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Abstract: The Lasso is a popular regularization method that can simul-
taneously do estimation and model selection. It contains a regularization
parameter, and several information criteria have been proposed for selecting
its proper value. While any of them would assure consistency in model selec-
tion, we have no appropriate rule to choose between the criteria. Meanwhile,
a finite correction to the AIC has been provided in a Gaussian regression
setting. The finite correction is theoretically assured from the viewpoint
not of the consistency but of minimizing the prediction error and does not
have the above-mentioned difficulty. Our aim is to derive such a criterion
for the Lasso in generalized linear models. Towards this aim, we derive a
criterion from the original definition of the AIC, that is, an asymptotically
unbiased estimator of the Kullback-Leibler divergence. This becomes the
finite correction in the Gaussian regression setting, and so our criterion can
be regarded as its generalization. Our criterion can be easily obtained and
requires fewer computational tasks than does cross-validation, but simula-
tion studies and real data analyses indicate that its performance is almost
the same as or superior to that of cross-validation. Moreover, our criterion
is extended for a class of other regularization methods.
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1. Introduction

The Lasso (Tibshirani 1996) is a regularization method that imposes an �1
penalty term λ||β||1 on an estimating function with respect to an unknown
parameter vector β = (β1, . . . , βp)

T, where λ (> 0) is the regularization pa-

rameter. If β̂λ = (β̂λ,1, . . . , β̂λ,p)
T is the estimator of β by the Lasso, several

of its components will be shrunk to exactly 0 when λ is not close to 0, which
means that the Lasso can simultaneously do estimation and model selection. In
addition, the Lasso is computationally feasible in general, and so it is one of
key methods in current and future research directions in the area of statistics
and machine learning. On the other hand, as mentioned in Meinshausen and
Bühlmann (2010), a remaining challenge is to select the proper value for the
regularization parameter λ. The estimated parameters continuously shrink to-
ward 0 as λ increases, and so the selection of λ is important for the selection of
an appropriate model.

One of the simplest methods for selecting λ is to use cross-validation (CV;
Stone 1974). On the other hand, Meinshausen and Bühlmann (2010) proposed
a stability selection method based on subsampling in order to avoid problems
caused by selecting a model based on only one value of λ. Their method of
stability selection avoids the problem they discussed, and it is a new and at-
tractive model selection scheme; however, it requires a considerable number of
computational tasks, comparable to the number required for CV.

As analytical methods for selecting λ, in general, there are two approaches.
The first obtains a class of λ that has desirable properties for model selection or
estimation accuracy, under some regularity conditions. For example, Zhao and
Yu (2006) and Meinshausen and Yu (2009) obtained the expression λ = λn,
which depends on at least data size, n; this requires that the model selection
be consistent. In addition, for example, Bunea, Tsybakov and Wegkamp (2007),
van de Geer (2008), Wainwright (2009), Sun and Zhang (2012), and Chételat,
Lederer and Salmon (2014) obtained a more rigorous evaluation that is essen-
tially of the form P(estimation error ≤ δλ) ≥ 1 − ελ for a class of λ, where
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δλ and ελ are constants depending on at least λ. The second approach uses an
information criterion that takes the form of −2l(β̂λ) + ηλ, where l(·) is the log-
likelihood function and ηλ is a penalty term that depends on at least λ; they
showed that the model selection based on the λ that minimizes the informa-
tion criterion is consistent (e.g., Yuan and Lin 2007; Wang, Li and Leng 2009;
Zhang, Li and Tsai 2010; Fan and Tang 2013). Both approaches to selecting λ
include the results for the case in which the dimension of the parameter vector
p goes to infinity, and these are valuable because the Lasso with this value of λ
has been shown to have desirable properties. However, the choice of λ remains
somewhat arbitrary. When λn and ηλ, as defined above, satisfy the consistency
requirement, c × λn and c × ηλ also satisfy it for a fixed coefficient c. For the
rigorous evaluation in the first approach, no value of λ minimizes both δλ and
ελ, and so we have no appropriate rule for choosing the optimal value of λ. It
will be a severe problem because this arbitrariness for the choice of λ leads to
the arbitrariness of model selection.

In a Gaussian linear regression setting, an appropriate selection of λ theoret-
ically assured from the viewpoint of classic statistics can be achieved through
an information criterion obtained by Efron et al. (2004) and Zou, Hastie and
Tibshirani (2007). They derived an unbiased estimator of the true prediction
error as a CP-type criterion, through an elegant use of Stein’s unbiased esti-
mation theory (Stein 1981). In other words, we can say that they derived a
finite correction to Akaike’s information criterion (AIC; Akaike 1973) (Sugiura
1978; Hurvich and Tsai 1989) for the Lasso in Gaussian settings with known
variance, because in these settings the true prediction error becomes essentially
the same as the Kullback-Leibler divergence (Kullback and Leibler 1951). The

corrected AIC can be expressed as −2l(β̂λ) + 2|{j : β̂λ,j �= 0}|, and so it is easy
to use for model selection. Our aim in this paper is to derive such an informa-
tion criterion for the Lasso in more general settings that is assured theoretically
and can be computed without heavy computational tasks. Towards this aim,
we obtain an asymptotically unbiased estimator of the Kullback-Leibler diver-
gence, that is, we obtain the AIC for the Lasso, based on its original definition
under the framework of generalized linear models (see McCullagh and Nelder
1983).

The remainder of this paper is organized as follows. After introducing in
Section 2 generalized linear models and the assumptions for our asymptotic
theory, some limiting distributions for the Lasso estimator are given in Section
3. The purpose of our asymptotic theory is to approximate some statistics for
the given finite samples, and the limiting distributions obtained based on the
asymptotic theory are different from those in Knight and Fu (2000). In Section 4,
we use the limiting distributions to achieve our main goal which is the derivation
of the AIC for the Lasso, and in Sections 5 and 6, its validity is demonstrated for
several models thorough the performance of simulations and real data analyses.
In Section 7, the AIC for the Lasso is extended for several cases including the
cases of using other penalty terms, and a discussion is provided in Section 8.
The program code used in Sections 5 and 6 is available from https://sites.

google.com/site/shuichikawanoen/research/aic.r.

https://sites.google.com/site/shuichikawanoen/research/aic.r
https://sites.google.com/site/shuichikawanoen/research/aic.r
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2. Setting and assumptions

Let us consider a natural exponential family with a natural parameter θ (∈ Θ ⊂
R

r) for an r-dimensional random variable y, whose density is

f(y;θ) = exp{yTθ − a(θ) + b(y)}

with respect to a σ-finite measure μ. We assume that θ in Θ satisfies 0 <∫
exp{yTθ + b(y)}dμ(y) < ∞, that is, Θ is the natural parameter space. Then

all the derivatives of a(θ) and all the moments of y exist in the interior Θint of
Θ, and, in particular, Eθ(y) = a′(θ) and Vθ(y) = a′′(θ). For a function c(η), we
will denote ∂c(η)/∂η and ∂2c(η)/∂η∂ηT by c′(η) and c′′(η), respectively. We
assume that Vθ(y) = a′′(θ) is positive definite and so − log f(y;θ) is a convex
function with respect to θ.

Let (yi,Xi) be the i-th set of responses and regressors (1 ≤ i ≤ n); we
assume that the yi are independent r-dimensional random vectors and Xi are
(r× p)-matrices of known constants. We will consider generalized linear models
with natural link functions for such data, that is, we consider a class of density
functions {f(y;Xiβ) : β ∈ B} for yi, where β = (β1, . . . , βp)

T is a coefficient
vector and B is an open convex set. We denote the true value of β by β∗.

