = 0, θj is favored over θk.

Finally, the robust estimator is defined as θ̂ = θĵ with

ĵ = arg min
j∈[m]

∑
k �=j

φjk. (7)

That is to say, the final estimator wins the maximum number of pair-wise com-
petitions. When (7) has multiple minimizers, ĵ is understood to be any one of
them. This estimator θĵ is also called Scheffé tournament winner in [6] within
the framework of density estimation. The detailed comparison will be discussed
in Remark 3.2 later. Since the testing procedure introduced in Section 2 is adap-
tive for the contamination proportion ε, the estimator (7) is also adaptive for ε.
The estimation error is upper bounded by the following theorem.

Theorem 3.1. Assume η > 8(ε + δ). For the estimator θ̂ defined above, we
have

sup
θ∈Θ,Q

P(ε,θ,Q)

{
TV(Pθ̂, Pθ) > η + δ

}
≤ 4M2(δ,Θ,TV(·, ·)) exp

(
−1

2
n(η/4− 2(ε+ δ))2

)
,

where the probability P(ε,θ,Q) is defined in (1).

The theorem immediately implies the convergence rate (3) when we let

η2 = C

[{
logM(δ,Θ,TV(·, ·))

n
+ δ2

}
∨ ε2
]

for some large constant C and then minimize the rate over δ. To show the rate
(3) implied by Theorem 3.1 is minimax optimal, we first review a general lower
bound result in [4].

Theorem 3.2 (Chen, Gao & Ren (2015) [4]). L(·, ·) is a loss function defined
on the parameter space Θ. Define

ω(ε,Θ) = sup {L(θ1, θ2) : TV(Pθ1 , Pθ2) ≤ ε/(1− ε); θ1, θ2 ∈ Θ} .

Suppose there is some R(0) such that

inf
θ̂

sup
θ∈Θ,Q

P(ε,θ,Q)

{
L(θ̂, θ) ≥ R(ε)

}
≥ c (8)

holds for ε = 0. Then, (8) holds for R(ε) � R(0) ∨ ω(ε,Θ).
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Theorem 3.2 provides a lower bound for general loss functions. The quantity
ω(ε,Θ) is called modulus of continuity defined by Donoho and Liu [8, 7]. For
total variation loss, ω(ε,Θ) � ε. Moreover, a general lower bound result by Yang
and Barron [24] implies the formula

R2(0) � min
δ>0

{
logM(δ,Θ,TV(·, ·))

n
+ δ2

}
,

under very mild conditions. Hence, (3) is also the minimax lower bound for the
problem.

Remark 3.1. Both Theorem 3.1 and Theorem 3.2 are stated in probability.
To obtain the same conclusion in expectation as defined by (2), observe that
the in-probability lower bound directly implies an in-expectation lower bound via
Markov inequality. The in-expectation upper bound can be calculated by integrat-
ing over the tail probability of Theorem 3.1.

For some parametric and high-dimensional models, the notion of global cov-
ering number may not provide a tight upper bound. We show an improvement of
Theorem 3.1 by using the notion of local covering number. Let Θ′ = {θ1, ..., θm}
be a δ-covering set for Θ. For any integer l, define

Dl(δ) = max
θ0∈Θ′

|{θ ∈ Θ′ : lδ < TV(Pθ, Pθ0) ≤ (l + 1)δ}| .

Theorem 3.3. Let L be any number such that L
4 δ− 2ε− 2δ > 0 and L/4 is an

integer. For the estimator θ̂ defined by (7), we have

sup
θ∈Θ,Q

P(ε,θ,Q)

{
TV(Pθ̂, Pθ) > (L+ 1)δ

}
≤ 2

∑
l≥L/4

Dl(δ) exp

(
−1

2
n (lδ − 2(ε+ δ))

2

)

+2

⎡
⎣L/4−1∑

l=0

Dl(δ)

⎤
⎦∑

l≥L

Dl(δ) exp

(
−1

2
n ((l − 3L/4)δ − 2(ε+ δ))

2

)
,

where the probability P(ε,θ,Q) is defined in (1).

Remark 3.2. A closely related estimator called minimum distance estimator
was first proposed by Yatracos in [25]. Later, built on Yatracos’ method, Devroye
and Lugosi in their book [6] further proposed a similar estimator called Scheffé
tournament winner as the one in (7) within the framework of density estimation.
While the theoretical decision framework under the Huber’s ε-contamination
model was not considered in either [25] or [6], it is worthwhile to point out
another subtle while essential difference between the results in those early works
and the current paper. Since the analysis of main results in [25] and [6] are
similar, we only focus on the analysis for the minimum distance estimator in
this paper. The minimum distance estimator θ̂Y = θĵ is defined as

ĵ = arg min
j∈[m]

sup
A∈A

∣∣Pn(A)− Pθj (A)
∣∣ ,
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where the Yatracos class A = {{pθi > pθj} : i �= j ∈ [m]} is the collection of
the sets A in (5) applied on each pair of distributions indexed by the δ-covering
set {θ1, . . . , θm}. This estimator, instead of being explicitly built on pair-wise
competitions, minimizes the distance to the empirical measure uniformly over
the Yatracos class A. Consequently, it is unlikely for θ̂Y to take advantage of
the more delicate local covering set in a layer-by-layer fashion as stated in The-
orem 3.3 for our analysis. In this sense, the optimality cannot be achieved for
several high-dimensional models. See Sections 4.2 and 4.3 for two such examples.

4. Applications

To illustrate the theorems in Section 3, here we present their applications on
three problems: density estimation with Hölder smoothness, sparse linear re-
gression and low-rank trace regression.

4.1. Density estimation

Consider i.i.d. observation X1, ..., Xn ∼ P(ε,f,Q) = (1− ε)Pf + εQ, where f = dP
dλ

is the density function of Pf supported on [0, 1] with respect to the Lebesgue
measure. We consider the Hölder class for the density function on [0, 1]. Let
{φlk}l≥0,0≤k≤2l−1 be an orthogonal wavelet basis on the interval [0, 1]. The
precise construction of the wavelet basis is referred to [5]. Define the following
density class:

Hden(β,M) (9)

=

⎧⎪⎪⎨
⎪⎪⎩f =

∑
l≥0,

0≤k≤2l−1

flkψlk : f ≥ 0,

∫ 1

0

f = 1, sup
l≥0,

0≤k≤2l−1

2l(1/2+β)|flk| ≤ M

⎫⎪⎪⎬
⎪⎪⎭ ,

where β > 0 is the smoothness index of the function class. The constant M > 0
is the radius of the class. By [24],

logM (δ,Hden(β,M),TV(·, ·)) � δ−1/β .

Therefore, using the estimator (7) with δ � n− β
2β+1 , Theorem 3.1 implies the

following convergence rate.

Corollary 4.1. For the Hölder class Hden(β,M), there are some constants
C,C ′, such that

‖f̂ − f‖21 ≤ C
(
n− 2β

2β+1 ∨ ε2
)
,

with P(ε,f,Q)-probability at least 1−exp
(
−C ′

(
n

1
2β+1 + nε2

))
uniformly over all

Q and f ∈ Hden(β,M).
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Given the equation TV(Pf1 , Pf2) = 1
2‖f1 − f2‖1, Corollary 4.1 states the

convergence result in the squared �1 distance. Combining with Theorem 3.2 and

the discussion thereafter, which implies n− 2β
2β+1 ∨ ε2 is also the minimax lower

bound, we conclude it is the minimax rate for this problem. When ε2 � n− 2β
2β+1 ,

the rate is dominated by n− 2β
2β+1 . This is the minimax rate for density estimation

when there is no contamination. When n− 2β
2β+1 � ε2, the rate is dominated by

ε2. Therefore, the maximum expected number of outliers that can be tolerated

without breaking down the usual minimax rate is nε � n
β+1
2β+1 .

4.2. Sparse linear regression

For the linear regression model, we consider a random design setting

yi = XT
i θ + zi,

where without contamination Xi ∼ N(0,Σ) and zi ∼ N(0, σ2) are independent.
Under the current setting, both the design and the response in the model can
be contaminated. That is, we have i.i.d. observations (X1, y1), ..., (Xn, yn) ∼
P(ε,θ,Q) = (1− ε)Pθ + εQ, where the Pθ denotes the probability distribution of

p(X, y) = p(X)p(y|X),

with p(X) = N(0,Σ) and p(y|X) = N(XT θ, σ2).
Given the covariance matrix Σ of X, we further impose the sparse eigenvalue

conditions as follows,

inf
|supp(v)|=2s

‖Σ1/2v‖/‖v‖ ≥ κ, (10)

sup
|supp(v)|=2s

‖Σ1/2v‖/‖v‖ ≤ κu. (11)

In addition, we assume κu � κ. In other words, the upper and lower sparse
eigenvalues are at the same order, which is satisfied, for example, if all eigenval-
ues of Σ are at the same order. Given noise level σ and sparse eigenvalue level
κ, we consider the following sparse set as the parameter space for θ:

Θ(s,M, σ, κ) = {θ ∈ R
p : |supp(θ)| ≤ s, ‖θ‖ ≤ Mσ/κ} ,

where s > 0 is the sparsity of the regression coefficients and M > 0 is assumed
to be a constant.

Remark 4.1. The total variation distance TV(Pθ, Pθ′) is upper bounded by
C‖Σ1/2(θ − θ′)‖/σ with some constant C > 0. Therefore, we impose an up-
per bound ‖θ‖ ≤ Mσ/κ for the parameter θ when defining parameter space
Θ(s,M, σ, κ) to guarantee that the parameter space is totally bounded under the
loss TV(·, ·). This is a natural condition and is assumed at the beginning of Sec-
tion 3. For this totally bounded parameter space Θ(s,M, σ, κ), the equivalence
of TV(Pθ, Pθ′) and ‖Σ1/2(θ − θ′)‖/σ can be further established. See Lemma 6.2
for details.
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For this set, we will show that

logDl(δ) � s log
ep

s
+ s log(l + 1).

Then, using the estimator (7) with δ �
√

s log ep
s

n , Theorem 3.3 implies the
following convergence rate.

Corollary 4.2. We assume s log ep
s ≤ cn with some sufficiently small c > 0.

Then, there are some constants C,C ′, such that

‖Σ1/2(θ̂ − θ)‖2 ≤ Cσ2

(
s log ep

s

n
∨ ε2
)

‖θ̂ − θ‖2 ≤ C
σ2

κ2

(
s log ep

s

n
∨ ε2
)
,

with P(ε,θ,Q)-probability at least 1 − exp
(
−C ′ (s log ep

s + nε2
))

uniformly over
θ ∈ Θ(s,M, σ, κ) and all Q.