Before developing the asymptotic theory for this model, let us explain about
two types of aims for using asymptotic theory. The first aim is to approximate
something well for the case where the data size goes to infinity in the future.
The second aim is to approximate something well for the given real data whose
size is large but of course finite. Assumptions which suit the first one sometimes
do not suit the second one. For example, for a regression model with regressors
{xi}, let us consider the case where the limiting frequency distribution of {xi :
1 ≤ i < ∞}, p∞(·), is quite different from the frequency distribution of the given
real data {xi : 1 ≤ i ≤ n0}, pn0(·). In this situation, the asymptotic variance
of regression coefficients’ estimator should be evaluated based on p∞(·) if we
want to evaluate the variance in the future. If we want to evaluate the variance
for the given real data, however, we should evaluate it based on not p∞(·) but
pn0(·). That is, as a limiting frequency distribution of {xi}, although to assume
p∞(·) will suit the first aim, it is better for the second aim to assume pn0(·).
Roughly speaking, our asymptotic theory is to approximate some statistics for
the given real data {(yi,Xi) : 1 ≤ i ≤ n0}. In light of this, we assume

(C1) {Xi} lies in a compact set X with Xβ ∈ Θint for all X ∈ X and β ∈ B,
and

(C2)
∑n

i=1 a(Xiβ)/n,
∑n

i=1 X
T
i a

′(Xiβ)/n and
∑n

i=1 X
T
i a

′′(Xiβ)Xi/n
converge with a rate o(1/

√
n) for each β, and the limit of∑n

i=1 X
T
i a

′′(Xiβ)Xi/n is positive definite,

even if we know that {Xi} diverges in the future.
Let gyi,Xi(β) be the log-likelihood for yi, i.e., gyi,Xi(β) = log f(yi;Xiβ).

Under the above-mentioned model with the conditions (C1) and (C2), we obtain
several expressions that will be used for our asymptotic theory, as follows:
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(R1) There exists a convex and differentiable function h(β) such that∑n
i=1{gyi,Xi(β

∗)− gyi,Xi(β)}/n
p→ h(β) for each β;

(R2)
∑n

i=1 E{−g′yi,Xi
(β)}/n− ∂h(β)/∂β = o(1/

√
n).

(R3) There exists a positive definite matrix J(β) such that Jn(β) ≡∑n
i=1 E{−g′′yi,Xi

(β)}/n → J(β);

(R4)
∑n

i=1[g
′
yi,Xi

(β)− E{g′yi,Xi
(β)}]/√n

d→ N(0,J(β∗)).

The expression (R3) is a direct consequence of (C2) because −g′′yi,Xi
(β) =

XT
i a

′′(Xiβ)Xi. The other expressions will be proved in the appendix.

3. Limiting distribution

Let || · ||1 be the �1 norm, i.e., ||β||1 =
∑p

j=1 |βj |. For the above-mentioned
model, the Lasso estimator of β∗ is

β̂λ ≡ argmin
β∈B

{
−

n∑
i=1

gyi,Xi(β) + nλ||β||1
}
, (1)

where λ is a regularization parameter. Here we put n in the penalty term for
our asymptotic theory; this corresponds to the setting in Theorem 1 of Knight
and Fu (2000) which provided the limiting value but did not discuss the lim-

iting distribution. If we assume that the penalty term is o(n), β̂λ converges

in probability to β∗. We think, however, this closeness between β̂λ and β∗

does not reflect the characteristic of β̂λ for the given real data, because it is
moved to 0 from β∗. As mentioned in the previous section, the purpose of our
asymptotic theory is to approximate some statistics for the given real data. The
penalty term is assumed to be O(n), because in this case, β̂λ converges to a
vector made by moving β∗ close to 0 (this will be shown below). Actually, for
more tractable regularization methods, an information criterion is already de-
rived by assuming O(n) for the penalty term (see, e.g., Konishi and Kitagawa
2008).

To consider the limiting value of β̂λ, we define a random function, as follows:

un(β) ≡
1

n

n∑
i=1

{gyi,Xi(β
∗)− gyi,Xi(β)}+ λ||β||1.

The function un(β) is convex with respect to β, and argminβ∈B un(β) is equal

to β̂λ. In Knight and Fu (2000), the same type of random function was defined
for the Gaussian case, but their function did not sum over the gyi,Xi(β

∗). We
did this, however, so we would not need to be concerned with b(y) in gyi,Xi(β).
From (R1), we see that un(β) converges in probability to h(β) + λ||β||1 for
each β. Because un(β) is a convex function with respect to β, similarly to in
Knight and Fu (2000), we can apply the convexity lemma from Andersen and
Gill (1982) or Pollard (1991).
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We assume the condition

(C3) h(β) + λ||β||1 has a unique minimum in B,

and we denote argminβ∈B{h(β) + λ||β||1} by β∗∗ = (β∗∗
1 , . . . , β∗∗

p )T. Because
h(β)+λ||β||1 is a convex function, (C3) will hold if B is sufficiently large. Using
the convexity lemma, we obtain the following result.

Lemma. The Lasso estimator β̂λ in (1) converges in probability to β∗∗ under
the conditions (C1), (C2), and (C3).

Because h(β) is convex and differentiable, we can easily check that

β∗∗
j = 0 ⇔ −λ <

∂h(β)

∂βj

∣∣∣
β=β∗∗

< λ (2)

and

β∗∗
j �= 0 ⇔ ∂h(β)

∂βj

∣∣∣
β=β∗∗

= −λ× sgn(β∗∗
j ). (3)

Let us denote {j : β∗∗
j = 0} and {j : β∗∗

j �= 0} by J (1) and J (2), respectively.
In addition, for a p-dimensional vector β, an (r × p)-matrix X, and a (p × p)-
matrix J , the vector (βj)j∈J (k) is denoted by β(k), the matrix (Xij)1≤i≤r,j∈J (k)

is denoted by X(k), and the matrix (Jij)i∈J (k),j∈J (l) is denoted by J (kl) (k, l ∈
{1, 2}). Note that β∗∗(1) = 0. Moreover, we sometimes express, for example,
β by (β(1),β(2)). We need this notation in order to investigate the asymptotic

behavior of β̂λ in more detail, since the asymptotic behaviors of β̂
(1)
λ and β̂

(2)
λ

are different.
Let us define another random function, as follows:

vn(u
(1),u(2)) ≡

n∑
i=1

{
gyi,Xi(β

∗∗)− gyi,Xi

(u(1)

n
,
u(2)

√
n

+ β∗∗(2)
)}

+ nλ
∣∣∣∣∣∣u(1)

n

∣∣∣∣∣∣
1
+ nλ

∣∣∣∣∣∣u(2)

√
n

+ β∗∗(2)
∣∣∣∣∣∣
1
− nλ||β∗∗||1.

Note that argmin(u(1),u(2)) vn(u
(1),u(2)) = (nβ̂

(1)
λ ,

√
n(β̂

(2)
λ − β∗∗(2))). Using

the Taylor expansion around (u(1),u(2)) = (0,0), this random function can be
expressed as

−
n∑

i=1

{
g
′(1)
yi,Xi

(β∗∗)T
u(1)

n
+ g

′(2)
yi,Xi

(β∗∗)T
u(2)

√
n

}

−
n∑

i=1

[u(1)T

n

{
g
′′(11)
yi,Xi

(β∗∗)
u(1)

2n
+ g

′′(12)
yi,Xi

(β∗∗)
u(2)

√
n

}
+

1

2

u(2)T

√
n

g
′′(22)
yi,Xi

(β∗∗)
u(2)

√
n

]

+ λ||u(1)||1 +
√
nλu(2)Tsgn(β∗∗(2)) + oP(1),
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where sgn(β∗∗(2)) is the vector whose components are sgn(β∗∗
j ) (j ∈ J (2)).

In the quadratic form, the terms including u(1) reduce to oP(1), and from

(R3), the remainder term −
∑n

i=1(u
(2)/

√
n)Tg

′′(22)
yi,Xi

(β∗∗)(u(2)/
√
n)/2 converges

to u(2)TJ(β∗∗)u(2)/2. In addition, from (R2), (R4), and (3), we have that there
exists a |J (2)|-dimensional random vector s(2) having a N(0,J (22)(β∗)) distri-

bution, such that
∑n

i=1 g
′(2)
yi,Xi

(β∗∗)/
√
n−√

nλ× sgn(β∗∗(2)) converges in distri-

bution to s(2). We can also easily obtain that −
∑n

i=1 g
′(1)
yi,Xi

(β∗∗)/n converges

in probability to ∂h(β)/∂β(1)|β=β∗∗ . Thus, for each (u(1),u(2)), it follows that
vn(u

(1),u(2)) converges in distribution to

v(u(1),u(2))

≡
∑

j∈J (1)

{∂h(β)

∂βj

∣∣∣
β=β∗∗

uj + λ|uj |
}
− u(2)Ts(2) +

1

2
u(2)TJ (22)(β∗∗)u(2).

From (2), the first term is a non-negative function of u(1). That is, v(u(1),u(2))
has a unique minimum at (u(1),u(2)) = (0,J (22)(β∗∗)−1s(2)), and vn(u

(1),u(2))
is convex. Similarly to in Knight and Fu (2000), we can apply the convex-
ity lemma from Hjort and Pollard (1993) or Geyer (1996), and then we have

argmin(u(1),u(2)) vn(u
(1),u(2))

d→ argmin(u(1),u(2)) v(u
(1),u(2)).

Theorem 1. For the Lasso estimator β̂λ in (1), we have

n(β̂
(1)
λ − β∗∗(1))

p→ 0 (4)

and

√
n(β̂

(2)
λ − β∗∗(2))

= J (22)(β∗∗)−1
{ 1√

n

n∑
i=1

g
′(2)
yi,Xi

(β∗∗)−
√
nλ× sgn(β∗∗(2))

}
+ oP(1)

d→ J (22)(β∗∗)−1s(2) ∼ N(0,J (22)(β∗∗)−1J (22)(β∗)J (22)(β∗∗)−1), (5)

under the conditions (C1), (C2), and (C3).

A small generalization of the above-mentioned convexity lemma is required
to prove (5), and so the proof will be given in the appendix.

4. Bias evaluation

Model selection can be approached by trying to reduce twice the Kullback-
Leibler divergence (Kullback and Leibler 1951) between the true distribution
and the estimated distribution,

2Ẽ
{ n∑

i=1

gỹi,Xi(β
∗)

}
− 2Ẽ

{ n∑
i=1

gỹi,Xi(β̂λ)
}
,
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where (ỹ1, . . . , ỹn) is a copy of (y1, . . . ,yn), in other words, (ỹ1, . . . , ỹn) is dis-
tributed according to the distribution of (y1, . . . ,yn) and is independent of
(y1, . . . ,yn), and Ẽ denotes the expectation with respect to only (ỹ1, . . . , ỹn).
Because the first term on the right-hand side does not depend on the model
selection, we need to consider only the second term. A simple estimator of the
second term is −2

∑n
i=1 gyi,Xi(β̂λ), but this underestimates it. We then consider

minimizing the bias correction,

−2

n∑
i=1

gyi,Xi(β̂λ) + 2E
[ n∑

i=1

gyi,Xi(β̂λ)− Ẽ
{ n∑

i=1

gỹi,Xi(β̂λ)
}]

, (6)

in AIC-type information criteria (see, e.g., Chapter 3 in Konishi and Kitagawa
2008). Because the second term depends on the true distribution, it cannot be
given explicitly. In a Gaussian linear regression setting with a known common
variance, that is, when gyi,Xi(β) can be written as −(yi−Xiβ)

T(yi−Xiβ)/2−
(r/2) log(2π) by standardizing the data, it can be shown by an elegant use of
Stein’s unbiased estimation theory (Stein 1981) that the number of nonzero

coefficients in β̂λ, |{j : β̂λ,j �= 0}| is an unbiased estimator of the second term
(Efron et al. 2004; Zou, Hastie and Tibshirani 2007). This means that

n∑
i=1

(yi −Xiβ̂λ)
T(yi −Xiβ̂λ) + nr log(2π) + 2|{j : β̂λ,j �= 0}| (7)

can be regarded as the AICc, a finite correction of the AIC (Sugiura 1978;
Hurvich and Tsai 1989). However, this criterion cannot be extended for the
general case, and so we evaluate the second term asymptotically in the same
way as was done for the AIC. That is, considering that E[

∑n
i=1 gyi,Xi(β̂λ) −

Ẽ{
∑n

i=1 gỹi,Xi(β̂λ)}] can be rewritten as the expectation of

n∑
i=1

{gyi,Xi(β̂λ)− gyi,Xi(β
∗∗)} −

n∑
i=1

{gỹi,Xi(β̂λ)− gỹi,Xi(β
∗∗)}, (8)

we use

−2

n∑
i=1

gyi,Xi(β̂λ) + 2E(zlimit) (9)

in place of (6), where zlimit is the limit to which (8) converges in distribution;
we say that E(zlimit) is an asymptotic bias.

Now we evaluate (8). Using a Taylor expansion around β∗∗, the first term
can be expressed as

(β̂λ − β∗∗)T
n∑

i=1

g′yi,Xi
(β∗∗) +

1

2
(β̂λ − β∗∗)T

{ n∑
i=1

g′′yi,Xi
(β†)

}
(β̂λ − β∗∗),

where β† is a vector on the segment from β̂λ to β∗∗. Using (4) in Theorem 1,

the terms including β̂
(1)
λ − β∗∗(1) reduce to oP(1). For the remainder terms,
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as shown in the previous section,
∑n

i=1 g
′(2)
yi,Xi

(β∗∗)/
√
n − √

nλ × sgn(β∗∗(2))

converges in distribution to s(2). In addition, we can easily check from (R3) and

Lemma 3 that
∑n

i=1 g
′′(22)
yi,Xi

(β†)/n = −J (22)(β∗∗) + oP(1). Thus, by using also
(5) in Theorem 1, we have

n∑
i=1

{gyi,Xi(β̂λ)− gyi,Xi(β
∗∗)} − (β̂

(2)
λ − β∗∗(2))Tnλ× sgn(β∗∗(2))

d→ 1

2
s(2)TJ (22)(β∗∗)−1s(2). (10)

Using the same type of Taylor expansion, the second term on the right-hand
side of (8) can be expressed as

(β̂λ − β∗∗)T
n∑

i=1

g′ỹi,Xi
(β∗∗) +

1

2
(β̂λ − β∗∗)T

{ n∑
i=1

g′′ỹi,Xi
(β‡)

}
(β̂λ − β∗∗),

where β‡ is a vector on the segment from β̂λ to β∗∗. Similarly to in the above

analysis, we see that the terms including β̂
(1)
λ − β∗∗(1) reduce to oP(1), and∑n

i=1 g
′′(2)
yi,Xi

(β‡)/n converges to −J (22)(β∗∗). In addition, there exists a |J (2)|-
dimensional random vector s̃(2) having a N(0,J (22)(β∗)) distribution, such that∑n

i=1 g
′(2)
ỹi,Xi

(β∗∗)/
√
n − √

nλ × sgn(β∗∗(2)) converges in distribution to s̃(2).
Then, we have

n∑
i=1

{gỹi,Xi(β̂λ)− gỹi,Xi(β
∗∗)} − (β̂

(2)
λ − β∗∗(2))Tnλ× sgn(β∗∗(2))

d→ s(2)TJ (22)(β∗∗)−1s̃(2) − 1

2
s(2)TJ (22)(β∗∗)−1s(2). (11)

Thus, it follows from (10) and (11) that

zlimit = −s(2)TJ (22)(β∗∗)−1s̃(2) + s(2)TJ (22)(β∗∗)−1s(2)

Because s(2) and s̃(2) are independently distributed according to N(0,J (22)(β∗)),
we obtain the following theorem.

Theorem 2. The asymptotic bias in (9) is given by

E(zlimit) = tr{J (22)(β∗)J (22)(β∗∗)−1}

under the conditions (C1), (C2), and (C3).