We use Theorem 3.3 instead of Theorem 3.1 to derive Corollary 4.2, because
Theorem 3.1 uses global metric entropy and will cause an extra logarithmic
factor in the convergence rate. For the prediction error loss ‖Σ1/2(θ̂ − θ)‖2, the
rate does not depend on the covariance Σ of the design matrix. On the other
hand, the rate for the estimation error loss ‖θ̂ − θ‖2 depends on the sparse
eigenvalue κ of Σ.

When ε = 0, both rates in Corollary 4.2 are known to be minimax optimal.
Indeed, the lower bounds with explicit dependence on κ and σ can be found in
Theorem 1(b) and Theorem 3(b) of [19], by observing κu � κ. In particular, one
can easily check that the least favorable subset in the lower bound construction
(Proof of Theorem 1(b) in [19]) is contained in our parameter space Θ(s,M, σ, κ)
for any fixed M . We emphasize that although an empirical version of sparse
eigenvalue conditions of (10)-(11) is used in Assumption 3 of [19], it is well
known that (see, for example, [22]) under the assumption s log ep

s ≤ cn with
some sufficiently small c > 0 and κu � κ, our population sparse eigenvalue
conditions (10)-(11) imply the empirical version with values at the same order
of κ and κu with probability at least 1 − exp(−Cn). For ε > 0, due to the
equivalence of total variation distance TV(Pθ, Pθ′) and ‖Σ1/2(θ− θ′)‖/σ as well
as κu � κ, the modulus of continuity for the prediction error loss scales as
ω(ε,Θ) � σε, while for the estimation error loss, it scales as ω(ε,Θ) � σε/κ.
Hence, by Theorem 3.2, both rates in Corollary 4.2 are minimax optimal.

4.3. Low-rank trace regression

Consider the observation pair (Xi, yi) satisfying the model

yi = Tr(XT
i A) + zi,
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where Xi ∈ R
p1×p2 is an observed design matrix and A ∈ R

p1×p2 is an un-
known low-rank signal matrix. The problem of recovering a high-dimensional
low-rank matrix has been considered in [20, 3, 21, 13]. However, these results
all assume the data are generated without contamination. In many practical
situations, both the design and the response can be contaminated. For some
covariance matrix Σ ∈ R

p1p2×p1p2 and some number σ > 0, we assume i.i.d. ob-
servations (X1, y1), ..., (Xn, yn) ∼ P(ε,A,Q) = (1− ε)PA + εQ, where PA denotes
the probability distribution

p(X, y) = P (X)P (y|X),

with p(X) referring to vec(X) ∼ N(0,Σ) and p(y|X) = N(Tr(XTA), σ2).
Given the covariance matrix Σ of vec(X), we further impose the restricted

isometry condition as follows,

κ ≤ inf
rank(A)≤2r

‖Σ1/2vec(A)‖
‖A‖F

≤ sup
rank(A)≤2r

‖Σ1/2vec(A)‖
‖A‖F

≤ κu, (12)

In addition, we assume κu � κ. A special case would be that all eigenvalues of
Σ are at the same order. Given noise level σ and κ from the restricted isometry
condition, we assume the coefficient matrix A is in a low-rank matrix class
defined as

A(r,M, σ, κ) =
{
A ∈ R

p1×p2 : rank (A) ≤ r, ‖A‖F ≤ Mσ/κ
}
.

The number r > 0 upper bounds the rank. We assume M is a constant through-
out this section.

Remark 4.2. The total variation distance TV(PA, PA′) is upper bounded by
C‖Σ1/2(vec(A)− vec(A′))‖/σ with some constant C > 0. Consequently, we im-
pose an upper bound ‖A‖F ≤ Mσ/κ in parameter space A(r,M, σ, κ) to guaran-
tee the parameter space is totally bounded under the loss TV(PA, PA′). Similar
to the setting of sparse linear regression, the equivalence of TV(PA, PA′) and
‖Σ1/2(vec(A) − vec(A′))‖/σ can be further established for A(r,M, σ, κ) in the
low-rank trace regression setting. See Lemma 6.2 for details.

For this low-rank matrix class, we will show that

logDl(δ) � r(p1 + p2) log(l + 1).

Then, for the estimator (7) with δ �
√

r(p1+p2)
n , Theorem 3.3 implies the fol-

lowing convergence rate.

Corollary 4.3. Assume r(p1 + p2) ≤ cn with some sufficiently small c > 0.
Then, there are constants C,C ′, such that

‖Â−A‖2F ≤ C
σ2

κ2

(
r(p1 + p2)

n
∨ ε2
)
,

with P(ε,A,Q)-probability at least 1−exp
(
−C ′ (r(p1 + p2) + nε2

))
uniformly over

A ∈ A(r,M, σ, κ) and all Q.
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The rate consists of two parts. The first part is the usual low-rank matrix

estimation rate σ2r(p1+p2)
κ2n , which is known to be minimax optimal with explicit

dependence on both σ and κ when ε = 0. See, for example, Theorem 5 of [13].
To interpret this lower bound in [13], we emphasize that a similar restricted
isometry condition as in (12) is imposed in Assumption 2 of [13] with μ � κ−1

and ‖A‖L2(Π) � ‖Σ1/2vec(A)‖ in our setting respectively. In addition, it is easy
to calculate that the least favorable subset B(C) in the construction of lower
bound in [13] is indeed contained in our parameter space with any fixed M , due
to the condition that r(p1 + p2) ≤ cn with some sufficiently small c > 0. The

second part is σ2ε2

κ2 , which is contributed by the modulus of continuity ω2(ε,A)
for this problem, noting that κu � κ in (12) and the equivalence of TV(PA, PA′)
and ‖Σ1/2(vec(A)−vec(A′))‖/σ in Remark 4.2. Therefore, by Theorem 3.2, the
upper bound in Corollary 4.3 is minimax optimal.