We cannot know the values of β∗ or β∗∗, and so we replace tr{J (22)(β∗)

J (22)(β∗∗)−1} by its consistent estimator. Let Ĵ (2) = {j : β̂λ,j �= 0} for

β̂λ = (βλ,1, . . . , βλ,p)
T, which is called an active set, and let Jn(β) =

∑n
i=1

XT
i a

′′(Xiβ)Xi/n. Defining |Ĵ (2)| × |Ĵ (2)| matrices Ĵ
∗(22)
n and Ĵ

∗∗(22)
n as

(Jn(β̂0)jk)j∈Ĵ (2),k∈Ĵ (2) and (Jn(β̂λ)jk)j∈Ĵ (2),k∈Ĵ (2) , respectively, we have

tr(Ĵ∗(22)
n Ĵ∗∗(22)−1

n ) = tr{J (22)(β∗)J (22)(β∗∗)−1}+ oP(1). (12)
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See the appendix for the proof. Thus, we propose the following index as an AIC
for the Lasso:

AICLasso
λ = −2

n∑
i=1

gyi,Xi(β̂λ) + 2tr(Ĵ∗(22)
n Ĵ∗∗(22)−1

n ). (13)

Here we use β̂0 as a consistent estimator of β∗ as done in the adaptive Lasso
(Zou 2006). When β̂0 is expected to be unstable, for example, when p is large,

we propose the use of a more stable but consistent estimator in place of β̂0. We
thus have only to select the λ that minimizes this AICLasso

λ .
When gyi,Xi(β) = −(yi − Xiβ)

T(yi − Xiβ)/2 − (r/2) log(2π), we have
a′′(Xiβ) = Ir, where Ir is the r × r identity matrix. That is, Jn(β) does

not depend on β and so Ĵ
∗(22)
n = Ĵ

∗∗(22)
n , which means that (13) reduces to (7).

Hence, the AIC in (13) can be regarded as a generalization of the AICc for the
Gaussian linear regression when the variance is known.

5. Simulation study

In this section, to check the performance of the AIC in (13), we perform some
simulation studies using logistic regression, Poisson regression, and Gaussian
graphical models, and we compare it with CV and the criterion with the penalty
term derived by Efron et al. (2004) and Zou, Hastie and Tibshirani (2007). This
last criterion can be written as

AICcLassoλ = −2

n∑
i=1

gyi,Xi(β̂λ) + 2|Ĵ (2)|. (14)

It is not theoretically assured, that is, it is not a finite correction of the AIC for
the cases of the above models, but for simplicity, we will call it the AICc.

We assessed the performance in terms of the second term of the Kullback-
Leibler divergence:

KL = −Ẽ
{ n∑

i=1

gỹi,Xi(β̂λ̂)
}
,

where λ̂ is the value of λ selected by each criterion, (ỹ1, . . . , ỹn) is a copy of
(y1, . . . ,yn), and Ẽ denotes the expectation with respect to only (ỹ1, . . . , ỹn).
We evaluated the expectation using test datasets of size 1000. As a secondary
index for the assessment, we also determined the rates of false positives and
false negatives:

FP = |{j : β̂j �= 0 ∧ β∗
j = 0}|/|{j : β∗

j = 0}|
and

FN = |{j : β̂j = 0 ∧ β∗
j �= 0}|/|{j : β∗

j �= 0}|,
for each of the three criteria. When a criterion has a larger FP but a smaller FN,
compared to the other criteria, no conclusion can be made from this secondary
index.
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5.1. Logistic and Poisson regression models

As simple examples of the generalized linear model, here we consider a logistic
regression model

gyi,Xi(β) = yiXiβ − log{1 + exp(Xiβ)} (yi ∈ {0, 1})

and a Poisson regression model

gyi,Xi(β) = yiXiβ − exp(Xiβ)− log yi! (yi ∈ {0, 1, 2, . . .}),

where Xi is a (1 × p)-matrix of known constants, and β is a p-dimensional
coefficient vector. For these models, Jn(β) can be written as

1

n

n∑
i=1

exp(Xiβ)

{1 + exp(Xiβ)}2
XT

i Xi

and

1

n

n∑
i=1

exp(Xiβ)X
T
i Xi,

respectively, and so we can easily obtain the AIC in (13).
The simulation settings were as follows. For the p-dimensional regressors,

we used vectors obtained from the multivariate Gaussian distribution Np(0,Σ),
where the (i, j)-element of Σ was set to 0.5|i−j|. Here we do not regard the
regressors as random vectors. The true coefficient vector β∗ was

β∗ = (β∗
1 , . . . , β

∗
1︸ ︷︷ ︸

k

, β∗
2 , . . . , β

∗
2︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
p−2k

)T,

and seven cases were considered for the pairs of p and k, as follows: (p, k) =
(8, 1), (8, 2), (8, 3), (16, 2), (32, 2), (500, 5), (1000, 5). We generated a dataset of
size n = 100 or n = 200, and used the Lasso to estimate the coefficient vector
(we used the package glmnet in R). One hundred simulations were conducted.

Tables 1 and 2 show the averages and standard deviations of the KL, and
the averages of the FP and FN for the logistic and Poisson regression models,
respectively. In all cases, the average of the KL for the AIC is almost equal to or
smaller than those for CV and the AICc. In the logistic regression, the average
KL for CV tends to be clearly larger than that for the AIC when n = 100
and p is large, and the average KL for the AICc is sometimes considerably
larger than those for the AIC and CV especially when p is large. In the Poisson
regression, because the average KL is almost the same for all criteria, we check
the secondary index. Then, we see that the sum of FP and FN values for CV is
sometimes clearly larger than those for the AIC and AICc especially when p is
small. Thus, we can say that the AICc and CV perform poorly in comparison
with the other criteria, at least in the case of the logistic and Poisson regressions,
respectively. We can thus conclude that, overall in these simple examples, the
AIC is superior to CV and the AICc.
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Table 1

Comparison among the cross-validation (CV), the AIC in (13) and the AICc in (14) for the
logistic regression models.