5. Discussion with an example under supreme norm

This paper gives a general framework to construct robust estimators under
Huber’s ε-contamination model. The key idea of the construction lies in the
robust testing procedure Scheffé estimate. We emphasize that this robust testing
procedure enjoys a desired error exponent that depends on the total variation
distance, which is intrinsic to Huber’s robust setting. This new result is stated
precisely in Theorem 2.1. Consequently, the rate-optimal estimators that we
present in Section 4 all depend on the general theorems in Section 3 under
loss functions that are equivalent to the total variation distance. However, it is
unknown whether the theory can be extended to some important loss functions
that are not equivalent to the total variation distance. In this section, we give
an example for a supreme norm loss function in the context of a nonparametric
white noise model. We show that the minimax rate of the problem depends
on the contamination proportion in a different way. The general treatment for
non-intrinsic loss functions will be considered as future projects.

The white noise model [17] is considered to be a standard nonparametric
model for function estimation [2, 16]. By observing the stochastic process

dYt = f(t)dt+
1√
n
dWt, t ∈ [0, 1], (13)

with a standard Wiener process {Wt}t∈[0,1], the goal is to estimate the function
f . Equivalently, (13) can be written as an i.i.d. model. That is, we observe i.i.d.
stochastic processes {Yt,1}t∈[0,1], ..., {Yt,n}t∈[0,1] ∼ Pf , where Pf denotes the
probability distribution

dYt,i = f(t)dt+ dWt,i, (14)

Under Huber’s framework, there is an ε probability of contamination, and we
observe i.i.d. stochastic processes {Yt,1}t∈[0,1], ..., {Yt,n}t∈[0,1] ∼ P(ε,f,Q) = (1 −
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ε)Pf + εQ. We use a slightly modified version of Hölder class defined in (9):

H(β,M) =

⎧⎨
⎩f =

∑
l≥0,0≤k≤2l−1

flkψlk : sup
l≥0,0≤k≤2l−1

2l(1/2+β)|flk| ≤ M

⎫⎬
⎭ ,

where {φlk}l≥0,0≤k≤2l−1 is an orthogonal wavelet basis on the interval [0, 1], see
[5] for the detailed construction.

We are going to construct an estimator that achieves the optimal rate un-
der the supreme loss ‖f̂ − f‖∞. Let L be the largest integer such that 2L ≤(

logn
n ∨ ε2

)− 1
2β+1

. The estimator is f̂ =
∑

0≤l≤L,0≤k≤2l−1 f̂lkψlk for

f̂lk = Median
(
{ylk,i}ni=1

)
,

where ylk,i =
∫ 1

0
ψlk(t)dYt,i are empirical wavelet coefficients.

Theorem 5.1. Assume ε < 1/4. For the Hölder class H(β,M), there are con-
stants C,C ′, such that

‖f̂ − f‖2∞ ≤ C

[(
n

logn

)− 2β
2β+1

∨ ε
4β

2β+1

]
,

with P(ε,f,Q)-probability at least 1− exp
(
−C ′ (logn+ nε2

))
uniformly over f ∈

H(β,M) and all Q.

This theorem characterizes the upper bound of this problem. By applying
Theorem 3.2, we show it is also the minimax lower bound.

Corollary 5.1. There are some constants C, c > 0 such that

inf
f̂

sup
f∈H(β,M),Q

P(ε,f,Q)

{
‖f̂ − f‖2∞ > C

[(
n

log n

)− 2β
2β+1

∨ ε
4β

2β+1

]}
> c.

Combining Theorem 5.1 and Corollary 5.1, we conclude that
(

n
logn

)− 2β
2β+1 ∨

ε
4β

2β+1 is the minimax rate for estimating a nonparametric drift function f under
the supreme loss in Huber’s framework. Compared with Corollary 4.1, the de-

pendence on the contamination proportion is through ε
4β

2β+1 instead of the usual

ε2 for the total variation loss. This is because for the supreme loss, ε
2β

2β+1 is the
modulus of continuity defined in Theorem 3.2. When ε = 0, the rate reduces to
the usual nonparametric rate for supreme loss [23].

Remark 5.1. Note that the estimator f̂ does not use the general construction in
Section 3. As a consequence, it requires the knowledge of the contamination pro-
portion ε. However, it reveals a minimax rate with an interesting dependence on
ε, which is different from the rates of the estimators in Section 3 and Section 4.
It is of great interest to us how to construct an estimator that is adaptive to ε for
the supreme loss. A more general open question is to seek ways of construction
of estimators for other non-intrinsic loss functions.
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6. Proofs

This section collects the proofs of all technical results in the paper. The proofs
of the results in Section 2 and Section 3 are given in Section 6.1. The proofs of
the results in Section 4 and Section 5 are given in Section 6.2 and Section 6.3,
respectively.

6.1. Proofs in Section 2 and Section 3

Before stating the proofs of the main theorems, we need the following lemma to
upper bound the testing error with respect to distributions in a total variation
neighborhood.

Lemma 6.1. Consider the testing function φ in the form of (5). Assume
TV(P0, P1) > 2ξ, and then

sup
{P :TV(P,P0)≤ξ}

Pφ ≤ 2 exp

(
−1

2
n (TV(P0, P1)− 2ξ)

2

)
,

sup
{P :TV(P,P1)≤ξ}

P (1− φ) ≤ 2 exp

(
−1

2
n (TV(P0, P1)− 2ξ)

2

)
.

Proof. Since the proofs of the two inequalities are the same, we only give details
for the first one. For any P such that TV(P, P0) ≤ ξ, we have

Pφ = P {|Pn(A)− P0(A)| > |Pn(A)− P1(A)|}
≤ P {|Pn(A)− P0(A)| > |P0(A)− P1(A)| − |Pn(A)− P0(A)|} (15)

= P {2|Pn(A)− P0(A)| > TV(P0, P1)} (16)

≤ P {2|Pn(A)− P (A)| > TV(P0, P1)− 2ξ} (17)

≤ 2 exp

(
−1

2
n (TV(P0, P1)− 2ξ)

2

)
. (18)

The inequality (15) is due to triangle inequality. By rearrangement and the
definition of total variation distance, we get (16). Then, (17) is obtained through
triangle inequality and the fact that |P (A) − P0(A)| ≤ TV(P, P0) ≤ ξ. Finally,
(18) is by Hoeffding’s inequality. Taking supreme over the set {P : TV(P, P0) ≤
ξ}, the proof is complete.

Now we are ready to give the proofs of the main theorems.

Proof of Theorem 2.1. Note that

{(1− ε)P0 + εQ : Q} ⊂ {P : TV(P, P0) ≤ ε},

and
{(1− ε)P1 + εQ : Q} ⊂ {P : TV(P, P1) ≤ ε}.

Thus, the proof is complete.
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Proof of Theorem 3.1. Let us use the notation φj =
∑

k �=j φjk and Θj = {θ ∈
Θ : TV(Pθ, Pθj ) ≤ δ}. For some c ∈ (0, 1), let Nj = {k �= j : TV(Pθk , Pθj ) ≤ cη}.
Then, for P = (1− ε)Pθ + εQ with any θ ∈ Θj and any Q, we have

P
{
TV(Pθ̂, Pθ) > η + δ

}
≤ P

{
TV(Pθĵ

, Pθj ) > η
}

(19)

≤ P

{
φj ≥ min

{k:TV(Pθk
,Pθj

)>η}
φk

}
(20)

≤ P {φj > |Nj |}+ P

{
min

{k:TV(Pθk
,Pθj

)>η}
φk < |Nj |+ 1

}
(21)

≤ P {φjk = 1 for some k /∈ Nj}
+

∑
{k:TV(Pθk

,Pθj
)>η}

P {φkl = 0 for some l ∈ Nj ∪ {j}}

≤
∑
k/∈Nj

Pφjk +
∑

{k:TV(Pθk
,Pθj

)>η}

∑
l∈Nj∪{j}

P (1− φkl) (22)

≤ 2M(δ,Θ,TV(·, ·)) exp
(
−1

2
n (cη − 2(ε+ δ))

2

)
(23)

+2M2(δ,Θ,TV(·, ·)) exp
(
−1

2
n ((1− c)η − 2(ε+ δ + cη))

2

)
.

The inequality (19) is by θ ∈ Θj . Suppose φj < min{k:TV(Pθk
,Pθj

)>η} φk, we

must have TV(Pθĵ
, Pθj ) ≤ η by the definition of ĵ in (7). Therefore,

{
TV(Pθĵ

, Pθj ) > η
}
⊂
{
φj ≥ min

{k:TV(Pθk
,Pθj

)>η}
φk

}
,

which implies (20). The inequality (21) uses the fact that {x ≥ y} ⊂ {x >
z} ∪ {y < z + 1}. Finally, (23) is obtained by applying Lemma 6.1 with the
relations

{(1− ε)Pθ + εQ : θ ∈ Θj , Q} ⊂ {P : TV(P, Pθj ) ≤ ε+ δ},

and

{(1− ε)Pθ + εQ : θ ∈ Θj , Q} ⊂ {P : TV(P, Pθl) ≤ ε+ δ + cη}.

The proof is complete by choosing c = 1
4 .

Proof of Theorem 3.3. Let us use the notation φj =
∑

k �=j φjk and Θj = {θ ∈
Θ : TV(Pθ, Pθj ) ≤ δ}. For some c ∈ (0, 1), let Nj = {k �= j : TV(Pθk , Pθj ) ≤
Lδ/4}. Then, for P = (1− ε)Pθ + εQ with any θ ∈ Θj and any Q, we have

P
{
TV(Pθ̂, Pθ) > (L+ 1)δ

}
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≤
∑

{k:TV(Pθk
,Pθj

)>Lδ
4 }

Pφjk +
∑

{k:TV(Pθk
,Pθj

)>Lδ}

∑
{t:TV(Pθt ,Pθj

)≤Lδ
4 }

P (1− φkt).