n = 100 n = 200

(β∗
1 , β

∗
2 ) p k KL (SD) FP FN KL (SD) FP FN

CV 0.230 (0.018) 0.38 0.15 0.215 (0.006) 0.41 0.09

(6.0,0.5) 8 1 AIC 0.234 (——) 0.41 0.14 0.215 (——) 0.42 0.09

AICc 0.259 (0.047) 0.48 0.13 0.222 (0.014) 0.47 0.09

CV 0.161 (0.010) 0.41 0.18 0.139 (0.003) 0.43 0.09

(6.0,0.5) 8 2 AIC 0.158 (——) 0.38 0.19 0.138 (——) 0.40 0.10

AICc 0.166 (0.028) 0.48 0.16 0.140 (0.007) 0.49 0.09

CV 0.134 (0.008) 0.29 0.18 0.112 (0.004) 0.35 0.10

(6.0,0.5) 8 3 AIC 0.132 (——) 0.25 0.22 0.112 (——) 0.27 0.12

AICc 0.130 (0.016) 0.34 0.16 0.110 (0.005) 0.37 0.09

CV 0.173 (0.017) 0.39 0.21 0.147 (0.007) 0.45 0.12

(6.0,0.5) 16 2 AIC 0.171 (——) 0.38 0.22 0.147 (——) 0.41 0.13

AICc 0.194 (0.041) 0.46 0.19 0.154 (0.015) 0.53 0.11

CV 0.182 (0.017) 0.28 0.21 0.156 (0.009) 0.33 0.15

(6.0,0.5) 32 2 AIC 0.179 (——) 0.32 0.20 0.155 (——) 0.35 0.15

AICc 0.201 (0.040) 0.28 0.23 0.167 (0.019) 0.40 0.15

CV 0.263 (0.014) 0.05 0.43 0.190 (0.009) 0.08 0.32

(6.0,0.5) 500 5 AIC 0.254 (——) 0.05 0.43 0.187 (——) 0.07 0.34

AICc 0.293 (0.026) 0.01 0.47 0.216 (0.018) 0.02 0.40

CV 0.292 (0.015) 0.03 0.44 0.195 (0.008) 0.05 0.40

(6.0,0.5) 1000 5 AIC 0.283 (——) 0.03 0.43 0.195 (——) 0.04 0.40

AICc 0.316 (0.027) 0.01 0.48 0.232 (0.015) 0.01 0.45

CV 0.210 (0.014) 0.41 0.03 0.194 (0.005) 0.42 0.01

(6.5,1.0) 8 1 AIC 0.212 (——) 0.41 0.05 0.194 (——) 0.41 0.01

AICc 0.233 (0.032) 0.51 0.03 0.199 (0.013) 0.47 0.01

CV 0.149 (0.009) 0.41 0.08 0.127 (0.004) 0.47 0.01

(6.5,1.0) 8 2 AIC 0.147 (——) 0.36 0.10 0.127 (——) 0.38 0.02

AICc 0.150 (0.016) 0.47 0.08 0.126 (0.009) 0.49 0.01

CV 0.133 (0.010) 0.33 0.12 0.107 (0.003) 0.11 0.11

(6.5,1.0) 8 3 AIC 0.131 (——) 0.28 0.14 0.107 (——) 0.08 0.14

AICc 0.129 (0.018) 0.35 0.11 0.104 (0.004) 0.12 0.11

CV 0.165 (0.016) 0.39 0.09 0.138 (0.006) 0.45 0.03

(6.5,1.0) 16 2 AIC 0.160 (——) 0.38 0.10 0.137 (——) 0.39 0.03

AICc 0.174 (0.029) 0.47 0.10 0.141 (0.012) 0.52 0.03

CV 0.178 (0.018) 0.28 0.13 0.152 (0.007) 0.36 0.05

(6.5,1.0) 32 2 AIC 0.173 (——) 0.30 0.12 0.149 (——) 0.35 0.06

AICc 0.190 (0.033) 0.30 0.14 0.159 (0.018) 0.44 0.05

CV 0.277 (0.016) 0.05 0.36 0.195 (0.009) 0.08 0.24

(6.5,1.0) 500 5 AIC 0.267 (——) 0.05 0.36 0.192 (——) 0.07 0.24

AICc 0.297 (0.026) 0.02 0.41 0.218 (0.016) 0.02 0.30

CV 0.304 (0.018) 0.03 0.39 0.211 (0.009) 0.05 0.28

(6.5,1.0) 1000 5 AIC 0.293 (——) 0.03 0.38 0.208 (——) 0.04 0.29

AICc 0.326 (0.026) 0.01 0.44 0.243 (0.018) 0.01 0.36

KL, the averages of the Kullback-Leibler divergences; SD, the standard deviations of the
difference between the Kullback-Leibler divergences for CV or the AICc and for the AIC;
FP, the averages of the false positive rates; FN, the averages of the false negative rates.
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Table 2

Comparison among the cross-validation (CV), the AIC in (13) and the AICc in (14) for the
Poisson regression models.

n = 100 n = 200

(β∗
1 , β

∗
2 ) p k KL (SD) FP FN KL (SD) FP FN

CV 1.343 (0.012) 0.24 0.22 1.333 (0.006) 0.24 0.23

(0.5,0.1) 8 1 AIC 1.343 (——) 0.21 0.23 1.333 (——) 0.20 0.23

AICc 1.343 (0.002) 0.20 0.23 1.333 (0.000) 0.20 0.23

CV 1.366 (0.011) 0.29 0.11 1.350 (0.004) 0.31 0.10

(0.5,0.1) 8 2 AIC 1.366 (——) 0.22 0.13 1.349 (——) 0.26 0.12

AICc 1.366 (0.001) 0.22 0.13 1.349 (0.002) 0.26 0.12

CV 1.405 (0.017) 0.27 0.10 1.373 (0.009) 0.22 0.05

(0.5,0.1) 8 3 AIC 1.409 (——) 0.18 0.13 1.373 (——) 0.17 0.06

AICc 1.410 (0.006) 0.19 0.13 1.372 (0.001) 0.17 0.06

CV 1.380 (0.034) 0.26 0.17 1.348 (0.008) 0.23 0.09

(0.5,0.1) 16 2 AIC 1.381 (——) 0.24 0.19 1.349 (——) 0.20 0.11

AICc 1.381 (0.002) 0.23 0.19 1.349 (0.000) 0.20 0.11

CV 1.379 (0.038) 0.17 0.19 1.356 (0.015) 0.18 0.09

(0.5,0.1) 32 2 AIC 1.380 (——) 0.16 0.21 1.356 (——) 0.16 0.09

AICc 1.379 (0.010) 0.14 0.22 1.356 (0.004) 0.16 0.10

CV 2.399 (0.174) 0.05 0.26 1.755 (0.057) 0.05 0.10

(0.5,0.1) 500 5 AIC 2.377 (——) 0.04 0.27 1.741 (——) 0.05 0.10

AICc 2.380 (0.027) 0.04 0.27 1.741 (0.003) 0.05 0.10

CV 2.579 (0.150) 0.03 0.30 1.826 (0.074) 0.03 0.14

(0.5,0.1) 1000 5 AIC 2.574 (——) 0.02 0.31 1.820 (——) 0.03 0.14

AICc 2.579 (0.055) 0.02 0.31 1.821 (0.020) 0.03 0.15

CV 1.356 (0.013) 0.26 0.09 1.366 (0.004) 0.30 0.03

(0.6,0.2) 8 1 AIC 1.356 (——) 0.24 0.08 1.367 (——) 0.28 0.03

AICc 1.356 (0.002) 0.24 0.08 1.367 (0.003) 0.27 0.03

CV 1.404 (0.016) 0.35 0.04 1.370 (0.007) 0.36 0.01

(0.6,0.2) 8 2 AIC 1.404 (——) 0.28 0.04 1.369 (——) 0.27 0.01

AICc 1.404 (0.004) 0.28 0.04 1.369 (0.000) 0.27 0.01

CV 1.438 (0.057) 0.24 0.01 1.406 (0.010) 0.32 0.00

(0.6,0.2) 8 3 AIC 1.444 (——) 0.23 0.02 1.406 (——) 0.27 0.00

AICc 1.443 (0.022) 0.23 0.02 1.405 (0.001) 0.29 0.00

CV 1.379 (0.034) 0.25 0.06 1.374 (0.010) 0.28 0.01

(0.6,0.2) 16 2 AIC 1.380 (——) 0.21 0.07 1.374 (——) 0.26 0.01

AICc 1.379 (0.002) 0.21 0.07 1.374 (0.003) 0.26 0.01

CV 1.426 (0.033) 0.19 0.05 1.385 (0.015) 0.21 0.01

(0.6,0.2) 32 2 AIC 1.428 (——) 0.17 0.05 1.384 (——) 0.19 0.01

AICc 1.423 (0.007) 0.15 0.06 1.384 (0.001) 0.19 0.01

CV 5.870 (0.412) 0.05 0.09 2.583 (0.095) 0.05 0.00

(0.6,0.2) 500 5 AIC 5.823 (——) 0.04 0.10 2.572 (——) 0.05 0.01

AICc 5.838 (0.197) 0.05 0.10 2.573 (0.035) 0.05 0.01

CV 6.926 (0.703) 0.03 0.12 3.314 (0.309) 0.03 0.01

(0.6,0.2) 1000 5 AIC 6.748 (——) 0.03 0.12 3.277 (——) 0.03 0.01

AICc 6.756 (0.239) 0.03 0.12 3.270 (0.056) 0.03 0.01

KL, the averages of the Kullback-Leibler divergences; SD, the standard deviations of the
difference between the Kullback-Leibler divergences for CV or the AICc and for the AIC;
FP, the averages of the false positive rates; FN, the averages of the false negative rates.
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5.2. Gaussian graphical model

Suppose that a q-dimensional random vector zi is distributed according to a
multivariate Gaussian distribution Nq(μ,Σ). Without loss of generality, we can
assume that the mean vector is the zero vector. The graphical Lasso estimates
the covariance matrix Σ, under the assumption that the precision matrix C =
Σ−1 is sparse (Yuan and Lin 2007; Friedman, Hastie and Tibshirani 2008). Let
us denote the p-dimensional vectors vech(ziz

T
i ) and −vech{C − diag(C)/2} by

yi and β, respectively, where p = q(q+1)/2 and vech(·) is the half-vectorization
of a symmetric matrix. Then, the log-likelihood of yi is

gyi(β) = yT
i β + log |C|1/2 − log(2π)p/2.

By simple calculations, we have ∂(− log |C|1/2)/∂(−Cii/2) = Σii and ∂(− log
|C|1/2)/∂(−Cij) = Σij , for i �= j. Moreover, we obtain ∂Σkl/∂(−Cii/2) =
2ΣkiΣil and ∂Σkl/∂(−Cij) = ΣkiΣjl + ΣkjΣil, for i �= j. Therefore, for this
model, the elements of Jn(β) can be written as

Jn(β)(i−1)q+j,(k−1)q+l = ΣkiΣjl +ΣkjΣil,

and so we can easily obtain the AIC in (13).
The simulation settings were those used by Yuan and Lin (2007). The models

for the precision matrix are as follows:

(M1) AR(1) model with cii = 1 (1 ≤ i ≤ q) and ci,i−1 = ci−1,i = 0.5 (2 ≤ i ≤
q).

(M2) AR(2) model with cii = 1 (1 ≤ i ≤ q), ci,i−1 = ci−1,i = 0.5 (2 ≤ i ≤ q),
and ci,i−2 = ci−2,i = 0.25 (3 ≤ i ≤ q).

(M3) AR(3) model with cii = 1 (1 ≤ i ≤ q), ci,i−1 = ci−1,i = 0.4 (2 ≤ i ≤ q),
ci,i−2 = ci−2,i = 0.3 (3 ≤ i ≤ q) and ci,i−3 = ci−3,i = 0.2 (4 ≤ i ≤ q).

We considered four cases for the pair of n and q, as follows: (n, q) = (25, 5),
(50, 5), (50, 10), (100, 10). The parameter vector β was estimated by the graph-
ical Lasso using the package glasso in R. The simulations were conducted 100
times.

Table 3 shows the averages and standard deviations of the KL, along with
the averages of the FP and FN. Also in this model, the average of the KL for
the AIC is almost equal to or smaller than those for CV and the AICc, but
the differences are small. For the cases of (n, q) = (25, 5), (50, 10), the difference
between the KL averages for the AIC and CV becomes slightly large.

6. Real data analyses

We investigated the effectiveness of our criterion through real data analyses.
We used eight benchmark datasets, which are depicted in Table 4. The “pima”
and “biodegradation” datasets were available from the UCI database (http://
archive.ics.uci.edu/ml/index.html). The “colon”, “leukemia”, “takeover.

http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
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Table 3

Comparison among the cross-validation (CV), the AIC in (13) and the AICc in (14) for the
Gaussian graphical models.

Model (M1) Model (M2) Model (M3)

(n, q) KL (SD) FP FN KL (SD) FP FN KL (SD) FP FN

CV 3.537 (0.101) 0.47 0.01 5.012 (0.194) 0.51 0.33 5.403 (0.164) 0.24 0.58

(25,5) AIC 3.493 (——) 0.46 0.00 4.946 (——) 0.57 0.25 5.326 (——) 0.40 0.41

AICc 3.501 (0.050) 0.45 0.01 4.964 (0.084) 0.54 0.27 5.338 (0.058) 0.37 0.45

CV 3.030 (0.005) 0.50 0.00 4.494 (0.032) 0.55 0.16 4.864 (0.080) 0.58 0.34

(50,5) AIC 3.031 (——) 0.49 0.00 4.498 (——) 0.52 0.19 4.843 (——) 0.54 0.34

AICc 3.031 (0.000) 0.49 0.00 4.500 (0.012) 0.52 0.20 4.846 (0.020) 0.53 0.35

CV 2.620 (0.000) 0.37 0.00 8.846 (0.042) 0.42 0.16 9.504 (0.075) 0.37 0.38

(50,10) AIC 2.620 (——) 0.37 0.00 8.841 (——) 0.42 0.16 9.477 (——) 0.40 0.34

AICc 2.620 (0.000) 0.37 0.00 8.852 (0.035) 0.41 0.17 9.483 (0.040) 0.38 0.36

CV 2.299 (0.000) 0.36 0.00 8.358 (0.006) 0.37 0.10 9.005 (0.014) 0.35 0.31

(100,10) AIC 2.299 (——) 0.36 0.00 8.359 (——) 0.37 0.10 9.010 (——) 0.34 0.32

AICc 2.299 (0.000) 0.36 0.00 8.360 (0.009) 0.37 0.11 9.011 (0.006) 0.33 0.32

KL, the averages of the Kullback-Leibler divergences; SD, the standard deviations of the
difference between the Kullback-Leibler divergences for CV or the AICc and for the AIC;
FP, the averages of the false positive rates; FN, the averages of the false negative rates.

bids.case”, “doctor.visits”, and “mathmark” datasets were, respectively, ob-
tained from the packages HiDimDA, plsgenomics, CountsEPPM, AER, and gRbase

in R. The “flow.cytometry” dataset was obtained from Sachs et al. (2005).
Logistic regression models were applied into the “pima”, “biodegradation”,
“colon”, and “leukemia” datasets, Poisson regression models were applied into
the “takeover.bids.case” and “doctor.visits” datasets, and Gaussian graphical
models were applied into the “flow.cytometry” and “mathmark” datasets. The
covariates were standardized for each dataset.

We randomly divided the observed data into training samples for constructing
the models and test samples for computing the KL. The numbers of training
samples are shown in Table 4, while the remaining observations were regarded
as test samples. Note that we randomly selected 1000 observations in advance
if the number of the observed data was larger than 1000. We repeated these
procedures 10 times.

Table 5 shows the results. In almost all cases, the AIC is superior to the
other criteria. In particular, the results for the “colon” and “leukemia” datasets
suggests that the AIC is sometimes clearly superior to CV.

7. Extensions

The AIC in (13) can be extended for more general cases. In this section, we
will indicate the broad possibilities of this by providing an actual AIC for some
particular cases.
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Table 4

Sample size and the number of covariates in real datasets, and the number of training
samples used in each analysis.

sample size # of covariates # of training samples model

pima 200 7 100 logistic

biodegradation 1055 41 100 logistic

colon 62 2000 40 logistic

leukemia 38 3051 20 logistic

takeover.bids.case 126 14 50 Poisson

doctor.visits 5190 11 100 Poisson

flow.cytometry 7466 11 100 graphical

mathmark 88 5 50 graphical

Table 5

Averages (standard deviations) of the KL in real data analyses.

CV AIC AICc

pima 0.4935 (0.0304) 0.4808 (——–) 0.4939 (0.0365)

biodegradation 0.4481 (0.0359) 0.4436 (——–) 0.4800 (0.0449)

colon 0.5303 (0.1506) 0.4640 (——–) 0.4939 (0.0671)

leukemia 0.3733 (0.1007) 0.2863 (——–) 0.3354 (0.1077)

takeover.bids.case 1.626 (0.028) 1.614 (——) 1.618 (0.011)

doctor.visits 0.7168 (0.0280) 0.7131 (——–) 0.7193 (0.0196)

flow.cytometry 12.71 (0.24) 12.63 (—–) 12.63 (0.00)

mathmark 3.395 (0.007) 3.392 (——) 3.392 (0.000)

7.1. Model with a nuisance parameter

For the Gaussian linear regression model in which each random vector zi is
independently distributed according to the r-dimensional Gaussian distribution
Nr(Xiγ, σ

2Ir) with unknown variance parameter σ2, the estimation is usually
performed without any penalization, even if γ is estimated by the Lasso. We
will begin by considering such an example, that is, a case in which there are
several parameters with no penalty terms. For simplicity, we will denote all
parameters by β as before, and let J be an index set of βj , which is estimated

without penalization. In this setting, the estimator of β can be written as β̂λ ≡
argminβ∈B{−

∑n
i=1 gyi,Xi(β) + nλ

∑
j /∈J |βj |}.

Let us define β∗∗ by argminβ∈B{h(β) + λ
∑

j /∈J |βj |}, J (1) by {j : β∗∗
j =

0} ∩ J and J (2) by {j : β∗∗
j �= 0} ∪ J . As a result, Lemma 3, Theorem 1,

and Theorem 2 hold. Their derivations are a little more complicated than
those in Sections 3 and 4, because (2) and (3) hold only when j ∈ J and
∂h(β)/∂βj |β=β∗∗ = 0 always holds when j ∈ J . Noting that Ĵ (2) includes J
with probability one, the AIC in this case is also given by (13).