This is by the same argument for deriving (22) in the proof of Theorem 3.1.
Then, we have ∑

{k:TV(Pθk
,Pθj

)>Lδ/4}
Pφjk

≤
∑

l≥L/4

∑
{k:lδ<TV(Pθk

,Pθj
)≤(l+1)δ}

Pφjk

≤ 2
∑

l≥L/4

Dl(δ) exp

(
−1

2
n(lδ − 2(ε+ δ)2)

)
,

where the last inequality is by

|{k : lδ < TV(Pθk , Pθj ) ≤ (l + 1)δ}| ≤ Dl(δ), (24)

and Lemma 6.1 with the relation

{(1− ε)Pθ + εQ : θ ∈ Θj , Q} ⊂ {P : TV(P, Pθj ) ≤ ε+ δ}.

We also have ∑
{k:TV(Pθk

,Pθj
)>Lδ}

∑
{t:TV(Pθt ,Pθj

)≤Lδ/4}
P (1− φkt)

≤
∑
l≥L

∑
{k:lδ<TV(Pθk

,Pθj
)≤(l+1)δ}

∑
{t:TV(Pθt ,Pθj

)≤Lδ/4}
P (1− φkt)

≤ 2

⎡
⎣L/4−1∑

l=0

Dl(δ)

⎤
⎦∑

l≥L

Dl(δ) exp

(
−1

2
n (lδ − Lδ/4− 2(ε+ δ + Lδ/4))

2

)
,

where the last inequality follows from (24),

∣∣{t �= j : TV(Pθt , Pθj ) ≤ Lδ/4}
∣∣ ≤ L/4−1∑

l=0

Dl(δ),

and Lemma 6.1 with the relations

{(1− ε)Pθ + εQ : θ ∈ Θj , Q)} ⊂ {P : TV(P, Pθt) ≤ ε+ δ + Lδ/4}

for any θt such that TV(Pθt , Pθj ) ≤ Lδ/4. Combining the bounds above, the
proof is complete.

6.2. Proofs in Section 4

First, we give a lemma that establishes the equivalence between total variation
distance and �2 norm for linear regression and trace regression.
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Lemma 6.2. Assume the upper sparse eigenvalue condition in (11) holds. For
Pθ specified in Section 4.2, there are constants C1, C2, such that

C1
‖Σ1/2(θ − θ′)‖

σ
≤ TV(Pθ, Pθ′) ≤ C2

‖Σ1/2(θ − θ′)‖
σ

,

for any θ, θ′ ∈ Θ(s,M, σ, κ). Similarly, assume the restricted isometry condition
in (12) holds. For PA specified in Section 4.3, there are constants C1, C2, such
that

C1
‖Σ1/2(vec(A)− vec(A′))‖

σ
≤ TV(PA, PA′) ≤ C2

‖Σ1/2(vec(A)− vec(A′))‖
σ

,

for any A,A′ ∈ A(r,M, σ, κ).

Proof. Since the proofs of the two inequalities are nearly identical, we only give
details for the first one. The density function of Pθ is

(2π)−p/2|Σ|−1/2e−
1
2X

TΣ−1X × 1√
2πσ2

e−
1

2σ2 (y−XT θ)2 ,

where |Σ| is the determinant of Σ. Therefore, by the definition of total variation
distance, we have

TV(Pθ, Pθ′)

= Pθ

{
(y −XT θ)2 < (y −XT θ′)2

}
− Pθ′

{
(y −XT θ)2 < (y −XT θ′)2

}
.

Note that

Pθ

{
(y −XT θ)2 < (y −XT θ′)2

}
= Pθ

{
(y −XT θ)

σ

(XT (θ − θ′))

|(XT (θ − θ′))| > −|XT (θ − θ′)|
2σ

}

= EΦ

(
|XT (θ − θ′)|

2σ

)
,

where Φ is the cumulative distribution function ofN(0, 1) and the last equality is

because (y−XT θ)
σ

(XT (θ−θ′))
|(XT (θ−θ′))| is distributed by N(0, 1) conditioning on X. Hence,

TV(Pθ, Pθ′) = 2EΦ

(
|XT (θ − θ′)|

2σ

)
− 1 = E

∫ |XT (θ−θ′)|
2σ

− |XT (θ−θ′)|
2σ

1√
2π

e−
t2

2 dt. (25)

An upper bound for (25) is

1√
2π

E
|XT (θ − θ′)|

σ
=

‖Σ1/2(θ − θ′)‖
σ
√
2π

E|Z|,

for Z ∼ N(0, 1). A lower bound for (25) is

E
1√
2π

e−
|XT (θ−θ′)|2

8σ2
|XT (θ − θ′)|

σ
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=
‖Σ1/2(θ − θ′)‖

σ
√
2π

Ee−
‖Σ1/2(θ−θ′)‖2

8σ2 |Z|2 |Z|

≥ ‖Σ1/2(θ − θ′)‖
σ
√
2π

Ee−C2M2|Z|2/2|Z|,

where Z ∼ N(0, 1) and the last inequality follows from the upper sparse eigen-
value condition in (11) and the fact ‖θ‖ ≤ Mσ/κ. Hence, we have proved that

C1
‖Σ1/2(θ − θ′)‖

σ
≤ TV(Pθ, Pθ′) ≤ C2

‖Σ1/2(θ − θ′)‖
σ

,

with C1 = 1√
2π

Ee−C2M2|Z|2/2|Z| and C2 = 1√
2π

E|Z|.