For the above-mentioned Gaussian linear regression model with unknown
variance, if γ and σ2 are estimated by the Lasso and without penalization,
respectively, one might think that the penalty term in the AIC will be
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2(|Ĵ (2)|+ 1). However, Jn(β) becomes

Jn(σ
2,γ) =

n∑
i=1

(
4σ2γTXT

i Xiγ + 2rσ4 2σ2γTXT
i Xi

2σ2XT
i Xiγ σ2XT

i Xi

)

in this setting, and so the penalty term in the AIC cannot be easily expressed
by the number of elements in the active set.

7.2. Other convex penalties

Here, in place of nλ||β||1, we consider a general convex penalty term nλη(β).
Since the Lasso can simultaneously do estimation and model selection by shrink-
ing the estimators, we will assume that η(β) is symmetric with respect to βj = 0
and nondifferentiable with respect to βj at βj = 0. We assume that η(β) is dif-
ferentiable with respect to βj at βj �= 0 for the sake of simplicity, and, also
for simplicity, we will denote ∂η(β)/∂β|βj→+0 by ∂η(β)/∂β|βj=0. The asymp-

totic properties of β̂λ ≡ argminβ∈B{−
∑n

i=1 gyi,Xi(β)+nλη(β)} can be derived
similarly to those of the Lasso estimators.

First, it follows from a convexity lemma that β̂λ converges in probability to
β∗∗ ≡ argminβ∈B{h(β) + λη(β)}. In addition, (2) and (3) can be rewritten as

β∗∗
j = 0 ⇔ −λ

∂η(β)

∂βj

∣∣∣
β=β∗∗

<
∂h(β)

∂βj

∣∣∣
β=β∗∗

< λ
∂η(β)

∂βj

∣∣∣
β=β∗∗

and

β∗∗
j �= 0 ⇔ ∂h(β)

∂βj

∣∣∣
β=β∗∗

= −λ
∂η(β)

∂βj

∣∣∣
β=β∗∗

, (15)

and we can show the pointwise convergence of

vn(u
(1),u(2)) ≡

n∑
i=1

{
gyi,Xi(β

∗∗)− gyi,Xi

(u(1)

n
,
u(2)

√
n

+ β∗∗(2)
)}

− nλ
{
η(β∗∗)− η

(u(1)

n
,
u(2)

√
n

+ β∗∗(2)
)}

(16)

to

∑
j∈J (1)

{∂h(β)

∂βj

∣∣∣
β=β∗∗

uj + λ
∂η(β)

∂βj

∣∣∣
β=β∗∗

|uj |
}

− u(2)Ts(2) + u(2)TK
(22)
λ (β∗∗)u(2)/2 (17)

from the equality in (15). Here,Kλ(β) is J(β)+λ∂2η(β)/∂β∂βT, and λ∂2η(β)/
∂β∂βT is the term that does not exist for the Lasso. Then, from a convexity
lemma and the inequality in (15), it holds that

n(β̂
(1)
λ − β∗∗(1))

p→ 0 (18)
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and
√
n(β̂

(2)
λ − β∗∗(2))

d→ K
(22)
λ (β∗∗)−1s(2). (19)

Let us consider the bias evaluation, in a way similar to what we did for the
Lasso. By using

n∑
i=1

{gyi,Xi(β̂λ)− gyi,Xi(β
∗∗)} − (β̂

(2)
λ − β∗∗(2))Tnλ

∂η(β)

∂β(2)

∣∣∣
β=β∗∗

d→ s(2)TK
(22)
λ (β∗∗)−1s(2) − 1

2
s(2)TK

(22)
λ (β∗∗)−1J (22)(β∗∗)K

(22)
λ (β∗∗)−1s(2)

in place of (10) and using

n∑
i=1

{gỹi,Xi(β̂λ)− gỹi,Xi(β
∗∗)} − (β̂

(2)
λ − β∗∗(2))Tnλ

∂η(β)

∂β(2)

∣∣∣
β=β∗∗

d→ s(2)TK
(22)
λ (β∗∗)−1s̃(2) − 1

2
s(2)TK

(22)
λ (β∗∗)−1J (22)(β∗∗)K

(22)
λ (β∗∗)−1s(2)

in place of (11), we have zlimit = −s(2)TK
(22)
λ (β∗∗)−1s̃(2) + s(2)TK

(22)
λ (β∗∗)−1

s(2). Then we have E(zlimit) = tr{J (22)(β∗)K
(22)
λ (β∗∗)−1} in place of Theo-

rem 2. Thus, the AIC for this case is

−2

n∑
i=1

gyi,Xi(β̂λ) + 2tr
{
Ĵ∗(22)

n

(
Ĵ∗∗(22)

n + λ
∂2η(β)

∂β(2)∂β(2)T

∣∣∣
β=β̂λ

)−1}
. (20)

7.3. Nonconvex penalties

Here we consider the case with a nonconvex penalty term nλη(β). We assume
that η(β) has the same properties as in Section 7.2, except for convexity, and we
assume that η(β) is a nondecreasing function with respect to each |βj |. For sim-
plicity, we will also assume that ∂η(β)/∂β|βj=0, which denotes ∂η(β)/∂β|βj→+0,
is a finite value. This setting does not allow use of the convexity lemmas for show-
ing the asymptotic properties of β̂λ ≡ argminβ∈B{−

∑n
i=1 gyi,Xi(β)+nλη(β)},

but we can use the same approach as was used for the nonconvex case treated
in Knight and Fu (2000).

First, we can easily show that un(β) ≡
∑n

i=1{gyi,Xi(β
∗) − gyi,Xi(β)}/n +

λη(β) uniformly converges in probability to h(β) + λη(β) on any compact set

of β and that argminβ∈B un(β) is OP(1). Thus, β̂λ converges in probability to
β∗∗ ≡ argminβ∈B{h(β) + λη(β)}. We can also easily show that (16) converges

uniformly to (17) on any compact set of β, and so if argmin(u(1),u(2))vn(u
(1),u(2))

is OP(1), (18) and (19) hold. It is necessary to place some conditions in order to
assure that this is OP(1). For example, such conditions can be that vn(u

(1),u(2))

is convex when n and |u(2)| are large enough, and K
(22)
λ (β∗∗) is positive def-

inite. In that case, we have n(β̂
(1)
λ − β∗∗(1))

p→ 0 and
√
n(β̂

(2)
λ − β∗∗(2))

d→
K

(22)
λ (β∗∗)−1s(2).
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The remaining evaluation of the bias is the same as in Section 7.2, and the
AIC in this case can be given by (20).

8. Discussion

By generalizing and modifying the original definition of the AIC, various crite-
ria have been proposed, e.g., the GIC (Konishi and Kitagawa 1996), the DIC
(Spiegelhalter et al. 2002), the FIC (Claeskens and Hjort 2003), and the GAIC
(Lv and Liu 2014). For the Lasso, a popular regularization method, there was
not even a naive AIC, except for in the case of Gaussian linear regression. In
this study, we used the original definition of the AIC to obtain an AIC for the
Lasso for a generalized linear model. For several settings, BICs for the Lasso
have been proposed, such as those by Yuan and Lin (2007) and Wang, Li and
Leng (2009). But such BICs have not been derived from Bayes factors, and so
the AIC in (13) can be regarded as the only criterion for the Lasso that has the
same roots as those of the classic information criteria.

The penalty term in (13) is written by using an information matrix with
respect to the active set, and simulation studies indicated that its value is close
to twice the number of members in the active set. We can interpret this to
mean that the active set contributes to the penalty by approximately the usual
amount, and the other parameters do not. While the active set consists of pa-
rameters in the model that are selected by the Lasso, it is adaptively selected
from the full set, and so the above interpretation is not necessarily obvious.
As was remarked for the Gaussian case in Lockhart et al. (2014), the adaptive
selection costs extra bias, and shrinking the nonzero coefficients decreases the
bias by approximately the same amount. This is an interesting phenomenon,
but it is not clear why they should be almost the same amount.

The selection of the regularization parameter for the Lasso by the AIC in (13)
requires few computations, compared to those required by CV. Nevertheless, its
performance is almost the same as or better than that of CV. It is particu-
larly worth noting that the AIC is not inferior to CV even if the dimension of
the coefficient vector p is particularly large, although the AIC is based on the
asymptotic theory with a fixed p. It would be interesting to determine why the
AIC works well for the case of large p, and the theoretical clarification of this
will be an area for our future work.

As mentioned above, previously there was not even a naive AIC for the
Lasso. Thus, in this paper, we have considered only the most basic setting for
our theorems, and they have been extended for a few settings. Using these
extensions, we will be able to obtain, for example, the AIC for the generalized
Lasso (Tibshirani and Taylor 2011) and the AIC for more general penalty terms.
To check their performance in specific problems will be an important area for
our future work. Beyond the selection of the regularization parameter for the
Lasso, “inference after selection” problem is a current challenging topic and
recently several methods are proposed (e.g., Lee et al. 2013 and Javanmard and
Montanari 2014). To check the compatibility between the AIC in (13) and such
methods will be also an important area for our future work.
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Appendix

In this section, we give short proofs of the expressions used for our asymptotic
theory.

Proof of (R1)

From (C2), the expectation of
∑n

i=1{gyi,Xi(β
∗)− gyi,Xi(β)}/n converges, and

we denote this limit by h(β). From (C1), the variance of
∑n

i=1{gyi,Xi(β
∗) −

gyi,Xi(β)}/
√
n is bounded, and so we can easily check that it converges in prob-

ability to h(β). Because
∑n

i=1{gyi,Xi(β
∗) − gyi,Xi(β)}/n is convex and differ-

entiable, h(β) can also be shown to be convex and differentiable. See Theorems
10.8 and 25.7 in Rockafellar (1970).

Proof of (R2)

It holds from Theorem 25.7 in Rockafellar (1970) that

lim
n→∞

∂

∂β

[ 1
n

n∑
i=1

E{gyi,Xi(β
∗)− gyi,Xi(β)}

]
=

∂h(β)

∂β
.

With direct calculation, the left-hand side reduces to limn→∞
∑n

i=1 X
T
i a

′(Xiβ)
/n, and so ∂h(β)/∂β is shown to be the limit of

∑n
i=1 E{−g′yi,Xi

(β)}/n. From
(C2), its convergence rate is o(1/

√
n), and thus we obtain (R2).

Proof of (R4)

The asymptotic normality for the score function
∑n

i=1 g
′
yi,Xi

(β) can be obtained
by applying the approach in Xie and Yang (2003), while their asymptotic nor-
mality is shown for standard generalized estimating equations estimators. For
any given p-dimensional vector α with ||α|| = 1, let y∗

i = a′′(Xiβ
∗)−1/2{yi −

a′(Xiβ
∗)} and ωni = αT{nJn(β

∗)}−1/2[g′yi,Xi
(β) − E{g′yi,Xi

(β)}] = αT

{nJn(β
∗)}−1/2XT

i {yi − a′(Xiβ
∗)}. By the Cauchy-Schwarz inequality, it fol-

lows that

ω2
ni ≤ αT{nJn(β

∗)}−1/2XT
i a

′′(Xiβ
∗)Xi{nJn(β

∗)}−1/2α× y∗T
i y∗

i .

Let γni = αT{nJn(β
∗)}−1/2XT

i a
′′(Xiβ

∗)Xi{nJn(β
∗)}−1/2α. The minimum

eigenvalue of nJn(β
∗) goes to infinity because of (R3), and so maxi γni → 0.

We also note that
∑n

i=1 γni = 1. Letting ε > 0, we have

E{ω2
niI(|ωni| > ε)} ≤ E

{
γniy

∗T
i y∗

i I
(
y∗T
i y∗

i >
ε2

γni

)}
≤ γniE

{
(y∗T

i y∗
i )

2 γni
ε2

}
.

In the first and second inequalities, we just use ω2
ni ≤ γniy

∗T
i y∗

i and I(y∗T
i y∗

i >
ε2/γni) ≤ y∗T

i y∗
i γni/ε

2, respectively. For this model, the moments of yi exist,
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and so we have E{(y∗T
i y∗

i )
2} < k for a constant k > 0. Thus, if we also use∑n

i=1 γni = 1, it holds that

n∑
i=1

E{ω2
niI(|ωni| > ε)} ≤ k

ε2
max

i
γni → 0 (n → ∞).

By the Lindeberg central limit theorem and the Cramér-Wold device, we have

{nJn(β
∗)}−1/2

n∑
i=1

[g′yi,Xi
(β)− E{g′yi,Xi

(β)}] d→ N(0, Ip),

where Ip is the p× p identity matrix. From this and (R3), we obtain (R4).

Proof of (5)

Let s
(2)
n =

∑n
i=1 g

′(2)
yi,Xi

(β∗∗)/
√
n − √

nλ × sgn(β∗∗(2)), and let s̃
(2)
n =

J (22)(β∗∗)−1s
(2)
n and ṽn(u

(1),u(2)) =
∑

j∈J (1){∂h(β)/∂βj |β=β∗∗uj + λ|uj |} −
u(2)Ts

(2)
n +u(2)TJ (22)(β∗∗)u(2)/2. Note that ṽn(u

(1),u(2)) has a unique argmin

(0, s̃
(2)
n ). Defining Δn(δ) as the supremum of |vn(u(1),u(2))− ṽn(u

(1),u(2))| over
{|(u(1),u(2) − s̃

(2)
n )| ≤ δ}, it follows from Lemma 2 in Hjort and Pollard (1993)

that

P{|(nβ̂(1)
λ ,

√
n(β̂

(2)
λ − β∗∗(2))− s̃(2)n )| ≥ δ}

≤ P
[
Δn(δ) ≥

1

2

{
inf

|(u(1),u(2)−s̃
(2)
n )|=δ

ṽn(u
(1),u(2))− ṽn(0, s̃

(2)
n )

}]
.

By a simple calculation, we have

ṽn(u
(1),u(2))− ṽn(0, s̃

(2)
n )

=
∑

j∈J (1)

{∂h(β)

∂βj

∣∣∣
β=β∗∗

uj + λ|uj |
}
+

1

2
(u(2) − s̃(2)n )TJ (22)(β∗∗)(u(2) − s̃(2)n ).

Let ρ1 be the minimum value of λ + h(β)/∂βj |β=β∗∗ for j ∈ J (1) and λ −
h(β)/∂βj |β=β∗∗ for j ∈ J (1), and let ρ2 be half the smallest eigenvalue of
J (22)(β∗∗). Note that ρ1 and ρ2 are positive because of (2) and the positive
definiteness of J (22)(β∗∗). Thus, we can obtain that

P{|
√
n(β̂

(2)
λ − β∗∗(2))− s̃(2)n | ≥ δ} ≤ P

{
Δn(δ) ≥

1

2
min(ρ1δ, ρ2δ

2)
}
→ 0.

Note that it holds Δn(δ)
p→ 0 from the convexity lemma in Andersen and Gill

(1982) or Pollard (1991).
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Proof of (12)

Because β̂0 and β̂λ are consistent estimators of β∗ and β∗∗, respectively, it is
sufficient to show that Ĵ (2) is a consistent estimator of J (2).

Let us consider β satisfying |β − β∗∗| ≤ C/
√
n for some constant C > 0.

Noting that ∂{
∑n

i=1 −gyi,Xi(β)/n}/∂βj = ∂h(β)/∂βj + oP(1) and ∂2{
∑n

i=1

−gyi,Xi(β)/n}/∂βj∂βk = O(1), we have

∂un(β)

∂βj
=

∂hn(β)

∂βj

∣∣∣
β=β∗∗

+ λ× sgn(βj) + oP(1)

uniformly in β by Taylor’s expansion. Therefore, it follows from (2) that ∂un(β)
/∂βj < 0 for βj < 0 and ∂un(β)/∂βj > 0 for βj > 0 with probability tending to

1 as n → ∞ when j ∈ J (1). Because β̂−β∗∗ = OP(1/
√
n), β∗

j = 0 for j ∈ J (1),

and β∗
j �= 0 for j ∈ J (2), we can conclude that P(β̂j �= 0) = o(1) for j ∈ J (1)

and P(β̂j = 0) = o(1) for j ∈ J (2).
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