With the help of the above lemma, we are ready to give the proofs of the
results in Section 4.

Proof of Corollary 4.1. The result directly follows Theorem 3.1 by realizing that
TV(Pf1 , Pf2) =

1
2‖f1 − f2‖1.

Proof of Corollary 4.2. We use the estimator (7) with δ =

√
s log ep

s

n . Here we

work with a δ-packing set Θ′ = {θ1, ..., θm} of maximum cardinality in the
sense that mini �=j TV(Pθi , Pθj ) ≥ δ with the largest possible m. The value m =
N (δ,Θ,TV(·, ·)) is called δ-packing number. It is easy to see that Θ′ is also a δ-
covering set andm is equal to δ-covering number up to a constant factor. Indeed,
δ-covering and δ-packing numbers are (up to a constant factor) essentially the
same, i.e., M(δ,Θ,TV(·, ·)) ≤ N (δ,Θ,TV(·, ·)) ≤ M(δ/2,Θ,TV(·, ·)). See, for
example, [18]. According to Lemma 6.2, we have that mini �=j ‖Σ1/2(θi − θj)‖ ≥
σδ/(C2). Hence, for any θ0, we have

|{θ ∈ Θ′ : lδ < TV(Pθ, Pθ0) ≤ (l + 1)δ}|
≤ |{θ ∈ Θ′ : TV(Pθ, Pθ0) ≤ (l + 1)δ}|
≤

∑
|S|≤s

|{θ ∈ Θ′ : supp(θ) = S,TV(Pθ, Pθ0) ≤ (l + 1)δ}|

≤
∑
|S|≤s

∣∣∣{θ ∈ Θ′ : supp(θ) = S, ‖Σ1/2(θ − θ0)‖ ≤ σ(l + 1)δ/C1}
∣∣∣

≤ exp
(
s log

ep

s

)
(l + 1)C3s,

where the last inequality is through a volume ratio argument [18]. Taking
supreme over θ0, we have

logDl(δ) ≤ C4

(
s log

ep

s
+ s log(l + 1)

)
.

Using Theorem 3.3 with L =
⌊
C5

δ+ε
δ

⌋
for some large C5 > 0, direct calculation

gives that
TV(Pθ̂, Pθ) ≤ C6(δ + ε),
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for some C6 > 0, with probability at least 1 − exp
(
−C ′n(δ2 + ε2)

)
, where δ =√

s log ep
s

n . By Lemma 6.2 and the definition of κ, we obtain the convergence rate
with the desired loss functions. Thus, the proof is complete.

Proof of Corollary 4.3. We use the estimator (7) with δ =
√

r(p1+p2)
n . Similar

to the argument in the proof of Corollary 4.2, we work with a δ-packing set A′ =
{A1, ..., Am} of maximum cardinality in the sense that mini �=j TV(PAi , PAj ) ≥
δ with the largest possible m. It is easy to see A′ is also a δ-covering set.
According to Lemma 6.2, we have that mini �=j ‖Σ1/2(vec(Ai)− vec(Aj))‖ ≥
σδ/(C2) and consequently mini �=j ‖Ai − Aj‖F ≥ C3σδ/κ from the restricted
isometry condition in (12). Hence, we have

|{A ∈ A′ : lδ < TV(PA, PA0) ≤ (l + 1)δ}|
≤ |{A ∈ A′ : TV(PA, PA0) ≤ (l + 1)δ}|
≤

∣∣∣{A ∈ A′ : ‖Σ1/2(vec(A)− vec(A0))‖ ≤ σ(l + 1)δ/C1}
∣∣∣

≤ |{A ∈ A′ : ‖A−A0‖F ≤ C4σ(l + 1)δ/κ}|
≤ (l + 1)C5r(p1+p2),

where the second inequality follows from Lemma 6.2, the third inequality follows
from the restricted isometry condition in (12), and the last inequality is due to
Lemma 3.1 of [3] and the fact mini �=j ‖Ai − Aj‖F ≥ C3σδ/κ. Taking supreme
over θ0, we have

logDl(δ) ≤ C5r(p1 + p2) log(l + 1).

Using Theorem 3.3 with L =
⌊
C6

δ+ε
δ

⌋
for some large C6 > 0, direct calculation

gives that
TV(PÂ, PA) ≤ C7(δ + ε),

for some C7 > 0, with probability at least 1 − exp
(
−C ′n(δ2 + ε2)

)
, where δ =√

r(p1+p2)
n . By Lemma 6.2 and the definition of κ, we obtain the convergence

rate with the desired loss function. Thus, the proof is complete.

6.3. Proofs in Section 5

Before stating the proofs of Theorem 5.1 and Corollary 5.1, we present a lemma
that establishes equivalence between different loss functions.

Lemma 6.3. For Pf specified in Section 5, there are constants C1, C2, C3, C4,
such that

C−1
2 ‖f1 − f2‖∞ ≤

∑
l≥0

2l/2 max
0≤k≤2l−1

|f1,lk − f2,lk| ≤ C−1
1 ‖f1 − f2‖∞,

C3‖f1 − f2‖ ≤ TV(Pf1 , Pf2) ≤ C4‖f1 − f2‖,
for all f1, f2 ∈ H(β, L), where {f1,lk} and f2,lk are wavelet coefficients of f1
and f2, and ‖·‖ is understood as both vector and function �2 norm.
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Proof. It is well known that two term
∑

l≥0 2
l/2 max0≤k≤2l−1 |f1,lk − f2,lk| and

‖f1 − f2‖∞ are equivalent in the wavelet literature. See, for example, [9]. The
equivalence implies that H(β, L) is a subset of an �2 ball. Indeed, for any f ∈
H(β, L), we have that ‖f‖ ≤ ‖f‖∞, which implies

‖f‖ ≤ C2

∑
l≥0

2l/2 max
0≤k≤2l−1

|flk| ≤ C2

∑
l≥0

2l/2M2−l(1/2+β) ≤ 1

1− 2−β
C2M.

(26)
To study TV(Pf1 , Pf2), we use an equivalent model of (14) in terms of wavelet
coefficients. That is,

ylk = flk + zlk, l ≥ 0, 0 ≤ k ≤ 2l − 1, (27)

where {zlk} are i.i.d. N(0, 1). Then, direct calculation gives

TV(Pf1 , Pf2) = 2Φ

(
‖f1 − f2‖

2

)
− 1 =

∫ ‖f1−f2‖
2

− ‖f1−f2‖
2

1√
2π

e−
t2

2 dt. (28)

An upper bound for (28) is 1√
2π

‖f1 − f2‖. A lower bound for (28) is

1√
2π

e−
‖f1−f2‖2

8 ‖f1 − f2‖ ≥ 1√
2π

e
− C2

2M2

2(1−2−β)2 ‖f1 − f2‖,

where we have used (26). Thus, the proof is complete.

The next lemma characterizes the statistical property of a median estimator
under Huber’s ε-contamination model.

Lemma 6.4. Assume ε < 1/4. There exists a constant C > 0, such that for
each 0 ≤ l ≤ L and 0 ≤ k ≤ 2l − 1, we have

sup
f∈H(β,M),Q

P(ε,f,Q)

{
|f̂lk − flk| > C

(√
log(1/δ)

n
∨ ε

)}
≤ 2δ,

for any δ > 0 that
√

log(1/δ)
n is sufficiently small.

Proof. Since ylk,i ∼ N(flk, 1), the setting is a special case of Theorem 2.1 in [4].
A careful examination of its proof gives the desired result.

Now we give the proofs of 5.1 and Corollary 5.1 with the facility of the above
two lemmas.

Proof of Theorem 5.1. Note that∑
l≥0

2l/2 max
0≤k≤2l−1

|f̂lk−flk| =
∑
l≤L

2l/2 max
0≤k≤2l−1

|f̂lk−flk|+
∑
l>L

2l/2 max
0≤k≤2l−1

|flk|.
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It is sufficient to give upper bounds for the two terms. Since f ∈ H(β,M),

∑
l>L

2l/2 max
0≤k≤2l−1

|flk| ≤
∑
l>L

2l/2M2−l(1/2+β) ≤ 2M

1− 2−β

(
log n

n
∨ ε2
) β

2β+1

,

by the definition of L. Using Lemma 6.4 with 2δ = exp
(
−C ′(logn+ nε2)

)
for

some constant C ′ > 0 and a union bound argument, we have

max
l≥L,0≤k≤2l−1

|f̂lk − flk| ≤ C̄

(√
logn

n
∨ ε

)
,

with probability at least 1− exp
(
−C ′(logn+ nε2)

)
. Therefore,

∑
l≤L

2l/2 max
0≤k≤2l−1

|f̂lk − flk| ≤ C̄

(√
logn

n
∨ ε

)∑
l≤L

2l/2 ≤ C̃

(
logn

n
∨ ε2
) β

2β+1

.

Hence, ∑
l≥0

2l/2 max
0≤k≤2l−1

|f̂lk − flk| ≤ C

(
logn

n
∨ ε2
) β

2β+1

,

with probability at least 1 − exp
(
−C ′(logn+ nε2)

)
. By Lemma 6.3, the same

bound holds for ‖f̂ − f‖∞, and the proof is complete.

Proof of Corollary 5.1. The lower bound R(0)∨ω(ε,H(β,M)) immediately fol-

lows from Theorem 3.2. In this problem, it is known that R(0) �
(

n
logn

)− 2β
2β+1

.

See, for example, [23]. Therefore, it is sufficient to calculate the modulus of conti-
nuity ω(ε,H(β, L)). Define l̄ to be the greatest integer such that 2l̄(1/2+β)ε ≤ M .
Then, let f1 = 0 and f2 = f1 + εψl̄1. It is easy to see that f1, f2 ∈ H(β,M).
By Lemma 6.3, TV(Pf1 , Pf2) ≤ C4‖f1 − f2‖ = (2π)−1/2ε ≤ ε/(1 − ε), where
C4 = (2π)−1/2 according to the proof of Lemma 6.3. Moreover, we have that

‖f1 − f2‖∞ ≥ C1

∑
l≥0

2l/2 max
0≤k≤2l−1

|f1,lk − f2,lk| ≥ C12
l̄/2ε � ε

2β
2β+1 .

Hence, ω(ε,H(β,M)) � ε
2β

2β+1 , and the proof is complete.
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